37b46c504534764c17ea78ab380da8637a3e0e6d
[firefly-linux-kernel-4.4.55.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension        virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
65 {
66         BUG_ON(preemptible());
67         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
68 }
69
70 /**
71  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72  * Must be called from non-preemptible context
73  */
74 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
75 {
76         BUG_ON(preemptible());
77         return __this_cpu_read(kvm_arm_running_vcpu);
78 }
79
80 /**
81  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
82  */
83 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
84 {
85         return &kvm_arm_running_vcpu;
86 }
87
88 int kvm_arch_hardware_enable(void)
89 {
90         return 0;
91 }
92
93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
94 {
95         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
96 }
97
98 int kvm_arch_hardware_setup(void)
99 {
100         return 0;
101 }
102
103 void kvm_arch_check_processor_compat(void *rtn)
104 {
105         *(int *)rtn = 0;
106 }
107
108
109 /**
110  * kvm_arch_init_vm - initializes a VM data structure
111  * @kvm:        pointer to the KVM struct
112  */
113 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
114 {
115         int ret = 0;
116
117         if (type)
118                 return -EINVAL;
119
120         ret = kvm_alloc_stage2_pgd(kvm);
121         if (ret)
122                 goto out_fail_alloc;
123
124         ret = create_hyp_mappings(kvm, kvm + 1);
125         if (ret)
126                 goto out_free_stage2_pgd;
127
128         kvm_timer_init(kvm);
129
130         /* Mark the initial VMID generation invalid */
131         kvm->arch.vmid_gen = 0;
132
133         /* The maximum number of VCPUs is limited by the host's GIC model */
134         kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
135
136         return ret;
137 out_free_stage2_pgd:
138         kvm_free_stage2_pgd(kvm);
139 out_fail_alloc:
140         return ret;
141 }
142
143 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
144 {
145         return VM_FAULT_SIGBUS;
146 }
147
148
149 /**
150  * kvm_arch_destroy_vm - destroy the VM data structure
151  * @kvm:        pointer to the KVM struct
152  */
153 void kvm_arch_destroy_vm(struct kvm *kvm)
154 {
155         int i;
156
157         kvm_free_stage2_pgd(kvm);
158
159         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
160                 if (kvm->vcpus[i]) {
161                         kvm_arch_vcpu_free(kvm->vcpus[i]);
162                         kvm->vcpus[i] = NULL;
163                 }
164         }
165
166         kvm_vgic_destroy(kvm);
167 }
168
169 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
170 {
171         int r;
172         switch (ext) {
173         case KVM_CAP_IRQCHIP:
174         case KVM_CAP_DEVICE_CTRL:
175         case KVM_CAP_USER_MEMORY:
176         case KVM_CAP_SYNC_MMU:
177         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
178         case KVM_CAP_ONE_REG:
179         case KVM_CAP_ARM_PSCI:
180         case KVM_CAP_ARM_PSCI_0_2:
181         case KVM_CAP_READONLY_MEM:
182                 r = 1;
183                 break;
184         case KVM_CAP_COALESCED_MMIO:
185                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
186                 break;
187         case KVM_CAP_ARM_SET_DEVICE_ADDR:
188                 r = 1;
189                 break;
190         case KVM_CAP_NR_VCPUS:
191                 r = num_online_cpus();
192                 break;
193         case KVM_CAP_MAX_VCPUS:
194                 r = KVM_MAX_VCPUS;
195                 break;
196         default:
197                 r = kvm_arch_dev_ioctl_check_extension(ext);
198                 break;
199         }
200         return r;
201 }
202
203 long kvm_arch_dev_ioctl(struct file *filp,
204                         unsigned int ioctl, unsigned long arg)
205 {
206         return -EINVAL;
207 }
208
209
210 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
211 {
212         int err;
213         struct kvm_vcpu *vcpu;
214
215         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
216                 err = -EBUSY;
217                 goto out;
218         }
219
220         if (id >= kvm->arch.max_vcpus) {
221                 err = -EINVAL;
222                 goto out;
223         }
224
225         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
226         if (!vcpu) {
