Merge branch 'linux-linaro-lsk-v4.4' into linux-linaro-lsk-v4.4-android
[firefly-linux-kernel-4.4.55.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/processor.h>
28 #include <asm/sysreg.h>
29 #include <asm/virt.h>
30
31 unsigned long elf_hwcap __read_mostly;
32 EXPORT_SYMBOL_GPL(elf_hwcap);
33
34 #ifdef CONFIG_COMPAT
35 #define COMPAT_ELF_HWCAP_DEFAULT        \
36                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
37                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
38                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
39                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
40                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
41                                  COMPAT_HWCAP_LPAE)
42 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
43 unsigned int compat_elf_hwcap2 __read_mostly;
44 #endif
45
46 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
47 EXPORT_SYMBOL(cpu_hwcaps);
48
49 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
50         {                                               \
51                 .sign = SIGNED,                         \
52                 .strict = STRICT,                       \
53                 .type = TYPE,                           \
54                 .shift = SHIFT,                         \
55                 .width = WIDTH,                         \
56                 .safe_val = SAFE_VAL,                   \
57         }
58
59 /* Define a feature with signed values */
60 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
61         __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
62
63 /* Define a feature with unsigned value */
64 #define U_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
65         __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
66
67 #define ARM64_FTR_END                                   \
68         {                                               \
69                 .width = 0,                             \
70         }
71
72 /* meta feature for alternatives */
73 static bool __maybe_unused
74 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry);
75
76 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
77         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
78         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
79         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
80         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
81         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
82         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
83         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
84         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
85         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
86         ARM64_FTR_END,
87 };
88
89 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
90         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
91         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
92         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
93         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
94         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
95         /* Linux doesn't care about the EL3 */
96         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
97         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
98         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
99         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
100         ARM64_FTR_END,
101 };
102
103 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
104         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
105         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
106         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
107         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
108         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
109         /* Linux shouldn't care about secure memory */
110         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
111         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
112         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
113         /*
114          * Differing PARange is fine as long as all peripherals and memory are mapped
115          * within the minimum PARange of all CPUs
116          */
117         U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
118         ARM64_FTR_END,
119 };
120
121 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
122         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
123         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
124         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
125         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
126         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
127         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
128         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
129         ARM64_FTR_END,
130 };
131
132 static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
133         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
134         ARM64_FTR_END,
135 };
136
137 static struct arm64_ftr_bits ftr_ctr[] = {
138         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),      /* RAO */
139         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
140         U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),        /* CWG */
141         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
142         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
143         /*
144          * Linux can handle differing I-cache policies. Userspace JITs will
145          * make use of *minLine
146          */
147         U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),   /* L1Ip */
148         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),        /* RAZ */
149         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),  /* IminLine */
150         ARM64_FTR_END,
151 };
152
153 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
154         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),        /* InnerShr */
155         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),        /* FCSE */
156         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),        /* AuxReg */
157         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),        /* TCM */
158         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* ShareLvl */
159         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* OuterShr */
160         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
161         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
162         ARM64_FTR_END,
163 };
164
165 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
166         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
167         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
168         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
169         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
170         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
171         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
172         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
173         ARM64_FTR_END,
174 };
175
176 static struct arm64_ftr_bits ftr_mvfr2[] = {
177         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
178         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* FPMisc */
179         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* SIMDMisc */
180         ARM64_FTR_END,
181 };
182
183 static struct arm64_ftr_bits ftr_dczid[] = {
184         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),        /* RAZ */
185         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),         /* DZP */
186         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* BS */
187         ARM64_FTR_END,
