1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
5 <book id="Generic-IRQ-Guide">
7 <title>Linux generic IRQ handling</title>
11 <firstname>Thomas</firstname>
12 <surname>Gleixner</surname>
15 <email>tglx@linutronix.de</email>
20 <firstname>Ingo</firstname>
21 <surname>Molnar</surname>
24 <email>mingo@elte.hu</email>
31 <year>2005-2010</year>
32 <holder>Thomas Gleixner</holder>
35 <year>2005-2006</year>
36 <holder>Ingo Molnar</holder>
41 This documentation is free software; you can redistribute
42 it and/or modify it under the terms of the GNU General Public
43 License version 2 as published by the Free Software Foundation.
47 This program is distributed in the hope that it will be
48 useful, but WITHOUT ANY WARRANTY; without even the implied
49 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
50 See the GNU General Public License for more details.
54 You should have received a copy of the GNU General Public
55 License along with this program; if not, write to the Free
56 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
61 For more details see the file COPYING in the source
62 distribution of Linux.
70 <title>Introduction</title>
72 The generic interrupt handling layer is designed to provide a
73 complete abstraction of interrupt handling for device drivers.
74 It is able to handle all the different types of interrupt controller
75 hardware. Device drivers use generic API functions to request, enable,
76 disable and free interrupts. The drivers do not have to know anything
77 about interrupt hardware details, so they can be used on different
78 platforms without code changes.
81 This documentation is provided to developers who want to implement
82 an interrupt subsystem based for their architecture, with the help
83 of the generic IRQ handling layer.
87 <chapter id="rationale">
88 <title>Rationale</title>
90 The original implementation of interrupt handling in Linux uses
91 the __do_IRQ() super-handler, which is able to deal with every
92 type of interrupt logic.
95 Originally, Russell King identified different types of handlers to
96 build a quite universal set for the ARM interrupt handler
97 implementation in Linux 2.5/2.6. He distinguished between:
99 <listitem><para>Level type</para></listitem>
100 <listitem><para>Edge type</para></listitem>
101 <listitem><para>Simple type</para></listitem>
103 During the implementation we identified another type:
105 <listitem><para>Fast EOI type</para></listitem>
107 In the SMP world of the __do_IRQ() super-handler another type
110 <listitem><para>Per CPU type</para></listitem>
114 This split implementation of high-level IRQ handlers allows us to
115 optimize the flow of the interrupt handling for each specific
116 interrupt type. This reduces complexity in that particular code path
117 and allows the optimized handling of a given type.
120 The original general IRQ implementation used hw_interrupt_type
121 structures and their ->ack(), ->end() [etc.] callbacks to
122 differentiate the flow control in the super-handler. This leads to
123 a mix of flow logic and low-level hardware logic, and it also leads
124 to unnecessary code duplication: for example in i386, there is an
125 ioapic_level_irq and an ioapic_edge_irq IRQ-type which share many
126 of the low-level details but have different flow handling.
129 A more natural abstraction is the clean separation of the
130 'irq flow' and the 'chip details'.
133 Analysing a couple of architecture's IRQ subsystem implementations
134 reveals that most of them can use a generic set of 'irq flow'
135 methods and only need to add the chip-level specific code.
136 The separation is also valuable for (sub)architectures
137 which need specific quirks in the IRQ flow itself but not in the
138 chip details - and thus provides a more transparent IRQ subsystem
142 Each interrupt descriptor is assigned its own high-level flow
143 handler, which is normally one of the generic
144 implementations. (This high-level flow handler implementation also
145 makes it simple to provide demultiplexing handlers which can be
146 found in embedded platforms on various architectures.)
149 The separation makes the generic interrupt handling layer more
150 flexible and extensible. For example, an (sub)architecture can
151 use a generic IRQ-flow implementation for 'level type' interrupts
152 and add a (sub)architecture specific 'edge type' implementation.
155 To make the transition to the new model easier and prevent the
156 breakage of existing implementations, the __do_IRQ() super-handler
157 is still available. This leads to a kind of duality for the time
158 being. Over time the new model should be used in more and more
159 architectures, as it enables smaller and cleaner IRQ subsystems.
160 It's deprecated for three years now and about to be removed.
164 <title>Known Bugs And Assumptions</title>
166 None (knock on wood).
170 <chapter id="Abstraction">
171 <title>Abstraction layers</title>
173 There are three main levels of abstraction in the interrupt code:
175 <listitem><para>High-level driver API</para></listitem>
176 <listitem><para>High-level IRQ flow handlers</para></listitem>
177 <listitem><para>Chip-level hardware encapsulation</para></listitem>
180 <sect1 id="Interrupt_control_flow">
181 <title>Interrupt control flow</title>
183 Each interrupt is described by an interrupt descriptor structure
184 irq_desc. The interrupt is referenced by an 'unsigned int' numeric
185 value which selects the corresponding interrupt description structure
186 in the descriptor structures array.
187 The descriptor structure contains status information and pointers
188 to the interrupt flow method and the interrupt chip structure
189 which are assigned to this interrupt.
