arm64: cpufeature: Test 'matches' pointer to find the end of the list
[firefly-linux-kernel-4.4.55.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/processor.h>
28 #include <asm/sysreg.h>
29
30 unsigned long elf_hwcap __read_mostly;
31 EXPORT_SYMBOL_GPL(elf_hwcap);
32
33 #ifdef CONFIG_COMPAT
34 #define COMPAT_ELF_HWCAP_DEFAULT        \
35                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
36                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
37                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
38                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
39                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
40                                  COMPAT_HWCAP_LPAE)
41 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
42 unsigned int compat_elf_hwcap2 __read_mostly;
43 #endif
44
45 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
46
47 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
48         {                                               \
49                 .sign = SIGNED,                         \
50                 .strict = STRICT,                       \
51                 .type = TYPE,                           \
52                 .shift = SHIFT,                         \
53                 .width = WIDTH,                         \
54                 .safe_val = SAFE_VAL,                   \
55         }
56
57 /* Define a feature with signed values */
58 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
59         __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
60
61 /* Define a feature with unsigned value */
62 #define U_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
63         __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
64
65 #define ARM64_FTR_END                                   \
66         {                                               \
67                 .width = 0,                             \
68         }
69
70 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
71         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
72         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
73         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
74         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
75         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
76         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
77         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
78         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
79         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
80         ARM64_FTR_END,
81 };
82
83 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
84         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
85         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
86         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
87         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
88         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
89         /* Linux doesn't care about the EL3 */
90         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
91         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
92         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
93         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
94         ARM64_FTR_END,
95 };
96
97 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
98         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
99         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
100         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
101         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
102         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
103         /* Linux shouldn't care about secure memory */
104         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
105         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
106         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
107         /*
108          * Differing PARange is fine as long as all peripherals and memory are mapped
109          * within the minimum PARange of all CPUs
110          */
111         U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
112         ARM64_FTR_END,
113 };
114
115 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
116         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
117         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
118         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
119         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
120         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
121         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
122         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
123         ARM64_FTR_END,
124 };
125
126 static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
127         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
128         ARM64_FTR_END,
129 };
130
131 static struct arm64_ftr_bits ftr_ctr[] = {
132         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),      /* RAO */
133         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
134         U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),        /* CWG */
135         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
136         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
137         /*
138          * Linux can handle differing I-cache policies. Userspace JITs will
139          * make use of *minLine
140          */
141         U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),   /* L1Ip */
142         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),        /* RAZ */
143         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),  /* IminLine */
144         ARM64_FTR_END,
145 };
146
147 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
148         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),        /* InnerShr */
149         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),        /* FCSE */
150         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),        /* AuxReg */
151         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),        /* TCM */
152         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* ShareLvl */
153         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* OuterShr */
154         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
155         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
156         ARM64_FTR_END,
157 };
158
159 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
160         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
161         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
162         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
163         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
164         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
165         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
166         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
167         ARM64_FTR_END,
168 };
169
170 static struct arm64_ftr_bits ftr_mvfr2[] = {
171         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
172         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* FPMisc */
173         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* SIMDMisc */
174         ARM64_FTR_END,
175 };
176
177 static struct arm64_ftr_bits ftr_dczid[] = {
178         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),        /* RAZ */
179         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),         /* DZP */
180         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* BS */
181         ARM64_FTR_END,
182 };
183
184
185 static struct arm64_ftr_bits ftr_id_isar5[] = {
