
Contents

1 Correctness 1
1.1 Transactions . 1
1.2 Defenitions . 2
1.3 Rules . 4

2 An Abstract Model For The System 7
2.1 Assumption For The System 7
2.2 Transaction Dependency on FileDescriptor Offset 7
2.3 User-Level Operations Structure 9
2.4 writedata Dependecy on Offset 10
2.5 Guidelines for Implementaion 11

3 System Implementation Overview 13
3.1 Components . 13
3.2 Algorithm . 15

1 Correctness

1.1 Transactions

We have a set of Threads T each representing a transaction.The code for a
Transaction is like below:

Thread.doIt(new Callable)(){
// code for transaction
}

This is adopted from dstm and can and may be changed. Within this
block which represents a member of set T . The functions beginTransction
and endTransaction are implicitly called by the system without the inter-
vention of the programmer.However, the programmer can read and write
from TransactionalFile Objects within the blocks of a member of T . To
provide consisteny the read and write from ordinary Java object files should
be prohibited, otherwise the semantics of transactions would not be pre-
served. Hence, the sequence of operations provided to the programmer
within a member of T is the set {TransactionalFile.Read(), Transaction-
alFile.Write()i, TransactionalFile.Seek()}. However, always a beginTrans-
action() and commitTransaction() (if the transaction does not abort prior
to this point) are performed too.

A Transaction consists of a sequence of operations. Thus, a transaction
can be represented as the {op1, op2, ..., opn}. The flow of program should
be in a manner that we could have an arbitrary serial order of the members
of T (e.g. T5, T6, T1,...) or any other order. The serial order should be in

1

such a way that for any given two members of the set T , it looks all the
operations of one occur before all the operation of the other.

1.2 Defenitions

textbfDef 1- Set of Primitive Operations: Operations are taken from the set
{forcedreadoffset(filedescriptor), writeoffset(filedescriptor), readdata(inode,
offset, length), writedata(inode, offset, length), commit}. We denote read
operations as readoffset and readdata and write operations as writeoffset
and writedata.

Def 2- Operations Sharing Resources 1- A forcedreadoffset operation
and writeoffset operations are said to be sharing resources if they both op-
erate on the same filedescriptor. 2- A readdata and writedata operations are
said to be sharing resources if they both operate on the same inode AND
the range of (offset, offset + length) within one overlaps with that of the
other.

Def 3- A read operation can only see the writes made by write opera-
tions sharing reources.

Def 4- Commit Instant and Commit Operation: A transaction com-
mits when it invokes the ”commit” operation. A transaction Ti is said to
”commit” at instant ti, if and only if it reflects its ”writes” made by write
operations in the filesystem or equivalently makes it writes visible to the
whole system for all members of T accesing the data at instant tj such that
tj > ti. After a transaction invokes commit operation, the transactin ends
and no more operation by transaction is done. An operation ∈ OPTi is said
to commit if and only if Ti commits. Commit instant are not splittable,
hence it appears to other transactions that all writes are refleted in the file
system together.

Def 5- Precedence Relationship: If OPexecuted = {op0, op1, ..., opn} repres-
nts the operations executed so far(from all transactions running), and the
indices represnt the order of operations executed so far in an ascending man-
ner, we define opi → opj (precedes) if and only if i < j.

Def 6- Visbility of Writes: Assume Ti is an uncommitted transaction
and Tcommited indicates the set of commited transaction (those which have
invoked the ”commit” operation). A read operation b ∈ OPTi MAY ONLY
see the writes(changes) made by preceding write operation a that shares
resources with b AND also is subject to one of the following conditions:

2

1- a ∈ OPTj (j 6= i) such that Tj ∈ Tcommited

2- a ∈ OPTi and a happens before b in the natural order of the
transaction. Formally, a→ b

Corrolary 1- No See in The Fututre: If ∃opi ∈ WRITEOPTi and
∃opj ∈ READOPTj such that i 6= j and opi → opj then if opj → commit−
operationTi , writes made by opj are not seen by opi.i

proof: Follows immediately from Def 5 and Def 6.

