Merge tag 'v4.4.32' into linux-linaro-lsk-v4.4
[firefly-linux-kernel-4.4.55.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/processor.h>
28 #include <asm/sysreg.h>
29 #include <asm/virt.h>
30
31 unsigned long elf_hwcap __read_mostly;
32 EXPORT_SYMBOL_GPL(elf_hwcap);
33
34 #ifdef CONFIG_COMPAT
35 #define COMPAT_ELF_HWCAP_DEFAULT        \
36                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
37                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
38                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
39                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
40                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
41                                  COMPAT_HWCAP_LPAE)
42 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
43 unsigned int compat_elf_hwcap2 __read_mostly;
44 #endif
45
46 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
47
48 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
49         {                                               \
50                 .sign = SIGNED,                         \
51                 .strict = STRICT,                       \
52                 .type = TYPE,                           \
53                 .shift = SHIFT,                         \
54                 .width = WIDTH,                         \
55                 .safe_val = SAFE_VAL,                   \
56         }
57
58 /* Define a feature with signed values */
59 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
60         __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
61
62 /* Define a feature with unsigned value */
63 #define U_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
64         __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
65
66 #define ARM64_FTR_END                                   \
67         {                                               \
68                 .width = 0,                             \
69         }
70
71 /* meta feature for alternatives */
72 static bool __maybe_unused
73 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry);
74
75 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
76         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
77         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
78         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
79         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
80         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
81         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
82         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
83         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
84         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
85         ARM64_FTR_END,
86 };
87
88 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
89         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
90         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
91         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
92         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
93         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
94         /* Linux doesn't care about the EL3 */
95         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
96         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
97         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
98         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
99         ARM64_FTR_END,
100 };
101
102 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
103         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
104         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
105         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
106         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
107         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
108         /* Linux shouldn't care about secure memory */
109         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
110         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
111         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
112         /*
113          * Differing PARange is fine as long as all peripherals and memory are mapped
114          * within the minimum PARange of all CPUs
115          */
116         U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
117         ARM64_FTR_END,
118 };
119
120 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
121         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
122         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
123         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
124         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
125         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
126         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
127         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
128         ARM64_FTR_END,
129 };
130
131 static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
132         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
133         ARM64_FTR_END,
134 };
135
136 static struct arm64_ftr_bits ftr_ctr[] = {
137         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),      /* RAO */
138         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
139         U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),        /* CWG */
140         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
141         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
142         /*
143          * Linux can handle differing I-cache policies. Userspace JITs will
144          * make use of *minLine
145          */
146         U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),   /* L1Ip */
147         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),        /* RAZ */
148         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),  /* IminLine */
149         ARM64_FTR_END,
150 };
151
152 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
153         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),        /* InnerShr */
154         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),        /* FCSE */
155         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),        /* AuxReg */
156         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),        /* TCM */
157         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* ShareLvl */
158         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* OuterShr */
159         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
160         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
161         ARM64_FTR_END,
162 };
163
164 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
165         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
166         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
167         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
168         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
169         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
170         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
171         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
172         ARM64_FTR_END,
173 };
174
175 static struct arm64_ftr_bits ftr_mvfr2[] = {
176         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
177         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* FPMisc */
178         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* SIMDMisc */
179         ARM64_FTR_END,
180 };
181
182 static struct arm64_ftr_bits ftr_dczid[] = {
183         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),        /* RAZ */
184         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),         /* DZP */
185         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* BS */
186         ARM64_FTR_END,
187 };
188
189
