ARM64: DTS: Add rk3399-firefly uart4 device, node as /dev/ttyS1
[firefly-linux-kernel-4.4.55.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/vmalloc.h>
25 #include <linux/fs.h>
26 #include <linux/mman.h>
27 #include <linux/sched.h>
28 #include <linux/kvm.h>
29 #include <trace/events/kvm.h>
30
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33
34 #include <asm/uaccess.h>
35 #include <asm/ptrace.h>
36 #include <asm/mman.h>
37 #include <asm/tlbflush.h>
38 #include <asm/cacheflush.h>
39 #include <asm/virt.h>
40 #include <asm/kvm_arm.h>
41 #include <asm/kvm_asm.h>
42 #include <asm/kvm_mmu.h>
43 #include <asm/kvm_emulate.h>
44 #include <asm/kvm_coproc.h>
45 #include <asm/kvm_psci.h>
46 #include <asm/sections.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension        virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u32 kvm_next_vmid;
62 static unsigned int kvm_vmid_bits __read_mostly;
63 static DEFINE_SPINLOCK(kvm_vmid_lock);
64
65 static bool vgic_present;
66
67 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
68
69 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
70 {
71         BUG_ON(preemptible());
72         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
73 }
74
75 /**
76  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
77  * Must be called from non-preemptible context
78  */
79 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
80 {
81         BUG_ON(preemptible());
82         return __this_cpu_read(kvm_arm_running_vcpu);
83 }
84
85 /**
86  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
87  */
88 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
89 {
90         return &kvm_arm_running_vcpu;
91 }
92
93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
94 {
95         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
96 }
97
98 int kvm_arch_hardware_setup(void)
99 {
100         return 0;
101 }
102
103 void kvm_arch_check_processor_compat(void *rtn)
104 {
105         *(int *)rtn = 0;
106 }
107
108
109 /**
110  * kvm_arch_init_vm - initializes a VM data structure
111  * @kvm:        pointer to the KVM struct
112  */
113 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
114 {
115         int ret = 0;
116
117         if (type)
118                 return -EINVAL;
119
120         ret = kvm_alloc_stage2_pgd(kvm);
121         if (ret)
122                 goto out_fail_alloc;
123
124         ret = create_hyp_mappings(kvm, kvm + 1);
125         if (ret)
126                 goto out_free_stage2_pgd;
127
128         kvm_vgic_early_init(kvm);
129         kvm_timer_init(kvm);
130
131         /* Mark the initial VMID generation invalid */
132         kvm->arch.vmid_gen = 0;
133
134         /* The maximum number of VCPUs is limited by the host's GIC model */
135         kvm->arch.max_vcpus = vgic_present ?
136                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
137
138         return ret;
139 out_free_stage2_pgd:
140         kvm_free_stage2_pgd(kvm);
141 out_fail_alloc:
142         return ret;
143 }
144
145 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
146 {
147         return VM_FAULT_SIGBUS;
148 }
149
150
151 /**
152  * kvm_arch_destroy_vm - destroy the VM data structure
153  * @kvm:        pointer to the KVM struct
154  */
155 void kvm_arch_destroy_vm(struct kvm *kvm)
156 {
157         int i;
158
159         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
160                 if (kvm->vcpus[i]) {
161                         kvm_arch_vcpu_free(kvm->vcpus[i]);
162                         kvm->vcpus[i] = NULL;
163                 }
164         }
165
166         kvm_vgic_destroy(kvm);
167 }
168
169 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
170 {
171         int r;
172         switch (ext) {
173         case KVM_CAP_IRQCHIP:
174                 r = vgic_present;
175                 break;
176         case KVM_CAP_IOEVENTFD:
177         case KVM_CAP_DEVICE_CTRL:
178         case KVM_CAP_USER_MEMORY:
179         case KVM_CAP_SYNC_MMU:
180         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
181         case KVM_CAP_ONE_REG:
182         case KVM_CAP_ARM_PSCI:
183         case KVM_CAP_ARM_PSCI_0_2:
184         case KVM_CAP_READONLY_MEM:
185         case KVM_CAP_MP_STATE:
186                 r = 1;
187                 break;
188         case KVM_CAP_COALESCED_MMIO:
189                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
190                 break;
191         case KVM_CAP_ARM_SET_DEVICE_ADDR:
192                 r = 1;
193                 break;
194         case KVM_CAP_NR_VCPUS:
195                 r = num_online_cpus();
196                 break;
197         case KVM_CAP_MAX_VCPUS:
198                 r = KVM_MAX_VCPUS;
199                 break;
200         default:
201                 r = kvm_arch_dev_ioctl_check_extension(ext);
202                 break;
203         }
204         return r;
205 }
206
207 long kvm_arch_dev_ioctl(struct file *filp,
208                         unsigned int ioctl, unsigned long arg)