188 };
189
190
191 static struct arm64_ftr_bits ftr_id_isar5[] = {
192         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
193         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),        /* RAZ */
194         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
195         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
196         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
197         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
198         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
199         ARM64_FTR_END,
200 };
201
202 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
203         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
204         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* ac2 */
205         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* RAZ */
206         ARM64_FTR_END,
207 };
208
209 static struct arm64_ftr_bits ftr_id_pfr0[] = {
210         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),       /* RAZ */
211         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* State3 */
212         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),         /* State2 */
213         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* State1 */
214         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* State0 */
215         ARM64_FTR_END,
216 };
217
218 /*
219  * Common ftr bits for a 32bit register with all hidden, strict
220  * attributes, with 4bit feature fields and a default safe value of
221  * 0. Covers the following 32bit registers:
222  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
223  */
224 static struct arm64_ftr_bits ftr_generic_32bits[] = {
225         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
226         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
227         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
228         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
229         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
230         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
231         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
232         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
233         ARM64_FTR_END,
234 };
235
236 static struct arm64_ftr_bits ftr_generic[] = {
237         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
238         ARM64_FTR_END,
239 };
240
241 static struct arm64_ftr_bits ftr_generic32[] = {
242         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
243         ARM64_FTR_END,
244 };
245
246 static struct arm64_ftr_bits ftr_aa64raz[] = {
247         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
248         ARM64_FTR_END,
249 };
250
251 #define ARM64_FTR_REG(id, table)                \
252         {                                       \
253                 .sys_id = id,                   \
254                 .name = #id,                    \
255                 .ftr_bits = &((table)[0]),      \
256         }
257
258 static struct arm64_ftr_reg arm64_ftr_regs[] = {
259
260         /* Op1 = 0, CRn = 0, CRm = 1 */
261         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
262         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
263         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits),
264         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
265         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
266         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
267         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
268
269         /* Op1 = 0, CRn = 0, CRm = 2 */
270         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
271         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
272         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
273         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
274         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
275         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
276         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
277
278         /* Op1 = 0, CRn = 0, CRm = 3 */
279         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
280         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
281         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
282
283         /* Op1 = 0, CRn = 0, CRm = 4 */
284         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
285         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
286
287         /* Op1 = 0, CRn = 0, CRm = 5 */
288         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
289         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
290
291         /* Op1 = 0, CRn = 0, CRm = 6 */
292         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
293         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
294
295         /* Op1 = 0, CRn = 0, CRm = 7 */
296         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
297         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
298         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
299
300         /* Op1 = 3, CRn = 0, CRm = 0 */
301         ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
302         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
303
304         /* Op1 = 3, CRn = 14, CRm = 0 */
305         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
306 };
307
308 static int search_cmp_ftr_reg(const void *id, const void *regp)
309 {
310         return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
311 }
312
313 /*
314  * get_arm64_ftr_reg - Lookup a feature register entry using its
315  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
316  * ascending order of sys_id , we use binary search to find a matching
317  * entry.
318  *
319  * returns - Upon success,  matching ftr_reg entry for id.
320  *         - NULL on failure. It is upto the caller to decide
321  *           the impact of a failure.
322  */
323 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
324 {
325         return bsearch((const void *)(unsigned long)sys_id,
326                         arm64_ftr_regs,
327                         ARRAY_SIZE(arm64_ftr_regs),
328                         sizeof(arm64_ftr_regs[0]),
329                         search_cmp_ftr_reg);
330 }
331
332 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
333 {
334         u64 mask = arm64_ftr_mask(ftrp);
335
336         reg &= ~mask;
337         reg |= (ftr_val << ftrp->shift) & mask;
338         return reg;
339 }
340
341 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
342 {
343         s64 ret = 0;
344
345         switch (ftrp->type) {
346         case FTR_EXACT:
347                 ret = ftrp->safe_val;
348                 break;
349         case FTR_LOWER_SAFE:
350                 ret = new < cur ? new : cur;
351                 break;
352         case FTR_HIGHER_SAFE:
353                 ret = new > cur ? new : cur;
354                 break;
355         default:
356                 BUG();
357         }
358
359         return ret;
360 }
361
362 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
363 {
364         return ((const struct arm64_ftr_reg *)a)->sys_id -
365                  ((const struct arm64_ftr_reg *)b)->sys_id;
366 }
367
368 static void __init swap_ftr_regs(void *a, void *b, int size)
369 {
370         struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
371         *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
372         *(struct arm64_ftr_reg *)b = tmp;
373 }
374
375 static void __init sort_ftr_regs(void)
376 {
377         /* Keep the array sorted so that we can do the binary search */
378         sort(arm64_ftr_regs,
379                 ARRAY_SIZE(arm64_ftr_regs),
380                 sizeof(arm64_ftr_regs[0]),
381                 sort_cmp_ftr_regs,
382                 swap_ftr_regs);
383 }
384
385 /*
386  * Initialise the CPU feature register from Boot CPU values.
