Merge branch 'pm-qos'
[firefly-linux-kernel-4.4.55.git] / arch / arm / kernel / smp.c
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27 #include <linux/completion.h>
28 #include <linux/cpufreq.h>
29
30 #include <linux/atomic.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
46
47 /*
48  * as from 2.5, kernels no longer have an init_tasks structure
49  * so we need some other way of telling a new secondary core
50  * where to place its SVC stack
51  */
52 struct secondary_data secondary_data;
53
54 enum ipi_msg_type {
55         IPI_TIMER = 2,
56         IPI_RESCHEDULE,
57         IPI_CALL_FUNC,
58         IPI_CALL_FUNC_SINGLE,
59         IPI_CPU_STOP,
60 };
61
62 static DECLARE_COMPLETION(cpu_running);
63
64 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
65 {
66         int ret;
67
68         /*
69          * We need to tell the secondary core where to find
70          * its stack and the page tables.
71          */
72         secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
73         secondary_data.pgdir = virt_to_phys(idmap_pgd);
74         secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
75         __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
76         outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
77
78         /*
79          * Now bring the CPU into our world.
80          */
81         ret = boot_secondary(cpu, idle);
82         if (ret == 0) {
83                 /*
84                  * CPU was successfully started, wait for it
85                  * to come online or time out.
86                  */
87                 wait_for_completion_timeout(&cpu_running,
88                                                  msecs_to_jiffies(1000));
89
90                 if (!cpu_online(cpu)) {
91                         pr_crit("CPU%u: failed to come online\n", cpu);
92                         ret = -EIO;
93                 }
94         } else {
95                 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
96         }
97
98         secondary_data.stack = NULL;
99         secondary_data.pgdir = 0;
100
101         return ret;
102 }
103
104 #ifdef CONFIG_HOTPLUG_CPU
105 static void percpu_timer_stop(void);
106
107 /*
108  * __cpu_disable runs on the processor to be shutdown.
109  */
110 int __cpu_disable(void)
111 {
112         unsigned int cpu = smp_processor_id();
113         int ret;
114
115         ret = platform_cpu_disable(cpu);
116         if (ret)
117                 return ret;
118
119         /*
120          * Take this CPU offline.  Once we clear this, we can't return,
121          * and we must not schedule until we're ready to give up the cpu.
122          */
123         set_cpu_online(cpu, false);
124
125         /*
126          * OK - migrate IRQs away from this CPU
127          */
128         migrate_irqs();
129
130         /*
131          * Stop the local timer for this CPU.
132          */
133         percpu_timer_stop();
134
135         /*
136          * Flush user cache and TLB mappings, and then remove this CPU
137          * from the vm mask set of all processes.
138          */
139         flush_cache_all();
140         local_flush_tlb_all();
141
142         clear_tasks_mm_cpumask(cpu);
143
144         return 0;
145 }
146
147 static DECLARE_COMPLETION(cpu_died);
148
149 /*
150  * called on the thread which is asking for a CPU to be shutdown -
151  * waits until shutdown has completed, or it is timed out.
152  */
153 void __cpu_die(unsigned int cpu)
154 {
155         if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
156                 pr_err("CPU%u: cpu didn't die\n", cpu);
157                 return;
158         }
159         printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
160
161         if (!platform_cpu_kill(cpu))
162                 printk("CPU%u: unable to kill\n", cpu);
163 }
164
165 /*
166  * Called from the idle thread for the CPU which has been shutdown.
167  *
168  * Note that we disable IRQs here, but do not re-enable them
169  * before returning to the caller. This is also the behaviour
170  * of the other hotplug-cpu capable cores, so presumably coming
171  * out of idle fixes this.
172  */
173 void __ref cpu_die(void)
174 {
175         unsigned int cpu = smp_processor_id();
176
177         idle_task_exit();
178
179         local_irq_disable();
180         mb();
181
182         /* Tell __cpu_die() that this CPU is now safe to dispose of */
183         RCU_NONIDLE(complete(&cpu_died));
184
185         /*
186          * actual CPU shutdown procedure is at least platform (if not
187          * CPU) specific.
188          */
189         platform_cpu_die(cpu);
190
191         /*
192          * Do not return to the idle loop - jump back to the secondary
193          * cpu initialisation.  There's some initialisation which needs
194          * to be repeated to undo the effects of taking the CPU offline.