227                 err = -ENOMEM;
228                 goto out;
229         }
230
231         err = kvm_vcpu_init(vcpu, kvm, id);
232         if (err)
233                 goto free_vcpu;
234
235         err = create_hyp_mappings(vcpu, vcpu + 1);
236         if (err)
237                 goto vcpu_uninit;
238
239         return vcpu;
240 vcpu_uninit:
241         kvm_vcpu_uninit(vcpu);
242 free_vcpu:
243         kmem_cache_free(kvm_vcpu_cache, vcpu);
244 out:
245         return ERR_PTR(err);
246 }
247
248 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
249 {
250 }
251
252 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
253 {
254         kvm_mmu_free_memory_caches(vcpu);
255         kvm_timer_vcpu_terminate(vcpu);
256         kvm_vgic_vcpu_destroy(vcpu);
257         kmem_cache_free(kvm_vcpu_cache, vcpu);
258 }
259
260 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
261 {
262         kvm_arch_vcpu_free(vcpu);
263 }
264
265 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
266 {
267         return 0;
268 }
269
270 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
271 {
272         /* Force users to call KVM_ARM_VCPU_INIT */
273         vcpu->arch.target = -1;
274         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
275
276         /* Set up the timer */
277         kvm_timer_vcpu_init(vcpu);
278
279         return 0;
280 }
281
282 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
283 {
284         vcpu->cpu = cpu;
285         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
286
287         kvm_arm_set_running_vcpu(vcpu);
288 }
289
290 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
291 {
292         /*
293          * The arch-generic KVM code expects the cpu field of a vcpu to be -1
294          * if the vcpu is no longer assigned to a cpu.  This is used for the
295          * optimized make_all_cpus_request path.
296          */
297         vcpu->cpu = -1;
298
299         kvm_arm_set_running_vcpu(NULL);
300 }
301
302 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
303                                         struct kvm_guest_debug *dbg)
304 {
305         return -EINVAL;
306 }
307
308
309 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
310                                     struct kvm_mp_state *mp_state)
311 {
312         return -EINVAL;
313 }
314
315 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
316                                     struct kvm_mp_state *mp_state)
317 {
318         return -EINVAL;
319 }
320
321 /**
322  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
323  * @v:          The VCPU pointer
324  *
325  * If the guest CPU is not waiting for interrupts or an interrupt line is
326  * asserted, the CPU is by definition runnable.
327  */
328 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
329 {
330         return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
331 }
332
333 /* Just ensure a guest exit from a particular CPU */
334 static void exit_vm_noop(void *info)
335 {
336 }
337
338 void force_vm_exit(const cpumask_t *mask)
339 {
340         smp_call_function_many(mask, exit_vm_noop, NULL, true);
341 }
342
343 /**
344  * need_new_vmid_gen - check that the VMID is still valid
345  * @kvm: The VM's VMID to checkt
346  *
347  * return true if there is a new generation of VMIDs being used
348  *
349  * The hardware supports only 256 values with the value zero reserved for the
350  * host, so we check if an assigned value belongs to a previous generation,
351  * which which requires us to assign a new value. If we're the first to use a
352  * VMID for the new generation, we must flush necessary caches and TLBs on all
353  * CPUs.
354  */
355 static bool need_new_vmid_gen(struct kvm *kvm)
356 {
357         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
358 }
359
360 /**
361  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
362  * @kvm The guest that we are about to run
363  *
364  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
365  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
366  * caches and TLBs.
367  */
368 static void update_vttbr(struct kvm *kvm)
369 {
370         phys_addr_t pgd_phys;
371         u64 vmid;
372
373         if (!need_new_vmid_gen(kvm))
374                 return;
375
376         spin_lock(&kvm_vmid_lock);
377
378         /*
379          * We need to re-check the vmid_gen here to ensure that if another vcpu
380          * already allocated a valid vmid for this vm, then this vcpu should
381          * use the same vmid.