387  * Also initiliases the strict_mask for the register.
388  */
389 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
390 {
391         u64 val = 0;
392         u64 strict_mask = ~0x0ULL;
393         struct arm64_ftr_bits *ftrp;
394         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
395
396         BUG_ON(!reg);
397
398         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
399                 s64 ftr_new = arm64_ftr_value(ftrp, new);
400
401                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
402                 if (!ftrp->strict)
403                         strict_mask &= ~arm64_ftr_mask(ftrp);
404         }
405         reg->sys_val = val;
406         reg->strict_mask = strict_mask;
407 }
408
409 void __init init_cpu_features(struct cpuinfo_arm64 *info)
410 {
411         /* Before we start using the tables, make sure it is sorted */
412         sort_ftr_regs();
413
414         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
415         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
416         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
417         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
418         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
419         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
420         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
421         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
422         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
423         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
424         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
425         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
426         init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
427         init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
428         init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
429         init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
430         init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
431         init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
432         init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
433         init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
434         init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
435         init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
436         init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
437         init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
438         init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
439         init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
440         init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
441         init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
442 }
443
444 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
445 {
446         struct arm64_ftr_bits *ftrp;
447
448         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
449                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
450                 s64 ftr_new = arm64_ftr_value(ftrp, new);
451
452                 if (ftr_cur == ftr_new)
453                         continue;
454                 /* Find a safe value */
455                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
456                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
457         }
458
459 }
460
461 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
462 {
463         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
464
465         BUG_ON(!regp);
466         update_cpu_ftr_reg(regp, val);
467         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
468                 return 0;
469         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
470                         regp->name, boot, cpu, val);
471         return 1;
472 }
473
474 /*
475  * Update system wide CPU feature registers with the values from a
476  * non-boot CPU. Also performs SANITY checks to make sure that there
477  * aren't any insane variations from that of the boot CPU.
478  */
479 void update_cpu_features(int cpu,
480                          struct cpuinfo_arm64 *info,
481                          struct cpuinfo_arm64 *boot)
482 {
483         int taint = 0;
484
485         /*
486          * The kernel can handle differing I-cache policies, but otherwise
487          * caches should look identical. Userspace JITs will make use of
488          * *minLine.
489          */
490         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
491                                       info->reg_ctr, boot->reg_ctr);
492
493         /*
494          * Userspace may perform DC ZVA instructions. Mismatched block sizes
495          * could result in too much or too little memory being zeroed if a
496          * process is preempted and migrated between CPUs.
497          */
498         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
499                                       info->reg_dczid, boot->reg_dczid);
500
501         /* If different, timekeeping will be broken (especially with KVM) */
502         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
503                                       info->reg_cntfrq, boot->reg_cntfrq);
504
505         /*
506          * The kernel uses self-hosted debug features and expects CPUs to
507          * support identical debug features. We presently need CTX_CMPs, WRPs,
508          * and BRPs to be identical.
509          * ID_AA64DFR1 is currently RES0.
510          */
511         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
512                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
513         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
514                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
515         /*
516          * Even in big.LITTLE, processors should be identical instruction-set
517          * wise.
518          */
519         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
520                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
521         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
522                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
523
524         /*
525          * Differing PARange support is fine as long as all peripherals and
526          * memory are mapped within the minimum PARange of all CPUs.