195          */
196         __asm__("mov    sp, %0\n"
197         "       mov     fp, #0\n"
198         "       b       secondary_start_kernel"
199                 :
200                 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
201 }
202 #endif /* CONFIG_HOTPLUG_CPU */
203
204 /*
205  * Called by both boot and secondaries to move global data into
206  * per-processor storage.
207  */
208 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
209 {
210         struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
211
212         cpu_info->loops_per_jiffy = loops_per_jiffy;
213
214         store_cpu_topology(cpuid);
215 }
216
217 static void percpu_timer_setup(void);
218
219 /*
220  * This is the secondary CPU boot entry.  We're using this CPUs
221  * idle thread stack, but a set of temporary page tables.
222  */
223 asmlinkage void __cpuinit secondary_start_kernel(void)
224 {
225         struct mm_struct *mm = &init_mm;
226         unsigned int cpu = smp_processor_id();
227
228         /*
229          * All kernel threads share the same mm context; grab a
230          * reference and switch to it.
231          */
232         atomic_inc(&mm->mm_count);
233         current->active_mm = mm;
234         cpumask_set_cpu(cpu, mm_cpumask(mm));
235         cpu_switch_mm(mm->pgd, mm);
236         enter_lazy_tlb(mm, current);
237         local_flush_tlb_all();
238
239         printk("CPU%u: Booted secondary processor\n", cpu);
240
241         cpu_init();
242         preempt_disable();
243         trace_hardirqs_off();
244
245         /*
246          * Give the platform a chance to do its own initialisation.
247          */
248         platform_secondary_init(cpu);
249
250         notify_cpu_starting(cpu);
251
252         calibrate_delay();
253
254         smp_store_cpu_info(cpu);
255
256         /*
257          * OK, now it's safe to let the boot CPU continue.  Wait for
258          * the CPU migration code to notice that the CPU is online
259          * before we continue - which happens after __cpu_up returns.
260          */
261         set_cpu_online(cpu, true);
262         complete(&cpu_running);
263
264         /*
265          * Setup the percpu timer for this CPU.
266          */
267         percpu_timer_setup();
268
269         local_irq_enable();
270         local_fiq_enable();
271
272         /*
273          * OK, it's off to the idle thread for us
274          */
275         cpu_idle();
276 }
277
278 void __init smp_cpus_done(unsigned int max_cpus)
279 {
280         int cpu;
281         unsigned long bogosum = 0;
282
283         for_each_online_cpu(cpu)
284                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
285
286         printk(KERN_INFO "SMP: Total of %d processors activated "
287                "(%lu.%02lu BogoMIPS).\n",
288                num_online_cpus(),
289                bogosum / (500000/HZ),
290                (bogosum / (5000/HZ)) % 100);
291 }
292
293 void __init smp_prepare_boot_cpu(void)
294 {
295 }
296
297 void __init smp_prepare_cpus(unsigned int max_cpus)
298 {
299         unsigned int ncores = num_possible_cpus();
300
301         init_cpu_topology();
302
303         smp_store_cpu_info(smp_processor_id());
304
305         /*
306          * are we trying to boot more cores than exist?
307          */
308         if (max_cpus > ncores)
309                 max_cpus = ncores;
310         if (ncores > 1 && max_cpus) {
311                 /*
312                  * Enable the local timer or broadcast device for the
313                  * boot CPU, but only if we have more than one CPU.
314                  */
315                 percpu_timer_setup();
316
317                 /*
318                  * Initialise the present map, which describes the set of CPUs
319                  * actually populated at the present time. A platform should
320                  * re-initialize the map in platform_smp_prepare_cpus() if
321                  * present != possible (e.g. physical hotplug).
322                  */
323                 init_cpu_present(cpu_possible_mask);
324
325                 /*
326                  * Initialise the SCU if there are more than one CPU
327                  * and let them know where to start.