192 Whenever an interrupt triggers, the low-level architecture code calls
193 into the generic interrupt code by calling desc->handle_irq().
194 This high-level IRQ handling function only uses desc->irq_data.chip
195 primitives referenced by the assigned chip descriptor structure.
198 <sect1 id="Highlevel_Driver_API">
199 <title>High-level Driver API</title>
201 The high-level Driver API consists of following functions:
203 <listitem><para>request_irq()</para></listitem>
204 <listitem><para>free_irq()</para></listitem>
205 <listitem><para>disable_irq()</para></listitem>
206 <listitem><para>enable_irq()</para></listitem>
207 <listitem><para>disable_irq_nosync() (SMP only)</para></listitem>
208 <listitem><para>synchronize_irq() (SMP only)</para></listitem>
209 <listitem><para>irq_set_irq_type()</para></listitem>
210 <listitem><para>irq_set_irq_wake()</para></listitem>
211 <listitem><para>irq_set_handler_data()</para></listitem>
212 <listitem><para>irq_set_chip()</para></listitem>
213 <listitem><para>irq_set_chip_data()</para></listitem>
215 See the autogenerated function documentation for details.
218 <sect1 id="Highlevel_IRQ_flow_handlers">
219 <title>High-level IRQ flow handlers</title>
221 The generic layer provides a set of pre-defined irq-flow methods:
223 <listitem><para>handle_level_irq</para></listitem>
224 <listitem><para>handle_edge_irq</para></listitem>
225 <listitem><para>handle_fasteoi_irq</para></listitem>
226 <listitem><para>handle_simple_irq</para></listitem>
227 <listitem><para>handle_percpu_irq</para></listitem>
228 <listitem><para>handle_edge_eoi_irq</para></listitem>
229 <listitem><para>handle_bad_irq</para></listitem>
231 The interrupt flow handlers (either pre-defined or architecture
232 specific) are assigned to specific interrupts by the architecture
233 either during bootup or during device initialization.
235 <sect2 id="Default_flow_implementations">
236 <title>Default flow implementations</title>
237 <sect3 id="Helper_functions">
238 <title>Helper functions</title>
240 The helper functions call the chip primitives and
241 are used by the default flow implementations.
242 The following helper functions are implemented (simplified excerpt):
244 default_enable(struct irq_data *data)
246 desc->irq_data.chip->irq_unmask(data);
249 default_disable(struct irq_data *data)
251 if (!delay_disable(data))
252 desc->irq_data.chip->irq_mask(data);
255 default_ack(struct irq_data *data)
260 default_mask_ack(struct irq_data *data)
262 if (chip->irq_mask_ack) {
263 chip->irq_mask_ack(data);
265 chip->irq_mask(data);
270 noop(struct irq_data *data))
278 <sect2 id="Default_flow_handler_implementations">
279 <title>Default flow handler implementations</title>
280 <sect3 id="Default_Level_IRQ_flow_handler">
281 <title>Default Level IRQ flow handler</title>
283 handle_level_irq provides a generic implementation
284 for level-triggered interrupts.
287 The following control flow is implemented (simplified excerpt):
289 desc->irq_data.chip->irq_mask_ack();
290 handle_irq_event(desc->action);
291 desc->irq_data.chip->irq_unmask();
295 <sect3 id="Default_FASTEOI_IRQ_flow_handler">
296 <title>Default Fast EOI IRQ flow handler</title>
298 handle_fasteoi_irq provides a generic implementation
299 for interrupts, which only need an EOI at the end of
303 The following control flow is implemented (simplified excerpt):
305 handle_irq_event(desc->action);
306 desc->irq_data.chip->irq_eoi();
310 <sect3 id="Default_Edge_IRQ_flow_handler">
311 <title>Default Edge IRQ flow handler</title>
313 handle_edge_irq provides a generic implementation
314 for edge-triggered interrupts.
317 The following control flow is implemented (simplified excerpt):
319 if (desc->status & running) {
320 desc->irq_data.chip->irq_mask_ack();
321 desc->status |= pending | masked;
324 desc->irq_data.chip->irq_ack();
325 desc->status |= running;
327 if (desc->status & masked)
328 desc->irq_data.chip->irq_unmask();
329 desc->status &= ~pending;
330 handle_irq_event(desc->action);
331 } while (status & pending);
332 desc->status &= ~running;
336 <sect3 id="Default_simple_IRQ_flow_handler">
337 <title>Default simple IRQ flow handler</title>
339 handle_simple_irq provides a generic implementation
340 for simple interrupts.
343 Note: The simple flow handler does not call any
344 handler/chip primitives.
347 The following control flow is implemented (simplified excerpt):
349 handle_irq_event(desc->action);
353 <sect3 id="Default_per_CPU_flow_handler">
354 <title>Default per CPU flow handler</title>
356 handle_percpu_irq provides a generic implementation
357 for per CPU interrupts.
