2 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
9 * -Folded PAGE_PRESENT (used by VM) and PAGE_VALID (used by MMU) into 1.
10 * They are semantically the same although in different contexts
11 * VALID marks a TLB entry exists and it will only happen if PRESENT
12 * - Utilise some unused free bits to confine PTE flags to 12 bits
13 * This is a must for 4k pg-sz
15 * vineetg: Mar 2011 - changes to accomodate MMU TLB Page Descriptor mods
16 * -TLB Locking never really existed, except for initial specs
17 * -SILENT_xxx not needed for our port
18 * -Per my request, MMU V3 changes the layout of some of the bits
19 * to avoid a few shifts in TLB Miss handlers.
22 * -PGD entry no longer contains any flags. If empty it is 0, otherwise has
23 * Pg-Tbl ptr. Thus pmd_present(), pmd_valid(), pmd_set( ) become simpler
26 * -Switched form 8:11:13 split for page table lookup to 11:8:13
27 * -this speeds up page table allocation itself as we now have to memset 1K
28 * instead of 8k per page table.
29 * -TODO: Right now page table alloc is 8K and rest 7K is unused
32 * Amit Bhor, Sameer Dhavale: Codito Technologies 2004
35 #ifndef _ASM_ARC_PGTABLE_H
36 #define _ASM_ARC_PGTABLE_H
40 #include <asm-generic/pgtable-nopmd.h>
42 /**************************************************************************
45 * ARC700 MMU only deals with softare managed TLB entries.
46 * Page Tables are purely for Linux VM's consumption and the bits below are
47 * suited to that (uniqueness). Hence some are not implemented in the TLB and
48 * some have different value in TLB.
49 * e.g. MMU v2: K_READ bit is 8 and so is GLOBAL (possible becoz they live in
50 * seperate PD0 and PD1, which combined forms a translation entry)
51 * while for PTE perspective, they are 8 and 9 respectively
52 * with MMU v3: Most bits (except SHARED) represent the exact hardware pos
53 * (saves some bit shift ops in TLB Miss hdlrs)
56 #if (CONFIG_ARC_MMU_VER <= 2)
58 #define _PAGE_ACCESSED (1<<1) /* Page is accessed (S) */
59 #define _PAGE_CACHEABLE (1<<2) /* Page is cached (H) */
60 #define _PAGE_EXECUTE (1<<3) /* Page has user execute perm (H) */
61 #define _PAGE_WRITE (1<<4) /* Page has user write perm (H) */
62 #define _PAGE_READ (1<<5) /* Page has user read perm (H) */
63 #define _PAGE_K_EXECUTE (1<<6) /* Page has kernel execute perm (H) */
64 #define _PAGE_K_WRITE (1<<7) /* Page has kernel write perm (H) */
65 #define _PAGE_K_READ (1<<8) /* Page has kernel perm (H) */
66 #define _PAGE_GLOBAL (1<<9) /* Page is global (H) */
67 #define _PAGE_MODIFIED (1<<10) /* Page modified (dirty) (S) */
68 #define _PAGE_FILE (1<<10) /* page cache/ swap (S) */
69 #define _PAGE_PRESENT (1<<11) /* TLB entry is valid (H) */
74 #define _PAGE_CACHEABLE (1<<0) /* Page is cached (H) */
75 #define _PAGE_EXECUTE (1<<1) /* Page has user execute perm (H) */
76 #define _PAGE_WRITE (1<<2) /* Page has user write perm (H) */
77 #define _PAGE_READ (1<<3) /* Page has user read perm (H) */
78 #define _PAGE_K_EXECUTE (1<<4) /* Page has kernel execute perm (H) */
79 #define _PAGE_K_WRITE (1<<5) /* Page has kernel write perm (H) */
80 #define _PAGE_K_READ (1<<6) /* Page has kernel perm (H) */
81 #define _PAGE_ACCESSED (1<<7) /* Page is accessed (S) */
84 #define _PAGE_GLOBAL (1<<8) /* Page is global (H) */
85 #define _PAGE_PRESENT (1<<9) /* TLB entry is valid (H) */
86 #define _PAGE_SHARED_CODE (1<<10) /* Shared Code page with cmn vaddr
87 usable for shared TLB entries (H) */
