ARM: kprobes: Add Thumb instruction decoding stubs
[firefly-linux-kernel-4.4.55.git] / arch / arm / kernel / kprobes.c
1 /*
2  * arch/arm/kernel/kprobes.c
3  *
4  * Kprobes on ARM
5  *
6  * Abhishek Sagar <sagar.abhishek@gmail.com>
7  * Copyright (C) 2006, 2007 Motorola Inc.
8  *
9  * Nicolas Pitre <nico@marvell.com>
10  * Copyright (C) 2007 Marvell Ltd.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/stop_machine.h>
27 #include <linux/stringify.h>
28 #include <asm/traps.h>
29 #include <asm/cacheflush.h>
30
31 #include "kprobes.h"
32
33 #define MIN_STACK_SIZE(addr)                            \
34         min((unsigned long)MAX_STACK_SIZE,              \
35             (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
36
37 #define flush_insns(addr, cnt)                          \
38         flush_icache_range((unsigned long)(addr),       \
39                            (unsigned long)(addr) +      \
40                            sizeof(kprobe_opcode_t) * (cnt))
41
42 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
43 #define JPROBE_MAGIC_ADDR               0xffffffff
44
45 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
46 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
47
48
49 int __kprobes arch_prepare_kprobe(struct kprobe *p)
50 {
51         kprobe_opcode_t insn;
52         kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
53         unsigned long addr = (unsigned long)p->addr;
54         kprobe_decode_insn_t *decode_insn;
55         int is;
56
57         if (in_exception_text(addr))
58                 return -EINVAL;
59
60 #ifdef CONFIG_THUMB2_KERNEL
61         addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
62         insn = ((u16 *)addr)[0];
63         if (is_wide_instruction(insn)) {
64                 insn <<= 16;
65                 insn |= ((u16 *)addr)[1];
66                 decode_insn = thumb32_kprobe_decode_insn;
67         } else
68                 decode_insn = thumb16_kprobe_decode_insn;
69 #else /* !CONFIG_THUMB2_KERNEL */
70         if (addr & 0x3)
71                 return -EINVAL;
72         insn = *p->addr;
73         decode_insn = arm_kprobe_decode_insn;
74 #endif
75
76         p->opcode = insn;
77         p->ainsn.insn = tmp_insn;
78
79         switch ((*decode_insn)(insn, &p->ainsn)) {
80         case INSN_REJECTED:     /* not supported */
81                 return -EINVAL;
82
83         case INSN_GOOD:         /* instruction uses slot */
84                 p->ainsn.insn = get_insn_slot();
85                 if (!p->ainsn.insn)
86                         return -ENOMEM;
87                 for (is = 0; is < MAX_INSN_SIZE; ++is)
88                         p->ainsn.insn[is] = tmp_insn[is];
89                 flush_insns(p->ainsn.insn, MAX_INSN_SIZE);
90                 break;
91
92         case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
93                 p->ainsn.insn = NULL;
94                 break;
95         }
96
97         return 0;
98 }
99
100 void __kprobes arch_arm_kprobe(struct kprobe *p)
101 {
102         *p->addr = KPROBE_BREAKPOINT_INSTRUCTION;
103         flush_insns(p->addr, 1);
104 }
105
106 /*
107  * The actual disarming is done here on each CPU and synchronized using
108  * stop_machine. This synchronization is necessary on SMP to avoid removing
109  * a probe between the moment the 'Undefined Instruction' exception is raised
110  * and the moment the exception handler reads the faulting instruction from
111  * memory.
112  */
113 int __kprobes __arch_disarm_kprobe(void *p)
114 {
115         struct kprobe *kp = p;
116         *kp->addr = kp->opcode;
117         flush_insns(kp->addr, 1);
118         return 0;
119 }
120
121 void __kprobes arch_disarm_kprobe(struct kprobe *p)
122 {
123         stop_machine(__arch_disarm_kprobe, p, &cpu_online_map);
124 }
125
126 void __kprobes arch_remove_kprobe(struct kprobe *p)
127 {
128         if (p->ainsn.insn) {
129                 free_insn_slot(p->ainsn.insn, 0);
130                 p->ainsn.insn = NULL;
131         }
132 }
133
134 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
135 {
136         kcb->prev_kprobe.kp = kprobe_running();
137         kcb->prev_kprobe.status = kcb->kprobe_status;
138 }
139
140 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
141 {
142         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
143         kcb->kprobe_status = kcb->prev_kprobe.status;
144 }
145
146 static void __kprobes set_current_kprobe(struct kprobe *p)
147 {
148         __get_cpu_var(current_kprobe) = p;
149 }
150
151 static void __kprobes singlestep(struct kprobe *p, struct pt_regs *regs,
152                                  struct kprobe_ctlblk *kcb)
153 {
154         regs->ARM_pc += 4;
155         if (p->ainsn.insn_check_cc(regs->ARM_cpsr))
156                 p->ainsn.insn_handler(p, regs);
157 }
158
159 /*
160  * Called with IRQs disabled. IRQs must remain disabled from that point
161  * all the way until processing this kprobe is complete.  The current
162  * kprobes implementation cannot process more than one nested level of
163  * kprobe, and that level is reserved for user kprobe handlers, so we can't
164  * risk encountering a new kprobe in an interrupt handler.
