2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
32 #define CREATE_TRACE_POINTS
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
49 __asm__(".arch_extension virt");
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
66 BUG_ON(preemptible());
67 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
71 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72 * Must be called from non-preemptible context
74 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
76 BUG_ON(preemptible());
77 return __this_cpu_read(kvm_arm_running_vcpu);
81 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
83 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
85 return &kvm_arm_running_vcpu;
88 int kvm_arch_hardware_enable(void)
93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 int kvm_arch_hardware_setup(void)
103 void kvm_arch_check_processor_compat(void *rtn)
110 * kvm_arch_init_vm - initializes a VM data structure
111 * @kvm: pointer to the KVM struct
113 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
120 ret = kvm_alloc_stage2_pgd(kvm);
124 ret = create_hyp_mappings(kvm, kvm + 1);
126 goto out_free_stage2_pgd;
128 kvm_vgic_early_init(kvm);
131 /* Mark the initial VMID generation invalid */
132 kvm->arch.vmid_gen = 0;
134 /* The maximum number of VCPUs is limited by the host's GIC model */
135 kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
139 kvm_free_stage2_pgd(kvm);
144 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
146 return VM_FAULT_SIGBUS;
151 * kvm_arch_destroy_vm - destroy the VM data structure
152 * @kvm: pointer to the KVM struct
154 void kvm_arch_destroy_vm(struct kvm *kvm)
158 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
160 kvm_arch_vcpu_free(kvm->vcpus[i]);
161 kvm->vcpus[i] = NULL;
165 kvm_vgic_destroy(kvm);
168 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
172 case KVM_CAP_IRQCHIP:
173 case KVM_CAP_IOEVENTFD:
174 case KVM_CAP_DEVICE_CTRL:
175 case KVM_CAP_USER_MEMORY:
176 case KVM_CAP_SYNC_MMU:
177 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
178 case KVM_CAP_ONE_REG:
179 case KVM_CAP_ARM_PSCI:
180 case KVM_CAP_ARM_PSCI_0_2:
181 case KVM_CAP_READONLY_MEM:
182 case KVM_CAP_MP_STATE:
185 case KVM_CAP_COALESCED_MMIO:
186 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
188 case KVM_CAP_ARM_SET_DEVICE_ADDR:
191 case KVM_CAP_NR_VCPUS:
192 r = num_online_cpus();
194 case KVM_CAP_MAX_VCPUS:
198 r = kvm_arch_dev_ioctl_check_extension(ext);
204 long kvm_arch_dev_ioctl(struct file *filp,
205 unsigned int ioctl, unsigned long arg)
211 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
214 struct kvm_vcpu *vcpu;
216 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
221 if (id >= kvm->arch.max_vcpus) {
226 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
232 err = kvm_vcpu_init(vcpu, kvm, id);
236 err = create_hyp_mappings(vcpu, vcpu + 1);
242 kvm_vcpu_uninit(vcpu);
244 kmem_cache_free(kvm_vcpu_cache, vcpu);
249 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
251 kvm_vgic_vcpu_early_init(vcpu);
254 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
256 kvm_mmu_free_memory_caches(vcpu);
257 kvm_timer_vcpu_terminate(vcpu);
258 kvm_vgic_vcpu_destroy(vcpu);
259 kmem_cache_free(kvm_vcpu_cache, vcpu);
262 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
264 kvm_arch_vcpu_free(vcpu);
267 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
269 return kvm_timer_should_fire(vcpu);
272 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
274 kvm_timer_schedule(vcpu);
277 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
279 kvm_timer_unschedule(vcpu);
282 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
284 /* Force users to call KVM_ARM_VCPU_INIT */
285 vcpu->arch.target = -1;
286 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
288 /* Set up the timer */
289 kvm_timer_vcpu_init(vcpu);
291 kvm_arm_reset_debug_ptr(vcpu);
296 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
299 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
301 kvm_arm_set_running_vcpu(vcpu);
304 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
307 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
308 * if the vcpu is no longer assigned to a cpu. This is used for the
309 * optimized make_all_cpus_request path.
