ARM: dts: at91: Enable DMA on sama5d2_xplained console
[firefly-linux-kernel-4.4.55.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension        virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
65 {
66         BUG_ON(preemptible());
67         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
68 }
69
70 /**
71  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72  * Must be called from non-preemptible context
73  */
74 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
75 {
76         BUG_ON(preemptible());
77         return __this_cpu_read(kvm_arm_running_vcpu);
78 }
79
80 /**
81  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
82  */
83 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
84 {
85         return &kvm_arm_running_vcpu;
86 }
87
88 int kvm_arch_hardware_enable(void)
89 {
90         return 0;
91 }
92
93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
94 {
95         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
96 }
97
98 int kvm_arch_hardware_setup(void)
99 {
100         return 0;
101 }
102
103 void kvm_arch_check_processor_compat(void *rtn)
104 {
105         *(int *)rtn = 0;
106 }
107
108
109 /**
110  * kvm_arch_init_vm - initializes a VM data structure
111  * @kvm:        pointer to the KVM struct
112  */
113 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
114 {
115         int ret = 0;
116
117         if (type)
118                 return -EINVAL;
119
120         ret = kvm_alloc_stage2_pgd(kvm);
121         if (ret)
122                 goto out_fail_alloc;
123
124         ret = create_hyp_mappings(kvm, kvm + 1);
125         if (ret)
126                 goto out_free_stage2_pgd;
127
128         kvm_vgic_early_init(kvm);
129         kvm_timer_init(kvm);
130
131         /* Mark the initial VMID generation invalid */
132         kvm->arch.vmid_gen = 0;
133
134         /* The maximum number of VCPUs is limited by the host's GIC model */
135         kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
136
137         return ret;
138 out_free_stage2_pgd:
139         kvm_free_stage2_pgd(kvm);
140 out_fail_alloc:
141         return ret;
142 }
143
144 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
145 {
146         return VM_FAULT_SIGBUS;
147 }
148
149
150 /**
151  * kvm_arch_destroy_vm - destroy the VM data structure
152  * @kvm:        pointer to the KVM struct
153  */
154 void kvm_arch_destroy_vm(struct kvm *kvm)
155 {
156         int i;
157
158         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
159                 if (kvm->vcpus[i]) {
160                         kvm_arch_vcpu_free(kvm->vcpus[i]);
161                         kvm->vcpus[i] = NULL;
162                 }
163         }
164
165         kvm_vgic_destroy(kvm);
166 }
167
168 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
169 {
170         int r;
171         switch (ext) {
172         case KVM_CAP_IRQCHIP:
173         case KVM_CAP_IOEVENTFD:
174         case KVM_CAP_DEVICE_CTRL:
175         case KVM_CAP_USER_MEMORY:
176         case KVM_CAP_SYNC_MMU:
177         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
178         case KVM_CAP_ONE_REG:
179         case KVM_CAP_ARM_PSCI:
180         case KVM_CAP_ARM_PSCI_0_2:
181         case KVM_CAP_READONLY_MEM:
182         case KVM_CAP_MP_STATE:
183                 r = 1;
184                 break;
185         case KVM_CAP_COALESCED_MMIO:
186                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
187                 break;
188         case KVM_CAP_ARM_SET_DEVICE_ADDR:
189                 r = 1;
190                 break;
191         case KVM_CAP_NR_VCPUS:
192                 r = num_online_cpus();
193                 break;
194         case KVM_CAP_MAX_VCPUS:
195                 r = KVM_MAX_VCPUS;
196                 break;
197         default:
198                 r = kvm_arch_dev_ioctl_check_extension(ext);
199                 break;
200         }
201         return r;
202 }
203
204 long kvm_arch_dev_ioctl(struct file *filp,
205                         unsigned int ioctl, unsigned long arg)
206 {
207         return -EINVAL;
208 }
209
210
211 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
212 {
213         int err;
214         struct kvm_vcpu *vcpu;
215
216         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
217                 err = -EBUSY;
218                 goto out;
219         }
220
221         if (id >= kvm->arch.max_vcpus) {
222                 err = -EINVAL;
223                 goto out;
224         }
225
