ARM: 7694/1: ARM, TCM: initialize TCM in paging_init(), instead of setup_arch()
[firefly-linux-kernel-4.4.55.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/setup.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 #include <asm/mach/pci.h>
35
36 #include "mm.h"
37 #include "tcm.h"
38
39 /*
40  * empty_zero_page is a special page that is used for
41  * zero-initialized data and COW.
42  */
43 struct page *empty_zero_page;
44 EXPORT_SYMBOL(empty_zero_page);
45
46 /*
47  * The pmd table for the upper-most set of pages.
48  */
49 pmd_t *top_pmd;
50
51 #define CPOLICY_UNCACHED        0
52 #define CPOLICY_BUFFERED        1
53 #define CPOLICY_WRITETHROUGH    2
54 #define CPOLICY_WRITEBACK       3
55 #define CPOLICY_WRITEALLOC      4
56
57 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
58 static unsigned int ecc_mask __initdata = 0;
59 pgprot_t pgprot_user;
60 pgprot_t pgprot_kernel;
61 pgprot_t pgprot_hyp_device;
62 pgprot_t pgprot_s2;
63 pgprot_t pgprot_s2_device;
64
65 EXPORT_SYMBOL(pgprot_user);
66 EXPORT_SYMBOL(pgprot_kernel);
67
68 struct cachepolicy {
69         const char      policy[16];
70         unsigned int    cr_mask;
71         pmdval_t        pmd;
72         pteval_t        pte;
73         pteval_t        pte_s2;
74 };
75
76 #ifdef CONFIG_ARM_LPAE
77 #define s2_policy(policy)       policy
78 #else
79 #define s2_policy(policy)       0
80 #endif
81
82 static struct cachepolicy cache_policies[] __initdata = {
83         {
84                 .policy         = "uncached",
85                 .cr_mask        = CR_W|CR_C,
86                 .pmd            = PMD_SECT_UNCACHED,
87                 .pte            = L_PTE_MT_UNCACHED,
88                 .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
89         }, {
90                 .policy         = "buffered",
91                 .cr_mask        = CR_C,
92                 .pmd            = PMD_SECT_BUFFERED,
93                 .pte            = L_PTE_MT_BUFFERABLE,
94                 .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
95         }, {
96                 .policy         = "writethrough",
97                 .cr_mask        = 0,
98                 .pmd            = PMD_SECT_WT,
99                 .pte            = L_PTE_MT_WRITETHROUGH,
100                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
101         }, {
102                 .policy         = "writeback",
103                 .cr_mask        = 0,
104                 .pmd            = PMD_SECT_WB,
105                 .pte            = L_PTE_MT_WRITEBACK,
106                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
107         }, {
108                 .policy         = "writealloc",
109                 .cr_mask        = 0,
110                 .pmd            = PMD_SECT_WBWA,
111                 .pte            = L_PTE_MT_WRITEALLOC,
112                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
113         }
114 };
115
116 /*
117  * These are useful for identifying cache coherency
118  * problems by allowing the cache or the cache and
119  * writebuffer to be turned off.  (Note: the write
120  * buffer should not be on and the cache off).
121  */
122 static int __init early_cachepolicy(char *p)
123 {
124         int i;
125
126         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
127                 int len = strlen(cache_policies[i].policy);
128
129                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
130                         cachepolicy = i;
131                         cr_alignment &= ~cache_policies[i].cr_mask;
132                         cr_no_alignment &= ~cache_policies[i].cr_mask;
133                         break;
134                 }
135         }
136         if (i == ARRAY_SIZE(cache_policies))
137                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
138         /*
139          * This restriction is partly to do with the way we boot; it is
140          * unpredictable to have memory mapped using two different sets of
141          * memory attributes (shared, type, and cache attribs).  We can not
142          * change these attributes once the initial assembly has setup the
143          * page tables.
