rk3026: i2s add several attempts to double confirm i2s frac effect
[firefly-linux-kernel-4.4.55.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
27 #include <asm/traps.h>
28
29 #include <asm/mach/arch.h>
30 #include <asm/mach/map.h>
31
32 #include "mm.h"
33
34 /*
35  * empty_zero_page is a special page that is used for
36  * zero-initialized data and COW.
37  */
38 struct page *empty_zero_page;
39 EXPORT_SYMBOL(empty_zero_page);
40
41 /*
42  * The pmd table for the upper-most set of pages.
43  */
44 pmd_t *top_pmd;
45
46 #define CPOLICY_UNCACHED        0
47 #define CPOLICY_BUFFERED        1
48 #define CPOLICY_WRITETHROUGH    2
49 #define CPOLICY_WRITEBACK       3
50 #define CPOLICY_WRITEALLOC      4
51
52 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
53 static unsigned int ecc_mask __initdata = 0;
54 pgprot_t pgprot_user;
55 pgprot_t pgprot_kernel;
56
57 EXPORT_SYMBOL(pgprot_user);
58 EXPORT_SYMBOL(pgprot_kernel);
59
60 struct cachepolicy {
61         const char      policy[16];
62         unsigned int    cr_mask;
63         unsigned int    pmd;
64         pteval_t        pte;
65 };
66
67 static struct cachepolicy cache_policies[] __initdata = {
68         {
69                 .policy         = "uncached",
70                 .cr_mask        = CR_W|CR_C,
71                 .pmd            = PMD_SECT_UNCACHED,
72                 .pte            = L_PTE_MT_UNCACHED,
73         }, {
74                 .policy         = "buffered",
75                 .cr_mask        = CR_C,
76                 .pmd            = PMD_SECT_BUFFERED,
77                 .pte            = L_PTE_MT_BUFFERABLE,
78         }, {
79                 .policy         = "writethrough",
80                 .cr_mask        = 0,
81                 .pmd            = PMD_SECT_WT,
82                 .pte            = L_PTE_MT_WRITETHROUGH,
83         }, {
84                 .policy         = "writeback",
85                 .cr_mask        = 0,
86                 .pmd            = PMD_SECT_WB,
87                 .pte            = L_PTE_MT_WRITEBACK,
88         }, {
89                 .policy         = "writealloc",
90                 .cr_mask        = 0,
91                 .pmd            = PMD_SECT_WBWA,
92                 .pte            = L_PTE_MT_WRITEALLOC,
93         }
94 };
95
96 /*
97  * These are useful for identifying cache coherency
98  * problems by allowing the cache or the cache and
99  * writebuffer to be turned off.  (Note: the write
100  * buffer should not be on and the cache off).
101  */
102 static int __init early_cachepolicy(char *p)
103 {
104         int i;
105
106         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
107                 int len = strlen(cache_policies[i].policy);
108
109                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
110                         cachepolicy = i;
111                         cr_alignment &= ~cache_policies[i].cr_mask;
112                         cr_no_alignment &= ~cache_policies[i].cr_mask;
113                         break;
114                 }
115         }
116         if (i == ARRAY_SIZE(cache_policies))
117                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
118         /*
119          * This restriction is partly to do with the way we boot; it is
120          * unpredictable to have memory mapped using two different sets of
121          * memory attributes (shared, type, and cache attribs).  We can not
122          * change these attributes once the initial assembly has setup the
123          * page tables.