313 kvm_arm_set_running_vcpu(NULL);
316 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
317 struct kvm_mp_state *mp_state)
319 if (vcpu->arch.power_off)
320 mp_state->mp_state = KVM_MP_STATE_STOPPED;
322 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
327 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
328 struct kvm_mp_state *mp_state)
330 switch (mp_state->mp_state) {
331 case KVM_MP_STATE_RUNNABLE:
332 vcpu->arch.power_off = false;
334 case KVM_MP_STATE_STOPPED:
335 vcpu->arch.power_off = true;
345 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
346 * @v: The VCPU pointer
348 * If the guest CPU is not waiting for interrupts or an interrupt line is
349 * asserted, the CPU is by definition runnable.
351 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
353 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
354 && !v->arch.power_off && !v->arch.pause);
357 /* Just ensure a guest exit from a particular CPU */
358 static void exit_vm_noop(void *info)
362 void force_vm_exit(const cpumask_t *mask)
364 smp_call_function_many(mask, exit_vm_noop, NULL, true);
368 * need_new_vmid_gen - check that the VMID is still valid
369 * @kvm: The VM's VMID to checkt
371 * return true if there is a new generation of VMIDs being used
373 * The hardware supports only 256 values with the value zero reserved for the
374 * host, so we check if an assigned value belongs to a previous generation,
375 * which which requires us to assign a new value. If we're the first to use a
376 * VMID for the new generation, we must flush necessary caches and TLBs on all
379 static bool need_new_vmid_gen(struct kvm *kvm)
381 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
385 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
386 * @kvm The guest that we are about to run
388 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
389 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
392 static void update_vttbr(struct kvm *kvm)
394 phys_addr_t pgd_phys;
397 if (!need_new_vmid_gen(kvm))
400 spin_lock(&kvm_vmid_lock);
403 * We need to re-check the vmid_gen here to ensure that if another vcpu
404 * already allocated a valid vmid for this vm, then this vcpu should
407 if (!need_new_vmid_gen(kvm)) {
408 spin_unlock(&kvm_vmid_lock);
412 /* First user of a new VMID generation? */
413 if (unlikely(kvm_next_vmid == 0)) {
414 atomic64_inc(&kvm_vmid_gen);
418 * On SMP we know no other CPUs can use this CPU's or each
419 * other's VMID after force_vm_exit returns since the
420 * kvm_vmid_lock blocks them from reentry to the guest.
422 force_vm_exit(cpu_all_mask);
424 * Now broadcast TLB + ICACHE invalidation over the inner
425 * shareable domain to make sure all data structures are
428 kvm_call_hyp(__kvm_flush_vm_context);
431 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
432 kvm->arch.vmid = kvm_next_vmid;
435 /* update vttbr to be used with the new vmid */
436 pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
437 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
438 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
439 kvm->arch.vttbr = pgd_phys | vmid;
441 spin_unlock(&kvm_vmid_lock);
444 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
446 struct kvm *kvm = vcpu->kvm;
449 if (likely(vcpu->arch.has_run_once))
452 vcpu->arch.has_run_once = true;
455 * Map the VGIC hardware resources before running a vcpu the first
458 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
459 ret = kvm_vgic_map_resources(kvm);
465 * Enable the arch timers only if we have an in-kernel VGIC
466 * and it has been properly initialized, since we cannot handle
467 * interrupts from the virtual timer with a userspace gic.
469 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
470 kvm_timer_enable(kvm);
475 bool kvm_arch_intc_initialized(struct kvm *kvm)
477 return vgic_initialized(kvm);
480 static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused;
481 static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused;
483 static void kvm_arm_halt_guest(struct kvm *kvm)
486 struct kvm_vcpu *vcpu;
488 kvm_for_each_vcpu(i, vcpu, kvm)
489 vcpu->arch.pause = true;
490 force_vm_exit(cpu_all_mask);
493 static void kvm_arm_resume_guest(struct kvm *kvm)
496 struct kvm_vcpu *vcpu;
498 kvm_for_each_vcpu(i, vcpu, kvm) {
499 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
501 vcpu->arch.pause = false;
502 wake_up_interruptible(wq);
506 static void vcpu_sleep(struct kvm_vcpu *vcpu)
508 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
510 wait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
511 (!vcpu->arch.pause)));
514 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
516 return vcpu->arch.target >= 0;
520 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
521 * @vcpu: The VCPU pointer
522 * @run: The kvm_run structure pointer used for userspace state exchange
524 * This function is called through the VCPU_RUN ioctl called from user space. It
525 * will execute VM code in a loop until the time slice for the process is used
526 * or some emulation is needed from user space in which case the function will
527 * return with return value 0 and with the kvm_run structure filled in with the
528 * required data for the requested emulation.