144          */
145         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
146                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
147                 cachepolicy = CPOLICY_WRITEBACK;
148         }
149         flush_cache_all();
150         set_cr(cr_alignment);
151         return 0;
152 }
153 early_param("cachepolicy", early_cachepolicy);
154
155 static int __init early_nocache(char *__unused)
156 {
157         char *p = "buffered";
158         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
159         early_cachepolicy(p);
160         return 0;
161 }
162 early_param("nocache", early_nocache);
163
164 static int __init early_nowrite(char *__unused)
165 {
166         char *p = "uncached";
167         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
168         early_cachepolicy(p);
169         return 0;
170 }
171 early_param("nowb", early_nowrite);
172
173 #ifndef CONFIG_ARM_LPAE
174 static int __init early_ecc(char *p)
175 {
176         if (memcmp(p, "on", 2) == 0)
177                 ecc_mask = PMD_PROTECTION;
178         else if (memcmp(p, "off", 3) == 0)
179                 ecc_mask = 0;
180         return 0;
181 }
182 early_param("ecc", early_ecc);
183 #endif
184
185 static int __init noalign_setup(char *__unused)
186 {
187         cr_alignment &= ~CR_A;
188         cr_no_alignment &= ~CR_A;
189         set_cr(cr_alignment);
190         return 1;
191 }
192 __setup("noalign", noalign_setup);
193
194 #ifndef CONFIG_SMP
195 void adjust_cr(unsigned long mask, unsigned long set)
196 {
197         unsigned long flags;
198
199         mask &= ~CR_A;
200
201         set &= mask;
202
203         local_irq_save(flags);
204
205         cr_no_alignment = (cr_no_alignment & ~mask) | set;
206         cr_alignment = (cr_alignment & ~mask) | set;
207
208         set_cr((get_cr() & ~mask) | set);
209
210         local_irq_restore(flags);
211 }
212 #endif
213
214 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
215 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
216
217 static struct mem_type mem_types[] = {
218         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
219                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
220                                   L_PTE_SHARED,
221                 .prot_l1        = PMD_TYPE_TABLE,
222                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
223                 .domain         = DOMAIN_IO,
224         },
225         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
226                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
227                 .prot_l1        = PMD_TYPE_TABLE,
228                 .prot_sect      = PROT_SECT_DEVICE,
229                 .domain         = DOMAIN_IO,
230         },
231         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
232                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
233                 .prot_l1        = PMD_TYPE_TABLE,
234                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
235                 .domain         = DOMAIN_IO,
236         },
237         [MT_DEVICE_WC] = {      /* ioremap_wc */
238                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
239                 .prot_l1        = PMD_TYPE_TABLE,
240                 .prot_sect      = PROT_SECT_DEVICE,
241                 .domain         = DOMAIN_IO,
242         },
243         [MT_UNCACHED] = {
244                 .prot_pte       = PROT_PTE_DEVICE,
245                 .prot_l1        = PMD_TYPE_TABLE,
246                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
247                 .domain         = DOMAIN_IO,
248         },
249         [MT_CACHECLEAN] = {
250                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
251                 .domain    = DOMAIN_KERNEL,
252         },
253 #ifndef CONFIG_ARM_LPAE
254         [MT_MINICLEAN] = {
255                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
256                 .domain    = DOMAIN_KERNEL,
257         },
258 #endif
259         [MT_LOW_VECTORS] = {
260                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
261                                 L_PTE_RDONLY,
262                 .prot_l1   = PMD_TYPE_TABLE,
263                 .domain    = DOMAIN_USER,
264         },
265         [MT_HIGH_VECTORS] = {
266                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
267                                 L_PTE_USER | L_PTE_RDONLY,
268                 .prot_l1   = PMD_TYPE_TABLE,
269                 .domain    = DOMAIN_USER,
270         },
271         [MT_MEMORY] = {
272                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
273                 .prot_l1   = PMD_TYPE_TABLE,
274                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
275                 .domain    = DOMAIN_KERNEL,
276         },
277         [MT_ROM] = {
278                 .prot_sect = PMD_TYPE_SECT,
279                 .domain    = DOMAIN_KERNEL,
280         },
281         [MT_MEMORY_NONCACHED] = {
282                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
283                                 L_PTE_MT_BUFFERABLE,
284                 .prot_l1   = PMD_TYPE_TABLE,
285                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
286                 .domain    = DOMAIN_KERNEL,
287         },
288         [MT_MEMORY_DTCM] = {
289                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
290                                 L_PTE_XN,
291                 .prot_l1   = PMD_TYPE_TABLE,
292                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
293                 .domain    = DOMAIN_KERNEL,
294         },
295         [MT_MEMORY_ITCM] = {
296                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
297                 .prot_l1   = PMD_TYPE_TABLE,
298                 .domain    = DOMAIN_KERNEL,
299         },
300         [MT_MEMORY_SO] = {
301                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
302                                 L_PTE_MT_UNCACHED | L_PTE_XN,
303                 .prot_l1   = PMD_TYPE_TABLE,
304                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
305                                 PMD_SECT_UNCACHED | PMD_SECT_XN,
306                 .domain    = DOMAIN_KERNEL,
307         },
308         [MT_MEMORY_DMA_READY] = {
309                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
310                 .prot_l1   = PMD_TYPE_TABLE,
311                 .domain    = DOMAIN_KERNEL,
312         },
313 };
314
315 const struct mem_type *get_mem_type(unsigned int type)
316 {
317         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
318 }
319 EXPORT_SYMBOL(get_mem_type);
320
321 /*
322  * Adjust the PMD section entries according to the CPU in use.