226         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
227         if (!vcpu) {
228                 err = -ENOMEM;
229                 goto out;
230         }
231
232         err = kvm_vcpu_init(vcpu, kvm, id);
233         if (err)
234                 goto free_vcpu;
235
236         err = create_hyp_mappings(vcpu, vcpu + 1);
237         if (err)
238                 goto vcpu_uninit;
239
240         return vcpu;
241 vcpu_uninit:
242         kvm_vcpu_uninit(vcpu);
243 free_vcpu:
244         kmem_cache_free(kvm_vcpu_cache, vcpu);
245 out:
246         return ERR_PTR(err);
247 }
248
249 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
250 {
251         kvm_vgic_vcpu_early_init(vcpu);
252 }
253
254 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
255 {
256         kvm_mmu_free_memory_caches(vcpu);
257         kvm_timer_vcpu_terminate(vcpu);
258         kvm_vgic_vcpu_destroy(vcpu);
259         kmem_cache_free(kvm_vcpu_cache, vcpu);
260 }
261
262 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
263 {
264         kvm_arch_vcpu_free(vcpu);
265 }
266
267 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
268 {
269         return kvm_timer_should_fire(vcpu);
270 }
271
272 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
273 {
274         kvm_timer_schedule(vcpu);
275 }
276
277 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
278 {
279         kvm_timer_unschedule(vcpu);
280 }
281
282 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
283 {
284         /* Force users to call KVM_ARM_VCPU_INIT */
285         vcpu->arch.target = -1;
286         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
287
288         /* Set up the timer */
289         kvm_timer_vcpu_init(vcpu);
290
291         kvm_arm_reset_debug_ptr(vcpu);
292
293         return 0;
294 }
295
296 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
297 {
298         vcpu->cpu = cpu;
299         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
300
301         kvm_arm_set_running_vcpu(vcpu);
302 }
303
304 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
305 {
306         /*
307          * The arch-generic KVM code expects the cpu field of a vcpu to be -1
308          * if the vcpu is no longer assigned to a cpu.  This is used for the
309          * optimized make_all_cpus_request path.
310          */
311         vcpu->cpu = -1;
312
313         kvm_arm_set_running_vcpu(NULL);
314 }
315
316 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
317                                     struct kvm_mp_state *mp_state)
318 {
319         if (vcpu->arch.power_off)
320                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
321         else
322                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
323
324         return 0;
325 }
326
327 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
328                                     struct kvm_mp_state *mp_state)
329 {
330         switch (mp_state->mp_state) {
331         case KVM_MP_STATE_RUNNABLE:
332                 vcpu->arch.power_off = false;
333                 break;
334         case KVM_MP_STATE_STOPPED:
335                 vcpu->arch.power_off = true;
336                 break;
337         default:
338                 return -EINVAL;
339         }
340
341         return 0;
342 }
343
344 /**
345  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
346  * @v:          The VCPU pointer
347  *
348  * If the guest CPU is not waiting for interrupts or an interrupt line is
349  * asserted, the CPU is by definition runnable.
350  */
351 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
352 {
353         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
354                 && !v->arch.power_off && !v->arch.pause);
355 }
356
357 /* Just ensure a guest exit from a particular CPU */
358 static void exit_vm_noop(void *info)
359 {
360 }
361
362 void force_vm_exit(const cpumask_t *mask)
363 {
364         smp_call_function_many(mask, exit_vm_noop, NULL, true);
365 }
366
367 /**
368  * need_new_vmid_gen - check that the VMID is still valid
369  * @kvm: The VM's VMID to checkt
370  *
371  * return true if there is a new generation of VMIDs being used
372  *
373  * The hardware supports only 256 values with the value zero reserved for the
374  * host, so we check if an assigned value belongs to a previous generation,
375  * which which requires us to assign a new value. If we're the first to use a
376  * VMID for the new generation, we must flush necessary caches and TLBs on all
377  * CPUs.