Corrolary 2- Read Must See Most Recent Comitted Write: If a ∈ OPTi

reads the resource ri at ti. In case a has multiple writer precedessors sharing
ri (denoted as OPprecedessors−for−ri

), then if all of them are from sets other
than OPTi , a sees the writes made by opTj ∈ OPprecedessors−for−ri

such that
Tj has the greatest ”commit instant” less than ti between all transaction
with such operations . Otherwise, a sees the most recent precedessor in
OPTi .

axiom: Assume a is accessing data at ti, according to Def 6, only writes
by those transactions that have already committed would be visble. Hence,
ti is neccasarily gretaer than all members of {committimeT1 , ..., commitimeTi−1},and
hence the writes to ri made by these commited transaction, have accrod-
ing to Def 4 been already reflected in the file system. Since, Ti−1 has the
greatest commit instant its changes have overriden that of previously com-
mited transactions and thus, a reading ri from file system sees these changes.

In case 2 that there are writer operations writng ri and preceding a in
OPTi , according to defenition of transaction, ri should be read from the
writes made by write operations in Ti, and as the last of such write opera-
tion overrides the written data to ri by other operations, a gets to see the
most recent precedessor in Ti.

Def 7- Precedence Relationship For Transactions: ∀ opTi ∈ OPTi and
∀opTj ∈ OPTj if and only if opTi → opTj then Ti → Tj (this defines
precedes relationship for members of T)

Def 8- Correctness: A sequence of transactions are said to be consistent
if and only if a total ordeing of them according to precedence relationship
can be established that demonstrates the same behavior as the execution
of the program. Behavior for an operation means the data it has read or
wants to write. Demonstrating the same behavior thus means all the read
operations should still see the same data in the new sequence as they have
seen in the actual sequence. However writs always writes the same value no

3

matter what. Hence the behavior of a write operation is not alterable.

Note 1: Def 7 and Def 8 indicate that if operations can be commuted
in a given sequnce of OPexecuted = {opT1(0), opT4(0), ...opT1(n)} such that a
total ordering of transactions (e.g {OPT1 , OPT2 , ..., OPTn)} can be obtained
then the execution is consistent and correct. The eligiblity to commute is
subject to conforming to Corrolary 1 & 2.

Def 9- Relocation Operations in A Sequence: In a sequence of opera-
tions OP = {op1, op2, ..., opn}, any operation can relocate its position in the
sequence unless as a result of this change, the behavior of a read operation
changes (it reads different data).

Note 2: No Commute for Operations Belonging to The Same Transac-
tion: If opi ∈ OPTi and opi+1 ∈ OPTi , we never commute opi and opi+1,
since even if this exchange does not change any operations behavior, there
is still no point in doing this as the aim is to put all operations belonging to
the same transaction together, the internal order among these is not any of
our concern, and the precedence relationship among these as indicated by
the execution should be maintained.

Note 3: Precedence Relationship Between Commit Operations Should
Be Preserved : As a rquirement we want to have the notion that transaction
are executed in the serial order imposed by their commit operations. Hence,
commit operations can not be commuted.

All the rules explained later are based on the assumptions made in Note
2 & 3, hence these two types of commution are ruled out by default.

1.3 Rules

Rule 1- ∀opi ∈ OPTi, ∀opj ∈ OPTj , ∀opk ∈ OPTk, if opi → opk and
opk → opj , then opi → opj

proof: Follows from the defenition of →

Rule 2- If Ti → Tk and Tk → Tj then Ti → Tj

proof: Follws from Rule 1 and Def 7.