530 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
535 if (unlikely(!kvm_vcpu_initialized(vcpu)))
538 ret = kvm_vcpu_first_run_init(vcpu);
542 if (run->exit_reason == KVM_EXIT_MMIO) {
543 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
548 if (vcpu->sigset_active)
549 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
552 run->exit_reason = KVM_EXIT_UNKNOWN;
555 * Check conditions before entering the guest
559 update_vttbr(vcpu->kvm);
561 if (vcpu->arch.power_off || vcpu->arch.pause)
565 * Preparing the interrupts to be injected also
566 * involves poking the GIC, which must be done in a
567 * non-preemptible context.
570 kvm_timer_flush_hwstate(vcpu);
571 kvm_vgic_flush_hwstate(vcpu);
576 * Re-check atomic conditions
578 if (signal_pending(current)) {
580 run->exit_reason = KVM_EXIT_INTR;
583 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
584 vcpu->arch.power_off || vcpu->arch.pause) {
586 kvm_timer_sync_hwstate(vcpu);
587 kvm_vgic_sync_hwstate(vcpu);
592 kvm_arm_setup_debug(vcpu);
594 /**************************************************************
597 trace_kvm_entry(*vcpu_pc(vcpu));
599 vcpu->mode = IN_GUEST_MODE;
601 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
603 vcpu->mode = OUTSIDE_GUEST_MODE;
606 *************************************************************/
608 kvm_arm_clear_debug(vcpu);
611 * We may have taken a host interrupt in HYP mode (ie
612 * while executing the guest). This interrupt is still
613 * pending, as we haven't serviced it yet!
615 * We're now back in SVC mode, with interrupts
616 * disabled. Enabling the interrupts now will have
617 * the effect of taking the interrupt again, in SVC
623 * We do local_irq_enable() before calling kvm_guest_exit() so
624 * that if a timer interrupt hits while running the guest we
625 * account that tick as being spent in the guest. We enable
626 * preemption after calling kvm_guest_exit() so that if we get
627 * preempted we make sure ticks after that is not counted as
631 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
634 * We must sync the timer state before the vgic state so that
635 * the vgic can properly sample the updated state of the
638 kvm_timer_sync_hwstate(vcpu);
640 kvm_vgic_sync_hwstate(vcpu);
644 ret = handle_exit(vcpu, run, ret);
647 if (vcpu->sigset_active)
648 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
652 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
658 if (number == KVM_ARM_IRQ_CPU_IRQ)
659 bit_index = __ffs(HCR_VI);
660 else /* KVM_ARM_IRQ_CPU_FIQ */
661 bit_index = __ffs(HCR_VF);
663 ptr = (unsigned long *)&vcpu->arch.irq_lines;
665 set = test_and_set_bit(bit_index, ptr);
667 set = test_and_clear_bit(bit_index, ptr);
670 * If we didn't change anything, no need to wake up or kick other CPUs
676 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
677 * trigger a world-switch round on the running physical CPU to set the
678 * virtual IRQ/FIQ fields in the HCR appropriately.
685 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
688 u32 irq = irq_level->irq;
689 unsigned int irq_type, vcpu_idx, irq_num;
690 int nrcpus = atomic_read(&kvm->online_vcpus);
691 struct kvm_vcpu *vcpu = NULL;
692 bool level = irq_level->level;
694 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
695 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
696 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
698 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
701 case KVM_ARM_IRQ_TYPE_CPU:
702 if (irqchip_in_kernel(kvm))
705 if (vcpu_idx >= nrcpus)
708 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
712 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
715 return vcpu_interrupt_line(vcpu, irq_num, level);
716 case KVM_ARM_IRQ_TYPE_PPI:
717 if (!irqchip_in_kernel(kvm))
720 if (vcpu_idx >= nrcpus)
723 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
727 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
730 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
731 case KVM_ARM_IRQ_TYPE_SPI:
732 if (!irqchip_in_kernel(kvm))
735 if (irq_num < VGIC_NR_PRIVATE_IRQS)
738 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
744 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
745 const struct kvm_vcpu_init *init)
748 int phys_target = kvm_target_cpu();
750 if (init->target != phys_target)
754 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
755 * use the same target.