378  */
379 static bool need_new_vmid_gen(struct kvm *kvm)
380 {
381         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
382 }
383
384 /**
385  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
386  * @kvm The guest that we are about to run
387  *
388  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
389  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
390  * caches and TLBs.
391  */
392 static void update_vttbr(struct kvm *kvm)
393 {
394         phys_addr_t pgd_phys;
395         u64 vmid;
396
397         if (!need_new_vmid_gen(kvm))
398                 return;
399
400         spin_lock(&kvm_vmid_lock);
401
402         /*
403          * We need to re-check the vmid_gen here to ensure that if another vcpu
404          * already allocated a valid vmid for this vm, then this vcpu should
405          * use the same vmid.
406          */
407         if (!need_new_vmid_gen(kvm)) {
408                 spin_unlock(&kvm_vmid_lock);
409                 return;
410         }
411
412         /* First user of a new VMID generation? */
413         if (unlikely(kvm_next_vmid == 0)) {
414                 atomic64_inc(&kvm_vmid_gen);
415                 kvm_next_vmid = 1;
416
417                 /*
418                  * On SMP we know no other CPUs can use this CPU's or each
419                  * other's VMID after force_vm_exit returns since the
420                  * kvm_vmid_lock blocks them from reentry to the guest.
421                  */
422                 force_vm_exit(cpu_all_mask);
423                 /*
424                  * Now broadcast TLB + ICACHE invalidation over the inner
425                  * shareable domain to make sure all data structures are
426                  * clean.
427                  */
428                 kvm_call_hyp(__kvm_flush_vm_context);
429         }
430
431         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
432         kvm->arch.vmid = kvm_next_vmid;
433         kvm_next_vmid++;
434
435         /* update vttbr to be used with the new vmid */
436         pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
437         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
438         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
439         kvm->arch.vttbr = pgd_phys | vmid;
440
441         spin_unlock(&kvm_vmid_lock);
442 }
443
444 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
445 {
446         struct kvm *kvm = vcpu->kvm;
447         int ret;
448
449         if (likely(vcpu->arch.has_run_once))
450                 return 0;
451
452         vcpu->arch.has_run_once = true;
453
454         /*
455          * Map the VGIC hardware resources before running a vcpu the first
456          * time on this VM.
457          */
458         if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
459                 ret = kvm_vgic_map_resources(kvm);
460                 if (ret)
461                         return ret;
462         }
463
464         /*
465          * Enable the arch timers only if we have an in-kernel VGIC
466          * and it has been properly initialized, since we cannot handle
467          * interrupts from the virtual timer with a userspace gic.
468          */
469         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
470                 kvm_timer_enable(kvm);
471
472         return 0;
473 }
474
475 bool kvm_arch_intc_initialized(struct kvm *kvm)
476 {
477         return vgic_initialized(kvm);
478 }
479
480 static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused;
481 static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused;
482
483 static void kvm_arm_halt_guest(struct kvm *kvm)
484 {
485         int i;
486         struct kvm_vcpu *vcpu;
487
488         kvm_for_each_vcpu(i, vcpu, kvm)
489                 vcpu->arch.pause = true;
490         force_vm_exit(cpu_all_mask);
491 }
492
493 static void kvm_arm_resume_guest(struct kvm *kvm)
494 {
495         int i;
496         struct kvm_vcpu *vcpu;
497
498         kvm_for_each_vcpu(i, vcpu, kvm) {
499                 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
500
501                 vcpu->arch.pause = false;
502                 wake_up_interruptible(wq);
503         }
504 }
505
506 static void vcpu_sleep(struct kvm_vcpu *vcpu)
507 {
508         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
509
510         wait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
511                                        (!vcpu->arch.pause)));
512 }
513
514 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
515 {
516         return vcpu->arch.target >= 0;
517 }
518
519 /**
520  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
521  * @vcpu:       The VCPU pointer
522  * @run:        The kvm_run structure pointer used for userspace state exchange
523  *
524  * This function is called through the VCPU_RUN ioctl called from user space. It
525  * will execute VM code in a loop until the time slice for the process is used
526  * or some emulation is needed from user space in which case the function will
527  * return with return value 0 and with the kvm_run structure filled in with the
528  * required data for the requested emulation.