Rule 3- Exchnaging Position of Consecutive Operations: Formally hav-
ing the sequence of operations OP = {op1, ..., opi, opi+1, ..., opn}, if opi ∈
OPTn and opi+1 ∈ OPTm such that n 6= m, opi and opi+1 can exchange

4

positions if and only if none of the follwing conditions apply:

1- If opi = commit and opi+1 = read and opi+1 reads rk, and 6 ∃opk

in OPTm such that writes to rk, and if there existsopl ∈ OPTn such that
writes the data rk, then opi and opi+1 can not exchange positions.

2- If opi+1 = commit and opi = read and opi reads rk and 6 ∃opk in
OPTn such that writes to rk, and if there existsopl ∈ OPTm such that writes
the data rk, opi and opi+1 can not exchange positions.

Proof : According to Def 9, none of the operatios in the sequence should
change behavior as the result of this exchange, however in this argument only
opi and opi+1 may change behavior as those are the only operations that
their postions in the sequence is changed. However, since behavior is only
defined for read operations, one of these without losing generality lets say
opi should be a read operation on agiven resource rk.

Now changing the (opi, opi+1) to (opi+1, opi) changes the behavior of opi

if and only if opi+1 writes rk at the file system (all the previous precedessors
are still the same, only opi + 1 has been added). This means by defenition
the opi+1 should be a commit operation. And, if opi+1 is a commit operation
for Tm, and there is at least one write operation in Tm writing to rk, then
according to Corrolary opi should see the most recent results and hence if
there is no precedessor for opi in Tn itself that writes to rk, then opi sees
the changes made by the write operarion in Tm. These changes could not
have been seen in the first case (opi, opi+1) due to Corrolary 1 (No See in
The Future).

Rule 4 -Relocating the Position of an Operation Within the Sequence:
Given a sequence of operations OP = {op1, ..., opi, opi+1, ..., opj , opj+1, ..., opn},
opj can be put into the standing i < j within the sequence (resulting
in OP = {op1, ..., opi, opj , opi+1, ..., opj+1, ..., opn}) if and only if ∀op ∈
{opi+1, ..., opj−1}, op and opj belong to different transactions and the pair
(opj , op) or (op, opj) is not a pair subject to one of the conditions in Rule 3.
The same holds true for i > j.

proof: We use induction to prove if assumptions above hold true opj

can be relocated to i = j − n. Assume the same OP as before. If n = 1
then since according to assumption the pair (opj , opj−1) is not subject to the
conditions in Rule 3, these two can be easily exchanged. Now, lets assume
the opj can be relocated to j−n−1, now we prove it for n. After relocation
to j − n − 1, opi+1 immediately precedes opj , as according to assumption
and Rule 3 opj and opi+1 can exchange positions. After this exchange, opj

has been relocated by n and to i and opi now immediately precedes opj .

5

Now we prove the other side of the argument, that if opj can be relo-
cated in i, ∀op ∈ {opi+1, ..., opj − 1}, (opj , op) is not a pair subject to the
condition in Rule 3. Lets assume there is op in Ti such that (op, opj) is
a (readrn, commit) and the commit invlolves making a write in Tj to rn

durable and a precedessor writer that writes to rn does not exists for op in
OPTi , now if opj is relocated to position i, opj would precede op and hence
op would see the writes by the operation in Tj (defenition of commit Def 4
& Corrolary 2) and hence the behavior of op would change as it does not
read the same data as before (the data read before could not have been the
same thing due to Corrolary 1). If the pair of (op, opj) is (commit, readrn)
the same reasoning would do.

The whole argument can be used to prove the Rule for i > j as well.

Rule 5-Operation in the Set of Execeuted Operations Belonging to Com-
mitted Transactions Should Be Able To Precede Those in The Transaction
About to Commit : OPexecuted = {op1, ..., opn} represents the set of executed
operations before instant tj and Tcommitted represents the set of committed
transactions committed successfully before tj . If Tj invokes commit opera-
tion at instant tj - then Tj commits at instant tj if and only if operations in
OP can be commuted in a way such that ∀opi ∈ OPTcommitted, ∀opj ∈ OPTj ,
opi → opj .

proof: If all those operations can be commuted tp precede those in Tj we
could have OPexecuted = {op1, ..., OPTj}. This by defenition of transaction
means Tj can commit (it is executed in its whole entierty).