323  */
324 static void __init build_mem_type_table(void)
325 {
326         struct cachepolicy *cp;
327         unsigned int cr = get_cr();
328         pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
329         pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
330         int cpu_arch = cpu_architecture();
331         int i;
332
333         if (cpu_arch < CPU_ARCH_ARMv6) {
334 #if defined(CONFIG_CPU_DCACHE_DISABLE)
335                 if (cachepolicy > CPOLICY_BUFFERED)
336                         cachepolicy = CPOLICY_BUFFERED;
337 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
338                 if (cachepolicy > CPOLICY_WRITETHROUGH)
339                         cachepolicy = CPOLICY_WRITETHROUGH;
340 #endif
341         }
342         if (cpu_arch < CPU_ARCH_ARMv5) {
343                 if (cachepolicy >= CPOLICY_WRITEALLOC)
344                         cachepolicy = CPOLICY_WRITEBACK;
345                 ecc_mask = 0;
346         }
347         if (is_smp())
348                 cachepolicy = CPOLICY_WRITEALLOC;
349
350         /*
351          * Strip out features not present on earlier architectures.
352          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
353          * without extended page tables don't have the 'Shared' bit.
354          */
355         if (cpu_arch < CPU_ARCH_ARMv5)
356                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
357                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
358         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
359                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
360                         mem_types[i].prot_sect &= ~PMD_SECT_S;
361
362         /*
363          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
364          * "update-able on write" bit on ARM610).  However, Xscale and
365          * Xscale3 require this bit to be cleared.
366          */
367         if (cpu_is_xscale() || cpu_is_xsc3()) {
368                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
369                         mem_types[i].prot_sect &= ~PMD_BIT4;
370                         mem_types[i].prot_l1 &= ~PMD_BIT4;
371                 }
372         } else if (cpu_arch < CPU_ARCH_ARMv6) {
373                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
374                         if (mem_types[i].prot_l1)
375                                 mem_types[i].prot_l1 |= PMD_BIT4;
376                         if (mem_types[i].prot_sect)
377                                 mem_types[i].prot_sect |= PMD_BIT4;
378                 }
379         }
380
381         /*
382          * Mark the device areas according to the CPU/architecture.
383          */
384         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
385                 if (!cpu_is_xsc3()) {
386                         /*
387                          * Mark device regions on ARMv6+ as execute-never
388                          * to prevent speculative instruction fetches.
389                          */
390                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
391                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
392                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
393                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
394                 }
395                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
396                         /*
397                          * For ARMv7 with TEX remapping,
398                          * - shared device is SXCB=1100
399                          * - nonshared device is SXCB=0100
400                          * - write combine device mem is SXCB=0001
401                          * (Uncached Normal memory)
402                          */
403                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
404                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
405                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
406                 } else if (cpu_is_xsc3()) {
407                         /*
408                          * For Xscale3,
409                          * - shared device is TEXCB=00101
410                          * - nonshared device is TEXCB=01000
411                          * - write combine device mem is TEXCB=00100
412                          * (Inner/Outer Uncacheable in xsc3 parlance)
413                          */
414                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
415                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
416                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
417                 } else {
418                         /*
419                          * For ARMv6 and ARMv7 without TEX remapping,
420                          * - shared device is TEXCB=00001
421                          * - nonshared device is TEXCB=01000
422                          * - write combine device mem is TEXCB=00100
423                          * (Uncached Normal in ARMv6 parlance).
424                          */
425                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
426                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
427                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
428                 }
429         } else {
430                 /*
431                  * On others, write combining is "Uncached/Buffered"
432                  */
433                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
434         }
435
436         /*
437          * Now deal with the memory-type mappings
438          */
439         cp = &cache_policies[cachepolicy];
440         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
441         s2_pgprot = cp->pte_s2;
442         hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
443
444         /*
445          * ARMv6 and above have extended page tables.
446          */
447         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
448 #ifndef CONFIG_ARM_LPAE
449                 /*
450                  * Mark cache clean areas and XIP ROM read only
451                  * from SVC mode and no access from userspace.
452                  */
453                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
454                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
455                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
456 #endif
457
458                 if (is_smp()) {
459                         /*
460                          * Mark memory with the "shared" attribute
461                          * for SMP systems
462                          */
463                         user_pgprot |= L_PTE_SHARED;
464                         kern_pgprot |= L_PTE_SHARED;
465                         vecs_pgprot |= L_PTE_SHARED;
466                         s2_pgprot |= L_PTE_SHARED;
467                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
468                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
469                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
470                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
471                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
472                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
473                         mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
474                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
475                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
476                 }
477         }
478
479         /*
480          * Non-cacheable Normal - intended for memory areas that must
481          * not cause dirty cache line writebacks when used
482          */
483         if (cpu_arch >= CPU_ARCH_ARMv6) {
484                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
485                         /* Non-cacheable Normal is XCB = 001 */
486                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
487                                 PMD_SECT_BUFFERED;
488                 } else {
489                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
490                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
491                                 PMD_SECT_TEX(1);
492                 }
493         } else {
494                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
495         }
496
497 #ifdef CONFIG_ARM_LPAE
498         /*
499          * Do not generate access flag faults for the kernel mappings.