190 static struct arm64_ftr_bits ftr_id_isar5[] = {
191         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
192         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),        /* RAZ */
193         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
194         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
195         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
196         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
197         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
198         ARM64_FTR_END,
199 };
200
201 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
202         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
203         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* ac2 */
204         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* RAZ */
205         ARM64_FTR_END,
206 };
207
208 static struct arm64_ftr_bits ftr_id_pfr0[] = {
209         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),       /* RAZ */
210         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* State3 */
211         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),         /* State2 */
212         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* State1 */
213         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* State0 */
214         ARM64_FTR_END,
215 };
216
217 /*
218  * Common ftr bits for a 32bit register with all hidden, strict
219  * attributes, with 4bit feature fields and a default safe value of
220  * 0. Covers the following 32bit registers:
221  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
222  */
223 static struct arm64_ftr_bits ftr_generic_32bits[] = {
224         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
225         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
226         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
227         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
228         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
229         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
230         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
231         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
232         ARM64_FTR_END,
233 };
234
235 static struct arm64_ftr_bits ftr_generic[] = {
236         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
237         ARM64_FTR_END,
238 };
239
240 static struct arm64_ftr_bits ftr_generic32[] = {
241         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
242         ARM64_FTR_END,
243 };
244
245 static struct arm64_ftr_bits ftr_aa64raz[] = {
246         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
247         ARM64_FTR_END,
248 };
249
250 #define ARM64_FTR_REG(id, table)                \
251         {                                       \
252                 .sys_id = id,                   \
253                 .name = #id,                    \
254                 .ftr_bits = &((table)[0]),      \
255         }
256
257 static struct arm64_ftr_reg arm64_ftr_regs[] = {
258
259         /* Op1 = 0, CRn = 0, CRm = 1 */
260         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
261         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
262         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits),
263         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
264         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
265         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
266         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
267
268         /* Op1 = 0, CRn = 0, CRm = 2 */
269         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
270         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
271         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
272         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
273         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
274         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
275         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
276
277         /* Op1 = 0, CRn = 0, CRm = 3 */
278         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
279         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
280         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
281
282         /* Op1 = 0, CRn = 0, CRm = 4 */
283         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
284         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
285
286         /* Op1 = 0, CRn = 0, CRm = 5 */
287         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
288         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
289
290         /* Op1 = 0, CRn = 0, CRm = 6 */
291         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
292         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
293
294         /* Op1 = 0, CRn = 0, CRm = 7 */
295         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
296         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
297         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
298
299         /* Op1 = 3, CRn = 0, CRm = 0 */
300         ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
301         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
302
303         /* Op1 = 3, CRn = 14, CRm = 0 */
304         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
305 };
306
307 static int search_cmp_ftr_reg(const void *id, const void *regp)
308 {
309         return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
310 }
311
312 /*
313  * get_arm64_ftr_reg - Lookup a feature register entry using its
314  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
315  * ascending order of sys_id , we use binary search to find a matching
316  * entry.
317  *
318  * returns - Upon success,  matching ftr_reg entry for id.
319  *         - NULL on failure. It is upto the caller to decide
320  *           the impact of a failure.
321  */
322 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
323 {
324         return bsearch((const void *)(unsigned long)sys_id,
325                         arm64_ftr_regs,
326                         ARRAY_SIZE(arm64_ftr_regs),
327                         sizeof(arm64_ftr_regs[0]),
328                         search_cmp_ftr_reg);
329 }
330
331 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
332 {
333         u64 mask = arm64_ftr_mask(ftrp);
334
335         reg &= ~mask;
336         reg |= (ftr_val << ftrp->shift) & mask;
337         return reg;
338 }
339
340 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
341 {
342         s64 ret = 0;
343
344         switch (ftrp->type) {
345         case FTR_EXACT:
346                 ret = ftrp->safe_val;
347                 break;
348         case FTR_LOWER_SAFE:
349                 ret = new < cur ? new : cur;
350                 break;
351         case FTR_HIGHER_SAFE:
352                 ret = new > cur ? new : cur;
353                 break;
354         default:
355                 BUG();
356         }
357
358         return ret;
359 }
360
361 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
362 {
363         return ((const struct arm64_ftr_reg *)a)->sys_id -
364                  ((const struct arm64_ftr_reg *)b)->sys_id;
365 }
366
367 static void __init swap_ftr_regs(void *a, void *b, int size)
368 {
369         struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
370         *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
371         *(struct arm64_ftr_reg *)b = tmp;
372 }
373
374 static void __init sort_ftr_regs(void)
375 {
376         /* Keep the array sorted so that we can do the binary search */
377         sort(arm64_ftr_regs,
378                 ARRAY_SIZE(arm64_ftr_regs),
379                 sizeof(arm64_ftr_regs[0]),
380                 sort_cmp_ftr_regs,
381                 swap_ftr_regs);
382 }
383
384 /*
385  * Initialise the CPU feature register from Boot CPU values.