Now we have to prove Tj commits only if ∀Ti ∈ TcommittedTi → Tj .
Now we’ll show that if all committed operations can not precede operation
of Tj the Tj can not commit. OP = {opTj (1), ..., opTj(m)} represent the
operations in Tj excluding the commit in the order they have occured in
OPexecuted. Assume {opTj (k), ...opTj(m)} can be relocated in OPexecuted in
the standing {n-(m-k), ...,n-1) but opTj (k − 1) can not. This means first of
all opTj (k− 1) is a read operation reading rn(each transaction has only one
commit operation).

Furthermore, this implies there is a commit operation by some transac-
tione Ti between opTj(k − 1) and commit operation by Tj and ∃opinOPTi

such that writes rn and 6 ∃opi ∈ OPTj such that opi → opTi(k − 1). On the
other hand since there is a commit by Ti in the middle, the commit by TJ

can not be commuted in a way so OP precedes it without any operation be-
longing to other transaction in the middle (two commits can not commute).
Hence we can not have a sequence where all operations belonging to Tj are

6

located next to each other, this contradicts the defenition of transaction,
hence the transaction can not commit.

2 An Abstract Model For The System

2.1 Assumption For The System

Def 10- Set of User-Level Operations: User-Level Operations are taken from
the set {Read(fildescriptor), GetFilePointer(filedescriptor), Write(filedescriptor),
Seek(filedescriptor), EndTransaction}.

Note 4- Assignment Operations Need Not Be Shown In OPexcecuted:
Operations like offset = offset + length and other assignment operations
in OPTi need not be shown in the actual sequence of operations namely
OPexecuted that consists of operations executed by different transaction so
far, the reason is simply all such operations are local to the transaction and
do not affect any other transaction’s state and hence do not restrict the
commution of other operations in any manner.

Note 5- Forced-Readoffset(fd): Reads the offset for the filedescriptor
and makes the transaction bound to this value.

2.2 Transaction Dependency on FileDescriptor Offset

Each filedescriptor has an associated offset with it, within each transaction
this offset can be in 4 different states, these states indicate the dependency
the transaction has on the value of this offset:

1- No Access: This is the default state for all filedescriptors in a trans-
action and is changed as soon as there is an access to the the descriptor
within the transaction (any of the use-level operations are invoked).

2- None: Meaning there is no dependency for any operation in this
transaction on the value of the offset associated with this descriptor regard-
ing other transactions.

3- Write Dependency: This kind of dependency means there is at
least one operation in OPTi having an unknown offset(essentially a write
operation) value as argument. The value of this unknown offset will be de-
termined at commit instant.

4- Read Dependency: This kind of dependency means there is at least
one operation acting on an offset value for fd, where the value for fd has

7

been determined by a previously committed transaction.

The state machine below depicts the behavior of the user level operations
regarding how the offset corresponding to that transaction changes:

Explanation: Whenever the offset status for the transaction goes to
”Read Dependence”, a ”forced-readoffset(fd)” operation is issued immedi-
ately preceding the operation that caused this transformation. The forced-
radoofset(fd) is only issued if there is not a forced-readoffset(fd) in the OPTi

already.

Axiom For Diagram: If the first access to a filedescriptor is a Seek(fd),
then the following operation on fd gets the offset value from the assignment
made by the Seek(fd) and advances the offset. Hence, the following oper-
ations get this offset and the offset value the filedescriptor had had before
this transaction accesses fd is never referenced (thats why it is an absorbing
state). This conforms to the definition of ”None” state.