165  */
166 void __kprobes kprobe_handler(struct pt_regs *regs)
167 {
168         struct kprobe *p, *cur;
169         struct kprobe_ctlblk *kcb;
170         kprobe_opcode_t *addr = (kprobe_opcode_t *)regs->ARM_pc;
171
172         kcb = get_kprobe_ctlblk();
173         cur = kprobe_running();
174         p = get_kprobe(addr);
175
176         if (p) {
177                 if (cur) {
178                         /* Kprobe is pending, so we're recursing. */
179                         switch (kcb->kprobe_status) {
180                         case KPROBE_HIT_ACTIVE:
181                         case KPROBE_HIT_SSDONE:
182                                 /* A pre- or post-handler probe got us here. */
183                                 kprobes_inc_nmissed_count(p);
184                                 save_previous_kprobe(kcb);
185                                 set_current_kprobe(p);
186                                 kcb->kprobe_status = KPROBE_REENTER;
187                                 singlestep(p, regs, kcb);
188                                 restore_previous_kprobe(kcb);
189                                 break;
190                         default:
191                                 /* impossible cases */
192                                 BUG();
193                         }
194                 } else {
195                         set_current_kprobe(p);
196                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
197
198                         /*
199                          * If we have no pre-handler or it returned 0, we
200                          * continue with normal processing.  If we have a
201                          * pre-handler and it returned non-zero, it prepped
202                          * for calling the break_handler below on re-entry,
203                          * so get out doing nothing more here.
204                          */
205                         if (!p->pre_handler || !p->pre_handler(p, regs)) {
206                                 kcb->kprobe_status = KPROBE_HIT_SS;
207                                 singlestep(p, regs, kcb);
208                                 if (p->post_handler) {
209                                         kcb->kprobe_status = KPROBE_HIT_SSDONE;
210                                         p->post_handler(p, regs, 0);
211                                 }
212                                 reset_current_kprobe();
213                         }
214                 }
215         } else if (cur) {
216                 /* We probably hit a jprobe.  Call its break handler. */
217                 if (cur->break_handler && cur->break_handler(cur, regs)) {
218                         kcb->kprobe_status = KPROBE_HIT_SS;
219                         singlestep(cur, regs, kcb);
220                         if (cur->post_handler) {
221                                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
222                                 cur->post_handler(cur, regs, 0);
223                         }
224                 }
225                 reset_current_kprobe();
226         } else {
227                 /*
228                  * The probe was removed and a race is in progress.
229                  * There is nothing we can do about it.  Let's restart
230                  * the instruction.  By the time we can restart, the
231                  * real instruction will be there.
232                  */
233         }
234 }
235
236 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
237 {
238         unsigned long flags;
239         local_irq_save(flags);
240         kprobe_handler(regs);
241         local_irq_restore(flags);
242         return 0;
243 }
244
245 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
246 {
247         struct kprobe *cur = kprobe_running();
248         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
249
250         switch (kcb->kprobe_status) {
251         case KPROBE_HIT_SS:
252         case KPROBE_REENTER:
253                 /*
254                  * We are here because the instruction being single
255                  * stepped caused a page fault. We reset the current
256                  * kprobe and the PC to point back to the probe address
257                  * and allow the page fault handler to continue as a
258                  * normal page fault.
259                  */
260                 regs->ARM_pc = (long)cur->addr;
261                 if (kcb->kprobe_status == KPROBE_REENTER) {
262                         restore_previous_kprobe(kcb);
263                 } else {
264                         reset_current_kprobe();
265                 }
266                 break;
267
268         case KPROBE_HIT_ACTIVE:
269         case KPROBE_HIT_SSDONE:
270                 /*
271                  * We increment the nmissed count for accounting,
272                  * we can also use npre/npostfault count for accounting
273                  * these specific fault cases.