386  * Also initiliases the strict_mask for the register.
387  */
388 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
389 {
390         u64 val = 0;
391         u64 strict_mask = ~0x0ULL;
392         struct arm64_ftr_bits *ftrp;
393         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
394
395         BUG_ON(!reg);
396
397         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
398                 s64 ftr_new = arm64_ftr_value(ftrp, new);
399
400                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
401                 if (!ftrp->strict)
402                         strict_mask &= ~arm64_ftr_mask(ftrp);
403         }
404         reg->sys_val = val;
405         reg->strict_mask = strict_mask;
406 }
407
408 void __init init_cpu_features(struct cpuinfo_arm64 *info)
409 {
410         /* Before we start using the tables, make sure it is sorted */
411         sort_ftr_regs();
412
413         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
414         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
415         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
416         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
417         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
418         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
419         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
420         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
421         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
422         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
423         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
424         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
425         init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
426         init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
427         init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
428         init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
429         init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
430         init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
431         init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
432         init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
433         init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
434         init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
435         init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
436         init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
437         init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
438         init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
439         init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
440         init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
441 }
442
443 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
444 {
445         struct arm64_ftr_bits *ftrp;
446
447         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
448                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
449                 s64 ftr_new = arm64_ftr_value(ftrp, new);
450
451                 if (ftr_cur == ftr_new)
452                         continue;
453                 /* Find a safe value */
454                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
455                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
456         }
457
458 }
459
460 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
461 {
462         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
463
464         BUG_ON(!regp);
465         update_cpu_ftr_reg(regp, val);
466         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
467                 return 0;
468         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
469                         regp->name, boot, cpu, val);
470         return 1;
471 }
472
473 /*
474  * Update system wide CPU feature registers with the values from a
475  * non-boot CPU. Also performs SANITY checks to make sure that there
476  * aren't any insane variations from that of the boot CPU.
477  */
478 void update_cpu_features(int cpu,
479                          struct cpuinfo_arm64 *info,
480                          struct cpuinfo_arm64 *boot)
481 {
482         int taint = 0;
483
484         /*
485          * The kernel can handle differing I-cache policies, but otherwise
486          * caches should look identical. Userspace JITs will make use of
487          * *minLine.
488          */
489         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
490                                       info->reg_ctr, boot->reg_ctr);
491
492         /*
493          * Userspace may perform DC ZVA instructions. Mismatched block sizes
494          * could result in too much or too little memory being zeroed if a
495          * process is preempted and migrated between CPUs.
496          */
497         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
498                                       info->reg_dczid, boot->reg_dczid);
499
500         /* If different, timekeeping will be broken (especially with KVM) */
501         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
502                                       info->reg_cntfrq, boot->reg_cntfrq);
503
504         /*
505          * The kernel uses self-hosted debug features and expects CPUs to
506          * support identical debug features. We presently need CTX_CMPs, WRPs,
507          * and BRPs to be identical.
508          * ID_AA64DFR1 is currently RES0.
509          */
510         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
511                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
512         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
513                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
514         /*
515          * Even in big.LITTLE, processors should be identical instruction-set
516          * wise.
517          */
518         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
519                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
520         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
521                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
522
523         /*
524          * Differing PARange support is fine as long as all peripherals and
525          * memory are mapped within the minimum PARange of all CPUs.
526          * Linux should not care about secure memory.