124          */
125         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
126                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
127                 cachepolicy = CPOLICY_WRITEBACK;
128         }
129         flush_cache_all();
130         set_cr(cr_alignment);
131         return 0;
132 }
133 early_param("cachepolicy", early_cachepolicy);
134
135 static int __init early_nocache(char *__unused)
136 {
137         char *p = "buffered";
138         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
139         early_cachepolicy(p);
140         return 0;
141 }
142 early_param("nocache", early_nocache);
143
144 static int __init early_nowrite(char *__unused)
145 {
146         char *p = "uncached";
147         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
148         early_cachepolicy(p);
149         return 0;
150 }
151 early_param("nowb", early_nowrite);
152
153 static int __init early_ecc(char *p)
154 {
155         if (memcmp(p, "on", 2) == 0)
156                 ecc_mask = PMD_PROTECTION;
157         else if (memcmp(p, "off", 3) == 0)
158                 ecc_mask = 0;
159         return 0;
160 }
161 early_param("ecc", early_ecc);
162
163 static int __init noalign_setup(char *__unused)
164 {
165         cr_alignment &= ~CR_A;
166         cr_no_alignment &= ~CR_A;
167         set_cr(cr_alignment);
168         return 1;
169 }
170 __setup("noalign", noalign_setup);
171
172 #ifndef CONFIG_SMP
173 void adjust_cr(unsigned long mask, unsigned long set)
174 {
175         unsigned long flags;
176
177         mask &= ~CR_A;
178
179         set &= mask;
180
181         local_irq_save(flags);
182
183         cr_no_alignment = (cr_no_alignment & ~mask) | set;
184         cr_alignment = (cr_alignment & ~mask) | set;
185
186         set_cr((get_cr() & ~mask) | set);
187
188         local_irq_restore(flags);
189 }
190 #endif
191
192 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
193 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
194
195 static struct mem_type mem_types[] = {
196         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
197                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
198                                   L_PTE_SHARED,
199                 .prot_l1        = PMD_TYPE_TABLE,
200                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
201                 .domain         = DOMAIN_IO,
202         },
203         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
204                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
205                 .prot_l1        = PMD_TYPE_TABLE,
206                 .prot_sect      = PROT_SECT_DEVICE,
207                 .domain         = DOMAIN_IO,
208         },
209         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
210                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
211                 .prot_l1        = PMD_TYPE_TABLE,
212                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
213                 .domain         = DOMAIN_IO,
214         },
215         [MT_DEVICE_STRONGLY_ORDERED] = {  /* Guaranteed strongly ordered */
216                 .prot_pte       = PROT_PTE_DEVICE,
217                 .prot_l1        = PMD_TYPE_TABLE,
218                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_UNCACHED,
219                 .domain         = DOMAIN_IO,
220         },      
221         [MT_DEVICE_WC] = {      /* ioremap_wc */
222                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
223                 .prot_l1        = PMD_TYPE_TABLE,
224                 .prot_sect      = PROT_SECT_DEVICE,
225                 .domain         = DOMAIN_IO,
226         },
227         [MT_UNCACHED] = {
228                 .prot_pte       = PROT_PTE_DEVICE,
229                 .prot_l1        = PMD_TYPE_TABLE,
230                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
231                 .domain         = DOMAIN_IO,
232         },
233         [MT_CACHECLEAN] = {
234                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
235                 .domain    = DOMAIN_KERNEL,
236         },
237         [MT_MINICLEAN] = {
238                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
239                 .domain    = DOMAIN_KERNEL,
240         },
241         [MT_LOW_VECTORS] = {
242                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
243                                 L_PTE_RDONLY,
244                 .prot_l1   = PMD_TYPE_TABLE,
245                 .domain    = DOMAIN_USER,
246         },
247         [MT_HIGH_VECTORS] = {
248                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
249                                 L_PTE_USER | L_PTE_RDONLY,
250                 .prot_l1   = PMD_TYPE_TABLE,
251                 .domain    = DOMAIN_USER,
252         },
253         [MT_MEMORY] = {
254                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
255                 .prot_l1   = PMD_TYPE_TABLE,
256                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
257                 .domain    = DOMAIN_KERNEL,
258         },
259         [MT_ROM] = {
260                 .prot_sect = PMD_TYPE_SECT,
261                 .domain    = DOMAIN_KERNEL,
262         },
263         [MT_MEMORY_NONCACHED] = {
264                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
265                                 L_PTE_MT_BUFFERABLE,
266                 .prot_l1   = PMD_TYPE_TABLE,
267                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
268                 .domain    = DOMAIN_KERNEL,
269         },
270         [MT_MEMORY_DTCM] = {
271                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
272                                 L_PTE_XN,
273                 .prot_l1   = PMD_TYPE_TABLE,
274                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
275                 .domain    = DOMAIN_KERNEL,
276         },
277         [MT_MEMORY_ITCM] = {
278                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
279                 .prot_l1   = PMD_TYPE_TABLE,
280                 .domain    = DOMAIN_KERNEL,
281         },
282 };
283
284 const struct mem_type *get_mem_type(unsigned int type)
285 {
286         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
287 }
288 EXPORT_SYMBOL(get_mem_type);
289
290 /*
291  * Adjust the PMD section entries according to the CPU in use.