274                  */
275                 kprobes_inc_nmissed_count(cur);
276
277                 /*
278                  * We come here because instructions in the pre/post
279                  * handler caused the page_fault, this could happen
280                  * if handler tries to access user space by
281                  * copy_from_user(), get_user() etc. Let the
282                  * user-specified handler try to fix it.
283                  */
284                 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
285                         return 1;
286                 break;
287
288         default:
289                 break;
290         }
291
292         return 0;
293 }
294
295 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
296                                        unsigned long val, void *data)
297 {
298         /*
299          * notify_die() is currently never called on ARM,
300          * so this callback is currently empty.
301          */
302         return NOTIFY_DONE;
303 }
304
305 /*
306  * When a retprobed function returns, trampoline_handler() is called,
307  * calling the kretprobe's handler. We construct a struct pt_regs to
308  * give a view of registers r0-r11 to the user return-handler.  This is
309  * not a complete pt_regs structure, but that should be plenty sufficient
310  * for kretprobe handlers which should normally be interested in r0 only
311  * anyway.
312  */
313 void __naked __kprobes kretprobe_trampoline(void)
314 {
315         __asm__ __volatile__ (
316                 "stmdb  sp!, {r0 - r11}         \n\t"
317                 "mov    r0, sp                  \n\t"
318                 "bl     trampoline_handler      \n\t"
319                 "mov    lr, r0                  \n\t"
320                 "ldmia  sp!, {r0 - r11}         \n\t"
321 #ifdef CONFIG_THUMB2_KERNEL
322                 "bx     lr                      \n\t"
323 #else
324                 "mov    pc, lr                  \n\t"
325 #endif
326                 : : : "memory");
327 }
328
329 /* Called from kretprobe_trampoline */
330 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
331 {
332         struct kretprobe_instance *ri = NULL;
333         struct hlist_head *head, empty_rp;
334         struct hlist_node *node, *tmp;
335         unsigned long flags, orig_ret_address = 0;
336         unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
337
338         INIT_HLIST_HEAD(&empty_rp);
339         kretprobe_hash_lock(current, &head, &flags);
340
341         /*
342          * It is possible to have multiple instances associated with a given
343          * task either because multiple functions in the call path have
344          * a return probe installed on them, and/or more than one return
345          * probe was registered for a target function.
346          *
347          * We can handle this because:
348          *     - instances are always inserted at the head of the list
349          *     - when multiple return probes are registered for the same
350          *       function, the first instance's ret_addr will point to the
351          *       real return address, and all the rest will point to
352          *       kretprobe_trampoline
353          */
354         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
355                 if (ri->task != current)
356                         /* another task is sharing our hash bucket */
357                         continue;
358
359                 if (ri->rp && ri->rp->handler) {
360                         __get_cpu_var(current_kprobe) = &ri->rp->kp;
361                         get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
362                         ri->rp->handler(ri, regs);
363                         __get_cpu_var(current_kprobe) = NULL;
364                 }
365
366                 orig_ret_address = (unsigned long)ri->ret_addr;
367                 recycle_rp_inst(ri, &empty_rp);
368
369                 if (orig_ret_address != trampoline_address)
370                         /*
371                          * This is the real return address. Any other
372                          * instances associated with this task are for
373                          * other calls deeper on the call stack
374                          */
375                         break;
376         }
377
378         kretprobe_assert(ri, orig_ret_address, trampoline_address);
379         kretprobe_hash_unlock(current, &flags);
380
381         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
382                 hlist_del(&ri->hlist);
383                 kfree(ri);
384         }
385
386         return (void *)orig_ret_address;
387 }
388
389 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
390                                       struct pt_regs *regs)
391 {
392         ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
393
394         /* Replace the return addr with trampoline addr. */
395         regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
396 }
397
398 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
399 {
400         struct jprobe *jp = container_of(p, struct jprobe, kp);
401         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
402         long sp_addr = regs->ARM_sp;
403         long cpsr;
404
405         kcb->jprobe_saved_regs = *regs;
406         memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
407         regs->ARM_pc = (long)jp->entry;
408
409         cpsr = regs->ARM_cpsr | PSR_I_BIT;
410 #ifdef CONFIG_THUMB2_KERNEL
411         /* Set correct Thumb state in cpsr */
412         if (regs->ARM_pc & 1)
413                 cpsr |= PSR_T_BIT;
414         else
415                 cpsr &= ~PSR_T_BIT;
416 #endif
417         regs->ARM_cpsr = cpsr;
418
419         preempt_disable();
420         return 1;
421 }
422
423 void __kprobes jprobe_return(void)
424 {
425         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
426
427         __asm__ __volatile__ (
428                 /*
429                  * Setup an empty pt_regs. Fill SP and PC fields as
430                  * they're needed by longjmp_break_handler.