527          * Linux should not care about secure memory.
528          */
529         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
530                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
531         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
532                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
533         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
534                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
535
536         /*
537          * EL3 is not our concern.
538          * ID_AA64PFR1 is currently RES0.
539          */
540         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
541                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
542         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
543                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
544
545         /*
546          * If we have AArch32, we care about 32-bit features for compat. These
547          * registers should be RES0 otherwise.
548          */
549         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
550                                         info->reg_id_dfr0, boot->reg_id_dfr0);
551         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
552                                         info->reg_id_isar0, boot->reg_id_isar0);
553         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
554                                         info->reg_id_isar1, boot->reg_id_isar1);
555         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
556                                         info->reg_id_isar2, boot->reg_id_isar2);
557         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
558                                         info->reg_id_isar3, boot->reg_id_isar3);
559         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
560                                         info->reg_id_isar4, boot->reg_id_isar4);
561         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
562                                         info->reg_id_isar5, boot->reg_id_isar5);
563
564         /*
565          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
566          * ACTLR formats could differ across CPUs and therefore would have to
567          * be trapped for virtualization anyway.
568          */
569         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
570                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
571         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
572                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
573         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
574                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
575         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
576                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
577         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
578                                         info->reg_id_pfr0, boot->reg_id_pfr0);
579         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
580                                         info->reg_id_pfr1, boot->reg_id_pfr1);
581         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
582                                         info->reg_mvfr0, boot->reg_mvfr0);
583         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
584                                         info->reg_mvfr1, boot->reg_mvfr1);
585         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
586                                         info->reg_mvfr2, boot->reg_mvfr2);
587
588         /*
589          * Mismatched CPU features are a recipe for disaster. Don't even
590          * pretend to support them.
591          */
592         WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
593                         "Unsupported CPU feature variation.\n");
594 }
595
596 u64 read_system_reg(u32 id)
597 {
598         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
599
600         /* We shouldn't get a request for an unsupported register */
601         BUG_ON(!regp);
602         return regp->sys_val;
603 }
604
605 #include <linux/irqchip/arm-gic-v3.h>
606
607 static bool
608 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
609 {
610         int val = cpuid_feature_extract_field(reg, entry->field_pos);
611
612         return val >= entry->min_field_value;
613 }
614
615 static bool
616 has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
617 {
618         u64 val;
619
620         val = read_system_reg(entry->sys_reg);
621         return feature_matches(val, entry);
622 }
623
624 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry)
625 {
626         bool has_sre;
627
628         if (!has_cpuid_feature(entry))
629                 return false;
630
631         has_sre = gic_enable_sre();
632         if (!has_sre)
633                 pr_warn_once("%s present but disabled by higher exception level\n",
634                              entry->desc);
635
636         return has_sre;
637 }
638
639 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry)
640 {
641         u32 midr = read_cpuid_id();
642         u32 rv_min, rv_max;
643
644         /* Cavium ThunderX pass 1.x and 2.x */
645         rv_min = 0;
646         rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
647
648         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
649 }
650
651 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry)
652 {
653         return is_kernel_in_hyp_mode();
654 }
655
656 static const struct arm64_cpu_capabilities arm64_features[] = {
657         {
658                 .desc = "GIC system register CPU interface",
659                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
660                 .matches = has_useable_gicv3_cpuif,
661                 .sys_reg = SYS_ID_AA64PFR0_EL1,
662                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
663                 .min_field_value = 1,
664         },
665 #ifdef CONFIG_ARM64_PAN
666         {
667                 .desc = "Privileged Access Never",
668                 .capability = ARM64_HAS_PAN,
669                 .matches = has_cpuid_feature,
670                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
671                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
672                 .min_field_value = 1,
673                 .enable = cpu_enable_pan,