209 {
210         return -EINVAL;
211 }
212
213
214 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
215 {
216         int err;
217         struct kvm_vcpu *vcpu;
218
219         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
220                 err = -EBUSY;
221                 goto out;
222         }
223
224         if (id >= kvm->arch.max_vcpus) {
225                 err = -EINVAL;
226                 goto out;
227         }
228
229         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
230         if (!vcpu) {
231                 err = -ENOMEM;
232                 goto out;
233         }
234
235         err = kvm_vcpu_init(vcpu, kvm, id);
236         if (err)
237                 goto free_vcpu;
238
239         err = create_hyp_mappings(vcpu, vcpu + 1);
240         if (err)
241                 goto vcpu_uninit;
242
243         return vcpu;
244 vcpu_uninit:
245         kvm_vcpu_uninit(vcpu);
246 free_vcpu:
247         kmem_cache_free(kvm_vcpu_cache, vcpu);
248 out:
249         return ERR_PTR(err);
250 }
251
252 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
253 {
254         kvm_vgic_vcpu_early_init(vcpu);
255 }
256
257 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
258 {
259         kvm_mmu_free_memory_caches(vcpu);
260         kvm_timer_vcpu_terminate(vcpu);
261         kvm_vgic_vcpu_destroy(vcpu);
262         kmem_cache_free(kvm_vcpu_cache, vcpu);
263 }
264
265 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
266 {
267         kvm_arch_vcpu_free(vcpu);
268 }
269
270 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
271 {
272         return kvm_timer_should_fire(vcpu);
273 }
274
275 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
276 {
277         kvm_timer_schedule(vcpu);
278 }
279
280 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
281 {
282         kvm_timer_unschedule(vcpu);
283 }
284
285 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
286 {
287         /* Force users to call KVM_ARM_VCPU_INIT */
288         vcpu->arch.target = -1;
289         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
290
291         /* Set up the timer */
292         kvm_timer_vcpu_init(vcpu);
293
294         kvm_arm_reset_debug_ptr(vcpu);
295
296         return 0;
297 }
298
299 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
300 {
301         vcpu->cpu = cpu;
302         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
303
304         kvm_arm_set_running_vcpu(vcpu);
305 }
306
307 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
308 {
309         /*
310          * The arch-generic KVM code expects the cpu field of a vcpu to be -1
311          * if the vcpu is no longer assigned to a cpu.  This is used for the
312          * optimized make_all_cpus_request path.
313          */
314         vcpu->cpu = -1;
315
316         kvm_arm_set_running_vcpu(NULL);
317 }
318
319 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
320                                     struct kvm_mp_state *mp_state)
321 {
322         if (vcpu->arch.power_off)
323                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
324         else
325                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
326
327         return 0;
328 }
329
330 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
331                                     struct kvm_mp_state *mp_state)
332 {
333         switch (mp_state->mp_state) {
334         case KVM_MP_STATE_RUNNABLE:
335                 vcpu->arch.power_off = false;
336                 break;
337         case KVM_MP_STATE_STOPPED:
338                 vcpu->arch.power_off = true;
339                 break;
340         default:
341                 return -EINVAL;
342         }
343
344         return 0;
345 }
346
347 /**
348  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
349  * @v:          The VCPU pointer
350  *
351  * If the guest CPU is not waiting for interrupts or an interrupt line is
352  * asserted, the CPU is by definition runnable.
353  */
354 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
355 {
356         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
357                 && !v->arch.power_off && !v->arch.pause);
358 }
359
360 /* Just ensure a guest exit from a particular CPU */
361 static void exit_vm_noop(void *info)
362 {
363 }
364
365 void force_vm_exit(const cpumask_t *mask)
366 {
367         smp_call_function_many(mask, exit_vm_noop, NULL, true);
368 }
369
370 /**
371  * need_new_vmid_gen - check that the VMID is still valid
372  * @kvm: The VM's VMID to checkt
373  *
374  * return true if there is a new generation of VMIDs being used
375  *
376  * The hardware supports only 256 values with the value zero reserved for the
377  * host, so we check if an assigned value belongs to a previous generation,
378  * which which requires us to assign a new value. If we're the first to use a
379  * VMID for the new generation, we must flush necessary caches and TLBs on all
380  * CPUs.