529  */
530 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
531 {
532         int ret;
533         sigset_t sigsaved;
534
535         if (unlikely(!kvm_vcpu_initialized(vcpu)))
536                 return -ENOEXEC;
537
538         ret = kvm_vcpu_first_run_init(vcpu);
539         if (ret)
540                 return ret;
541
542         if (run->exit_reason == KVM_EXIT_MMIO) {
543                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
544                 if (ret)
545                         return ret;
546         }
547
548         if (vcpu->sigset_active)
549                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
550
551         ret = 1;
552         run->exit_reason = KVM_EXIT_UNKNOWN;
553         while (ret > 0) {
554                 /*
555                  * Check conditions before entering the guest
556                  */
557                 cond_resched();
558
559                 update_vttbr(vcpu->kvm);
560
561                 if (vcpu->arch.power_off || vcpu->arch.pause)
562                         vcpu_sleep(vcpu);
563
564                 /*
565                  * Preparing the interrupts to be injected also
566                  * involves poking the GIC, which must be done in a
567                  * non-preemptible context.
568                  */
569                 preempt_disable();
570                 kvm_timer_flush_hwstate(vcpu);
571                 kvm_vgic_flush_hwstate(vcpu);
572
573                 local_irq_disable();
574
575                 /*
576                  * Re-check atomic conditions
577                  */
578                 if (signal_pending(current)) {
579                         ret = -EINTR;
580                         run->exit_reason = KVM_EXIT_INTR;
581                 }
582
583                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
584                         vcpu->arch.power_off || vcpu->arch.pause) {
585                         local_irq_enable();
586                         kvm_timer_sync_hwstate(vcpu);
587                         kvm_vgic_sync_hwstate(vcpu);
588                         preempt_enable();
589                         continue;
590                 }
591
592                 kvm_arm_setup_debug(vcpu);
593
594                 /**************************************************************
595                  * Enter the guest
596                  */
597                 trace_kvm_entry(*vcpu_pc(vcpu));
598                 __kvm_guest_enter();
599                 vcpu->mode = IN_GUEST_MODE;
600
601                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
602
603                 vcpu->mode = OUTSIDE_GUEST_MODE;
604                 /*
605                  * Back from guest
606                  *************************************************************/
607
608                 kvm_arm_clear_debug(vcpu);
609
610                 /*
611                  * We may have taken a host interrupt in HYP mode (ie
612                  * while executing the guest). This interrupt is still
613                  * pending, as we haven't serviced it yet!
614                  *
615                  * We're now back in SVC mode, with interrupts
616                  * disabled.  Enabling the interrupts now will have
617                  * the effect of taking the interrupt again, in SVC
618                  * mode this time.
619                  */
620                 local_irq_enable();
621
622                 /*
623                  * We do local_irq_enable() before calling kvm_guest_exit() so
624                  * that if a timer interrupt hits while running the guest we
625                  * account that tick as being spent in the guest.  We enable
626                  * preemption after calling kvm_guest_exit() so that if we get
627                  * preempted we make sure ticks after that is not counted as
628                  * guest time.
629                  */
630                 kvm_guest_exit();
631                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
632
633                 /*
634                  * We must sync the timer state before the vgic state so that
635                  * the vgic can properly sample the updated state of the
636                  * interrupt line.