89 #define _PAGE_MODIFIED (1<<11) /* Page modified (dirty) (S) */
90 #define _PAGE_FILE (1<<12) /* page cache/ swap (S) */
92 #define _PAGE_SHARED_CODE_H (1<<31) /* Hardware counterpart of above */
95 /* Kernel allowed all permissions for all pages */
96 #define _K_PAGE_PERMS (_PAGE_K_EXECUTE | _PAGE_K_WRITE | _PAGE_K_READ)
98 #ifdef CONFIG_ARC_CACHE_PAGES
99 #define _PAGE_DEF_CACHEABLE _PAGE_CACHEABLE
101 #define _PAGE_DEF_CACHEABLE (0)
104 /* Helper for every "user" page
106 * -by default cached, unless config otherwise
109 #define ___DEF (_PAGE_PRESENT | _K_PAGE_PERMS | _PAGE_DEF_CACHEABLE)
111 /* Set of bits not changed in pte_modify */
112 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_MODIFIED)
114 /* More Abbrevaited helpers */
115 #define PAGE_U_NONE __pgprot(___DEF)
116 #define PAGE_U_R __pgprot(___DEF | _PAGE_READ)
117 #define PAGE_U_W_R __pgprot(___DEF | _PAGE_READ | _PAGE_WRITE)
118 #define PAGE_U_X_R __pgprot(___DEF | _PAGE_READ | _PAGE_EXECUTE)
119 #define PAGE_U_X_W_R __pgprot(___DEF | _PAGE_READ | _PAGE_WRITE | \
122 #define PAGE_SHARED PAGE_U_W_R
124 /* While kernel runs out of unstrslated space, vmalloc/modules use a chunk of
125 * kernel vaddr space - visible in all addr spaces, but kernel mode only
126 * Thus Global, all-kernel-access, no-user-access, cached
128 #define PAGE_KERNEL __pgprot(___DEF | _PAGE_GLOBAL)
131 #define PAGE_KERNEL_NO_CACHE __pgprot(_PAGE_PRESENT | _K_PAGE_PERMS | \
134 /**************************************************************************
135 * Mapping of vm_flags (Generic VM) to PTE flags (arch specific)
137 * Certain cases have 1:1 mapping
138 * e.g. __P101 means VM_READ, VM_EXEC and !VM_SHARED
139 * which directly corresponds to PAGE_U_X_R
141 * Other rules which cause the divergence from 1:1 mapping
143 * 1. Although ARC700 can do exclusive execute/write protection (meaning R
144 * can be tracked independet of X/W unlike some other CPUs), still to
145 * keep things consistent with other archs:
146 * -Write implies Read: W => R
147 * -Execute implies Read: X => R
149 * 2. Pvt Writable doesn't have Write Enabled initially: Pvt-W => !W
150 * This is to enable COW mechanism
153 #define __P000 PAGE_U_NONE
154 #define __P001 PAGE_U_R
155 #define __P010 PAGE_U_R /* Pvt-W => !W */
156 #define __P011 PAGE_U_R /* Pvt-W => !W */
157 #define __P100 PAGE_U_X_R /* X => R */
158 #define __P101 PAGE_U_X_R
159 #define __P110 PAGE_U_X_R /* Pvt-W => !W and X => R */
160 #define __P111 PAGE_U_X_R /* Pvt-W => !W */
162 #define __S000 PAGE_U_NONE
163 #define __S001 PAGE_U_R
164 #define __S010 PAGE_U_W_R /* W => R */
165 #define __S011 PAGE_U_W_R
166 #define __S100 PAGE_U_X_R /* X => R */
167 #define __S101 PAGE_U_X_R
168 #define __S110 PAGE_U_X_W_R /* X => R */
169 #define __S111 PAGE_U_X_W_R
171 /****************************************************************
172 * Page Table Lookup split
174 * We implement 2 tier paging and since this is all software, we are free
175 * to customize the span of a PGD / PTE entry to suit us
177 * 32 bit virtual address
178 * -------------------------------------------------------
179 * | BITS_FOR_PGD | BITS_FOR_PTE | BITS_IN_PAGE |
180 * -------------------------------------------------------
182 * | | --> off in page frame
184 * | ---> index into Page Table
186 * ----> index into Page Directory
189 #define BITS_IN_PAGE PAGE_SHIFT
191 /* Optimal Sizing of Pg Tbl - based on MMU page size */
192 #if defined(CONFIG_ARC_PAGE_SIZE_8K)