500          */
501         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
502                 mem_types[i].prot_pte |= PTE_EXT_AF;
503                 if (mem_types[i].prot_sect)
504                         mem_types[i].prot_sect |= PMD_SECT_AF;
505         }
506         kern_pgprot |= PTE_EXT_AF;
507         vecs_pgprot |= PTE_EXT_AF;
508 #endif
509
510         for (i = 0; i < 16; i++) {
511                 pteval_t v = pgprot_val(protection_map[i]);
512                 protection_map[i] = __pgprot(v | user_pgprot);
513         }
514
515         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
516         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
517
518         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
519         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
520                                  L_PTE_DIRTY | kern_pgprot);
521         pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
522         pgprot_s2_device  = __pgprot(s2_device_pgprot);
523         pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
524
525         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
526         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
527         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
528         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
529         mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
530         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
531         mem_types[MT_ROM].prot_sect |= cp->pmd;
532
533         switch (cp->pmd) {
534         case PMD_SECT_WT:
535                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
536                 break;
537         case PMD_SECT_WB:
538         case PMD_SECT_WBWA:
539                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
540                 break;
541         }
542         printk("Memory policy: ECC %sabled, Data cache %s\n",
543                 ecc_mask ? "en" : "dis", cp->policy);
544
545         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
546                 struct mem_type *t = &mem_types[i];
547                 if (t->prot_l1)
548                         t->prot_l1 |= PMD_DOMAIN(t->domain);
549                 if (t->prot_sect)
550                         t->prot_sect |= PMD_DOMAIN(t->domain);
551         }
552 }
553
554 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
555 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
556                               unsigned long size, pgprot_t vma_prot)
557 {
558         if (!pfn_valid(pfn))
559                 return pgprot_noncached(vma_prot);
560         else if (file->f_flags & O_SYNC)
561                 return pgprot_writecombine(vma_prot);
562         return vma_prot;
563 }
564 EXPORT_SYMBOL(phys_mem_access_prot);
565 #endif
566
567 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
568
569 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
570 {
571         void *ptr = __va(memblock_alloc(sz, align));
572         memset(ptr, 0, sz);
573         return ptr;
574 }
575
576 static void __init *early_alloc(unsigned long sz)
577 {
578         return early_alloc_aligned(sz, sz);
579 }
580
581 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
582 {
583         if (pmd_none(*pmd)) {
584                 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
585                 __pmd_populate(pmd, __pa(pte), prot);
586         }
587         BUG_ON(pmd_bad(*pmd));
588         return pte_offset_kernel(pmd, addr);
589 }
590
591 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
592                                   unsigned long end, unsigned long pfn,
593                                   const struct mem_type *type)
594 {
595         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
596         do {
597                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
598                 pfn++;
599         } while (pte++, addr += PAGE_SIZE, addr != end);
600 }
601
602 static void __init map_init_section(pmd_t *pmd, unsigned long addr,
603                         unsigned long end, phys_addr_t phys,
604                         const struct mem_type *type)
605 {
606 #ifndef CONFIG_ARM_LPAE
607         /*
608          * In classic MMU format, puds and pmds are folded in to
609          * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
610          * group of L1 entries making up one logical pointer to
611          * an L2 table (2MB), where as PMDs refer to the individual
612          * L1 entries (1MB). Hence increment to get the correct
613          * offset for odd 1MB sections.
614          * (See arch/arm/include/asm/pgtable-2level.h)
615          */
616         if (addr & SECTION_SIZE)
617                 pmd++;
618 #endif
619         do {
620                 *pmd = __pmd(phys | type->prot_sect);
621                 phys += SECTION_SIZE;
622         } while (pmd++, addr += SECTION_SIZE, addr != end);
623
624         flush_pmd_entry(pmd);
625 }
626
627 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
628                                       unsigned long end, phys_addr_t phys,
629                                       const struct mem_type *type)
630 {
631         pmd_t *pmd = pmd_offset(pud, addr);
632         unsigned long next;
633
634         do {
635                 /*
636                  * With LPAE, we must loop over to map
637                  * all the pmds for the given range.
638                  */
639                 next = pmd_addr_end(addr, end);
640
641                 /*
642                  * Try a section mapping - addr, next and phys must all be
643                  * aligned to a section boundary.