381  */
382 static bool need_new_vmid_gen(struct kvm *kvm)
383 {
384         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
385 }
386
387 /**
388  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
389  * @kvm The guest that we are about to run
390  *
391  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
392  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
393  * caches and TLBs.
394  */
395 static void update_vttbr(struct kvm *kvm)
396 {
397         phys_addr_t pgd_phys;
398         u64 vmid;
399
400         if (!need_new_vmid_gen(kvm))
401                 return;
402
403         spin_lock(&kvm_vmid_lock);
404
405         /*
406          * We need to re-check the vmid_gen here to ensure that if another vcpu
407          * already allocated a valid vmid for this vm, then this vcpu should
408          * use the same vmid.
409          */
410         if (!need_new_vmid_gen(kvm)) {
411                 spin_unlock(&kvm_vmid_lock);
412                 return;
413         }
414
415         /* First user of a new VMID generation? */
416         if (unlikely(kvm_next_vmid == 0)) {
417                 atomic64_inc(&kvm_vmid_gen);
418                 kvm_next_vmid = 1;
419
420                 /*
421                  * On SMP we know no other CPUs can use this CPU's or each
422                  * other's VMID after force_vm_exit returns since the
423                  * kvm_vmid_lock blocks them from reentry to the guest.
424                  */
425                 force_vm_exit(cpu_all_mask);
426                 /*
427                  * Now broadcast TLB + ICACHE invalidation over the inner
428                  * shareable domain to make sure all data structures are
429                  * clean.
430                  */
431                 kvm_call_hyp(__kvm_flush_vm_context);
432         }
433
434         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
435         kvm->arch.vmid = kvm_next_vmid;
436         kvm_next_vmid++;
437         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
438
439         /* update vttbr to be used with the new vmid */
440         pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
441         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
442         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
443         kvm->arch.vttbr = pgd_phys | vmid;
444
445         spin_unlock(&kvm_vmid_lock);
446 }
447
448 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
449 {
450         struct kvm *kvm = vcpu->kvm;
451         int ret;
452
453         if (likely(vcpu->arch.has_run_once))
454                 return 0;
455
456         vcpu->arch.has_run_once = true;
457
458         /*
459          * Map the VGIC hardware resources before running a vcpu the first
460          * time on this VM.
461          */
462         if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
463                 ret = kvm_vgic_map_resources(kvm);
464                 if (ret)
465                         return ret;
466         }
467
468         /*
469          * Enable the arch timers only if we have an in-kernel VGIC
470          * and it has been properly initialized, since we cannot handle
471          * interrupts from the virtual timer with a userspace gic.
472          */
473         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
474                 kvm_timer_enable(kvm);
475
476         return 0;
477 }
478
479 bool kvm_arch_intc_initialized(struct kvm *kvm)
480 {
481         return vgic_initialized(kvm);
482 }
483
484 static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused;
485 static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused;
486
487 static void kvm_arm_halt_guest(struct kvm *kvm)
488 {
489         int i;
490         struct kvm_vcpu *vcpu;
491
492         kvm_for_each_vcpu(i, vcpu, kvm)
493                 vcpu->arch.pause = true;
494         force_vm_exit(cpu_all_mask);
495 }
496
497 static void kvm_arm_resume_guest(struct kvm *kvm)
498 {
499         int i;
500         struct kvm_vcpu *vcpu;
501
502         kvm_for_each_vcpu(i, vcpu, kvm) {
503                 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
504
505                 vcpu->arch.pause = false;
506                 wake_up_interruptible(wq);
507         }
508 }
509
510 static void vcpu_sleep(struct kvm_vcpu *vcpu)
511 {
512         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
513
514         wait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
515                                        (!vcpu->arch.pause)));
516 }
517
518 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
519 {
520         return vcpu->arch.target >= 0;
521 }
522
523 /**
524  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
525  * @vcpu:       The VCPU pointer
526  * @run:        The kvm_run structure pointer used for userspace state exchange
527  *
528  * This function is called through the VCPU_RUN ioctl called from user space. It
529  * will execute VM code in a loop until the time slice for the process is used
530  * or some emulation is needed from user space in which case the function will
531  * return with return value 0 and with the kvm_run structure filled in with the
532  * required data for the requested emulation.