292  */
293 static void __init build_mem_type_table(void)
294 {
295         struct cachepolicy *cp;
296         unsigned int cr = get_cr();
297         unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
298         int cpu_arch = cpu_architecture();
299         int i;
300
301         if (cpu_arch < CPU_ARCH_ARMv6) {
302 #if defined(CONFIG_CPU_DCACHE_DISABLE)
303                 if (cachepolicy > CPOLICY_BUFFERED)
304                         cachepolicy = CPOLICY_BUFFERED;
305 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
306                 if (cachepolicy > CPOLICY_WRITETHROUGH)
307                         cachepolicy = CPOLICY_WRITETHROUGH;
308 #endif
309         }
310         if (cpu_arch < CPU_ARCH_ARMv5) {
311                 if (cachepolicy >= CPOLICY_WRITEALLOC)
312                         cachepolicy = CPOLICY_WRITEBACK;
313                 ecc_mask = 0;
314         }
315 #ifndef CONFIG_PLAT_RK
316         if (is_smp())
317                 cachepolicy = CPOLICY_WRITEALLOC;
318 #endif
319
320         /*
321          * Strip out features not present on earlier architectures.
322          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
323          * without extended page tables don't have the 'Shared' bit.
324          */
325         if (cpu_arch < CPU_ARCH_ARMv5)
326                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
327                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
328         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
329                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
330                         mem_types[i].prot_sect &= ~PMD_SECT_S;
331
332         /*
333          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
334          * "update-able on write" bit on ARM610).  However, Xscale and
335          * Xscale3 require this bit to be cleared.
336          */
337         if (cpu_is_xscale() || cpu_is_xsc3()) {
338                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
339                         mem_types[i].prot_sect &= ~PMD_BIT4;
340                         mem_types[i].prot_l1 &= ~PMD_BIT4;
341                 }
342         } else if (cpu_arch < CPU_ARCH_ARMv6) {
343                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
344                         if (mem_types[i].prot_l1)
345                                 mem_types[i].prot_l1 |= PMD_BIT4;
346                         if (mem_types[i].prot_sect)
347                                 mem_types[i].prot_sect |= PMD_BIT4;
348                 }
349         }
350
351         /*
352          * Mark the device areas according to the CPU/architecture.
353          */
354         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
355                 if (!cpu_is_xsc3()) {
356                         /*
357                          * Mark device regions on ARMv6+ as execute-never
358                          * to prevent speculative instruction fetches.
359                          */
360                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
361                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
362                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
363                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
364                         mem_types[MT_DEVICE_STRONGLY_ORDERED].prot_sect |= PMD_SECT_XN;
365                 }
366                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
367                         /*
368                          * For ARMv7 with TEX remapping,
369                          * - shared device is SXCB=1100
370                          * - nonshared device is SXCB=0100
371                          * - write combine device mem is SXCB=0001
372                          * (Uncached Normal memory)
373                          */
374                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
375                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
376                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
377                 } else if (cpu_is_xsc3()) {
378                         /*
379                          * For Xscale3,
380                          * - shared device is TEXCB=00101
381                          * - nonshared device is TEXCB=01000
382                          * - write combine device mem is TEXCB=00100
383                          * (Inner/Outer Uncacheable in xsc3 parlance)
384                          */
385                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
386                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
387                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
388                 } else {
389                         /*
390                          * For ARMv6 and ARMv7 without TEX remapping,
391                          * - shared device is TEXCB=00001
392                          * - nonshared device is TEXCB=01000
393                          * - write combine device mem is TEXCB=00100
394                          * (Uncached Normal in ARMv6 parlance).