644                  */
645                 if (type->prot_sect &&
646                                 ((addr | next | phys) & ~SECTION_MASK) == 0) {
647                         map_init_section(pmd, addr, next, phys, type);
648                 } else {
649                         alloc_init_pte(pmd, addr, next,
650                                                 __phys_to_pfn(phys), type);
651                 }
652
653                 phys += next - addr;
654
655         } while (pmd++, addr = next, addr != end);
656 }
657
658 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
659         unsigned long end, unsigned long phys, const struct mem_type *type)
660 {
661         pud_t *pud = pud_offset(pgd, addr);
662         unsigned long next;
663
664         do {
665                 next = pud_addr_end(addr, end);
666                 alloc_init_pmd(pud, addr, next, phys, type);
667                 phys += next - addr;
668         } while (pud++, addr = next, addr != end);
669 }
670
671 #ifndef CONFIG_ARM_LPAE
672 static void __init create_36bit_mapping(struct map_desc *md,
673                                         const struct mem_type *type)
674 {
675         unsigned long addr, length, end;
676         phys_addr_t phys;
677         pgd_t *pgd;
678
679         addr = md->virtual;
680         phys = __pfn_to_phys(md->pfn);
681         length = PAGE_ALIGN(md->length);
682
683         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
684                 printk(KERN_ERR "MM: CPU does not support supersection "
685                        "mapping for 0x%08llx at 0x%08lx\n",
686                        (long long)__pfn_to_phys((u64)md->pfn), addr);
687                 return;
688         }
689
690         /* N.B. ARMv6 supersections are only defined to work with domain 0.
691          *      Since domain assignments can in fact be arbitrary, the
692          *      'domain == 0' check below is required to insure that ARMv6
693          *      supersections are only allocated for domain 0 regardless
694          *      of the actual domain assignments in use.
695          */
696         if (type->domain) {
697                 printk(KERN_ERR "MM: invalid domain in supersection "
698                        "mapping for 0x%08llx at 0x%08lx\n",
699                        (long long)__pfn_to_phys((u64)md->pfn), addr);
700                 return;
701         }
702
703         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
704                 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
705                        " at 0x%08lx invalid alignment\n",
706                        (long long)__pfn_to_phys((u64)md->pfn), addr);
707                 return;
708         }
709
710         /*
711          * Shift bits [35:32] of address into bits [23:20] of PMD
712          * (See ARMv6 spec).
713          */
714         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
715
716         pgd = pgd_offset_k(addr);
717         end = addr + length;
718         do {
719                 pud_t *pud = pud_offset(pgd, addr);
720                 pmd_t *pmd = pmd_offset(pud, addr);
721                 int i;
722
723                 for (i = 0; i < 16; i++)
724                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
725
726                 addr += SUPERSECTION_SIZE;
727                 phys += SUPERSECTION_SIZE;
728                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
729         } while (addr != end);
730 }
731 #endif  /* !CONFIG_ARM_LPAE */
732
733 /*
734  * Create the page directory entries and any necessary
735  * page tables for the mapping specified by `md'.  We
736  * are able to cope here with varying sizes and address
737  * offsets, and we take full advantage of sections and
738  * supersections.
739  */
740 static void __init create_mapping(struct map_desc *md)
741 {
742         unsigned long addr, length, end;
743         phys_addr_t phys;
744         const struct mem_type *type;
745         pgd_t *pgd;
746
747         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
748                 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
749                        " at 0x%08lx in user region\n",
750                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
751                 return;
752         }
753
754         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
755             md->virtual >= PAGE_OFFSET &&
756             (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
757                 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
758                        " at 0x%08lx out of vmalloc space\n",
759                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
760         }
761
762         type = &mem_types[md->type];
763
764 #ifndef CONFIG_ARM_LPAE
765         /*
766          * Catch 36-bit addresses
767          */
768         if (md->pfn >= 0x100000) {
769                 create_36bit_mapping(md, type);
770                 return;
771         }
772 #endif
773
774         addr = md->virtual & PAGE_MASK;
775         phys = __pfn_to_phys(md->pfn);
776         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
777
778         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
779                 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
780                        "be mapped using pages, ignoring.\n",
781                        (long long)__pfn_to_phys(md->pfn), addr);
782                 return;
783         }
784
785         pgd = pgd_offset_k(addr);
786         end = addr + length;
787         do {
788                 unsigned long next = pgd_addr_end(addr, end);
789
790                 alloc_init_pud(pgd, addr, next, phys, type);
791
792                 phys += next - addr;
793                 addr = next;
794         } while (pgd++, addr != end);
795 }
796
797 /*
798  * Create the architecture specific mappings
799  */
800 void __init iotable_init(struct map_desc *io_desc, int nr)
801 {
802         struct map_desc *md;
803         struct vm_struct *vm;
804         struct static_vm *svm;
805
806         if (!nr)
807                 return;
808
809         svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
810
811         for (md = io_desc; nr; md++, nr--) {
812                 create_mapping(md);
813
814                 vm = &svm->vm;
815                 vm->addr = (void *)(md->virtual & PAGE_MASK);
816                 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
817                 vm->phys_addr = __pfn_to_phys(md->pfn);
818                 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
819                 vm->flags |= VM_ARM_MTYPE(md->type);
820                 vm->caller = iotable_init;
821                 add_static_vm_early(svm++);
822         }
823 }
824
825 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
826                                   void *caller)
827 {
828         struct vm_struct *vm;
829         struct static_vm *svm;
830
831         svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
832
833         vm = &svm->vm;
834         vm->addr = (void *)addr;
835         vm->size = size;
836         vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
837         vm->caller = caller;
838         add_static_vm_early(svm);
839 }
840
841 #ifndef CONFIG_ARM_LPAE
842
843 /*
844  * The Linux PMD is made of two consecutive section entries covering 2MB
845  * (see definition in include/asm/pgtable-2level.h).  However a call to
846  * create_mapping() may optimize static mappings by using individual
847  * 1MB section mappings.  This leaves the actual PMD potentially half
848  * initialized if the top or bottom section entry isn't used, leaving it
849  * open to problems if a subsequent ioremap() or vmalloc() tries to use
850  * the virtual space left free by that unused section entry.