533  */
534 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
535 {
536         int ret;
537         sigset_t sigsaved;
538
539         if (unlikely(!kvm_vcpu_initialized(vcpu)))
540                 return -ENOEXEC;
541
542         ret = kvm_vcpu_first_run_init(vcpu);
543         if (ret)
544                 return ret;
545
546         if (run->exit_reason == KVM_EXIT_MMIO) {
547                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
548                 if (ret)
549                         return ret;
550         }
551
552         if (vcpu->sigset_active)
553                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
554
555         ret = 1;
556         run->exit_reason = KVM_EXIT_UNKNOWN;
557         while (ret > 0) {
558                 /*
559                  * Check conditions before entering the guest
560                  */
561                 cond_resched();
562
563                 update_vttbr(vcpu->kvm);
564
565                 if (vcpu->arch.power_off || vcpu->arch.pause)
566                         vcpu_sleep(vcpu);
567
568                 /*
569                  * Preparing the interrupts to be injected also
570                  * involves poking the GIC, which must be done in a
571                  * non-preemptible context.
572                  */
573                 preempt_disable();
574                 kvm_timer_flush_hwstate(vcpu);
575                 kvm_vgic_flush_hwstate(vcpu);
576
577                 local_irq_disable();
578
579                 /*
580                  * Re-check atomic conditions
581                  */
582                 if (signal_pending(current)) {
583                         ret = -EINTR;
584                         run->exit_reason = KVM_EXIT_INTR;
585                 }
586
587                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
588                         vcpu->arch.power_off || vcpu->arch.pause) {
589                         local_irq_enable();
590                         kvm_timer_sync_hwstate(vcpu);
591                         kvm_vgic_sync_hwstate(vcpu);
592                         preempt_enable();
593                         continue;
594                 }
595
596                 kvm_arm_setup_debug(vcpu);
597
598                 /**************************************************************
599                  * Enter the guest
600                  */
601                 trace_kvm_entry(*vcpu_pc(vcpu));
602                 __kvm_guest_enter();
603                 vcpu->mode = IN_GUEST_MODE;
604
605                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
606
607                 vcpu->mode = OUTSIDE_GUEST_MODE;
608                 /*
609                  * Back from guest
610                  *************************************************************/
611
612                 kvm_arm_clear_debug(vcpu);
613
614                 /*
615                  * We may have taken a host interrupt in HYP mode (ie
616                  * while executing the guest). This interrupt is still
617                  * pending, as we haven't serviced it yet!
618                  *
619                  * We're now back in SVC mode, with interrupts
620                  * disabled.  Enabling the interrupts now will have
621                  * the effect of taking the interrupt again, in SVC
622                  * mode this time.
623                  */
624                 local_irq_enable();
625
626                 /*
627                  * We do local_irq_enable() before calling kvm_guest_exit() so
628                  * that if a timer interrupt hits while running the guest we
629                  * account that tick as being spent in the guest.  We enable
630                  * preemption after calling kvm_guest_exit() so that if we get
631                  * preempted we make sure ticks after that is not counted as
632                  * guest time.
633                  */
634                 kvm_guest_exit();
635                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
636
637                 /*
638                  * We must sync the timer state before the vgic state so that
639                  * the vgic can properly sample the updated state of the
640                  * interrupt line.
641                  */
642                 kvm_timer_sync_hwstate(vcpu);
643
644                 kvm_vgic_sync_hwstate(vcpu);
645
646                 preempt_enable();
647
648                 ret = handle_exit(vcpu, run, ret);
649         }
650
651         if (vcpu->sigset_active)
652                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
653         return ret;
654 }
655
656 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
657 {
658         int bit_index;
659         bool set;
660         unsigned long *ptr;
661
662         if (number == KVM_ARM_IRQ_CPU_IRQ)
663                 bit_index = __ffs(HCR_VI);
664         else /* KVM_ARM_IRQ_CPU_FIQ */
665                 bit_index = __ffs(HCR_VF);
666
667         ptr = (unsigned long *)&vcpu->arch.irq_lines;
668         if (level)
669                 set = test_and_set_bit(bit_index, ptr);
670         else
671                 set = test_and_clear_bit(bit_index, ptr);
672
673         /*
674          * If we didn't change anything, no need to wake up or kick other CPUs
675          */
676         if (set == level)
677                 return 0;
678
679         /*
680          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
681          * trigger a world-switch round on the running physical CPU to set the
682          * virtual IRQ/FIQ fields in the HCR appropriately.