193 #define BITS_FOR_PTE 8
194 #elif defined(CONFIG_ARC_PAGE_SIZE_16K)
195 #define BITS_FOR_PTE 8
196 #elif defined(CONFIG_ARC_PAGE_SIZE_4K)
197 #define BITS_FOR_PTE 9
200 #define BITS_FOR_PGD (32 - BITS_FOR_PTE - BITS_IN_PAGE)
202 #define PGDIR_SHIFT (BITS_FOR_PTE + BITS_IN_PAGE)
203 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) /* vaddr span, not PDG sz */
204 #define PGDIR_MASK (~(PGDIR_SIZE-1))
207 #define PTRS_PER_PTE (1 << BITS_FOR_PTE)
208 #define PTRS_PER_PGD (1 << BITS_FOR_PGD)
210 #define PTRS_PER_PTE (1UL << BITS_FOR_PTE)
211 #define PTRS_PER_PGD (1UL << BITS_FOR_PGD)
214 * Number of entries a user land program use.
215 * TASK_SIZE is the maximum vaddr that can be used by a userland program.
217 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
220 * No special requirements for lowest virtual address we permit any user space
221 * mapping to be mapped at.
223 #define FIRST_USER_ADDRESS 0
226 /****************************************************************
227 * Bucket load of VM Helpers
232 #define pte_ERROR(e) \
233 pr_crit("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
234 #define pgd_ERROR(e) \
235 pr_crit("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
237 /* the zero page used for uninitialized and anonymous pages */
238 extern char empty_zero_page[PAGE_SIZE];
239 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
241 #define pte_unmap(pte) do { } while (0)
242 #define pte_unmap_nested(pte) do { } while (0)
244 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
245 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
247 /* find the page descriptor of the Page Tbl ref by PMD entry */
248 #define pmd_page(pmd) virt_to_page(pmd_val(pmd) & PAGE_MASK)
250 /* find the logical addr (phy for ARC) of the Page Tbl ref by PMD entry */
251 #define pmd_page_vaddr(pmd) (pmd_val(pmd) & PAGE_MASK)
253 /* In a 2 level sys, setup the PGD entry with PTE value */
254 static inline void pmd_set(pmd_t *pmdp, pte_t *ptep)
256 pmd_val(*pmdp) = (unsigned long)ptep;
259 #define pte_none(x) (!pte_val(x))
260 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
261 #define pte_clear(mm, addr, ptep) set_pte_at(mm, addr, ptep, __pte(0))
263 #define pmd_none(x) (!pmd_val(x))
264 #define pmd_bad(x) ((pmd_val(x) & ~PAGE_MASK))
265 #define pmd_present(x) (pmd_val(x))
266 #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
268 #define pte_page(x) (mem_map + \
269 (unsigned long)(((pte_val(x) - PAGE_OFFSET) >> PAGE_SHIFT)))
271 #define mk_pte(page, pgprot) \
274 pte_val(pte) = __pa(page_address(page)) + pgprot_val(pgprot); \
278 /* TBD: Non linear mapping stuff */
279 static inline int pte_file(pte_t pte)
281 return pte_val(pte) & _PAGE_FILE;
284 #define PTE_FILE_MAX_BITS 30
285 #define pgoff_to_pte(x) __pte(x)
286 #define pte_to_pgoff(x) (pte_val(x) >> 2)
287 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
288 #define pfn_pte(pfn, prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))
289 #define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
292 * pte_offset gets a @ptr to PMD entry (PGD in our 2-tier paging system)
293 * and returns ptr to PTE entry corresponding to @addr
295 #define pte_offset(dir, addr) ((pte_t *)(pmd_page_vaddr(*dir)) +\
298 /* No mapping of Page Tables in high mem etc, so following same as above */
299 #define pte_offset_kernel(dir, addr) pte_offset(dir, addr)
300 #define pte_offset_map(dir, addr) pte_offset(dir, addr)