382          */
383         if (!need_new_vmid_gen(kvm)) {
384                 spin_unlock(&kvm_vmid_lock);
385                 return;
386         }
387
388         /* First user of a new VMID generation? */
389         if (unlikely(kvm_next_vmid == 0)) {
390                 atomic64_inc(&kvm_vmid_gen);
391                 kvm_next_vmid = 1;
392
393                 /*
394                  * On SMP we know no other CPUs can use this CPU's or each
395                  * other's VMID after force_vm_exit returns since the
396                  * kvm_vmid_lock blocks them from reentry to the guest.
397                  */
398                 force_vm_exit(cpu_all_mask);
399                 /*
400                  * Now broadcast TLB + ICACHE invalidation over the inner
401                  * shareable domain to make sure all data structures are
402                  * clean.
403                  */
404                 kvm_call_hyp(__kvm_flush_vm_context);
405         }
406
407         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
408         kvm->arch.vmid = kvm_next_vmid;
409         kvm_next_vmid++;
410
411         /* update vttbr to be used with the new vmid */
412         pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
413         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
414         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
415         kvm->arch.vttbr = pgd_phys | vmid;
416
417         spin_unlock(&kvm_vmid_lock);
418 }
419
420 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
421 {
422         struct kvm *kvm = vcpu->kvm;
423         int ret;
424
425         if (likely(vcpu->arch.has_run_once))
426                 return 0;
427
428         vcpu->arch.has_run_once = true;
429
430         /*
431          * Map the VGIC hardware resources before running a vcpu the first
432          * time on this VM.
433          */
434         if (unlikely(!vgic_ready(kvm))) {
435                 ret = kvm_vgic_map_resources(kvm);
436                 if (ret)
437                         return ret;
438         }
439
440         /*
441          * Enable the arch timers only if we have an in-kernel VGIC
442          * and it has been properly initialized, since we cannot handle
443          * interrupts from the virtual timer with a userspace gic.
444          */
445         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
446                 kvm_timer_enable(kvm);
447
448         return 0;
449 }
450
451 static void vcpu_pause(struct kvm_vcpu *vcpu)
452 {
453         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
454
455         wait_event_interruptible(*wq, !vcpu->arch.pause);
456 }
457
458 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
459 {
460         return vcpu->arch.target >= 0;
461 }
462
463 /**
464  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
465  * @vcpu:       The VCPU pointer
466  * @run:        The kvm_run structure pointer used for userspace state exchange
467  *
468  * This function is called through the VCPU_RUN ioctl called from user space. It
469  * will execute VM code in a loop until the time slice for the process is used
470  * or some emulation is needed from user space in which case the function will
471  * return with return value 0 and with the kvm_run structure filled in with the
472  * required data for the requested emulation.
473  */
474 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
475 {
476         int ret;
477         sigset_t sigsaved;
478
479         if (unlikely(!kvm_vcpu_initialized(vcpu)))
480                 return -ENOEXEC;
481
482         ret = kvm_vcpu_first_run_init(vcpu);
483         if (ret)
484                 return ret;
485
486         if (run->exit_reason == KVM_EXIT_MMIO) {
487                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
488                 if (ret)
489                         return ret;
490         }
491
492         if (vcpu->sigset_active)
493                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
494
495         ret = 1;
496         run->exit_reason = KVM_EXIT_UNKNOWN;
497         while (ret > 0) {
498                 /*
499                  * Check conditions before entering the guest
500                  */
501                 cond_resched();
502
503                 update_vttbr(vcpu->kvm);
504
505                 if (vcpu->arch.pause)
506                         vcpu_pause(vcpu);
507
508                 kvm_vgic_flush_hwstate(vcpu);
509                 kvm_timer_flush_hwstate(vcpu);
510
511                 local_irq_disable();
512
513                 /*
514                  * Re-check atomic conditions
515                  */
516                 if (signal_pending(current)) {
517                         ret = -EINTR;
518                         run->exit_reason = KVM_EXIT_INTR;
519                 }
520
521                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
522                         local_irq_enable();
523                         kvm_timer_sync_hwstate(vcpu);
524                         kvm_vgic_sync_hwstate(vcpu);
525                         continue;
526                 }
527
528                 /**************************************************************
529                  * Enter the guest
530                  */
531                 trace_kvm_entry(*vcpu_pc(vcpu));
532                 kvm_guest_enter();
533                 vcpu->mode = IN_GUEST_MODE;
534
535                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
536
537                 vcpu->mode = OUTSIDE_GUEST_MODE;
538                 kvm_guest_exit();
539                 trace_kvm_exit(kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
540                 /*
541                  * We may have taken a host interrupt in HYP mode (ie
542                  * while executing the guest). This interrupt is still
543                  * pending, as we haven't serviced it yet!