683          */
684         kvm_vcpu_kick(vcpu);
685
686         return 0;
687 }
688
689 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
690                           bool line_status)
691 {
692         u32 irq = irq_level->irq;
693         unsigned int irq_type, vcpu_idx, irq_num;
694         int nrcpus = atomic_read(&kvm->online_vcpus);
695         struct kvm_vcpu *vcpu = NULL;
696         bool level = irq_level->level;
697
698         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
699         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
700         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
701
702         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
703
704         switch (irq_type) {
705         case KVM_ARM_IRQ_TYPE_CPU:
706                 if (irqchip_in_kernel(kvm))
707                         return -ENXIO;
708
709                 if (vcpu_idx >= nrcpus)
710                         return -EINVAL;
711
712                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
713                 if (!vcpu)
714                         return -EINVAL;
715
716                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
717                         return -EINVAL;
718
719                 return vcpu_interrupt_line(vcpu, irq_num, level);
720         case KVM_ARM_IRQ_TYPE_PPI:
721                 if (!irqchip_in_kernel(kvm))
722                         return -ENXIO;
723
724                 if (vcpu_idx >= nrcpus)
725                         return -EINVAL;
726
727                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
728                 if (!vcpu)
729                         return -EINVAL;
730
731                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
732                         return -EINVAL;
733
734                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
735         case KVM_ARM_IRQ_TYPE_SPI:
736                 if (!irqchip_in_kernel(kvm))
737                         return -ENXIO;
738
739                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
740                         return -EINVAL;
741
742                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
743         }
744
745         return -EINVAL;
746 }
747
748 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
749                                const struct kvm_vcpu_init *init)
750 {
751         unsigned int i;
752         int phys_target = kvm_target_cpu();
753
754         if (init->target != phys_target)
755                 return -EINVAL;
756
757         /*
758          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
759          * use the same target.
760          */
761         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
762                 return -EINVAL;
763
764         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
765         for (i = 0; i < sizeof(init->features) * 8; i++) {
766                 bool set = (init->features[i / 32] & (1 << (i % 32)));
767
768                 if (set && i >= KVM_VCPU_MAX_FEATURES)
769                         return -ENOENT;
770
771                 /*
772                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
773                  * use the same feature set.
774                  */
775                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
776                     test_bit(i, vcpu->arch.features) != set)
777                         return -EINVAL;
778
779                 if (set)
780                         set_bit(i, vcpu->arch.features);
781         }
782
783         vcpu->arch.target = phys_target;
784
785         /* Now we know what it is, we can reset it. */
786         return kvm_reset_vcpu(vcpu);
787 }
788
789
790 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
791                                          struct kvm_vcpu_init *init)
792 {
793         int ret;
794
795         ret = kvm_vcpu_set_target(vcpu, init);
796         if (ret)
797                 return ret;
798
799         /*
800          * Ensure a rebooted VM will fault in RAM pages and detect if the
801          * guest MMU is turned off and flush the caches as needed.
802          */
803         if (vcpu->arch.has_run_once)
804                 stage2_unmap_vm(vcpu->kvm);
805
806         vcpu_reset_hcr(vcpu);
807
808         /*
809          * Handle the "start in power-off" case.
810          */
811         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
812                 vcpu->arch.power_off = true;
813         else
814                 vcpu->arch.power_off = false;
815
816         return 0;
817 }
818
819 long kvm_arch_vcpu_ioctl(struct file *filp,
820                          unsigned int ioctl, unsigned long arg)
821 {
822         struct kvm_vcpu *vcpu = filp->private_data;
823         void __user *argp = (void __user *)arg;
824
825         switch (ioctl) {
826         case KVM_ARM_VCPU_INIT: {
827                 struct kvm_vcpu_init init;
828
829                 if (copy_from_user(&init, argp, sizeof(init)))
830                         return -EFAULT;
831
832                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
833         }
834         case KVM_SET_ONE_REG:
835         case KVM_GET_ONE_REG: {
836                 struct kvm_one_reg reg;
837
838                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
839                         return -ENOEXEC;
840
841                 if (copy_from_user(&reg, argp, sizeof(reg)))
842                         return -EFAULT;
843                 if (ioctl == KVM_SET_ONE_REG)
844                         return kvm_arm_set_reg(vcpu, &reg);
845                 else
846                         return kvm_arm_get_reg(vcpu, &reg);
847         }
848         case KVM_GET_REG_LIST: {
849                 struct kvm_reg_list __user *user_list = argp;
850                 struct kvm_reg_list reg_list;
851                 unsigned n;
852
853                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
854                         return -ENOEXEC;
855
856                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
857                         return -EFAULT;
858                 n = reg_list.n;
859                 reg_list.n = kvm_arm_num_regs(vcpu);
860                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
861                         return -EFAULT;
862                 if (n < reg_list.n)
863                         return -E2BIG;
864                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
865         }
866         default:
867                 return -EINVAL;
868         }
869 }
870
871 /**
872  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
873  * @kvm: kvm instance
874  * @log: slot id and address to which we copy the log
875  *
876  * Steps 1-4 below provide general overview of dirty page logging. See
877  * kvm_get_dirty_log_protect() function description for additional details.