302 /* Zoo of pte_xxx function */
303 #define pte_read(pte) (pte_val(pte) & _PAGE_READ)
304 #define pte_write(pte) (pte_val(pte) & _PAGE_WRITE)
305 #define pte_dirty(pte) (pte_val(pte) & _PAGE_MODIFIED)
306 #define pte_young(pte) (pte_val(pte) & _PAGE_ACCESSED)
307 #define pte_special(pte) (0)
309 #define PTE_BIT_FUNC(fn, op) \
310 static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
312 PTE_BIT_FUNC(wrprotect, &= ~(_PAGE_WRITE));
313 PTE_BIT_FUNC(mkwrite, |= (_PAGE_WRITE));
314 PTE_BIT_FUNC(mkclean, &= ~(_PAGE_MODIFIED));
315 PTE_BIT_FUNC(mkdirty, |= (_PAGE_MODIFIED));
316 PTE_BIT_FUNC(mkold, &= ~(_PAGE_ACCESSED));
317 PTE_BIT_FUNC(mkyoung, |= (_PAGE_ACCESSED));
318 PTE_BIT_FUNC(exprotect, &= ~(_PAGE_EXECUTE));
319 PTE_BIT_FUNC(mkexec, |= (_PAGE_EXECUTE));
321 static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
323 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
325 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
328 /* Macro to mark a page protection as uncacheable */
329 #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) & ~_PAGE_CACHEABLE))
331 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
332 pte_t *ptep, pte_t pteval)
334 set_pte(ptep, pteval);
338 * All kernel related VM pages are in init's mm.
340 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
341 #define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
342 #define pgd_offset(mm, addr) (((mm)->pgd)+pgd_index(addr))
345 * Macro to quickly access the PGD entry, utlising the fact that some
346 * arch may cache the pointer to Page Directory of "current" task
349 * Thus task->mm->pgd (3 pointer dereferences, cache misses etc simply
350 * becomes read a register
352 * ********CAUTION*******:
353 * Kernel code might be dealing with some mm_struct of NON "current"
354 * Thus use this macro only when you are certain that "current" is current
355 * e.g. when dealing with signal frame setup code etc
358 #define pgd_offset_fast(mm, addr) \
360 pgd_t *pgd_base = (pgd_t *) read_aux_reg(ARC_REG_SCRATCH_DATA0); \
361 pgd_base + pgd_index(addr); \
364 #define pgd_offset_fast(mm, addr) pgd_offset(mm, addr)
367 extern void paging_init(void);
368 extern pgd_t swapper_pg_dir[] __aligned(PAGE_SIZE);
369 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
372 /* Encode swap {type,off} tuple into PTE
373 * We reserve 13 bits for 5-bit @type, keeping bits 12-5 zero, ensuring that
374 * both PAGE_FILE and PAGE_PRESENT are zero in a PTE holding swap "identifier"
376 #define __swp_entry(type, off) ((swp_entry_t) { \
377 ((type) & 0x1f) | ((off) << 13) })
379 /* Decode a PTE containing swap "identifier "into constituents */
380 #define __swp_type(pte_lookalike) (((pte_lookalike).val) & 0x1f)
381 #define __swp_offset(pte_lookalike) ((pte_lookalike).val << 13)
383 /* NOPs, to keep generic kernel happy */
384 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
385 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
387 #define kern_addr_valid(addr) (1)
390 * remap a physical page `pfn' of size `size' with page protection `prot'
391 * into virtual address `from'
393 #define io_remap_pfn_range(vma, from, pfn, size, prot) \
394 remap_pfn_range(vma, from, pfn, size, prot)
396 #include <asm-generic/pgtable.h>
398 /* to cope with aliasing VIPT cache */
399 #define HAVE_ARCH_UNMAPPED_AREA
402 * No page table caches to initialise
404 #define pgtable_cache_init() do { } while (0)
406 #endif /* __ASSEMBLY__ */