If Read(fd.inode, offset, length) or GetF ilePointer(fd) is the first ac-
cess made by this transaction, the offset is read (since the data needs to be
read at this instant), this offset should be the one committed by a previously
committed transaction (as this is the first access to fd in this transaction).
Once the offset is read, it is always dependent on this value (hence an ab-
sorbing state). For all the following operations, the offset value is known.
This conforms to the definition that there is at least (the first read ever on
fd by this transaction) one operation that acts on the offset value for fd and
rules out the ”Write Dependency” and ”None” states.

If Write(fd.inode, offset, length) is the first access made to fd by this
transaction, then the offset to write to, can be decided at commit instant
since the Write functions means start writing at the most recent committed
fd.offset, hence offset realization can be postponed till commit instant. Any

8

Writes or Seeks would still leave this dependency, since operations after a
Seek act on absolute offset, and Writes preceding any Seek can all determine
the offset at commit instant for the same reason as before.

However, if a Read on the same fd in the transaction is invoked there
are two possibilities:

1- A Seek precedes this Read, hence the offset value is absolute and is
not read, however the ranges that are supposed to be written by Writes pre-
ceding the Seek, may overlap with the range Read is willing to Read from,
and according to Rules(Most Recent Changes Should Be Visible) if thats
the case the Read should be able to see this data, this suggests the ranges
that all the Writes are going to write to should be realized now and this
requires settling down on a value for all file descriptors offsets for this inode
at this instant. Based on these, the most recent committed offset value for
all these descriptors should be assigned to the offsets for the Writes that for
the first time accessed the descriptor. Other for writes preceding the Seek,
get this value as being advance by prior writes.

2- No Seek precedes the Read, hence the offset value the Read has to
read from is unknown, since preceding Writes to fd have all used unknown
offsets, the offset value given to Read is an unknown once, however it has
to be known, follows that the offset value for the Write that for the first
time accessed this fd should be decided upon and as shown before, the value
should be the most recent committed offset value for fd. The offset value
for this read or other writes, is the offset value obtained as being advanced
by those operations.

The two same possibilities exist when a GetFilePointer operation is in-
voked on the same fd:

1- If a Seek precedes it, then the offset value becomes absolute and hence
the getFilePointer could retrieve the value assigned by Seek.

2- Otherwise, the offset value is still unknown, hence to be able to deter-
mine the offset value at this instant, the value obtained by reading the last
committed offset value should be assigned to the offset value. for the first
Write to fd.

2.3 User-Level Operations Structure

The user-level operation cab be broken as follows:

9

1- Seek(fd): This operation sets the offset for filedescriptor. We define
it as demonstarted below:

Just an internal assignment in the transaction, {fd.offset = value}.

2- Write(fd):

1- {writedata(fd.inode, offset, length), fd.offset = fd.offset +
length}

3- GetFilePointer(fd):

{{forcedreadoffset(fd) issued as demonstrated at the state dia-
gram if any, it is issued when the state for fd in this transaction is not in
”No Dependency” or ”Write Dependency 2”}}

4- Read(fd):

∀filedescriptorfdi where fdi.inode = fd.inode and the state for
fdi in this transaction is not NoDependency, Read(fd) ={{forcedreadoffset(fdi)}}, readdata(fd.inode, offset, length), offset =
offset + length}

5- EndTransaction:
∀fdi such that the state for fdi in this transaction is not ”No

State”, EndTransaction = {{writeoffset(fdi)}, commit}

Essentially for any fd that the correspondent state diagram in the trans-
actions shows is in a state other than ”No Access”, a writeoffset(fd) is issued
while committing.

2.4 writedata Dependecy on Offset

Any writedata operation within a transaction gets fd and an offset as argu-
ments. There writes are reflected in the commit instant, however the offset
to write to as we saw earlier for some writes i s determined at commit in-
stant and for other is bound to a specific value before commit instant. We
should have a policy to be able to diffrenciate between these two. The 3
rules below odes this.