395                          */
396                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
397                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
398                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
399                 }
400         } else {
401                 /*
402                  * On others, write combining is "Uncached/Buffered"
403                  */
404                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
405         }
406
407         /*
408          * Now deal with the memory-type mappings
409          */
410         cp = &cache_policies[cachepolicy];
411         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
412
413         /*
414          * Only use write-through for non-SMP systems
415          */
416         if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
417                 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
418
419         /*
420          * Enable CPU-specific coherency if supported.
421          * (Only available on XSC3 at the moment.)
422          */
423         if (arch_is_coherent() && cpu_is_xsc3()) {
424                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
425                 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
426                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
427                 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
428         }
429         /*
430          * ARMv6 and above have extended page tables.
431          */
432         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
433                 /*
434                  * Mark cache clean areas and XIP ROM read only
435                  * from SVC mode and no access from userspace.
436                  */
437                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
438                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
439                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
440
441                 if (is_smp()) {
442                         /*
443                          * Mark memory with the "shared" attribute
444                          * for SMP systems
445                          */
446                         user_pgprot |= L_PTE_SHARED;
447                         kern_pgprot |= L_PTE_SHARED;
448                         vecs_pgprot |= L_PTE_SHARED;
449                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
450                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
451                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
452                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
453                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
454                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
455                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
456                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
457                 }
458         }
459
460         /*
461          * Non-cacheable Normal - intended for memory areas that must
462          * not cause dirty cache line writebacks when used
463          */
464         if (cpu_arch >= CPU_ARCH_ARMv6) {
465                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
466                         /* Non-cacheable Normal is XCB = 001 */
467                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
468                                 PMD_SECT_BUFFERED;
469                 } else {
470                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
471                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
472                                 PMD_SECT_TEX(1);
473                 }
474         } else {
475                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
476         }
477
478         for (i = 0; i < 16; i++) {
479                 pteval_t v = pgprot_val(protection_map[i]);
480                 protection_map[i] = __pgprot(v | user_pgprot);
481         }
482
483         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
484         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
485
486         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
487         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
488                                  L_PTE_DIRTY | kern_pgprot);
489
490         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
491         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
492         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
493         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
494         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
495         mem_types[MT_ROM].prot_sect |= cp->pmd;
496
497         switch (cp->pmd) {
498         case PMD_SECT_WT:
499                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
500                 break;
501         case PMD_SECT_WB:
502         case PMD_SECT_WBWA:
503                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
504                 break;
505         }
506         printk("Memory policy: ECC %sabled, Data cache %s\n",
507                 ecc_mask ? "en" : "dis", cp->policy);
508
509         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
510                 struct mem_type *t = &mem_types[i];
511                 if (t->prot_l1)
512                         t->prot_l1 |= PMD_DOMAIN(t->domain);
513                 if (t->prot_sect)
514                         t->prot_sect |= PMD_DOMAIN(t->domain);
515         }
516 }
517
518 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
519 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
520                               unsigned long size, pgprot_t vma_prot)
521 {
522         if (!pfn_valid(pfn))
523                 return pgprot_noncached(vma_prot);
524         else if (file->f_flags & O_SYNC)
525                 return pgprot_writecombine(vma_prot);
526         return vma_prot;
527 }
528 EXPORT_SYMBOL(phys_mem_access_prot);
529 #endif
530
531 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
532
533 static void __init *early_alloc(unsigned long sz)
534 {
535         void *ptr = __va(memblock_alloc(sz, sz));
536         memset(ptr, 0, sz);
537         return ptr;
538 }
539
540 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
541 {
542         if (pmd_none(*pmd)) {
543                 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
544                 __pmd_populate(pmd, __pa(pte), prot);
545         }
546         BUG_ON(pmd_bad(*pmd));
547         return pte_offset_kernel(pmd, addr);
548 }
549
550 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
551                                   unsigned long end, unsigned long pfn,
552                                   const struct mem_type *type)
553 {
554         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
555         do {
556                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
557                 pfn++;
558         } while (pte++, addr += PAGE_SIZE, addr != end);
559 }
560
561 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
562                                       unsigned long end, phys_addr_t phys,
563                                       const struct mem_type *type)
564 {
565         pmd_t *pmd = pmd_offset(pud, addr);
566
567         /*
568          * Try a section mapping - end, addr and phys must all be aligned
569          * to a section boundary.  Note that PMDs refer to the individual
570          * L1 entries, whereas PGDs refer to a group of L1 entries making
571          * up one logical pointer to an L2 table.