637                  */
638                 kvm_timer_sync_hwstate(vcpu);
639
640                 kvm_vgic_sync_hwstate(vcpu);
641
642                 preempt_enable();
643
644                 ret = handle_exit(vcpu, run, ret);
645         }
646
647         if (vcpu->sigset_active)
648                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
649         return ret;
650 }
651
652 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
653 {
654         int bit_index;
655         bool set;
656         unsigned long *ptr;
657
658         if (number == KVM_ARM_IRQ_CPU_IRQ)
659                 bit_index = __ffs(HCR_VI);
660         else /* KVM_ARM_IRQ_CPU_FIQ */
661                 bit_index = __ffs(HCR_VF);
662
663         ptr = (unsigned long *)&vcpu->arch.irq_lines;
664         if (level)
665                 set = test_and_set_bit(bit_index, ptr);
666         else
667                 set = test_and_clear_bit(bit_index, ptr);
668
669         /*
670          * If we didn't change anything, no need to wake up or kick other CPUs
671          */
672         if (set == level)
673                 return 0;
674
675         /*
676          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
677          * trigger a world-switch round on the running physical CPU to set the
678          * virtual IRQ/FIQ fields in the HCR appropriately.
679          */
680         kvm_vcpu_kick(vcpu);
681
682         return 0;
683 }
684
685 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
686                           bool line_status)
687 {
688         u32 irq = irq_level->irq;
689         unsigned int irq_type, vcpu_idx, irq_num;
690         int nrcpus = atomic_read(&kvm->online_vcpus);
691         struct kvm_vcpu *vcpu = NULL;
692         bool level = irq_level->level;
693
694         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
695         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
696         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
697
698         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
699
700         switch (irq_type) {
701         case KVM_ARM_IRQ_TYPE_CPU:
702                 if (irqchip_in_kernel(kvm))
703                         return -ENXIO;
704
705                 if (vcpu_idx >= nrcpus)
706                         return -EINVAL;
707
708                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
709                 if (!vcpu)
710                         return -EINVAL;
711
712                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
713                         return -EINVAL;
714
715                 return vcpu_interrupt_line(vcpu, irq_num, level);
716         case KVM_ARM_IRQ_TYPE_PPI:
717                 if (!irqchip_in_kernel(kvm))
718                         return -ENXIO;
719
720                 if (vcpu_idx >= nrcpus)
721                         return -EINVAL;
722
723                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
724                 if (!vcpu)
725                         return -EINVAL;
726
727                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
728                         return -EINVAL;
729
730                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
731         case KVM_ARM_IRQ_TYPE_SPI:
732                 if (!irqchip_in_kernel(kvm))
733                         return -ENXIO;
734
735                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
736                         return -EINVAL;
737
738                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
739         }
740
741         return -EINVAL;
742 }
743
744 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
745                                const struct kvm_vcpu_init *init)
746 {
747         unsigned int i;
748         int phys_target = kvm_target_cpu();
749
750         if (init->target != phys_target)
751                 return -EINVAL;
752
753         /*
754          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
755          * use the same target.
756          */
757         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
758                 return -EINVAL;
759
760         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
761         for (i = 0; i < sizeof(init->features) * 8; i++) {
762                 bool set = (init->features[i / 32] & (1 << (i % 32)));
763
764                 if (set && i >= KVM_VCPU_MAX_FEATURES)
765                         return -ENOENT;
766
767                 /*
768                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
769                  * use the same feature set.
770                  */
771                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
772                     test_bit(i, vcpu->arch.features) != set)
773                         return -EINVAL;
774
775                 if (set)
776                         set_bit(i, vcpu->arch.features);
777         }
778
779         vcpu->arch.target = phys_target;
780
781         /* Now we know what it is, we can reset it. */
782         return kvm_reset_vcpu(vcpu);
783 }
784
785
786 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
787                                          struct kvm_vcpu_init *init)
788 {
789         int ret;
790
791         ret = kvm_vcpu_set_target(vcpu, init);
792         if (ret)
793                 return ret;
794
795         /*
796          * Ensure a rebooted VM will fault in RAM pages and detect if the
797          * guest MMU is turned off and flush the caches as needed.