1- If the state for fd a given distinguish in a transaction is ”Write De-
pendency 1” all writes by that transaction to that fd will get the value of
the offset to write to at commit instant (since in ”Write Dependency 1” all

10

writes are at unknown offsets) .

2- If the state for fd is ”Read Dependency” or ”No Dependency” then
all writes on fd within this transaction should be done at offset determined
for them when they were invoked (since all writes are to known offsets either
determined by the transaction itself or a previously committed transaction).

3- Otherwise, if the state is ”Write Dependency 2”, then if the writedata(fd.inode, ...)
operation precedes a Seek(fd) then the offset is determined at commit in-
stant (since all such writes are at unknown offset). Otherwise, the writes
should be done at the offset decided upon earlier (the write after a Seek
write the offset determined by Seek and hence to a known offset).

We could also think of this as a state machine for each writedata opera-
tion. The state diagram is created for each operation when it is first invoked
and is subject to two things:

1- If there ∃Seek(fd)orforced−readoffset(fd) ∈ OPTi such that those
precede the writedata(fd.inode,) then the initial state in the state dia-
gram for this writedata is Absolute.

2- Otherwise the initial state is Unknown offset.

The final state for all writedata operations is Absolute, since the write
should be perfomed at a specefic offset eventually. However, depending on
the prevuious circumstances the system would immediately prior to commit
determine the offset or would have realized it earlier.

2.5 Guidelines for Implementaion

As we saw earlier in Rule 4, any two operations can commute across each
other unless they are subject to one of the two conditions in Rule 3.

Guideline 1: Commuting forced-readoffset Operations: A forced −
readoffset(fd) ∈ OPTi can go past a commitTj if and only 6 ∃writeoffset(fd)inOPTj .

Axiom: It follows immediately from Rule 4 and conditions in Rule

11

3, that this forced − readoffset(fd) can go pats the commit. What re-
mains to be proven is 6 ∃writeoffset(fd) ∈ OPTi such that it precedes
forced− readoffset(fd), as this would mean even if ∃writeoffset ∈ OPTj

still the forced− readoffset(fd) could commute with commitTj .

This stems from the definition of EndTransaction operation, and the
state diagram. A forced− readoffset can be issued at any place in OPT i
however it would always precede the writeoffset(fd) ∈ OPTi since this is
last operation in OPTi before commit.

Guideline 2: Commuting readdata Operations: A readdata(fdi.inode, offseti, lenghti) ∈
OPTi can go past a commitTj if and only if

1- 6 ∃writedata(fdj .inode, offsetj , lengthj)inOPTj such that fdj .inode =
fdi.inode and the two ranges (offseti, offseti+lengthi) and (offseti, offsetj+
lengthj) have an intersection.

OR

2- ∃ a set of writedata(fdj .inode, offsetj , lenghtj)inOPTi such that for
all of them writedata→ readdata and fdi.inode = fdj .inode and the range
(offseti, offseti + length) is a subrange for a combiantion of ranges for
these writedata operations.

Axiom: This follows imeediately from Rule 4 (1 and 2 are concrete rep-
resentations for conditions 1 and 2 in Rule 3). However, it should be noted
that whenever a readata operation wants to commute across a commit op-
eration ∈ Tj , if ∃writedata ∈ OPTj , the offset for the wtitedata operation is
known at this instant (according to the state diagram demonstarted below
and regardless of whether i = j or not), hence it would be trivial to see
whether these writedata operations intersect (or include in case they are in
the same transaction as the readata) with the readdata or not.

Guideline 3: Reads Should be Validated At Commit Instant : If an oper-
ation a that ”reads” some data rn (reads the data at some t < tcommit−of−the−transaction(the
commit instant)), it should be ensured that the data rn is still valid in the
actual file system at tcommit−of−the−transaction (commit instant) or Ti has to
abort.