544                  *
545                  * We're now back in SVC mode, with interrupts
546                  * disabled.  Enabling the interrupts now will have
547                  * the effect of taking the interrupt again, in SVC
548                  * mode this time.
549                  */
550                 local_irq_enable();
551
552                 /*
553                  * Back from guest
554                  *************************************************************/
555
556                 kvm_timer_sync_hwstate(vcpu);
557                 kvm_vgic_sync_hwstate(vcpu);
558
559                 ret = handle_exit(vcpu, run, ret);
560         }
561
562         if (vcpu->sigset_active)
563                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
564         return ret;
565 }
566
567 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
568 {
569         int bit_index;
570         bool set;
571         unsigned long *ptr;
572
573         if (number == KVM_ARM_IRQ_CPU_IRQ)
574                 bit_index = __ffs(HCR_VI);
575         else /* KVM_ARM_IRQ_CPU_FIQ */
576                 bit_index = __ffs(HCR_VF);
577
578         ptr = (unsigned long *)&vcpu->arch.irq_lines;
579         if (level)
580                 set = test_and_set_bit(bit_index, ptr);
581         else
582                 set = test_and_clear_bit(bit_index, ptr);
583
584         /*
585          * If we didn't change anything, no need to wake up or kick other CPUs
586          */
587         if (set == level)
588                 return 0;
589
590         /*
591          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
592          * trigger a world-switch round on the running physical CPU to set the
593          * virtual IRQ/FIQ fields in the HCR appropriately.
594          */
595         kvm_vcpu_kick(vcpu);
596
597         return 0;
598 }
599
600 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
601                           bool line_status)
602 {
603         u32 irq = irq_level->irq;
604         unsigned int irq_type, vcpu_idx, irq_num;
605         int nrcpus = atomic_read(&kvm->online_vcpus);
606         struct kvm_vcpu *vcpu = NULL;
607         bool level = irq_level->level;
608
609         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
610         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
611         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
612
613         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
614
615         switch (irq_type) {
616         case KVM_ARM_IRQ_TYPE_CPU:
617                 if (irqchip_in_kernel(kvm))
618                         return -ENXIO;
619
620                 if (vcpu_idx >= nrcpus)
621                         return -EINVAL;
622
623                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
624                 if (!vcpu)
625                         return -EINVAL;
626
627                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
628                         return -EINVAL;
629
630                 return vcpu_interrupt_line(vcpu, irq_num, level);
631         case KVM_ARM_IRQ_TYPE_PPI:
632                 if (!irqchip_in_kernel(kvm))
633                         return -ENXIO;
634
635                 if (vcpu_idx >= nrcpus)
636                         return -EINVAL;
637
638                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
639                 if (!vcpu)
640                         return -EINVAL;
641
642                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
643                         return -EINVAL;
644
645                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
646         case KVM_ARM_IRQ_TYPE_SPI:
647                 if (!irqchip_in_kernel(kvm))
648                         return -ENXIO;
649
650                 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
651                     irq_num > KVM_ARM_IRQ_GIC_MAX)
652                         return -EINVAL;
653
654                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
655         }
656
657         return -EINVAL;
658 }
659
660 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
661                                const struct kvm_vcpu_init *init)
662 {
663         unsigned int i;
664         int phys_target = kvm_target_cpu();
665
666         if (init->target != phys_target)
667                 return -EINVAL;
668
669         /*
670          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
671          * use the same target.
672          */
673         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
674                 return -EINVAL;
675
676         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
677         for (i = 0; i < sizeof(init->features) * 8; i++) {
678                 bool set = (init->features[i / 32] & (1 << (i % 32)));
679
680                 if (set && i >= KVM_VCPU_MAX_FEATURES)
681                         return -ENOENT;
682
683                 /*
684                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
685                  * use the same feature set.