798          */
799         if (vcpu->arch.has_run_once)
800                 stage2_unmap_vm(vcpu->kvm);
801
802         vcpu_reset_hcr(vcpu);
803
804         /*
805          * Handle the "start in power-off" case.
806          */
807         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
808                 vcpu->arch.power_off = true;
809         else
810                 vcpu->arch.power_off = false;
811
812         return 0;
813 }
814
815 long kvm_arch_vcpu_ioctl(struct file *filp,
816                          unsigned int ioctl, unsigned long arg)
817 {
818         struct kvm_vcpu *vcpu = filp->private_data;
819         void __user *argp = (void __user *)arg;
820
821         switch (ioctl) {
822         case KVM_ARM_VCPU_INIT: {
823                 struct kvm_vcpu_init init;
824
825                 if (copy_from_user(&init, argp, sizeof(init)))
826                         return -EFAULT;
827
828                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
829         }
830         case KVM_SET_ONE_REG:
831         case KVM_GET_ONE_REG: {
832                 struct kvm_one_reg reg;
833
834                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
835                         return -ENOEXEC;
836
837                 if (copy_from_user(&reg, argp, sizeof(reg)))
838                         return -EFAULT;
839                 if (ioctl == KVM_SET_ONE_REG)
840                         return kvm_arm_set_reg(vcpu, &reg);
841                 else
842                         return kvm_arm_get_reg(vcpu, &reg);
843         }
844         case KVM_GET_REG_LIST: {
845                 struct kvm_reg_list __user *user_list = argp;
846                 struct kvm_reg_list reg_list;
847                 unsigned n;
848
849                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
850                         return -ENOEXEC;
851
852                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
853                         return -EFAULT;
854                 n = reg_list.n;
855                 reg_list.n = kvm_arm_num_regs(vcpu);
856                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
857                         return -EFAULT;
858                 if (n < reg_list.n)
859                         return -E2BIG;
860                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
861         }
862         default:
863                 return -EINVAL;
864         }
865 }
866
867 /**
868  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
869  * @kvm: kvm instance
870  * @log: slot id and address to which we copy the log
871  *
872  * Steps 1-4 below provide general overview of dirty page logging. See
873  * kvm_get_dirty_log_protect() function description for additional details.
874  *
875  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
876  * always flush the TLB (step 4) even if previous step failed  and the dirty
877  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
878  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
879  * writes will be marked dirty for next log read.
880  *
881  *   1. Take a snapshot of the bit and clear it if needed.
882  *   2. Write protect the corresponding page.
883  *   3. Copy the snapshot to the userspace.
884  *   4. Flush TLB's if needed.
885  */
886 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
887 {
888         bool is_dirty = false;
889         int r;
890
891         mutex_lock(&kvm->slots_lock);
892
893         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
894
895         if (is_dirty)
896                 kvm_flush_remote_tlbs(kvm);
897
898         mutex_unlock(&kvm->slots_lock);
899         return r;
900 }
901
902 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
903                                         struct kvm_arm_device_addr *dev_addr)
904 {
905         unsigned long dev_id, type;
906
907         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
908                 KVM_ARM_DEVICE_ID_SHIFT;
909         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