527          */
528         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
529                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
530         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
531                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
532         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
533                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
534
535         /*
536          * EL3 is not our concern.
537          * ID_AA64PFR1 is currently RES0.
538          */
539         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
540                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
541         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
542                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
543
544         /*
545          * If we have AArch32, we care about 32-bit features for compat. These
546          * registers should be RES0 otherwise.
547          */
548         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
549                                         info->reg_id_dfr0, boot->reg_id_dfr0);
550         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
551                                         info->reg_id_isar0, boot->reg_id_isar0);
552         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
553                                         info->reg_id_isar1, boot->reg_id_isar1);
554         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
555                                         info->reg_id_isar2, boot->reg_id_isar2);
556         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
557                                         info->reg_id_isar3, boot->reg_id_isar3);
558         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
559                                         info->reg_id_isar4, boot->reg_id_isar4);
560         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
561                                         info->reg_id_isar5, boot->reg_id_isar5);
562
563         /*
564          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
565          * ACTLR formats could differ across CPUs and therefore would have to
566          * be trapped for virtualization anyway.
567          */
568         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
569                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
570         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
571                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
572         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
573                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
574         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
575                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
576         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
577                                         info->reg_id_pfr0, boot->reg_id_pfr0);
578         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
579                                         info->reg_id_pfr1, boot->reg_id_pfr1);
580         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
581                                         info->reg_mvfr0, boot->reg_mvfr0);
582         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
583                                         info->reg_mvfr1, boot->reg_mvfr1);
584         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
585                                         info->reg_mvfr2, boot->reg_mvfr2);
586
587         /*
588          * Mismatched CPU features are a recipe for disaster. Don't even
589          * pretend to support them.
590          */
591         WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
592                         "Unsupported CPU feature variation.\n");
593 }
594
595 u64 read_system_reg(u32 id)
596 {
597         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
598
599         /* We shouldn't get a request for an unsupported register */
600         BUG_ON(!regp);
601         return regp->sys_val;
602 }
603
604 #include <linux/irqchip/arm-gic-v3.h>
605
606 static bool
607 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
608 {
609         int val = cpuid_feature_extract_field(reg, entry->field_pos);
610
611         return val >= entry->min_field_value;
612 }
613
614 static bool
615 has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
616 {
617         u64 val;
618
619         val = read_system_reg(entry->sys_reg);
620         return feature_matches(val, entry);
621 }
622
623 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry)
624 {
625         bool has_sre;
626
627         if (!has_cpuid_feature(entry))
628                 return false;
629
630         has_sre = gic_enable_sre();
631         if (!has_sre)
632                 pr_warn_once("%s present but disabled by higher exception level\n",
633                              entry->desc);
634
635         return has_sre;
636 }
637
638 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry)
639 {
640         u32 midr = read_cpuid_id();
641         u32 rv_min, rv_max;
642
643         /* Cavium ThunderX pass 1.x and 2.x */
644         rv_min = 0;
645         rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
646
647         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
648 }
649
650 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry)
651 {
652         return is_kernel_in_hyp_mode();
653 }
654
655 static const struct arm64_cpu_capabilities arm64_features[] = {
656         {
657                 .desc = "GIC system register CPU interface",
658                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
659                 .matches = has_useable_gicv3_cpuif,
660                 .sys_reg = SYS_ID_AA64PFR0_EL1,
661                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
662                 .min_field_value = 1,
663         },
664 #ifdef CONFIG_ARM64_PAN
665         {
666                 .desc = "Privileged Access Never",
667                 .capability = ARM64_HAS_PAN,
668                 .matches = has_cpuid_feature,
669                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
670                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
671                 .min_field_value = 1,
672                 .enable = cpu_enable_pan,
673         },