572          */
573         if (((addr | end | phys) & ~SECTION_MASK) == 0) {
574                 pmd_t *p = pmd;
575
576                 if (addr & SECTION_SIZE)
577                         pmd++;
578
579                 do {
580                         *pmd = __pmd(phys | type->prot_sect);
581                         phys += SECTION_SIZE;
582                 } while (pmd++, addr += SECTION_SIZE, addr != end);
583
584                 flush_pmd_entry(p);
585         } else {
586                 /*
587                  * No need to loop; pte's aren't interested in the
588                  * individual L1 entries.
589                  */
590                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
591         }
592 }
593
594 static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
595         unsigned long phys, const struct mem_type *type)
596 {
597         pud_t *pud = pud_offset(pgd, addr);
598         unsigned long next;
599
600         do {
601                 next = pud_addr_end(addr, end);
602                 alloc_init_section(pud, addr, next, phys, type);
603                 phys += next - addr;
604         } while (pud++, addr = next, addr != end);
605 }
606
607 static void __init create_36bit_mapping(struct map_desc *md,
608                                         const struct mem_type *type)
609 {
610         unsigned long addr, length, end;
611         phys_addr_t phys;
612         pgd_t *pgd;
613
614         addr = md->virtual;
615         phys = __pfn_to_phys(md->pfn);
616         length = PAGE_ALIGN(md->length);
617
618         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
619                 printk(KERN_ERR "MM: CPU does not support supersection "
620                        "mapping for 0x%08llx at 0x%08lx\n",
621                        (long long)__pfn_to_phys((u64)md->pfn), addr);
622                 return;
623         }
624
625         /* N.B. ARMv6 supersections are only defined to work with domain 0.
626          *      Since domain assignments can in fact be arbitrary, the
627          *      'domain == 0' check below is required to insure that ARMv6
628          *      supersections are only allocated for domain 0 regardless
629          *      of the actual domain assignments in use.
630          */
631         if (type->domain) {
632                 printk(KERN_ERR "MM: invalid domain in supersection "
633                        "mapping for 0x%08llx at 0x%08lx\n",
634                        (long long)__pfn_to_phys((u64)md->pfn), addr);
635                 return;
636         }
637
638         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
639                 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
640                        " at 0x%08lx invalid alignment\n",
641                        (long long)__pfn_to_phys((u64)md->pfn), addr);
642                 return;
643         }
644
645         /*
646          * Shift bits [35:32] of address into bits [23:20] of PMD
647          * (See ARMv6 spec).
648          */
649         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
650
651         pgd = pgd_offset_k(addr);
652         end = addr + length;
653         do {
654                 pud_t *pud = pud_offset(pgd, addr);
655                 pmd_t *pmd = pmd_offset(pud, addr);
656                 int i;
657
658                 for (i = 0; i < 16; i++)
659                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
660
661                 addr += SUPERSECTION_SIZE;
662                 phys += SUPERSECTION_SIZE;
663                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
664         } while (addr != end);
665 }
666
667 /*
668  * Create the page directory entries and any necessary
669  * page tables for the mapping specified by `md'.  We
670  * are able to cope here with varying sizes and address
671  * offsets, and we take full advantage of sections and
672  * supersections.