910                 KVM_ARM_DEVICE_TYPE_SHIFT;
911
912         switch (dev_id) {
913         case KVM_ARM_DEVICE_VGIC_V2:
914                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
915         default:
916                 return -ENODEV;
917         }
918 }
919
920 long kvm_arch_vm_ioctl(struct file *filp,
921                        unsigned int ioctl, unsigned long arg)
922 {
923         struct kvm *kvm = filp->private_data;
924         void __user *argp = (void __user *)arg;
925
926         switch (ioctl) {
927         case KVM_CREATE_IRQCHIP: {
928                 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
929         }
930         case KVM_ARM_SET_DEVICE_ADDR: {
931                 struct kvm_arm_device_addr dev_addr;
932
933                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
934                         return -EFAULT;
935                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
936         }
937         case KVM_ARM_PREFERRED_TARGET: {
938                 int err;
939                 struct kvm_vcpu_init init;
940
941                 err = kvm_vcpu_preferred_target(&init);
942                 if (err)
943                         return err;
944
945                 if (copy_to_user(argp, &init, sizeof(init)))
946                         return -EFAULT;
947
948                 return 0;
949         }
950         default:
951                 return -EINVAL;
952         }
953 }
954
955 static void cpu_init_hyp_mode(void *dummy)
956 {
957         phys_addr_t boot_pgd_ptr;
958         phys_addr_t pgd_ptr;
959         unsigned long hyp_stack_ptr;
960         unsigned long stack_page;
961         unsigned long vector_ptr;
962
963         /* Switch from the HYP stub to our own HYP init vector */
964         __hyp_set_vectors(kvm_get_idmap_vector());
965
966         boot_pgd_ptr = kvm_mmu_get_boot_httbr();
967         pgd_ptr = kvm_mmu_get_httbr();
968         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
969         hyp_stack_ptr = stack_page + PAGE_SIZE;
970         vector_ptr = (unsigned long)__kvm_hyp_vector;
971
972         __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
973
974         kvm_arm_init_debug();
975 }
976
977 static int hyp_init_cpu_notify(struct notifier_block *self,
978                                unsigned long action, void *cpu)
979 {
980         switch (action) {
981         case CPU_STARTING:
982         case CPU_STARTING_FROZEN:
983                 if (__hyp_get_vectors() == hyp_default_vectors)
984                         cpu_init_hyp_mode(NULL);
985                 break;
986         }
987
988         return NOTIFY_OK;
989 }
990
991 static struct notifier_block hyp_init_cpu_nb = {
992         .notifier_call = hyp_init_cpu_notify,
993 };
994
995 #ifdef CONFIG_CPU_PM
996 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
997                                     unsigned long cmd,
998                                     void *v)
999 {
1000         if (cmd == CPU_PM_EXIT &&
1001             __hyp_get_vectors() == hyp_default_vectors) {
1002                 cpu_init_hyp_mode(NULL);
1003                 return NOTIFY_OK;
1004         }
1005
1006         return NOTIFY_DONE;
1007 }
1008
1009 static struct notifier_block hyp_init_cpu_pm_nb = {
1010         .notifier_call = hyp_init_cpu_pm_notifier,
1011 };
1012
1013 static void __init hyp_cpu_pm_init(void)
1014 {
1015         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1016 }
1017 #else
1018 static inline void hyp_cpu_pm_init(void)
1019 {
1020 }
1021 #endif
1022
1023 /**
1024  * Inits Hyp-mode on all online CPUs
1025  */
1026 static int init_hyp_mode(void)
1027 {
1028         int cpu;
1029         int err = 0;
1030
1031         /*
1032          * Allocate Hyp PGD and setup Hyp identity mapping
1033          */
1034         err = kvm_mmu_init();
1035         if (err)
1036                 goto out_err;
1037
1038         /*
1039          * It is probably enough to obtain the default on one
1040          * CPU. It's unlikely to be different on the others.