851  *
852  * Let's avoid the issue by inserting dummy vm entries covering the unused
853  * PMD halves once the static mappings are in place.
854  */
855
856 static void __init pmd_empty_section_gap(unsigned long addr)
857 {
858         vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
859 }
860
861 static void __init fill_pmd_gaps(void)
862 {
863         struct static_vm *svm;
864         struct vm_struct *vm;
865         unsigned long addr, next = 0;
866         pmd_t *pmd;
867
868         list_for_each_entry(svm, &static_vmlist, list) {
869                 vm = &svm->vm;
870                 addr = (unsigned long)vm->addr;
871                 if (addr < next)
872                         continue;
873
874                 /*
875                  * Check if this vm starts on an odd section boundary.
876                  * If so and the first section entry for this PMD is free
877                  * then we block the corresponding virtual address.
878                  */
879                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
880                         pmd = pmd_off_k(addr);
881                         if (pmd_none(*pmd))
882                                 pmd_empty_section_gap(addr & PMD_MASK);
883                 }
884
885                 /*
886                  * Then check if this vm ends on an odd section boundary.
887                  * If so and the second section entry for this PMD is empty
888                  * then we block the corresponding virtual address.
889                  */
890                 addr += vm->size;
891                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
892                         pmd = pmd_off_k(addr) + 1;
893                         if (pmd_none(*pmd))
894                                 pmd_empty_section_gap(addr);
895                 }
896
897                 /* no need to look at any vm entry until we hit the next PMD */
898                 next = (addr + PMD_SIZE - 1) & PMD_MASK;
899         }
900 }
901
902 #else
903 #define fill_pmd_gaps() do { } while (0)
904 #endif
905
906 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
907 static void __init pci_reserve_io(void)
908 {
909         struct static_vm *svm;
910
911         svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
912         if (svm)
913                 return;
914
915         vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
916 }
917 #else
918 #define pci_reserve_io() do { } while (0)
919 #endif
920
921 #ifdef CONFIG_DEBUG_LL
922 void __init debug_ll_io_init(void)
923 {
924         struct map_desc map;
925
926         debug_ll_addr(&map.pfn, &map.virtual);
927         if (!map.pfn || !map.virtual)
928                 return;
929         map.pfn = __phys_to_pfn(map.pfn);
930         map.virtual &= PAGE_MASK;
931         map.length = PAGE_SIZE;
932         map.type = MT_DEVICE;
933         create_mapping(&map);
934 }
935 #endif
936
937 static void * __initdata vmalloc_min =
938         (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
939
940 /*
941  * vmalloc=size forces the vmalloc area to be exactly 'size'
942  * bytes. This can be used to increase (or decrease) the vmalloc
943  * area - the default is 240m.
944  */
945 static int __init early_vmalloc(char *arg)
946 {
947         unsigned long vmalloc_reserve = memparse(arg, NULL);
948
949         if (vmalloc_reserve < SZ_16M) {
950                 vmalloc_reserve = SZ_16M;
951                 printk(KERN_WARNING
952                         "vmalloc area too small, limiting to %luMB\n",
953                         vmalloc_reserve >> 20);
954         }
955
956         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
957                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
958                 printk(KERN_WARNING
959                         "vmalloc area is too big, limiting to %luMB\n",
960                         vmalloc_reserve >> 20);
961         }
962
963         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
964         return 0;
965 }
966 early_param("vmalloc", early_vmalloc);
967
968 phys_addr_t arm_lowmem_limit __initdata = 0;
969
970 void __init sanity_check_meminfo(void)
971 {
972         int i, j, highmem = 0;
973
974         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
975                 struct membank *bank = &meminfo.bank[j];
976                 *bank = meminfo.bank[i];
977
978                 if (bank->start > ULONG_MAX)
979                         highmem = 1;
980
981 #ifdef CONFIG_HIGHMEM
982                 if (__va(bank->start) >= vmalloc_min ||
983                     __va(bank->start) < (void *)PAGE_OFFSET)
984                         highmem = 1;
985
986                 bank->highmem = highmem;
987
988                 /*
989                  * Split those memory banks which are partially overlapping
990                  * the vmalloc area greatly simplifying things later.