328                  */
329                 platform_smp_prepare_cpus(max_cpus);
330         }
331 }
332
333 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
334
335 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
336 {
337         smp_cross_call = fn;
338 }
339
340 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
341 {
342         smp_cross_call(mask, IPI_CALL_FUNC);
343 }
344
345 void arch_send_call_function_single_ipi(int cpu)
346 {
347         smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
348 }
349
350 static const char *ipi_types[NR_IPI] = {
351 #define S(x,s)  [x - IPI_TIMER] = s
352         S(IPI_TIMER, "Timer broadcast interrupts"),
353         S(IPI_RESCHEDULE, "Rescheduling interrupts"),
354         S(IPI_CALL_FUNC, "Function call interrupts"),
355         S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
356         S(IPI_CPU_STOP, "CPU stop interrupts"),
357 };
358
359 void show_ipi_list(struct seq_file *p, int prec)
360 {
361         unsigned int cpu, i;
362
363         for (i = 0; i < NR_IPI; i++) {
364                 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
365
366                 for_each_present_cpu(cpu)
367                         seq_printf(p, "%10u ",
368                                    __get_irq_stat(cpu, ipi_irqs[i]));
369
370                 seq_printf(p, " %s\n", ipi_types[i]);
371         }
372 }
373
374 u64 smp_irq_stat_cpu(unsigned int cpu)
375 {
376         u64 sum = 0;
377         int i;
378
379         for (i = 0; i < NR_IPI; i++)
380                 sum += __get_irq_stat(cpu, ipi_irqs[i]);
381
382         return sum;
383 }
384
385 /*
386  * Timer (local or broadcast) support
387  */
388 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
389
390 static void ipi_timer(void)
391 {
392         struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
393         evt->event_handler(evt);
394 }
395
396 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
397 static void smp_timer_broadcast(const struct cpumask *mask)
398 {
399         smp_cross_call(mask, IPI_TIMER);
400 }
401 #else
402 #define smp_timer_broadcast     NULL
403 #endif
404
405 static void broadcast_timer_set_mode(enum clock_event_mode mode,
406         struct clock_event_device *evt)
407 {
408 }
409
410 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
411 {
412         evt->name       = "dummy_timer";
413         evt->features   = CLOCK_EVT_FEAT_ONESHOT |
414                           CLOCK_EVT_FEAT_PERIODIC |
415                           CLOCK_EVT_FEAT_DUMMY;
416         evt->rating     = 400;
417         evt->mult       = 1;
418         evt->set_mode   = broadcast_timer_set_mode;
419
420         clockevents_register_device(evt);
421 }
422
423 static struct local_timer_ops *lt_ops;
424
425 #ifdef CONFIG_LOCAL_TIMERS
426 int local_timer_register(struct local_timer_ops *ops)
427 {
428         if (!is_smp() || !setup_max_cpus)
429                 return -ENXIO;
430
431         if (lt_ops)
432                 return -EBUSY;
433
434         lt_ops = ops;
435         return 0;
436 }
437 #endif
438
439 static void __cpuinit percpu_timer_setup(void)
440 {
441         unsigned int cpu = smp_processor_id();
442         struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
443
444         evt->cpumask = cpumask_of(cpu);
445         evt->broadcast = smp_timer_broadcast;
446
447         if (!lt_ops || lt_ops->setup(evt))
448                 broadcast_timer_setup(evt);
449 }
450
451 #ifdef CONFIG_HOTPLUG_CPU
452 /*
453  * The generic clock events code purposely does not stop the local timer
454  * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
455  * manually here.