674         },
675 #endif /* CONFIG_ARM64_PAN */
676 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
677         {
678                 .desc = "LSE atomic instructions",
679                 .capability = ARM64_HAS_LSE_ATOMICS,
680                 .matches = has_cpuid_feature,
681                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
682                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
683                 .min_field_value = 2,
684         },
685 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
686         {
687                 .desc = "Software prefetching using PRFM",
688                 .capability = ARM64_HAS_NO_HW_PREFETCH,
689                 .matches = has_no_hw_prefetch,
690         },
691 #ifdef CONFIG_ARM64_UAO
692         {
693                 .desc = "User Access Override",
694                 .capability = ARM64_HAS_UAO,
695                 .matches = has_cpuid_feature,
696                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
697                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
698                 .min_field_value = 1,
699                 .enable = cpu_enable_uao,
700         },
701 #endif /* CONFIG_ARM64_UAO */
702 #ifdef CONFIG_ARM64_PAN
703         {
704                 .capability = ARM64_ALT_PAN_NOT_UAO,
705                 .matches = cpufeature_pan_not_uao,
706         },
707 #endif /* CONFIG_ARM64_PAN */
708         {
709                 .desc = "Virtualization Host Extensions",
710                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
711                 .matches = runs_at_el2,
712         },
713         {},
714 };
715
716 #define HWCAP_CAP(reg, field, min_value, type, cap)             \
717         {                                                       \
718                 .desc = #cap,                                   \
719                 .matches = has_cpuid_feature,                   \
720                 .sys_reg = reg,                                 \
721                 .field_pos = field,                             \
722                 .min_field_value = min_value,                   \
723                 .hwcap_type = type,                             \
724                 .hwcap = cap,                                   \
725         }
726
727 static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
728         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 2, CAP_HWCAP, HWCAP_PMULL),
729         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 1, CAP_HWCAP, HWCAP_AES),
730         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, 1, CAP_HWCAP, HWCAP_SHA1),
731         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 1, CAP_HWCAP, HWCAP_SHA2),
732         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, 1, CAP_HWCAP, HWCAP_CRC32),
733         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, 2, CAP_HWCAP, HWCAP_ATOMICS),
734         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 0, CAP_HWCAP, HWCAP_FP),
735         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 0, CAP_HWCAP, HWCAP_ASIMD),
736 #ifdef CONFIG_COMPAT
737         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
738         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
739         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
740         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
741         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
742 #endif
743         {},
744 };
745
746 static void __init cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
747 {
748         switch (cap->hwcap_type) {
749         case CAP_HWCAP:
750                 elf_hwcap |= cap->hwcap;
751                 break;
752 #ifdef CONFIG_COMPAT
753         case CAP_COMPAT_HWCAP:
754                 compat_elf_hwcap |= (u32)cap->hwcap;
755                 break;
756         case CAP_COMPAT_HWCAP2:
757                 compat_elf_hwcap2 |= (u32)cap->hwcap;
758                 break;
759 #endif
760         default:
761                 WARN_ON(1);
762                 break;
763         }
764 }
765
766 /* Check if we have a particular HWCAP enabled */
767 static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
768 {
769         bool rc;
770
771         switch (cap->hwcap_type) {
772         case CAP_HWCAP:
773                 rc = (elf_hwcap & cap->hwcap) != 0;
774                 break;
775 #ifdef CONFIG_COMPAT
776         case CAP_COMPAT_HWCAP:
777                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
778                 break;
779         case CAP_COMPAT_HWCAP2:
780                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
781                 break;
782 #endif
783         default:
784                 WARN_ON(1);
785                 rc = false;
786         }
787
788         return rc;
789 }
790
791 static void __init setup_cpu_hwcaps(void)
792 {
793         int i;
794         const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
795
796         for (i = 0; hwcaps[i].matches; i++)
797                 if (hwcaps[i].matches(&hwcaps[i]))
798                         cap_set_hwcap(&hwcaps[i]);
799 }
800
801 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
802                             const char *info)
803 {
804         int i;
805
806         for (i = 0; caps[i].matches; i++) {
807                 if (!caps[i].matches(&caps[i]))
808                         continue;
809
810                 if (!cpus_have_cap(caps[i].capability) && caps[i].desc)
811                         pr_info("%s %s\n", info, caps[i].desc);
812                 cpus_set_cap(caps[i].capability);
813         }
814 }
815
816 /*
817  * Run through the enabled capabilities and enable() it on all active
818  * CPUs
819  */
820 static void __init
821 enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
822 {
823         int i;
824
825         for (i = 0; caps[i].matches; i++)
826                 if (caps[i].enable && cpus_have_cap(caps[i].capability))
827                         on_each_cpu(caps[i].enable, NULL, true);
828 }
829
830 #ifdef CONFIG_HOTPLUG_CPU
831
832 /*
833  * Flag to indicate if we have computed the system wide
834  * capabilities based on the boot time active CPUs. This
835  * will be used to determine if a new booting CPU should
836  * go through the verification process to make sure that it
837  * supports the system capabilities, without using a hotplug
838  * notifier.