991                  */
992                 if (!highmem && __va(bank->start) < vmalloc_min &&
993                     bank->size > vmalloc_min - __va(bank->start)) {
994                         if (meminfo.nr_banks >= NR_BANKS) {
995                                 printk(KERN_CRIT "NR_BANKS too low, "
996                                                  "ignoring high memory\n");
997                         } else {
998                                 memmove(bank + 1, bank,
999                                         (meminfo.nr_banks - i) * sizeof(*bank));
1000                                 meminfo.nr_banks++;
1001                                 i++;
1002                                 bank[1].size -= vmalloc_min - __va(bank->start);
1003                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
1004                                 bank[1].highmem = highmem = 1;
1005                                 j++;
1006                         }
1007                         bank->size = vmalloc_min - __va(bank->start);
1008                 }
1009 #else
1010                 bank->highmem = highmem;
1011
1012                 /*
1013                  * Highmem banks not allowed with !CONFIG_HIGHMEM.
1014                  */
1015                 if (highmem) {
1016                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1017                                "(!CONFIG_HIGHMEM).\n",
1018                                (unsigned long long)bank->start,
1019                                (unsigned long long)bank->start + bank->size - 1);
1020                         continue;
1021                 }
1022
1023                 /*
1024                  * Check whether this memory bank would entirely overlap
1025                  * the vmalloc area.
1026                  */
1027                 if (__va(bank->start) >= vmalloc_min ||
1028                     __va(bank->start) < (void *)PAGE_OFFSET) {
1029                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1030                                "(vmalloc region overlap).\n",
1031                                (unsigned long long)bank->start,
1032                                (unsigned long long)bank->start + bank->size - 1);
1033                         continue;
1034                 }
1035
1036                 /*
1037                  * Check whether this memory bank would partially overlap
1038                  * the vmalloc area.
1039                  */
1040                 if (__va(bank->start + bank->size - 1) >= vmalloc_min ||
1041                     __va(bank->start + bank->size - 1) <= __va(bank->start)) {
1042                         unsigned long newsize = vmalloc_min - __va(bank->start);
1043                         printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1044                                "to -%.8llx (vmalloc region overlap).\n",
1045                                (unsigned long long)bank->start,
1046                                (unsigned long long)bank->start + bank->size - 1,
1047                                (unsigned long long)bank->start + newsize - 1);
1048                         bank->size = newsize;
1049                 }
1050 #endif
1051                 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
1052                         arm_lowmem_limit = bank->start + bank->size;
1053
1054                 j++;
1055         }
1056 #ifdef CONFIG_HIGHMEM
1057         if (highmem) {
1058                 const char *reason = NULL;
1059
1060                 if (cache_is_vipt_aliasing()) {
1061                         /*
1062                          * Interactions between kmap and other mappings
1063                          * make highmem support with aliasing VIPT caches
1064                          * rather difficult.
1065                          */
1066                         reason = "with VIPT aliasing cache";
1067                 }
1068                 if (reason) {
1069                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1070                                 reason);
1071                         while (j > 0 && meminfo.bank[j - 1].highmem)
1072                                 j--;
1073                 }
1074         }
1075 #endif
1076         meminfo.nr_banks = j;
1077         high_memory = __va(arm_lowmem_limit - 1) + 1;
1078         memblock_set_current_limit(arm_lowmem_limit);
1079 }
1080
1081 static inline void prepare_page_table(void)
1082 {
1083         unsigned long addr;
1084         phys_addr_t end;
1085
1086         /*
1087          * Clear out all the mappings below the kernel image.
1088          */
1089         for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1090                 pmd_clear(pmd_off_k(addr));
1091
1092 #ifdef CONFIG_XIP_KERNEL
1093         /* The XIP kernel is mapped in the module area -- skip over it */
1094         addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1095 #endif
1096         for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1097                 pmd_clear(pmd_off_k(addr));
1098
1099         /*
1100          * Find the end of the first block of lowmem.
1101          */
1102         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1103         if (end >= arm_lowmem_limit)
1104                 end = arm_lowmem_limit;
1105
1106         /*
1107          * Clear out all the kernel space mappings, except for the first
1108          * memory bank, up to the vmalloc region.
1109          */
1110         for (addr = __phys_to_virt(end);
1111              addr < VMALLOC_START; addr += PMD_SIZE)
1112                 pmd_clear(pmd_off_k(addr));
1113 }
1114
1115 #ifdef CONFIG_ARM_LPAE
1116 /* the first page is reserved for pgd */
1117 #define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1118                                  PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1119 #else
1120 #define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1121 #endif
1122
1123 /*
1124  * Reserve the special regions of memory
1125  */
1126 void __init arm_mm_memblock_reserve(void)
1127 {
1128         /*
1129          * Reserve the page tables.  These are already in use,
1130          * and can only be in node 0.
1131          */
1132         memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1133
1134 #ifdef CONFIG_SA1111
1135         /*
1136          * Because of the SA1111 DMA bug, we want to preserve our
1137          * precious DMA-able memory...