757 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
760 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
761 for (i = 0; i < sizeof(init->features) * 8; i++) {
762 bool set = (init->features[i / 32] & (1 << (i % 32)));
764 if (set && i >= KVM_VCPU_MAX_FEATURES)
768 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
769 * use the same feature set.
771 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
772 test_bit(i, vcpu->arch.features) != set)
776 set_bit(i, vcpu->arch.features);
779 vcpu->arch.target = phys_target;
781 /* Now we know what it is, we can reset it. */
782 return kvm_reset_vcpu(vcpu);
786 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
787 struct kvm_vcpu_init *init)
791 ret = kvm_vcpu_set_target(vcpu, init);
796 * Ensure a rebooted VM will fault in RAM pages and detect if the
797 * guest MMU is turned off and flush the caches as needed.
799 if (vcpu->arch.has_run_once)
800 stage2_unmap_vm(vcpu->kvm);
802 vcpu_reset_hcr(vcpu);
805 * Handle the "start in power-off" case.
807 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
808 vcpu->arch.power_off = true;
810 vcpu->arch.power_off = false;
815 long kvm_arch_vcpu_ioctl(struct file *filp,
816 unsigned int ioctl, unsigned long arg)
818 struct kvm_vcpu *vcpu = filp->private_data;
819 void __user *argp = (void __user *)arg;
822 case KVM_ARM_VCPU_INIT: {
823 struct kvm_vcpu_init init;
825 if (copy_from_user(&init, argp, sizeof(init)))
828 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
830 case KVM_SET_ONE_REG:
831 case KVM_GET_ONE_REG: {
832 struct kvm_one_reg reg;
834 if (unlikely(!kvm_vcpu_initialized(vcpu)))
837 if (copy_from_user(®, argp, sizeof(reg)))
839 if (ioctl == KVM_SET_ONE_REG)
840 return kvm_arm_set_reg(vcpu, ®);
842 return kvm_arm_get_reg(vcpu, ®);
844 case KVM_GET_REG_LIST: {
845 struct kvm_reg_list __user *user_list = argp;
846 struct kvm_reg_list reg_list;
849 if (unlikely(!kvm_vcpu_initialized(vcpu)))
852 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
855 reg_list.n = kvm_arm_num_regs(vcpu);
856 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
860 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
868 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
870 * @log: slot id and address to which we copy the log
872 * Steps 1-4 below provide general overview of dirty page logging. See
873 * kvm_get_dirty_log_protect() function description for additional details.
875 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
876 * always flush the TLB (step 4) even if previous step failed and the dirty
877 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
878 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
879 * writes will be marked dirty for next log read.
881 * 1. Take a snapshot of the bit and clear it if needed.
882 * 2. Write protect the corresponding page.
883 * 3. Copy the snapshot to the userspace.
884 * 4. Flush TLB's if needed.
886 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
888 bool is_dirty = false;
891 mutex_lock(&kvm->slots_lock);
893 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
896 kvm_flush_remote_tlbs(kvm);
898 mutex_unlock(&kvm->slots_lock);
902 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
903 struct kvm_arm_device_addr *dev_addr)
905 unsigned long dev_id, type;
907 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
908 KVM_ARM_DEVICE_ID_SHIFT;
909 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
910 KVM_ARM_DEVICE_TYPE_SHIFT;
913 case KVM_ARM_DEVICE_VGIC_V2:
914 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
920 long kvm_arch_vm_ioctl(struct file *filp,
921 unsigned int ioctl, unsigned long arg)
923 struct kvm *kvm = filp->private_data;
924 void __user *argp = (void __user *)arg;
927 case KVM_CREATE_IRQCHIP: {
928 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
930 case KVM_ARM_SET_DEVICE_ADDR: {
931 struct kvm_arm_device_addr dev_addr;
933 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
935 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
937 case KVM_ARM_PREFERRED_TARGET: {
939 struct kvm_vcpu_init init;
941 err = kvm_vcpu_preferred_target(&init);
945 if (copy_to_user(argp, &init, sizeof(init)))
955 static void cpu_init_hyp_mode(void *dummy)
957 phys_addr_t boot_pgd_ptr;
959 unsigned long hyp_stack_ptr;
960 unsigned long stack_page;
961 unsigned long vector_ptr;