839  */
840 static bool sys_caps_initialised;
841
842 static inline void set_sys_caps_initialised(void)
843 {
844         sys_caps_initialised = true;
845 }
846
847 /*
848  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
849  */
850 static u64 __raw_read_system_reg(u32 sys_id)
851 {
852         switch (sys_id) {
853         case SYS_ID_PFR0_EL1:           return read_cpuid(SYS_ID_PFR0_EL1);
854         case SYS_ID_PFR1_EL1:           return read_cpuid(SYS_ID_PFR1_EL1);
855         case SYS_ID_DFR0_EL1:           return read_cpuid(SYS_ID_DFR0_EL1);
856         case SYS_ID_MMFR0_EL1:          return read_cpuid(SYS_ID_MMFR0_EL1);
857         case SYS_ID_MMFR1_EL1:          return read_cpuid(SYS_ID_MMFR1_EL1);
858         case SYS_ID_MMFR2_EL1:          return read_cpuid(SYS_ID_MMFR2_EL1);
859         case SYS_ID_MMFR3_EL1:          return read_cpuid(SYS_ID_MMFR3_EL1);
860         case SYS_ID_ISAR0_EL1:          return read_cpuid(SYS_ID_ISAR0_EL1);
861         case SYS_ID_ISAR1_EL1:          return read_cpuid(SYS_ID_ISAR1_EL1);
862         case SYS_ID_ISAR2_EL1:          return read_cpuid(SYS_ID_ISAR2_EL1);
863         case SYS_ID_ISAR3_EL1:          return read_cpuid(SYS_ID_ISAR3_EL1);
864         case SYS_ID_ISAR4_EL1:          return read_cpuid(SYS_ID_ISAR4_EL1);
865         case SYS_ID_ISAR5_EL1:          return read_cpuid(SYS_ID_ISAR4_EL1);
866         case SYS_MVFR0_EL1:             return read_cpuid(SYS_MVFR0_EL1);
867         case SYS_MVFR1_EL1:             return read_cpuid(SYS_MVFR1_EL1);
868         case SYS_MVFR2_EL1:             return read_cpuid(SYS_MVFR2_EL1);
869
870         case SYS_ID_AA64PFR0_EL1:       return read_cpuid(SYS_ID_AA64PFR0_EL1);
871         case SYS_ID_AA64PFR1_EL1:       return read_cpuid(SYS_ID_AA64PFR0_EL1);
872         case SYS_ID_AA64DFR0_EL1:       return read_cpuid(SYS_ID_AA64DFR0_EL1);
873         case SYS_ID_AA64DFR1_EL1:       return read_cpuid(SYS_ID_AA64DFR0_EL1);
874         case SYS_ID_AA64MMFR0_EL1:      return read_cpuid(SYS_ID_AA64MMFR0_EL1);
875         case SYS_ID_AA64MMFR1_EL1:      return read_cpuid(SYS_ID_AA64MMFR1_EL1);
876         case SYS_ID_AA64MMFR2_EL1:      return read_cpuid(SYS_ID_AA64MMFR2_EL1);
877         case SYS_ID_AA64ISAR0_EL1:      return read_cpuid(SYS_ID_AA64ISAR0_EL1);
878         case SYS_ID_AA64ISAR1_EL1:      return read_cpuid(SYS_ID_AA64ISAR1_EL1);
879
880         case SYS_CNTFRQ_EL0:            return read_cpuid(SYS_CNTFRQ_EL0);
881         case SYS_CTR_EL0:               return read_cpuid(SYS_CTR_EL0);
882         case SYS_DCZID_EL0:             return read_cpuid(SYS_DCZID_EL0);
883         default:
884                 BUG();
885                 return 0;
886         }
887 }
888
889 /*
890  * Park the CPU which doesn't have the capability as advertised
891  * by the system.