456  */
457 static void percpu_timer_stop(void)
458 {
459         unsigned int cpu = smp_processor_id();
460         struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
461
462         if (lt_ops)
463                 lt_ops->stop(evt);
464 }
465 #endif
466
467 static DEFINE_RAW_SPINLOCK(stop_lock);
468
469 /*
470  * ipi_cpu_stop - handle IPI from smp_send_stop()
471  */
472 static void ipi_cpu_stop(unsigned int cpu)
473 {
474         if (system_state == SYSTEM_BOOTING ||
475             system_state == SYSTEM_RUNNING) {
476                 raw_spin_lock(&stop_lock);
477                 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
478                 dump_stack();
479                 raw_spin_unlock(&stop_lock);
480         }
481
482         set_cpu_online(cpu, false);
483
484         local_fiq_disable();
485         local_irq_disable();
486
487         while (1)
488                 cpu_relax();
489 }
490
491 /*
492  * Main handler for inter-processor interrupts
493  */
494 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
495 {
496         handle_IPI(ipinr, regs);
497 }
498
499 void handle_IPI(int ipinr, struct pt_regs *regs)
500 {
501         unsigned int cpu = smp_processor_id();
502         struct pt_regs *old_regs = set_irq_regs(regs);
503
504         if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
505                 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
506
507         switch (ipinr) {
508         case IPI_TIMER:
509                 irq_enter();
510                 ipi_timer();
511                 irq_exit();
512                 break;
513
514         case IPI_RESCHEDULE:
515                 scheduler_ipi();
516                 break;
517
518         case IPI_CALL_FUNC:
519                 irq_enter();
520                 generic_smp_call_function_interrupt();
521                 irq_exit();
522                 break;
523
524         case IPI_CALL_FUNC_SINGLE:
525                 irq_enter();
526                 generic_smp_call_function_single_interrupt();
527                 irq_exit();
528                 break;
529
530         case IPI_CPU_STOP:
531                 irq_enter();
532                 ipi_cpu_stop(cpu);
533                 irq_exit();
534                 break;
535
536         default:
537                 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
538                        cpu, ipinr);
539                 break;
540         }
541         set_irq_regs(old_regs);
542 }
543
544 void smp_send_reschedule(int cpu)
545 {
546         smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
547 }
548
549 #ifdef CONFIG_HOTPLUG_CPU
550 static void smp_kill_cpus(cpumask_t *mask)
551 {
552         unsigned int cpu;
553         for_each_cpu(cpu, mask)
554                 platform_cpu_kill(cpu);
555 }
556 #else
557 static void smp_kill_cpus(cpumask_t *mask) { }
558 #endif
559
560 void smp_send_stop(void)
561 {
562         unsigned long timeout;
563         struct cpumask mask;
564
565         cpumask_copy(&mask, cpu_online_mask);
566         cpumask_clear_cpu(smp_processor_id(), &mask);
567         if (!cpumask_empty(&mask))
568                 smp_cross_call(&mask, IPI_CPU_STOP);
569
570         /* Wait up to one second for other CPUs to stop */
571         timeout = USEC_PER_SEC;
572         while (num_online_cpus() > 1 && timeout--)
573                 udelay(1);
574
575         if (num_online_cpus() > 1)
576                 pr_warning("SMP: failed to stop secondary CPUs\n");
577
578         smp_kill_cpus(&mask);
579 }
580
581 /*
582  * not supported here
583  */
584 int setup_profiling_timer(unsigned int multiplier)
585 {
586         return -EINVAL;
587 }
588
589 #ifdef CONFIG_CPU_FREQ
590
591 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
592 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
593 static unsigned long global_l_p_j_ref;
594 static unsigned long global_l_p_j_ref_freq;
595
596 static int cpufreq_callback(struct notifier_block *nb,
597                                         unsigned long val, void *data)
598 {
599         struct cpufreq_freqs *freq = data;
600         int cpu = freq->cpu;
601
602         if (freq->flags & CPUFREQ_CONST_LOOPS)
603                 return NOTIFY_OK;
604
605         if (!per_cpu(l_p_j_ref, cpu)) {
606                 per_cpu(l_p_j_ref, cpu) =
607                         per_cpu(cpu_data, cpu).loops_per_jiffy;
608                 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
609                 if (!global_l_p_j_ref) {
610                         global_l_p_j_ref = loops_per_jiffy;
611                         global_l_p_j_ref_freq = freq->old;
612                 }
613         }
614
615         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
616             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
617             (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
618                 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
619                                                 global_l_p_j_ref_freq,
620                                                 freq->new);
621                 per_cpu(cpu_data, cpu).loops_per_jiffy =
622                         cpufreq_scale(per_cpu(l_p_j_ref, cpu),
623                                         per_cpu(l_p_j_ref_freq, cpu),
624                                         freq->new);
625         }
626         return NOTIFY_OK;
627 }
628
629 static struct notifier_block cpufreq_notifier = {
630         .notifier_call  = cpufreq_callback,
631 };
632
633 static int __init register_cpufreq_notifier(void)
634 {
635         return cpufreq_register_notifier(&cpufreq_notifier,
636                                                 CPUFREQ_TRANSITION_NOTIFIER);
637 }
638 core_initcall(register_cpufreq_notifier);
639
640 #endif