963 /* Switch from the HYP stub to our own HYP init vector */
964 __hyp_set_vectors(kvm_get_idmap_vector());
966 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
967 pgd_ptr = kvm_mmu_get_httbr();
968 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
969 hyp_stack_ptr = stack_page + PAGE_SIZE;
970 vector_ptr = (unsigned long)__kvm_hyp_vector;
972 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
974 kvm_arm_init_debug();
977 static int hyp_init_cpu_notify(struct notifier_block *self,
978 unsigned long action, void *cpu)
982 case CPU_STARTING_FROZEN:
983 if (__hyp_get_vectors() == hyp_default_vectors)
984 cpu_init_hyp_mode(NULL);
991 static struct notifier_block hyp_init_cpu_nb = {
992 .notifier_call = hyp_init_cpu_notify,
996 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1000 if (cmd == CPU_PM_EXIT &&
1001 __hyp_get_vectors() == hyp_default_vectors) {
1002 cpu_init_hyp_mode(NULL);
1009 static struct notifier_block hyp_init_cpu_pm_nb = {
1010 .notifier_call = hyp_init_cpu_pm_notifier,
1013 static void __init hyp_cpu_pm_init(void)
1015 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1018 static inline void hyp_cpu_pm_init(void)
1024 * Inits Hyp-mode on all online CPUs
1026 static int init_hyp_mode(void)
1032 * Allocate Hyp PGD and setup Hyp identity mapping
1034 err = kvm_mmu_init();
1039 * It is probably enough to obtain the default on one
1040 * CPU. It's unlikely to be different on the others.
1042 hyp_default_vectors = __hyp_get_vectors();
1045 * Allocate stack pages for Hypervisor-mode
1047 for_each_possible_cpu(cpu) {
1048 unsigned long stack_page;
1050 stack_page = __get_free_page(GFP_KERNEL);
1053 goto out_free_stack_pages;
1056 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1060 * Map the Hyp-code called directly from the host
1062 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1064 kvm_err("Cannot map world-switch code\n");
1065 goto out_free_mappings;
1069 * Map the Hyp stack pages
1071 for_each_possible_cpu(cpu) {
1072 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1073 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1076 kvm_err("Cannot map hyp stack\n");
1077 goto out_free_mappings;
1082 * Map the host CPU structures
1084 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1085 if (!kvm_host_cpu_state) {
1087 kvm_err("Cannot allocate host CPU state\n");
1088 goto out_free_mappings;
1091 for_each_possible_cpu(cpu) {
1092 kvm_cpu_context_t *cpu_ctxt;
1094 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1095 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1098 kvm_err("Cannot map host CPU state: %d\n", err);
1099 goto out_free_context;
1104 * Execute the init code on each CPU.
1106 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1109 * Init HYP view of VGIC
1111 err = kvm_vgic_hyp_init();
1113 goto out_free_context;
1116 * Init HYP architected timer support
1118 err = kvm_timer_hyp_init();
1120 goto out_free_context;
1122 #ifndef CONFIG_HOTPLUG_CPU
1123 free_boot_hyp_pgd();
1128 kvm_info("Hyp mode initialized successfully\n");
1132 free_percpu(kvm_host_cpu_state);
1135 out_free_stack_pages:
1136 for_each_possible_cpu(cpu)
1137 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1139 kvm_err("error initializing Hyp mode: %d\n", err);
1143 static void check_kvm_target_cpu(void *ret)
1145 *(int *)ret = kvm_target_cpu();
1148 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1150 struct kvm_vcpu *vcpu;
1153 mpidr &= MPIDR_HWID_BITMASK;
1154 kvm_for_each_vcpu(i, vcpu, kvm) {
1155 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1162 * Initialize Hyp-mode and memory mappings on all CPUs.
1164 int kvm_arch_init(void *opaque)
1169 if (!is_hyp_mode_available()) {
1170 kvm_err("HYP mode not available\n");
1174 for_each_online_cpu(cpu) {
1175 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1177 kvm_err("Error, CPU %d not supported!\n", cpu);
1182 cpu_notifier_register_begin();
1184 err = init_hyp_mode();
1188 err = __register_cpu_notifier(&hyp_init_cpu_nb);
1190 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1194 cpu_notifier_register_done();
1198 kvm_coproc_table_init();
1201 cpu_notifier_register_done();
1205 /* NOP: Compiling as a module not supported */
1206 void kvm_arch_exit(void)
1208 kvm_perf_teardown();
1211 static int arm_init(void)
1213 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1217 module_init(arm_init);