878  *
879  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
880  * always flush the TLB (step 4) even if previous step failed  and the dirty
881  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
882  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
883  * writes will be marked dirty for next log read.
884  *
885  *   1. Take a snapshot of the bit and clear it if needed.
886  *   2. Write protect the corresponding page.
887  *   3. Copy the snapshot to the userspace.
888  *   4. Flush TLB's if needed.
889  */
890 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
891 {
892         bool is_dirty = false;
893         int r;
894
895         mutex_lock(&kvm->slots_lock);
896
897         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
898
899         if (is_dirty)
900                 kvm_flush_remote_tlbs(kvm);
901
902         mutex_unlock(&kvm->slots_lock);
903         return r;
904 }
905
906 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
907                                         struct kvm_arm_device_addr *dev_addr)
908 {
909         unsigned long dev_id, type;
910
911         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
912                 KVM_ARM_DEVICE_ID_SHIFT;
913         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
914                 KVM_ARM_DEVICE_TYPE_SHIFT;
915
916         switch (dev_id) {
917         case KVM_ARM_DEVICE_VGIC_V2:
918                 if (!vgic_present)
919                         return -ENXIO;
920                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
921         default:
922                 return -ENODEV;
923         }
924 }
925
926 long kvm_arch_vm_ioctl(struct file *filp,
927                        unsigned int ioctl, unsigned long arg)
928 {
929         struct kvm *kvm = filp->private_data;
930         void __user *argp = (void __user *)arg;
931
932         switch (ioctl) {
933         case KVM_CREATE_IRQCHIP: {
934                 if (!vgic_present)
935                         return -ENXIO;
936                 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
937         }
938         case KVM_ARM_SET_DEVICE_ADDR: {
939                 struct kvm_arm_device_addr dev_addr;
940
941                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
942                         return -EFAULT;
943                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
944         }
945         case KVM_ARM_PREFERRED_TARGET: {
946                 int err;
947                 struct kvm_vcpu_init init;
948
949                 err = kvm_vcpu_preferred_target(&init);
950                 if (err)
951                         return err;
952
953                 if (copy_to_user(argp, &init, sizeof(init)))
954                         return -EFAULT;
955
956                 return 0;
957         }
958         default:
959                 return -EINVAL;
960         }
961 }
962
963 static void cpu_init_hyp_mode(void *dummy)
964 {
965         phys_addr_t boot_pgd_ptr;
966         phys_addr_t pgd_ptr;
967         unsigned long hyp_stack_ptr;
968         unsigned long stack_page;
969         unsigned long vector_ptr;
970
971         /* Switch from the HYP stub to our own HYP init vector */
972         __hyp_set_vectors(kvm_get_idmap_vector());
973
974         boot_pgd_ptr = kvm_mmu_get_boot_httbr();
975         pgd_ptr = kvm_mmu_get_httbr();
976         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
977         hyp_stack_ptr = stack_page + PAGE_SIZE;
978         vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
979
980         __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
981         __cpu_init_stage2();
982
983         kvm_arm_init_debug();
984 }
985
986 static void cpu_hyp_reinit(void)
987 {
988         if (is_kernel_in_hyp_mode()) {
989                 /*
990                  * __cpu_init_stage2() is safe to call even if the PM
991                  * event was cancelled before the CPU was reset.