1041          */
1042         hyp_default_vectors = __hyp_get_vectors();
1043
1044         /*
1045          * Allocate stack pages for Hypervisor-mode
1046          */
1047         for_each_possible_cpu(cpu) {
1048                 unsigned long stack_page;
1049
1050                 stack_page = __get_free_page(GFP_KERNEL);
1051                 if (!stack_page) {
1052                         err = -ENOMEM;
1053                         goto out_free_stack_pages;
1054                 }
1055
1056                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1057         }
1058
1059         /*
1060          * Map the Hyp-code called directly from the host
1061          */
1062         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1063         if (err) {
1064                 kvm_err("Cannot map world-switch code\n");
1065                 goto out_free_mappings;
1066         }
1067
1068         /*
1069          * Map the Hyp stack pages
1070          */
1071         for_each_possible_cpu(cpu) {
1072                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1073                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1074
1075                 if (err) {
1076                         kvm_err("Cannot map hyp stack\n");
1077                         goto out_free_mappings;
1078                 }
1079         }
1080
1081         /*
1082          * Map the host CPU structures
1083          */
1084         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1085         if (!kvm_host_cpu_state) {
1086                 err = -ENOMEM;
1087                 kvm_err("Cannot allocate host CPU state\n");
1088                 goto out_free_mappings;
1089         }
1090
1091         for_each_possible_cpu(cpu) {
1092                 kvm_cpu_context_t *cpu_ctxt;
1093
1094                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1095                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1096
1097                 if (err) {
1098                         kvm_err("Cannot map host CPU state: %d\n", err);
1099                         goto out_free_context;
1100                 }
1101         }
1102
1103         /*
1104          * Execute the init code on each CPU.
1105          */
1106         on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1107
1108         /*
1109          * Init HYP view of VGIC
1110          */
1111         err = kvm_vgic_hyp_init();
1112         if (err)
1113                 goto out_free_context;
1114
1115         /*
1116          * Init HYP architected timer support
1117          */
1118         err = kvm_timer_hyp_init();
1119         if (err)
1120                 goto out_free_context;
1121
1122 #ifndef CONFIG_HOTPLUG_CPU
1123         free_boot_hyp_pgd();
1124 #endif
1125
1126         kvm_perf_init();
1127
1128         kvm_info("Hyp mode initialized successfully\n");
1129
1130         return 0;
1131 out_free_context:
1132         free_percpu(kvm_host_cpu_state);
1133 out_free_mappings:
1134         free_hyp_pgds();
1135 out_free_stack_pages:
1136         for_each_possible_cpu(cpu)
1137                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1138 out_err:
1139         kvm_err("error initializing Hyp mode: %d\n", err);
1140         return err;
1141 }
1142
1143 static void check_kvm_target_cpu(void *ret)
1144 {
1145         *(int *)ret = kvm_target_cpu();
1146 }
1147
1148 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1149 {
1150         struct kvm_vcpu *vcpu;
1151         int i;
1152
1153         mpidr &= MPIDR_HWID_BITMASK;
1154         kvm_for_each_vcpu(i, vcpu, kvm) {
1155                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1156                         return vcpu;
1157         }
1158         return NULL;
1159 }
1160
1161 /**
1162  * Initialize Hyp-mode and memory mappings on all CPUs.
1163  */
1164 int kvm_arch_init(void *opaque)
1165 {
1166         int err;
1167         int ret, cpu;
1168
1169         if (!is_hyp_mode_available()) {
1170                 kvm_err("HYP mode not available\n");
1171                 return -ENODEV;
1172         }
1173
1174         for_each_online_cpu(cpu) {
1175                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1176                 if (ret < 0) {
1177                         kvm_err("Error, CPU %d not supported!\n", cpu);
1178                         return -ENODEV;
1179                 }
1180         }
1181
1182         cpu_notifier_register_begin();
1183
1184         err = init_hyp_mode();
1185         if (err)
1186                 goto out_err;
1187
1188         err = __register_cpu_notifier(&hyp_init_cpu_nb);
1189         if (err) {
1190                 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1191                 goto out_err;
1192         }
1193
1194         cpu_notifier_register_done();
1195
1196         hyp_cpu_pm_init();
1197
1198         kvm_coproc_table_init();
1199         return 0;
1200 out_err:
1201         cpu_notifier_register_done();
1202         return err;
1203 }
1204
1205 /* NOP: Compiling as a module not supported */
1206 void kvm_arch_exit(void)
1207 {
1208         kvm_perf_teardown();
1209 }
1210
1211 static int arm_init(void)
1212 {
1213         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1214         return rc;
1215 }
1216
1217 module_init(arm_init);