360 Per CPU interrupts are only available on SMP and
361 the handler provides a simplified version without
365 The following control flow is implemented (simplified excerpt):
367 if (desc->irq_data.chip->irq_ack)
368 desc->irq_data.chip->irq_ack();
369 handle_irq_event(desc->action);
370 if (desc->irq_data.chip->irq_eoi)
371 desc->irq_data.chip->irq_eoi();
375 <sect3 id="EOI_Edge_IRQ_flow_handler">
376 <title>EOI Edge IRQ flow handler</title>
378 handle_edge_eoi_irq provides an abnomination of the edge
379 handler which is solely used to tame a badly wreckaged
380 irq controller on powerpc/cell.
383 <sect3 id="BAD_IRQ_flow_handler">
384 <title>Bad IRQ flow handler</title>
386 handle_bad_irq is used for spurious interrupts which
387 have no real handler assigned..
391 <sect2 id="Quirks_and_optimizations">
392 <title>Quirks and optimizations</title>
394 The generic functions are intended for 'clean' architectures and chips,
395 which have no platform-specific IRQ handling quirks. If an architecture
396 needs to implement quirks on the 'flow' level then it can do so by
397 overriding the high-level irq-flow handler.
400 <sect2 id="Delayed_interrupt_disable">
401 <title>Delayed interrupt disable</title>
403 This per interrupt selectable feature, which was introduced by Russell
404 King in the ARM interrupt implementation, does not mask an interrupt
405 at the hardware level when disable_irq() is called. The interrupt is
406 kept enabled and is masked in the flow handler when an interrupt event
407 happens. This prevents losing edge interrupts on hardware which does
408 not store an edge interrupt event while the interrupt is disabled at
409 the hardware level. When an interrupt arrives while the IRQ_DISABLED
410 flag is set, then the interrupt is masked at the hardware level and
411 the IRQ_PENDING bit is set. When the interrupt is re-enabled by
412 enable_irq() the pending bit is checked and if it is set, the
413 interrupt is resent either via hardware or by a software resend
414 mechanism. (It's necessary to enable CONFIG_HARDIRQS_SW_RESEND when
415 you want to use the delayed interrupt disable feature and your
416 hardware is not capable of retriggering an interrupt.)
417 The delayed interrupt disable is not configurable.
421 <sect1 id="Chiplevel_hardware_encapsulation">
422 <title>Chip-level hardware encapsulation</title>
424 The chip-level hardware descriptor structure irq_chip
425 contains all the direct chip relevant functions, which
426 can be utilized by the irq flow implementations.
428 <listitem><para>irq_ack()</para></listitem>
429 <listitem><para>irq_mask_ack() - Optional, recommended for performance</para></listitem>
430 <listitem><para>irq_mask()</para></listitem>
431 <listitem><para>irq_unmask()</para></listitem>
432 <listitem><para>irq_eoi() - Optional, required for EOI flow handlers</para></listitem>
433 <listitem><para>irq_retrigger() - Optional</para></listitem>
434 <listitem><para>irq_set_type() - Optional</para></listitem>
435 <listitem><para>irq_set_wake() - Optional</para></listitem>
437 These primitives are strictly intended to mean what they say: ack means
438 ACK, masking means masking of an IRQ line, etc. It is up to the flow
439 handler(s) to use these basic units of low-level functionality.
445 <title>__do_IRQ entry point</title>
447 The original implementation __do_IRQ() was an alternative entry
448 point for all types of interrupts. It no longer exists.
451 This handler turned out to be not suitable for all
452 interrupt hardware and was therefore reimplemented with split
453 functionality for edge/level/simple/percpu interrupts. This is not
454 only a functional optimization. It also shortens code paths for
459 <chapter id="locking">
460 <title>Locking on SMP</title>
462 The locking of chip registers is up to the architecture that
463 defines the chip primitives. The per-irq structure is
464 protected via desc->lock, by the generic layer.
468 <chapter id="genericchip">
469 <title>Generic interrupt chip</title>
471 To avoid copies of identical implementations of IRQ chips the
472 core provides a configurable generic interrupt chip
473 implementation. Developers should check carefully whether the
474 generic chip fits their needs before implementing the same
475 functionality slightly differently themselves.
477 !Ekernel/irq/generic-chip.c
480 <chapter id="structs">
481 <title>Structures</title>
483 This chapter contains the autogenerated documentation of the structures which are
484 used in the generic IRQ layer.
486 !Iinclude/linux/irq.h
487 !Iinclude/linux/interrupt.h
490 <chapter id="pubfunctions">
491 <title>Public Functions Provided</title>
493 This chapter contains the autogenerated documentation of the kernel API functions
496 !Ekernel/irq/manage.c
500 <chapter id="intfunctions">
501 <title>Internal Functions Provided</title>
503 This chapter contains the autogenerated documentation of the internal functions.
505 !Ikernel/irq/irqdesc.c
506 !Ikernel/irq/handle.c
510 <chapter id="credits">
511 <title>Credits</title>
513 The following people have contributed to this document:
515 <listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem>
516 <listitem><para>Ingo Molnar<email>mingo@elte.hu</email></para></listitem>