992                  */
993                 __cpu_init_stage2();
994         } else {
995                 if (__hyp_get_vectors() == hyp_default_vectors)
996                         cpu_init_hyp_mode(NULL);
997         }
998 }
999
1000 static void cpu_hyp_reset(void)
1001 {
1002         phys_addr_t boot_pgd_ptr;
1003         phys_addr_t phys_idmap_start;
1004
1005         if (!is_kernel_in_hyp_mode()) {
1006                 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
1007                 phys_idmap_start = kvm_get_idmap_start();
1008
1009                 __cpu_reset_hyp_mode(boot_pgd_ptr, phys_idmap_start);
1010         }
1011 }
1012
1013 static void _kvm_arch_hardware_enable(void *discard)
1014 {
1015         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1016                 cpu_hyp_reinit();
1017                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1018         }
1019 }
1020
1021 int kvm_arch_hardware_enable(void)
1022 {
1023         _kvm_arch_hardware_enable(NULL);
1024         return 0;
1025 }
1026
1027 static void _kvm_arch_hardware_disable(void *discard)
1028 {
1029         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1030                 cpu_hyp_reset();
1031                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1032         }
1033 }
1034
1035 void kvm_arch_hardware_disable(void)
1036 {
1037         _kvm_arch_hardware_disable(NULL);
1038 }
1039
1040 #ifdef CONFIG_CPU_PM
1041 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1042                                     unsigned long cmd,
1043                                     void *v)
1044 {
1045         /*
1046          * kvm_arm_hardware_enabled is left with its old value over
1047          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1048          * re-enable hyp.
1049          */
1050         switch (cmd) {
1051         case CPU_PM_ENTER:
1052                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1053                         /*
1054                          * don't update kvm_arm_hardware_enabled here
1055                          * so that the hardware will be re-enabled
1056                          * when we resume. See below.
1057                          */
1058                         cpu_hyp_reset();
1059
1060                 return NOTIFY_OK;
1061         case CPU_PM_EXIT:
1062                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1063                         /* The hardware was enabled before suspend. */
1064                         cpu_hyp_reinit();
1065
1066                 return NOTIFY_OK;
1067
1068         default:
1069                 return NOTIFY_DONE;
1070         }
1071 }
1072
1073 static struct notifier_block hyp_init_cpu_pm_nb = {
1074         .notifier_call = hyp_init_cpu_pm_notifier,
1075 };
1076
1077 static void __init hyp_cpu_pm_init(void)
1078 {
1079         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1080 }
1081 #else
1082 static inline void hyp_cpu_pm_init(void)
1083 {
1084 }
1085 #endif
1086
1087 static void teardown_common_resources(void)
1088 {
1089         free_percpu(kvm_host_cpu_state);
1090 }
1091
1092 static int init_common_resources(void)
1093 {
1094         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1095         if (!kvm_host_cpu_state) {
1096                 kvm_err("Cannot allocate host CPU state\n");
1097                 return -ENOMEM;
1098         }
1099
1100         return 0;
1101 }
1102
1103 static int init_subsystems(void)
1104 {
1105         int err = 0;
1106
1107         /*
1108          * Enable hardware so that subsystem initialisation can access EL2.
1109          */
1110         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1111
1112         /*
1113          * Register CPU lower-power notifier
1114          */
1115         hyp_cpu_pm_init();
1116
1117         /*
1118          * Init HYP view of VGIC
1119          */
1120         err = kvm_vgic_hyp_init();
1121         switch (err) {
1122         case 0:
1123                 vgic_present = true;
1124                 break;
1125         case -ENODEV:
1126         case -ENXIO:
1127                 vgic_present = false;
1128                 err = 0;
1129                 break;
1130         default:
1131                 goto out;
1132         }
1133
1134         /*
1135          * Init HYP architected timer support
1136          */
1137         err = kvm_timer_hyp_init();
1138         if (err)
1139                 goto out;
1140
1141         kvm_perf_init();
1142         kvm_coproc_table_init();
1143
1144 out:
1145         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1146
1147         return err;
1148 }
1149
1150 static void teardown_hyp_mode(void)
1151 {
1152         int cpu;
1153
1154         if (is_kernel_in_hyp_mode())
1155                 return;
1156
1157         free_hyp_pgds();
1158         for_each_possible_cpu(cpu)
1159                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1160 }
1161
1162 static int init_vhe_mode(void)
1163 {
1164         /* set size of VMID supported by CPU */
1165         kvm_vmid_bits = kvm_get_vmid_bits();
1166         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1167
1168         kvm_info("VHE mode initialized successfully\n");
1169         return 0;
1170 }
1171
1172 /**
1173  * Inits Hyp-mode on all online CPUs
1174  */
1175 static int init_hyp_mode(void)
1176 {
1177         int cpu;
1178         int err = 0;
1179
1180         /*
1181          * Allocate Hyp PGD and setup Hyp identity mapping
1182          */
1183         err = kvm_mmu_init();
1184         if (err)
1185                 goto out_err;
1186
1187         /*
1188          * It is probably enough to obtain the default on one
1189          * CPU. It's unlikely to be different on the others.