673  */
674 static void __init create_mapping(struct map_desc *md)
675 {
676         unsigned long addr, length, end;
677         phys_addr_t phys;
678         const struct mem_type *type;
679         pgd_t *pgd;
680
681         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
682                 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
683                        " at 0x%08lx in user region\n",
684                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
685                 return;
686         }
687
688         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
689             md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
690                 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
691                        " at 0x%08lx overlaps vmalloc space\n",
692                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
693         }
694
695         type = &mem_types[md->type];
696
697         /*
698          * Catch 36-bit addresses
699          */
700         if (md->pfn >= 0x100000) {
701                 create_36bit_mapping(md, type);
702                 return;
703         }
704
705         addr = md->virtual & PAGE_MASK;
706         phys = __pfn_to_phys(md->pfn);
707         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
708
709         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
710                 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
711                        "be mapped using pages, ignoring.\n",
712                        (long long)__pfn_to_phys(md->pfn), addr);
713                 return;
714         }
715
716         pgd = pgd_offset_k(addr);
717         end = addr + length;
718         do {
719                 unsigned long next = pgd_addr_end(addr, end);
720
721                 alloc_init_pud(pgd, addr, next, phys, type);
722
723                 phys += next - addr;
724                 addr = next;
725         } while (pgd++, addr != end);
726 }
727
728 /*
729  * Create the architecture specific mappings
730  */
731 void __init iotable_init(struct map_desc *io_desc, int nr)
732 {
733         int i;
734
735         for (i = 0; i < nr; i++)
736                 create_mapping(io_desc + i);
737 }
738
739 #if defined(CONFIG_PLAT_RK)
740 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_512M);
741 #else
742 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
743 #endif
744
745 /*
746  * vmalloc=size forces the vmalloc area to be exactly 'size'
747  * bytes. This can be used to increase (or decrease) the vmalloc
748  * area - the default is 128m.
749  */
750 static int __init early_vmalloc(char *arg)
751 {
752         unsigned long vmalloc_reserve = memparse(arg, NULL);
753
754         if (vmalloc_reserve < SZ_16M) {
755                 vmalloc_reserve = SZ_16M;
756                 printk(KERN_WARNING
757                         "vmalloc area too small, limiting to %luMB\n",
758                         vmalloc_reserve >> 20);
759         }
760
761         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
762                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
763                 printk(KERN_WARNING
764                         "vmalloc area is too big, limiting to %luMB\n",
765                         vmalloc_reserve >> 20);
766         }
767
768         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
769         return 0;
770 }
771 early_param("vmalloc", early_vmalloc);
772
773 static phys_addr_t lowmem_limit __initdata = 0;
774
775 void __init sanity_check_meminfo(void)
776 {
777         int i, j, highmem = 0;
778
779         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
780                 struct membank *bank = &meminfo.bank[j];
781                 *bank = meminfo.bank[i];
782
783 #ifdef CONFIG_HIGHMEM
784                 if (__va(bank->start) >= vmalloc_min ||
785                     __va(bank->start) < (void *)PAGE_OFFSET)
786                         highmem = 1;
787
788                 bank->highmem = highmem;
789
790                 /*
791                  * Split those memory banks which are partially overlapping
792                  * the vmalloc area greatly simplifying things later.
793                  */
794                 if (__va(bank->start) < vmalloc_min &&
795                     bank->size > vmalloc_min - __va(bank->start)) {
796                         if (meminfo.nr_banks >= NR_BANKS) {
797                                 printk(KERN_CRIT "NR_BANKS too low, "
798                                                  "ignoring high memory\n");
799                         } else {
800                                 memmove(bank + 1, bank,
801                                         (meminfo.nr_banks - i) * sizeof(*bank));
802                                 meminfo.nr_banks++;
803                                 i++;
804                                 bank[1].size -= vmalloc_min - __va(bank->start);
805                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
806                                 bank[1].highmem = highmem = 1;
807                                 j++;
808                         }
809                         bank->size = vmalloc_min - __va(bank->start);
810                 }
811 #else
812                 bank->highmem = highmem;
813
814                 /*
815                  * Check whether this memory bank would entirely overlap
816                  * the vmalloc area.