Axiom: If the data is not valid anymore it means the data rn has been
written since ti−1. This implies at least one operation b has written the
data since the use and b does not precede a and a precedes b. b is either
an operation in the same transaction or a different one. However, if b is
in the same transaction, then the data read is valid at commit instant by

12

defenition. On the other hand, assume b belongs to a different transaction
namely Tj . Since Tj should have already commited, according to Corrolary
2 all operation in OPTj should precede those in OPTi , however, we know
there is at least an operation b that does not precede a (since a has not seen
the ”writes” made to rn by b). Hence, Ti can not commit.

Guideline 4: If Reads Are Valid At Commit Instant, the Transaction
Commits: If by applying Guideline 3 for Ti it is ensured that ∀ri ∈ RTi (all
data read by Ti) is still valid at commit instant, then ∀Tj ∈ TcommittedTj →
Tj and hence according to Rule 4 Ti commits.

Axiom: If all data read is still valid at commit instant, means all oper-
ation in the set of operations belonging to committed transactions, can be
relocated to precede those in Ti (since no writes have been seen), and con-
sequently all those transactions precede Ti. Rule 5 ensures such transaction
would be able to commit.

Guideline 5: A Transaction About to Commit Can Abort Other Trans-
action Safely : A transaction about to commit can check to what resources
it has alreay written (denote this as Ri), an then ∀TjinT such that Tj is
active at this instant can check to see if any of those have read ri ∈ Ri, if so
and no other operation in OPTj preceding this read has written to ri then Ti

can abort Tj , since Tj is doomed to abrot anyway (according to Guideline 3).

3 System Implementation Overview

3.1 Components

In this sextion we will show how our system conforms to the guidlines and
rules required by the system. Only the main components of the system are
depicted in the figure and listed below. It should be noted that even for
theses classes the major functions and fields are exposed in the illustration.

13

TransactionalFile: This is the object most user-level operations are
perfomed on. It can be either created inside or outside a transaction. Ac-
cessing a TransactionalFile by Ti means Ti has invoked a user-level operation
on the object. A Transactionalfile can be shared among any subset of the
members of T . If shared, the offset is shared between these as well.

ExtendedTransaction: The class and data structures required to do

14

the actions required by a transaction (commit, abort, ...).

TransactionalLocalFileAttributes: The class to maintain the data
structures specific to a transaction regarding an already accessed Transac-
tionalFile object (offset status for the transaction, inital offset status for
each Write operation and etc.).

GlobalOffset: The class to maintain the global offset assosiated with
each TransactionalFile object (the value, who owns the offset, who reads the
offset, etc.)

GlobalDataStructure: The class to maintain the global data structure
assosiated with each inode (such as mapping of block locks for each inode).

ConflictManager: The manager to resolve the conflict, this can be
when a transaction can not successfully commit or a read or write has to do
subsidary actions regarding other transaction or conflict over locks and etc.

BlockDataStructure: The data structure representing a block in an
inode. GlobalDataStructure uses instances of this class to preserve the info
rmation.

WriteOperation: The structure of a writedata operatin, including the
range it is supposed to write, the data to be written and wether this is an
absolute or unknown offset value.

3.2 Algorithm

In this section we examine the psudecode for user-level operations in the
propsed system and show how our system conforms to the formalisatiom
buitl up in earlier sections.

tfi.Read(data[])

If (tfla = currenttransaction.accessedfile.contains(tfi))
for any of the writes in writeuffer to tfi.inode

if [tfla.localoffset, tfla.offset + data.length] overlaps with range
for the write

copy the intersect portion to the correspondent portion of
data[]

if any non-filled portion of data[] exists
try to lock tfi.offset.lock
try to lock all the blocks within range [tfla.localoffset, tfla.offset

+ data.length]

15

if all locks succeed then read the non-filled portions from tfi.file
if not succeed consult contentionManager to resolve the conflict

else add tfi.inode to files accessed by this transaction and create
the corresponding TransactionalLocalFileAttributes and call Read(data[])

16