892  */
893 static void fail_incapable_cpu(char *cap_type,
894                                  const struct arm64_cpu_capabilities *cap)
895 {
896         int cpu = smp_processor_id();
897
898         pr_crit("CPU%d: missing %s : %s\n", cpu, cap_type, cap->desc);
899         /* Mark this CPU absent */
900         set_cpu_present(cpu, 0);
901
902         /* Check if we can park ourselves */
903         if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
904                 cpu_ops[cpu]->cpu_die(cpu);
905         asm(
906         "1:     wfe\n"
907         "       wfi\n"
908         "       b       1b");
909 }
910
911 /*
912  * Run through the enabled system capabilities and enable() it on this CPU.
913  * The capabilities were decided based on the available CPUs at the boot time.
914  * Any new CPU should match the system wide status of the capability. If the
915  * new CPU doesn't have a capability which the system now has enabled, we
916  * cannot do anything to fix it up and could cause unexpected failures. So
917  * we park the CPU.
918  */
919 void verify_local_cpu_capabilities(void)
920 {
921         int i;
922         const struct arm64_cpu_capabilities *caps;
923
924         /*
925          * If we haven't computed the system capabilities, there is nothing
926          * to verify.
927          */
928         if (!sys_caps_initialised)
929                 return;
930
931         caps = arm64_features;
932         for (i = 0; caps[i].matches; i++) {
933                 if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
934                         continue;
935                 /*
936                  * If the new CPU misses an advertised feature, we cannot proceed
937                  * further, park the cpu.
938                  */
939                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
940                         fail_incapable_cpu("arm64_features", &caps[i]);
941                 if (caps[i].enable)
942                         caps[i].enable(NULL);
943         }
944
945         for (i = 0, caps = arm64_hwcaps; caps[i].matches; i++) {
946                 if (!cpus_have_hwcap(&caps[i]))
947                         continue;
948                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
949                         fail_incapable_cpu("arm64_hwcaps", &caps[i]);
950         }
951 }
952
953 #else   /* !CONFIG_HOTPLUG_CPU */
954
955 static inline void set_sys_caps_initialised(void)
956 {
957 }
958
959 #endif  /* CONFIG_HOTPLUG_CPU */
960
961 static void __init setup_feature_capabilities(void)
962 {
963         update_cpu_capabilities(arm64_features, "detected feature:");
964         enable_cpu_capabilities(arm64_features);
965 }
966
967 void __init setup_cpu_features(void)
968 {
969         u32 cwg;
970         int cls;
971
972         /* Set the CPU feature capabilies */
973         setup_feature_capabilities();
974         setup_cpu_hwcaps();
975
976         /* Advertise that we have computed the system capabilities */
977         set_sys_caps_initialised();
978
979         /*
980          * Check for sane CTR_EL0.CWG value.
981          */
982         cwg = cache_type_cwg();
983         cls = cache_line_size();
984         if (!cwg)
985                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
986                         cls);
987         if (L1_CACHE_BYTES < cls)
988                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
989                         L1_CACHE_BYTES, cls);
990 }
991
992 static bool __maybe_unused
993 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry)
994 {
995         return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
996 }