817                  */
818                 if (__va(bank->start) >= vmalloc_min ||
819                     __va(bank->start) < (void *)PAGE_OFFSET) {
820                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
821                                "(vmalloc region overlap).\n",
822                                (unsigned long long)bank->start,
823                                (unsigned long long)bank->start + bank->size - 1);
824                         continue;
825                 }
826
827                 /*
828                  * Check whether this memory bank would partially overlap
829                  * the vmalloc area.
830                  */
831                 if (__va(bank->start + bank->size) > vmalloc_min ||
832                     __va(bank->start + bank->size) < __va(bank->start)) {
833                         unsigned long newsize = vmalloc_min - __va(bank->start);
834                         printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
835                                "to -%.8llx (vmalloc region overlap).\n",
836                                (unsigned long long)bank->start,
837                                (unsigned long long)bank->start + bank->size - 1,
838                                (unsigned long long)bank->start + newsize - 1);
839                         bank->size = newsize;
840                 }
841 #endif
842                 if (!bank->highmem && bank->start + bank->size > lowmem_limit)
843                         lowmem_limit = bank->start + bank->size;
844
845                 j++;
846         }
847 #ifdef CONFIG_HIGHMEM
848         if (highmem) {
849                 const char *reason = NULL;
850
851                 if (cache_is_vipt_aliasing()) {
852                         /*
853                          * Interactions between kmap and other mappings
854                          * make highmem support with aliasing VIPT caches
855                          * rather difficult.
856                          */
857                         reason = "with VIPT aliasing cache";
858                 }
859                 if (reason) {
860                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
861                                 reason);
862                         while (j > 0 && meminfo.bank[j - 1].highmem)
863                                 j--;
864                 }
865         }
866 #endif
867         meminfo.nr_banks = j;
868         memblock_set_current_limit(lowmem_limit);
869 }
870
871 static inline void prepare_page_table(void)
872 {
873         unsigned long addr;
874         phys_addr_t end;
875
876         /*
877          * Clear out all the mappings below the kernel image.
878          */
879         for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
880                 pmd_clear(pmd_off_k(addr));
881
882 #ifdef CONFIG_XIP_KERNEL
883         /* The XIP kernel is mapped in the module area -- skip over it */
884         addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
885 #endif
886         for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
887                 pmd_clear(pmd_off_k(addr));
888
889         /*
890          * Find the end of the first block of lowmem.
891          */
892         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
893         if (end >= lowmem_limit)
894                 end = lowmem_limit;
895
896         /*
897          * Clear out all the kernel space mappings, except for the first
898          * memory bank, up to the end of the vmalloc region.
899          */
900         for (addr = __phys_to_virt(end);
901              addr < VMALLOC_END; addr += PGDIR_SIZE)
902                 pmd_clear(pmd_off_k(addr));
903 }
904
905 /*
906  * Reserve the special regions of memory
907  */
908 void __init arm_mm_memblock_reserve(void)
909 {
910         /*
911          * Reserve the page tables.  These are already in use,
912          * and can only be in node 0.
913          */
914         memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
915
916 #ifdef CONFIG_SA1111
917         /*
918          * Because of the SA1111 DMA bug, we want to preserve our
919          * precious DMA-able memory...
920          */
921         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
922 #endif
923 }
924
925 /*
926  * Set up device the mappings.  Since we clear out the page tables for all
927  * mappings above VMALLOC_END, we will remove any debug device mappings.
928  * This means you have to be careful how you debug this function, or any
929  * called function.  This means you can't use any function or debugging
930  * method which may touch any device, otherwise the kernel _will_ crash.