674 #endif /* CONFIG_ARM64_PAN */
675 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
676         {
677                 .desc = "LSE atomic instructions",
678                 .capability = ARM64_HAS_LSE_ATOMICS,
679                 .matches = has_cpuid_feature,
680                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
681                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
682                 .min_field_value = 2,
683         },
684 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
685         {
686                 .desc = "Software prefetching using PRFM",
687                 .capability = ARM64_HAS_NO_HW_PREFETCH,
688                 .matches = has_no_hw_prefetch,
689         },
690 #ifdef CONFIG_ARM64_UAO
691         {
692                 .desc = "User Access Override",
693                 .capability = ARM64_HAS_UAO,
694                 .matches = has_cpuid_feature,
695                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
696                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
697                 .min_field_value = 1,
698                 .enable = cpu_enable_uao,
699         },
700 #endif /* CONFIG_ARM64_UAO */
701 #ifdef CONFIG_ARM64_PAN
702         {
703                 .capability = ARM64_ALT_PAN_NOT_UAO,
704                 .matches = cpufeature_pan_not_uao,
705         },
706 #endif /* CONFIG_ARM64_PAN */
707         {
708                 .desc = "Virtualization Host Extensions",
709                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
710                 .matches = runs_at_el2,
711         },
712         {},
713 };
714
715 #define HWCAP_CAP(reg, field, min_value, type, cap)             \
716         {                                                       \
717                 .desc = #cap,                                   \
718                 .matches = has_cpuid_feature,                   \
719                 .sys_reg = reg,                                 \
720                 .field_pos = field,                             \
721                 .min_field_value = min_value,                   \
722                 .hwcap_type = type,                             \
723                 .hwcap = cap,                                   \
724         }
725
726 static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
727         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 2, CAP_HWCAP, HWCAP_PMULL),
728         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 1, CAP_HWCAP, HWCAP_AES),
729         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, 1, CAP_HWCAP, HWCAP_SHA1),
730         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 1, CAP_HWCAP, HWCAP_SHA2),
731         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, 1, CAP_HWCAP, HWCAP_CRC32),
732         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, 2, CAP_HWCAP, HWCAP_ATOMICS),
733         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 0, CAP_HWCAP, HWCAP_FP),
734         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 0, CAP_HWCAP, HWCAP_ASIMD),
735 #ifdef CONFIG_COMPAT
736         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
737         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
738         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
739         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
740         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
741 #endif
742         {},
743 };
744
745 static void __init cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
746 {
747         switch (cap->hwcap_type) {
748         case CAP_HWCAP:
749                 elf_hwcap |= cap->hwcap;
750                 break;
751 #ifdef CONFIG_COMPAT
752         case CAP_COMPAT_HWCAP:
753                 compat_elf_hwcap |= (u32)cap->hwcap;
754                 break;
755         case CAP_COMPAT_HWCAP2:
756                 compat_elf_hwcap2 |= (u32)cap->hwcap;
757                 break;
758 #endif
759         default:
760                 WARN_ON(1);
761                 break;
762         }
763 }
764
765 /* Check if we have a particular HWCAP enabled */
766 static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
767 {
768         bool rc;
769
770         switch (cap->hwcap_type) {
771         case CAP_HWCAP:
772                 rc = (elf_hwcap & cap->hwcap) != 0;
773                 break;
774 #ifdef CONFIG_COMPAT
775         case CAP_COMPAT_HWCAP:
776                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
777                 break;
778         case CAP_COMPAT_HWCAP2:
779                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
780                 break;
781 #endif
782         default:
783                 WARN_ON(1);
784                 rc = false;
785         }
786
787         return rc;
788 }
789
790 static void __init setup_cpu_hwcaps(void)
791 {
792         int i;
793         const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
794
795         for (i = 0; hwcaps[i].matches; i++)
796                 if (hwcaps[i].matches(&hwcaps[i]))
797                         cap_set_hwcap(&hwcaps[i]);
798 }
799
800 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
801                             const char *info)
802 {
803         int i;
804
805         for (i = 0; caps[i].matches; i++) {
806                 if (!caps[i].matches(&caps[i]))
807                         continue;
808
809                 if (!cpus_have_cap(caps[i].capability) && caps[i].desc)
810                         pr_info("%s %s\n", info, caps[i].desc);
811                 cpus_set_cap(caps[i].capability);
812         }
813 }
814
815 /*
816  * Run through the enabled capabilities and enable() it on all active
817  * CPUs
818  */
819 static void __init
820 enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
821 {
822         int i;
823
824         for (i = 0; caps[i].matches; i++)
825                 if (caps[i].enable && cpus_have_cap(caps[i].capability))
826                         on_each_cpu(caps[i].enable, NULL, true);
827 }
828
829 #ifdef CONFIG_HOTPLUG_CPU
830
831 /*
832  * Flag to indicate if we have computed the system wide
833  * capabilities based on the boot time active CPUs. This
834  * will be used to determine if a new booting CPU should
835  * go through the verification process to make sure that it
836  * supports the system capabilities, without using a hotplug
837  * notifier.