686                  */
687                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
688                     test_bit(i, vcpu->arch.features) != set)
689                         return -EINVAL;
690
691                 if (set)
692                         set_bit(i, vcpu->arch.features);
693         }
694
695         vcpu->arch.target = phys_target;
696
697         /* Now we know what it is, we can reset it. */
698         return kvm_reset_vcpu(vcpu);
699 }
700
701
702 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
703                                          struct kvm_vcpu_init *init)
704 {
705         int ret;
706
707         ret = kvm_vcpu_set_target(vcpu, init);
708         if (ret)
709                 return ret;
710
711         /*
712          * Ensure a rebooted VM will fault in RAM pages and detect if the
713          * guest MMU is turned off and flush the caches as needed.
714          */
715         if (vcpu->arch.has_run_once)
716                 stage2_unmap_vm(vcpu->kvm);
717
718         vcpu_reset_hcr(vcpu);
719
720         /*
721          * Handle the "start in power-off" case by marking the VCPU as paused.
722          */
723         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
724                 vcpu->arch.pause = true;
725         else
726                 vcpu->arch.pause = false;
727
728         return 0;
729 }
730
731 long kvm_arch_vcpu_ioctl(struct file *filp,
732                          unsigned int ioctl, unsigned long arg)
733 {
734         struct kvm_vcpu *vcpu = filp->private_data;
735         void __user *argp = (void __user *)arg;
736
737         switch (ioctl) {
738         case KVM_ARM_VCPU_INIT: {
739                 struct kvm_vcpu_init init;
740
741                 if (copy_from_user(&init, argp, sizeof(init)))
742                         return -EFAULT;
743
744                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
745         }
746         case KVM_SET_ONE_REG:
747         case KVM_GET_ONE_REG: {
748                 struct kvm_one_reg reg;
749
750                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
751                         return -ENOEXEC;
752
753                 if (copy_from_user(&reg, argp, sizeof(reg)))
754                         return -EFAULT;
755                 if (ioctl == KVM_SET_ONE_REG)
756                         return kvm_arm_set_reg(vcpu, &reg);
757                 else
758                         return kvm_arm_get_reg(vcpu, &reg);
759         }
760         case KVM_GET_REG_LIST: {
761                 struct kvm_reg_list __user *user_list = argp;
762                 struct kvm_reg_list reg_list;
763                 unsigned n;
764
765                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
766                         return -ENOEXEC;
767
768                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
769                         return -EFAULT;
770                 n = reg_list.n;
771                 reg_list.n = kvm_arm_num_regs(vcpu);
772                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
773                         return -EFAULT;
774                 if (n < reg_list.n)
775                         return -E2BIG;
776                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
777         }
778         default:
779                 return -EINVAL;
780         }
781 }
782
783 /**
784  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
785  * @kvm: kvm instance
786  * @log: slot id and address to which we copy the log
787  *
788  * Steps 1-4 below provide general overview of dirty page logging. See
789  * kvm_get_dirty_log_protect() function description for additional details.
790  *
791  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
792  * always flush the TLB (step 4) even if previous step failed  and the dirty
793  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
794  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
795  * writes will be marked dirty for next log read.
796  *
797  *   1. Take a snapshot of the bit and clear it if needed.
798  *   2. Write protect the corresponding page.
799  *   3. Copy the snapshot to the userspace.
800  *   4. Flush TLB's if needed.