186         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
187         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),        /* RAZ */
188         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
189         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
190         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
191         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
192         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
193         ARM64_FTR_END,
194 };
195
196 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
197         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
198         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* ac2 */
199         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* RAZ */
200         ARM64_FTR_END,
201 };
202
203 static struct arm64_ftr_bits ftr_id_pfr0[] = {
204         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),       /* RAZ */
205         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* State3 */
206         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),         /* State2 */
207         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* State1 */
208         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* State0 */
209         ARM64_FTR_END,
210 };
211
212 /*
213  * Common ftr bits for a 32bit register with all hidden, strict
214  * attributes, with 4bit feature fields and a default safe value of
215  * 0. Covers the following 32bit registers:
216  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
217  */
218 static struct arm64_ftr_bits ftr_generic_32bits[] = {
219         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
220         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
221         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
222         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
223         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
224         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
225         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
226         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
227         ARM64_FTR_END,
228 };
229
230 static struct arm64_ftr_bits ftr_generic[] = {
231         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
232         ARM64_FTR_END,
233 };
234
235 static struct arm64_ftr_bits ftr_generic32[] = {
236         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
237         ARM64_FTR_END,
238 };
239
240 static struct arm64_ftr_bits ftr_aa64raz[] = {
241         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
242         ARM64_FTR_END,
243 };
244
245 #define ARM64_FTR_REG(id, table)                \
246         {                                       \
247                 .sys_id = id,                   \
248                 .name = #id,                    \
249                 .ftr_bits = &((table)[0]),      \
250         }
251
252 static struct arm64_ftr_reg arm64_ftr_regs[] = {
253
254         /* Op1 = 0, CRn = 0, CRm = 1 */
255         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
256         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
257         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits),
258         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
259         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
260         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
261         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
262
263         /* Op1 = 0, CRn = 0, CRm = 2 */
264         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
265         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
266         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
267         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
268         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
269         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
270         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
271
272         /* Op1 = 0, CRn = 0, CRm = 3 */
273         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
274         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
275         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
276
277         /* Op1 = 0, CRn = 0, CRm = 4 */
278         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
279         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
280
281         /* Op1 = 0, CRn = 0, CRm = 5 */
282         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
283         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
284
285         /* Op1 = 0, CRn = 0, CRm = 6 */
286         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
287         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
288
289         /* Op1 = 0, CRn = 0, CRm = 7 */
290         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
291         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
292         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
293
294         /* Op1 = 3, CRn = 0, CRm = 0 */
295         ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
296         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
297
298         /* Op1 = 3, CRn = 14, CRm = 0 */
299         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
300 };
301
302 static int search_cmp_ftr_reg(const void *id, const void *regp)
303 {
304         return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
305 }
306
307 /*
308  * get_arm64_ftr_reg - Lookup a feature register entry using its
309  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
310  * ascending order of sys_id , we use binary search to find a matching
311  * entry.
312  *
313  * returns - Upon success,  matching ftr_reg entry for id.
314  *         - NULL on failure. It is upto the caller to decide
315  *           the impact of a failure.
316  */
317 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
318 {
319         return bsearch((const void *)(unsigned long)sys_id,
320                         arm64_ftr_regs,
321                         ARRAY_SIZE(arm64_ftr_regs),
322                         sizeof(arm64_ftr_regs[0]),
323                         search_cmp_ftr_reg);
324 }
325
326 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
327 {
328         u64 mask = arm64_ftr_mask(ftrp);
329
330         reg &= ~mask;
331         reg |= (ftr_val << ftrp->shift) & mask;
332         return reg;
333 }
334
335 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
336 {
337         s64 ret = 0;
338
339         switch (ftrp->type) {
340         case FTR_EXACT:
341                 ret = ftrp->safe_val;
342                 break;
343         case FTR_LOWER_SAFE:
344                 ret = new < cur ? new : cur;
345                 break;
346         case FTR_HIGHER_SAFE:
347                 ret = new > cur ? new : cur;
348                 break;
349         default:
350                 BUG();
351         }
352
353         return ret;
354 }
355
356 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
357 {
358         return ((const struct arm64_ftr_reg *)a)->sys_id -
359                  ((const struct arm64_ftr_reg *)b)->sys_id;
360 }
361
362 static void __init swap_ftr_regs(void *a, void *b, int size)
363 {
364         struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
365         *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
366         *(struct arm64_ftr_reg *)b = tmp;
367 }
368
369 static void __init sort_ftr_regs(void)
370 {
371         /* Keep the array sorted so that we can do the binary search */
372         sort(arm64_ftr_regs,
373                 ARRAY_SIZE(arm64_ftr_regs),
374                 sizeof(arm64_ftr_regs[0]),
375                 sort_cmp_ftr_regs,
376                 swap_ftr_regs);
377 }
378
379 /*
380  * Initialise the CPU feature register from Boot CPU values.