1138          */
1139         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1140 #endif
1141 }
1142
1143 /*
1144  * Set up the device mappings.  Since we clear out the page tables for all
1145  * mappings above VMALLOC_START, we will remove any debug device mappings.
1146  * This means you have to be careful how you debug this function, or any
1147  * called function.  This means you can't use any function or debugging
1148  * method which may touch any device, otherwise the kernel _will_ crash.
1149  */
1150 static void __init devicemaps_init(struct machine_desc *mdesc)
1151 {
1152         struct map_desc map;
1153         unsigned long addr;
1154         void *vectors;
1155
1156         /*
1157          * Allocate the vector page early.
1158          */
1159         vectors = early_alloc(PAGE_SIZE);
1160
1161         early_trap_init(vectors);
1162
1163         for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1164                 pmd_clear(pmd_off_k(addr));
1165
1166         /*
1167          * Map the kernel if it is XIP.
1168          * It is always first in the modulearea.
1169          */
1170 #ifdef CONFIG_XIP_KERNEL
1171         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1172         map.virtual = MODULES_VADDR;
1173         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1174         map.type = MT_ROM;
1175         create_mapping(&map);
1176 #endif
1177
1178         /*
1179          * Map the cache flushing regions.
1180          */
1181 #ifdef FLUSH_BASE
1182         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1183         map.virtual = FLUSH_BASE;
1184         map.length = SZ_1M;
1185         map.type = MT_CACHECLEAN;
1186         create_mapping(&map);
1187 #endif
1188 #ifdef FLUSH_BASE_MINICACHE
1189         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1190         map.virtual = FLUSH_BASE_MINICACHE;
1191         map.length = SZ_1M;
1192         map.type = MT_MINICLEAN;
1193         create_mapping(&map);
1194 #endif
1195
1196         /*
1197          * Create a mapping for the machine vectors at the high-vectors
1198          * location (0xffff0000).  If we aren't using high-vectors, also
1199          * create a mapping at the low-vectors virtual address.
1200          */
1201         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1202         map.virtual = 0xffff0000;
1203         map.length = PAGE_SIZE;
1204         map.type = MT_HIGH_VECTORS;
1205         create_mapping(&map);
1206
1207         if (!vectors_high()) {
1208                 map.virtual = 0;
1209                 map.type = MT_LOW_VECTORS;
1210                 create_mapping(&map);
1211         }
1212
1213         /*
1214          * Ask the machine support to map in the statically mapped devices.
1215          */
1216         if (mdesc->map_io)
1217                 mdesc->map_io();
1218         fill_pmd_gaps();
1219
1220         /* Reserve fixed i/o space in VMALLOC region */
1221         pci_reserve_io();
1222
1223         /*
1224          * Finally flush the caches and tlb to ensure that we're in a
1225          * consistent state wrt the writebuffer.  This also ensures that
1226          * any write-allocated cache lines in the vector page are written
1227          * back.  After this point, we can start to touch devices again.
1228          */
1229         local_flush_tlb_all();
1230         flush_cache_all();
1231 }
1232
1233 static void __init kmap_init(void)
1234 {
1235 #ifdef CONFIG_HIGHMEM
1236         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1237                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1238 #endif
1239 }
1240
1241 static void __init map_lowmem(void)
1242 {
1243         struct memblock_region *reg;
1244
1245         /* Map all the lowmem memory banks. */
1246         for_each_memblock(memory, reg) {
1247                 phys_addr_t start = reg->base;
1248                 phys_addr_t end = start + reg->size;
1249                 struct map_desc map;
1250
1251                 if (end > arm_lowmem_limit)
1252                         end = arm_lowmem_limit;
1253                 if (start >= end)
1254                         break;
1255
1256                 map.pfn = __phys_to_pfn(start);
1257                 map.virtual = __phys_to_virt(start);
1258                 map.length = end - start;
1259                 map.type = MT_MEMORY;
1260
1261                 create_mapping(&map);
1262         }
1263 }
1264
1265 /*
1266  * paging_init() sets up the page tables, initialises the zone memory
1267  * maps, and sets up the zero page, bad page and bad page tables.
1268  */
1269 void __init paging_init(struct machine_desc *mdesc)
1270 {
1271         void *zero_page;
1272
1273         memblock_set_current_limit(arm_lowmem_limit);
1274
1275         build_mem_type_table();
1276         prepare_page_table();
1277         map_lowmem();
1278         dma_contiguous_remap();
1279         devicemaps_init(mdesc);
1280         kmap_init();
1281         tcm_init();
1282
1283         top_pmd = pmd_off_k(0xffff0000);
1284
1285         /* allocate the zero page. */
1286         zero_page = early_alloc(PAGE_SIZE);
1287
1288         bootmem_init();
1289
1290         empty_zero_page = virt_to_page(zero_page);
1291         __flush_dcache_page(NULL, empty_zero_page);
1292 }