1190          */
1191         hyp_default_vectors = __hyp_get_vectors();
1192
1193         /*
1194          * Allocate stack pages for Hypervisor-mode
1195          */
1196         for_each_possible_cpu(cpu) {
1197                 unsigned long stack_page;
1198
1199                 stack_page = __get_free_page(GFP_KERNEL);
1200                 if (!stack_page) {
1201                         err = -ENOMEM;
1202                         goto out_err;
1203                 }
1204
1205                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1206         }
1207
1208         /*
1209          * Map the Hyp-code called directly from the host
1210          */
1211         err = create_hyp_mappings(kvm_ksym_ref(__kvm_hyp_code_start),
1212                                   kvm_ksym_ref(__kvm_hyp_code_end));
1213         if (err) {
1214                 kvm_err("Cannot map world-switch code\n");
1215                 goto out_err;
1216         }
1217
1218         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1219                                   kvm_ksym_ref(__end_rodata));
1220         if (err) {
1221                 kvm_err("Cannot map rodata section\n");
1222                 goto out_err;
1223         }
1224
1225         /*
1226          * Map the Hyp stack pages
1227          */
1228         for_each_possible_cpu(cpu) {
1229                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1230                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1231
1232                 if (err) {
1233                         kvm_err("Cannot map hyp stack\n");
1234                         goto out_err;
1235                 }
1236         }
1237
1238         for_each_possible_cpu(cpu) {
1239                 kvm_cpu_context_t *cpu_ctxt;
1240
1241                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1242                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1243
1244                 if (err) {
1245                         kvm_err("Cannot map host CPU state: %d\n", err);
1246                         goto out_err;
1247                 }
1248         }
1249
1250 #ifndef CONFIG_HOTPLUG_CPU
1251         free_boot_hyp_pgd();
1252 #endif
1253
1254         /* set size of VMID supported by CPU */
1255         kvm_vmid_bits = kvm_get_vmid_bits();
1256         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1257
1258         kvm_info("Hyp mode initialized successfully\n");
1259
1260         return 0;
1261
1262 out_err:
1263         teardown_hyp_mode();
1264         kvm_err("error initializing Hyp mode: %d\n", err);
1265         return err;
1266 }
1267
1268 static void check_kvm_target_cpu(void *ret)
1269 {
1270         *(int *)ret = kvm_target_cpu();
1271 }
1272
1273 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1274 {
1275         struct kvm_vcpu *vcpu;
1276         int i;
1277
1278         mpidr &= MPIDR_HWID_BITMASK;
1279         kvm_for_each_vcpu(i, vcpu, kvm) {
1280                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1281                         return vcpu;
1282         }
1283         return NULL;
1284 }
1285
1286 /**
1287  * Initialize Hyp-mode and memory mappings on all CPUs.
1288  */
1289 int kvm_arch_init(void *opaque)
1290 {
1291         int err;
1292         int ret, cpu;
1293
1294         if (!is_hyp_mode_available()) {
1295                 kvm_err("HYP mode not available\n");
1296                 return -ENODEV;
1297         }
1298
1299         for_each_online_cpu(cpu) {
1300                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1301                 if (ret < 0) {
1302                         kvm_err("Error, CPU %d not supported!\n", cpu);
1303                         return -ENODEV;
1304                 }
1305         }
1306
1307         err = init_common_resources();
1308         if (err)
1309                 return err;
1310
1311         if (is_kernel_in_hyp_mode())
1312                 err = init_vhe_mode();
1313         else
1314                 err = init_hyp_mode();
1315         if (err)
1316                 goto out_err;
1317
1318         err = init_subsystems();
1319         if (err)
1320                 goto out_hyp;
1321
1322         return 0;
1323
1324 out_hyp:
1325         teardown_hyp_mode();
1326 out_err:
1327         teardown_common_resources();
1328         return err;
1329 }
1330
1331 /* NOP: Compiling as a module not supported */
1332 void kvm_arch_exit(void)
1333 {
1334         kvm_perf_teardown();
1335 }
1336
1337 static int arm_init(void)
1338 {
1339         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1340         return rc;
1341 }
1342
1343 module_init(arm_init);