431                  *
432                  * We allocate some slack between the original SP and start of
433                  * our fabricated regs. To be precise we want to have worst case
434                  * covered which is STMFD with all 16 regs so we allocate 2 *
435                  * sizeof(struct_pt_regs)).
436                  *
437                  * This is to prevent any simulated instruction from writing
438                  * over the regs when they are accessing the stack.
439                  */
440 #ifdef CONFIG_THUMB2_KERNEL
441                 "sub    r0, %0, %1              \n\t"
442                 "mov    sp, r0                  \n\t"
443 #else
444                 "sub    sp, %0, %1              \n\t"
445 #endif
446                 "ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
447                 "str    %0, [sp, %2]            \n\t"
448                 "str    r0, [sp, %3]            \n\t"
449                 "mov    r0, sp                  \n\t"
450                 "bl     kprobe_handler          \n\t"
451
452                 /*
453                  * Return to the context saved by setjmp_pre_handler
454                  * and restored by longjmp_break_handler.
455                  */
456 #ifdef CONFIG_THUMB2_KERNEL
457                 "ldr    lr, [sp, %2]            \n\t" /* lr = saved sp */
458                 "ldrd   r0, r1, [sp, %5]        \n\t" /* r0,r1 = saved lr,pc */
459                 "ldr    r2, [sp, %4]            \n\t" /* r2 = saved psr */
460                 "stmdb  lr!, {r0, r1, r2}       \n\t" /* push saved lr and */
461                                                       /* rfe context */
462                 "ldmia  sp, {r0 - r12}          \n\t"
463                 "mov    sp, lr                  \n\t"
464                 "ldr    lr, [sp], #4            \n\t"
465                 "rfeia  sp!                     \n\t"
466 #else
467                 "ldr    r0, [sp, %4]            \n\t"
468                 "msr    cpsr_cxsf, r0           \n\t"
469                 "ldmia  sp, {r0 - pc}           \n\t"
470 #endif
471                 :
472                 : "r" (kcb->jprobe_saved_regs.ARM_sp),
473                   "I" (sizeof(struct pt_regs) * 2),
474                   "J" (offsetof(struct pt_regs, ARM_sp)),
475                   "J" (offsetof(struct pt_regs, ARM_pc)),
476                   "J" (offsetof(struct pt_regs, ARM_cpsr)),
477                   "J" (offsetof(struct pt_regs, ARM_lr))
478                 : "memory", "cc");
479 }
480
481 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
482 {
483         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
484         long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
485         long orig_sp = regs->ARM_sp;
486         struct jprobe *jp = container_of(p, struct jprobe, kp);
487
488         if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
489                 if (orig_sp != stack_addr) {
490                         struct pt_regs *saved_regs =
491                                 (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
492                         printk("current sp %lx does not match saved sp %lx\n",
493                                orig_sp, stack_addr);
494                         printk("Saved registers for jprobe %p\n", jp);
495                         show_regs(saved_regs);
496                         printk("Current registers\n");
497                         show_regs(regs);
498                         BUG();
499                 }
500                 *regs = kcb->jprobe_saved_regs;
501                 memcpy((void *)stack_addr, kcb->jprobes_stack,
502                        MIN_STACK_SIZE(stack_addr));
503                 preempt_enable_no_resched();
504                 return 1;
505         }
506         return 0;
507 }
508
509 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
510 {
511         return 0;
512 }
513
514 static struct undef_hook kprobes_break_hook = {
515         .instr_mask     = 0xffffffff,
516         .instr_val      = KPROBE_BREAKPOINT_INSTRUCTION,
517         .cpsr_mask      = MODE_MASK,
518         .cpsr_val       = SVC_MODE,
519         .fn             = kprobe_trap_handler,
520 };
521
522 int __init arch_init_kprobes()
523 {
524         arm_kprobe_decode_init();
525         register_undef_hook(&kprobes_break_hook);
526         return 0;
527 }