838  */
839 static bool sys_caps_initialised;
840
841 static inline void set_sys_caps_initialised(void)
842 {
843         sys_caps_initialised = true;
844 }
845
846 /*
847  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
848  */
849 static u64 __raw_read_system_reg(u32 sys_id)
850 {
851         switch (sys_id) {
852         case SYS_ID_PFR0_EL1:           return read_cpuid(SYS_ID_PFR0_EL1);
853         case SYS_ID_PFR1_EL1:           return read_cpuid(SYS_ID_PFR1_EL1);
854         case SYS_ID_DFR0_EL1:           return read_cpuid(SYS_ID_DFR0_EL1);
855         case SYS_ID_MMFR0_EL1:          return read_cpuid(SYS_ID_MMFR0_EL1);
856         case SYS_ID_MMFR1_EL1:          return read_cpuid(SYS_ID_MMFR1_EL1);
857         case SYS_ID_MMFR2_EL1:          return read_cpuid(SYS_ID_MMFR2_EL1);
858         case SYS_ID_MMFR3_EL1:          return read_cpuid(SYS_ID_MMFR3_EL1);
859         case SYS_ID_ISAR0_EL1:          return read_cpuid(SYS_ID_ISAR0_EL1);
860         case SYS_ID_ISAR1_EL1:          return read_cpuid(SYS_ID_ISAR1_EL1);
861         case SYS_ID_ISAR2_EL1:          return read_cpuid(SYS_ID_ISAR2_EL1);
862         case SYS_ID_ISAR3_EL1:          return read_cpuid(SYS_ID_ISAR3_EL1);
863         case SYS_ID_ISAR4_EL1:          return read_cpuid(SYS_ID_ISAR4_EL1);
864         case SYS_ID_ISAR5_EL1:          return read_cpuid(SYS_ID_ISAR4_EL1);
865         case SYS_MVFR0_EL1:             return read_cpuid(SYS_MVFR0_EL1);
866         case SYS_MVFR1_EL1:             return read_cpuid(SYS_MVFR1_EL1);
867         case SYS_MVFR2_EL1:             return read_cpuid(SYS_MVFR2_EL1);
868
869         case SYS_ID_AA64PFR0_EL1:       return read_cpuid(SYS_ID_AA64PFR0_EL1);
870         case SYS_ID_AA64PFR1_EL1:       return read_cpuid(SYS_ID_AA64PFR0_EL1);
871         case SYS_ID_AA64DFR0_EL1:       return read_cpuid(SYS_ID_AA64DFR0_EL1);
872         case SYS_ID_AA64DFR1_EL1:       return read_cpuid(SYS_ID_AA64DFR0_EL1);
873         case SYS_ID_AA64MMFR0_EL1:      return read_cpuid(SYS_ID_AA64MMFR0_EL1);
874         case SYS_ID_AA64MMFR1_EL1:      return read_cpuid(SYS_ID_AA64MMFR1_EL1);
875         case SYS_ID_AA64MMFR2_EL1:      return read_cpuid(SYS_ID_AA64MMFR2_EL1);
876         case SYS_ID_AA64ISAR0_EL1:      return read_cpuid(SYS_ID_AA64ISAR0_EL1);
877         case SYS_ID_AA64ISAR1_EL1:      return read_cpuid(SYS_ID_AA64ISAR1_EL1);
878
879         case SYS_CNTFRQ_EL0:            return read_cpuid(SYS_CNTFRQ_EL0);
880         case SYS_CTR_EL0:               return read_cpuid(SYS_CTR_EL0);
881         case SYS_DCZID_EL0:             return read_cpuid(SYS_DCZID_EL0);
882         default:
883                 BUG();
884                 return 0;
885         }
886 }
887
888 /*
889  * Park the CPU which doesn't have the capability as advertised
890  * by the system.