931  */
932 static void __init devicemaps_init(struct machine_desc *mdesc)
933 {
934         struct map_desc map;
935         unsigned long addr;
936
937         /*
938          * Allocate the vector page early.
939          */
940         vectors_page = early_alloc(PAGE_SIZE);
941
942         for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
943                 pmd_clear(pmd_off_k(addr));
944
945         /*
946          * Map the kernel if it is XIP.
947          * It is always first in the modulearea.
948          */
949 #ifdef CONFIG_XIP_KERNEL
950         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
951         map.virtual = MODULES_VADDR;
952         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
953         map.type = MT_ROM;
954         create_mapping(&map);
955 #endif
956
957         /*
958          * Map the cache flushing regions.
959          */
960 #ifdef FLUSH_BASE
961         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
962         map.virtual = FLUSH_BASE;
963         map.length = SZ_1M;
964         map.type = MT_CACHECLEAN;
965         create_mapping(&map);
966 #endif
967 #ifdef FLUSH_BASE_MINICACHE
968         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
969         map.virtual = FLUSH_BASE_MINICACHE;
970         map.length = SZ_1M;
971         map.type = MT_MINICLEAN;
972         create_mapping(&map);
973 #endif
974
975         /*
976          * Create a mapping for the machine vectors at the high-vectors
977          * location (0xffff0000).  If we aren't using high-vectors, also
978          * create a mapping at the low-vectors virtual address.
979          */
980         map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
981         map.virtual = 0xffff0000;
982         map.length = PAGE_SIZE;
983         map.type = MT_HIGH_VECTORS;
984         create_mapping(&map);
985
986         if (!vectors_high()) {
987                 map.virtual = 0;
988                 map.type = MT_LOW_VECTORS;
989                 create_mapping(&map);
990         }
991
992         /*
993          * Ask the machine support to map in the statically mapped devices.
994          */
995         if (mdesc->map_io)
996                 mdesc->map_io();
997
998         /*
999          * Finally flush the caches and tlb to ensure that we're in a
1000          * consistent state wrt the writebuffer.  This also ensures that
1001          * any write-allocated cache lines in the vector page are written
1002          * back.  After this point, we can start to touch devices again.
1003          */
1004         local_flush_tlb_all();
1005         flush_cache_all();
1006 }
1007
1008 static void __init kmap_init(void)
1009 {
1010 #ifdef CONFIG_HIGHMEM
1011         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1012                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1013 #endif
1014 }
1015
1016 static void __init map_lowmem(void)
1017 {
1018         struct memblock_region *reg;
1019
1020         /* Map all the lowmem memory banks. */
1021         for_each_memblock(memory, reg) {
1022                 phys_addr_t start = reg->base;
1023                 phys_addr_t end = start + reg->size;
1024                 struct map_desc map;
1025
1026                 if (end > lowmem_limit)
1027                         end = lowmem_limit;
1028                 if (start >= end)
1029                         break;
1030
1031                 map.pfn = __phys_to_pfn(start);
1032                 map.virtual = __phys_to_virt(start);
1033                 map.length = end - start;
1034                 map.type = MT_MEMORY;
1035
1036                 create_mapping(&map);
1037         }
1038 }
1039
1040 /*
1041  * paging_init() sets up the page tables, initialises the zone memory
1042  * maps, and sets up the zero page, bad page and bad page tables.
1043  */
1044 void __init paging_init(struct machine_desc *mdesc)
1045 {
1046         void *zero_page;
1047
1048         memblock_set_current_limit(lowmem_limit);
1049
1050         build_mem_type_table();
1051         prepare_page_table();
1052         map_lowmem();
1053         devicemaps_init(mdesc);
1054         kmap_init();
1055
1056         top_pmd = pmd_off_k(0xffff0000);
1057
1058         /* allocate the zero page. */
1059         zero_page = early_alloc(PAGE_SIZE);
1060
1061         bootmem_init();
1062
1063         empty_zero_page = virt_to_page(zero_page);
1064         __flush_dcache_page(NULL, empty_zero_page);
1065 }