801  */
802 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
803 {
804         bool is_dirty = false;
805         int r;
806
807         mutex_lock(&kvm->slots_lock);
808
809         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
810
811         if (is_dirty)
812                 kvm_flush_remote_tlbs(kvm);
813
814         mutex_unlock(&kvm->slots_lock);
815         return r;
816 }
817
818 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
819                                         struct kvm_arm_device_addr *dev_addr)
820 {
821         unsigned long dev_id, type;
822
823         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
824                 KVM_ARM_DEVICE_ID_SHIFT;
825         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
826                 KVM_ARM_DEVICE_TYPE_SHIFT;
827
828         switch (dev_id) {
829         case KVM_ARM_DEVICE_VGIC_V2:
830                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
831         default:
832                 return -ENODEV;
833         }
834 }
835
836 long kvm_arch_vm_ioctl(struct file *filp,
837                        unsigned int ioctl, unsigned long arg)
838 {
839         struct kvm *kvm = filp->private_data;
840         void __user *argp = (void __user *)arg;
841
842         switch (ioctl) {
843         case KVM_CREATE_IRQCHIP: {
844                 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
845         }
846         case KVM_ARM_SET_DEVICE_ADDR: {
847                 struct kvm_arm_device_addr dev_addr;
848
849                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
850                         return -EFAULT;
851                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
852         }
853         case KVM_ARM_PREFERRED_TARGET: {
854                 int err;
855                 struct kvm_vcpu_init init;
856
857                 err = kvm_vcpu_preferred_target(&init);
858                 if (err)
859                         return err;
860
861                 if (copy_to_user(argp, &init, sizeof(init)))
862                         return -EFAULT;
863
864                 return 0;
865         }
866         default:
867                 return -EINVAL;
868         }
869 }
870
871 static void cpu_init_hyp_mode(void *dummy)
872 {
873         phys_addr_t boot_pgd_ptr;
874         phys_addr_t pgd_ptr;
875         unsigned long hyp_stack_ptr;
876         unsigned long stack_page;
877         unsigned long vector_ptr;
878
879         /* Switch from the HYP stub to our own HYP init vector */
880         __hyp_set_vectors(kvm_get_idmap_vector());
881
882         boot_pgd_ptr = kvm_mmu_get_boot_httbr();
883         pgd_ptr = kvm_mmu_get_httbr();
884         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
885         hyp_stack_ptr = stack_page + PAGE_SIZE;
886         vector_ptr = (unsigned long)__kvm_hyp_vector;
887
888         __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
889 }
890
891 static int hyp_init_cpu_notify(struct notifier_block *self,
892                                unsigned long action, void *cpu)
893 {
894         switch (action) {
895         case CPU_STARTING:
896         case CPU_STARTING_FROZEN:
897                 if (__hyp_get_vectors() == hyp_default_vectors)
898                         cpu_init_hyp_mode(NULL);
899                 break;
900         }
901
902         return NOTIFY_OK;
903 }
904
905 static struct notifier_block hyp_init_cpu_nb = {
906         .notifier_call = hyp_init_cpu_notify,
907 };
908
909 #ifdef CONFIG_CPU_PM
910 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
911                                     unsigned long cmd,
912                                     void *v)
913 {
914         if (cmd == CPU_PM_EXIT &&
915             __hyp_get_vectors() == hyp_default_vectors) {
916                 cpu_init_hyp_mode(NULL);
917                 return NOTIFY_OK;
918         }
919
920         return NOTIFY_DONE;
921 }
922
923 static struct notifier_block hyp_init_cpu_pm_nb = {
924         .notifier_call = hyp_init_cpu_pm_notifier,
925 };
926
927 static void __init hyp_cpu_pm_init(void)
928 {
929         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
930 }
931 #else
932 static inline void hyp_cpu_pm_init(void)
933 {
934 }
935 #endif
936
937 /**
938  * Inits Hyp-mode on all online CPUs
939  */
940 static int init_hyp_mode(void)
941 {
942         int cpu;
943         int err = 0;
944
945         /*
946          * Allocate Hyp PGD and setup Hyp identity mapping
947          */
948         err = kvm_mmu_init();
949         if (err)
950                 goto out_err;
951
952         /*
953          * It is probably enough to obtain the default on one
954          * CPU. It's unlikely to be different on the others.