891  */
892 static void fail_incapable_cpu(char *cap_type,
893                                  const struct arm64_cpu_capabilities *cap)
894 {
895         int cpu = smp_processor_id();
896
897         pr_crit("CPU%d: missing %s : %s\n", cpu, cap_type, cap->desc);
898         /* Mark this CPU absent */
899         set_cpu_present(cpu, 0);
900
901         /* Check if we can park ourselves */
902         if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
903                 cpu_ops[cpu]->cpu_die(cpu);
904         asm(
905         "1:     wfe\n"
906         "       wfi\n"
907         "       b       1b");
908 }
909
910 /*
911  * Run through the enabled system capabilities and enable() it on this CPU.
912  * The capabilities were decided based on the available CPUs at the boot time.
913  * Any new CPU should match the system wide status of the capability. If the
914  * new CPU doesn't have a capability which the system now has enabled, we
915  * cannot do anything to fix it up and could cause unexpected failures. So
916  * we park the CPU.
917  */
918 void verify_local_cpu_capabilities(void)
919 {
920         int i;
921         const struct arm64_cpu_capabilities *caps;
922
923         /*
924          * If we haven't computed the system capabilities, there is nothing
925          * to verify.
926          */
927         if (!sys_caps_initialised)
928                 return;
929
930         caps = arm64_features;
931         for (i = 0; caps[i].matches; i++) {
932                 if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
933                         continue;
934                 /*
935                  * If the new CPU misses an advertised feature, we cannot proceed
936                  * further, park the cpu.
937                  */
938                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
939                         fail_incapable_cpu("arm64_features", &caps[i]);
940                 if (caps[i].enable)
941                         caps[i].enable(NULL);
942         }
943
944         for (i = 0, caps = arm64_hwcaps; caps[i].matches; i++) {
945                 if (!cpus_have_hwcap(&caps[i]))
946                         continue;
947                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
948                         fail_incapable_cpu("arm64_hwcaps", &caps[i]);
949         }
950 }
951
952 #else   /* !CONFIG_HOTPLUG_CPU */
953
954 static inline void set_sys_caps_initialised(void)
955 {
956 }
957
958 #endif  /* CONFIG_HOTPLUG_CPU */
959
960 static void __init setup_feature_capabilities(void)
961 {
962         update_cpu_capabilities(arm64_features, "detected feature:");
963         enable_cpu_capabilities(arm64_features);
964 }
965
966 void __init setup_cpu_features(void)
967 {
968         u32 cwg;
969         int cls;
970
971         /* Set the CPU feature capabilies */
972         setup_feature_capabilities();
973         setup_cpu_hwcaps();
974
975         /* Advertise that we have computed the system capabilities */
976         set_sys_caps_initialised();
977
978         /*
979          * Check for sane CTR_EL0.CWG value.
980          */
981         cwg = cache_type_cwg();
982         cls = cache_line_size();
983         if (!cwg)
984                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
985                         cls);
986         if (L1_CACHE_BYTES < cls)
987                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
988                         L1_CACHE_BYTES, cls);
989 }
990
991 static bool __maybe_unused
992 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry)
993 {
994         return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
995 }