955          */
956         hyp_default_vectors = __hyp_get_vectors();
957
958         /*
959          * Allocate stack pages for Hypervisor-mode
960          */
961         for_each_possible_cpu(cpu) {
962                 unsigned long stack_page;
963
964                 stack_page = __get_free_page(GFP_KERNEL);
965                 if (!stack_page) {
966                         err = -ENOMEM;
967                         goto out_free_stack_pages;
968                 }
969
970                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
971         }
972
973         /*
974          * Map the Hyp-code called directly from the host
975          */
976         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
977         if (err) {
978                 kvm_err("Cannot map world-switch code\n");
979                 goto out_free_mappings;
980         }
981
982         /*
983          * Map the Hyp stack pages
984          */
985         for_each_possible_cpu(cpu) {
986                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
987                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
988
989                 if (err) {
990                         kvm_err("Cannot map hyp stack\n");
991                         goto out_free_mappings;
992                 }
993         }
994
995         /*
996          * Map the host CPU structures
997          */
998         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
999         if (!kvm_host_cpu_state) {
1000                 err = -ENOMEM;
1001                 kvm_err("Cannot allocate host CPU state\n");
1002                 goto out_free_mappings;
1003         }
1004
1005         for_each_possible_cpu(cpu) {
1006                 kvm_cpu_context_t *cpu_ctxt;
1007
1008                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1009                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1010
1011                 if (err) {
1012                         kvm_err("Cannot map host CPU state: %d\n", err);
1013                         goto out_free_context;
1014                 }
1015         }
1016
1017         /*
1018          * Execute the init code on each CPU.
1019          */
1020         on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1021
1022         /*
1023          * Init HYP view of VGIC
1024          */
1025         err = kvm_vgic_hyp_init();
1026         if (err)
1027                 goto out_free_context;
1028
1029         /*
1030          * Init HYP architected timer support
1031          */
1032         err = kvm_timer_hyp_init();
1033         if (err)
1034                 goto out_free_mappings;
1035
1036 #ifndef CONFIG_HOTPLUG_CPU
1037         free_boot_hyp_pgd();
1038 #endif
1039
1040         kvm_perf_init();
1041
1042         kvm_info("Hyp mode initialized successfully\n");
1043
1044         return 0;
1045 out_free_context:
1046         free_percpu(kvm_host_cpu_state);
1047 out_free_mappings:
1048         free_hyp_pgds();
1049 out_free_stack_pages:
1050         for_each_possible_cpu(cpu)
1051                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1052 out_err:
1053         kvm_err("error initializing Hyp mode: %d\n", err);
1054         return err;
1055 }
1056
1057 static void check_kvm_target_cpu(void *ret)
1058 {
1059         *(int *)ret = kvm_target_cpu();
1060 }
1061
1062 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1063 {
1064         struct kvm_vcpu *vcpu;
1065         int i;
1066
1067         mpidr &= MPIDR_HWID_BITMASK;
1068         kvm_for_each_vcpu(i, vcpu, kvm) {
1069                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1070                         return vcpu;
1071         }
1072         return NULL;
1073 }
1074
1075 /**
1076  * Initialize Hyp-mode and memory mappings on all CPUs.
1077  */
1078 int kvm_arch_init(void *opaque)
1079 {
1080         int err;
1081         int ret, cpu;
1082
1083         if (!is_hyp_mode_available()) {
1084                 kvm_err("HYP mode not available\n");
1085                 return -ENODEV;
1086         }
1087
1088         for_each_online_cpu(cpu) {
1089                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1090                 if (ret < 0) {
1091                         kvm_err("Error, CPU %d not supported!\n", cpu);
1092                         return -ENODEV;
1093                 }
1094         }
1095
1096         cpu_notifier_register_begin();
1097
1098         err = init_hyp_mode();
1099         if (err)
1100                 goto out_err;
1101
1102         err = __register_cpu_notifier(&hyp_init_cpu_nb);
1103         if (err) {
1104                 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1105                 goto out_err;
1106         }
1107
1108         cpu_notifier_register_done();
1109
1110         hyp_cpu_pm_init();
1111
1112         kvm_coproc_table_init();
1113         return 0;
1114 out_err:
1115         cpu_notifier_register_done();
1116         return err;
1117 }
1118
1119 /* NOP: Compiling as a module not supported */
1120 void kvm_arch_exit(void)
1121 {
1122         kvm_perf_teardown();
1123 }
1124
1125 static int arm_init(void)
1126 {
1127         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1128         return rc;
1129 }
1130
1131 module_init(arm_init);