381  * Also initiliases the strict_mask for the register.
382  */
383 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
384 {
385         u64 val = 0;
386         u64 strict_mask = ~0x0ULL;
387         struct arm64_ftr_bits *ftrp;
388         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
389
390         BUG_ON(!reg);
391
392         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
393                 s64 ftr_new = arm64_ftr_value(ftrp, new);
394
395                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
396                 if (!ftrp->strict)
397                         strict_mask &= ~arm64_ftr_mask(ftrp);
398         }
399         reg->sys_val = val;
400         reg->strict_mask = strict_mask;
401 }
402
403 void __init init_cpu_features(struct cpuinfo_arm64 *info)
404 {
405         /* Before we start using the tables, make sure it is sorted */
406         sort_ftr_regs();
407
408         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
409         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
410         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
411         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
412         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
413         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
414         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
415         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
416         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
417         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
418         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
419         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
420         init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
421         init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
422         init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
423         init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
424         init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
425         init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
426         init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
427         init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
428         init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
429         init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
430         init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
431         init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
432         init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
433         init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
434         init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
435         init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
436 }
437
438 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
439 {
440         struct arm64_ftr_bits *ftrp;
441
442         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
443                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
444                 s64 ftr_new = arm64_ftr_value(ftrp, new);
445
446                 if (ftr_cur == ftr_new)
447                         continue;
448                 /* Find a safe value */
449                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
450                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
451         }
452
453 }
454
455 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
456 {
457         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
458
459         BUG_ON(!regp);
460         update_cpu_ftr_reg(regp, val);
461         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
462                 return 0;
463         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
464                         regp->name, boot, cpu, val);
465         return 1;
466 }
467
468 /*
469  * Update system wide CPU feature registers with the values from a
470  * non-boot CPU. Also performs SANITY checks to make sure that there
471  * aren't any insane variations from that of the boot CPU.
472  */
473 void update_cpu_features(int cpu,
474                          struct cpuinfo_arm64 *info,
475                          struct cpuinfo_arm64 *boot)
476 {
477         int taint = 0;
478
479         /*
480          * The kernel can handle differing I-cache policies, but otherwise
481          * caches should look identical. Userspace JITs will make use of
482          * *minLine.
483          */
484         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
485                                       info->reg_ctr, boot->reg_ctr);
486
487         /*
488          * Userspace may perform DC ZVA instructions. Mismatched block sizes
489          * could result in too much or too little memory being zeroed if a
490          * process is preempted and migrated between CPUs.
491          */
492         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
493                                       info->reg_dczid, boot->reg_dczid);
494
495         /* If different, timekeeping will be broken (especially with KVM) */
496         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
497                                       info->reg_cntfrq, boot->reg_cntfrq);
498
499         /*
500          * The kernel uses self-hosted debug features and expects CPUs to
501          * support identical debug features. We presently need CTX_CMPs, WRPs,
502          * and BRPs to be identical.
503          * ID_AA64DFR1 is currently RES0.
504          */
505         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
506                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
507         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
508                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
509         /*
510          * Even in big.LITTLE, processors should be identical instruction-set
511          * wise.
512          */
513         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
514                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
515         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
516                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
517
518         /*
519          * Differing PARange support is fine as long as all peripherals and
520          * memory are mapped within the minimum PARange of all CPUs.
521          * Linux should not care about secure memory.
522          */
523         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
524                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
525         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
526                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
527         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
528                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
529
530         /*
531          * EL3 is not our concern.
532          * ID_AA64PFR1 is currently RES0.
533          */
534         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
535                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
536         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
537                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
538
539         /*
540          * If we have AArch32, we care about 32-bit features for compat. These
541          * registers should be RES0 otherwise.
542          */
543         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
544                                         info->reg_id_dfr0, boot->reg_id_dfr0);
545         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
546                                         info->reg_id_isar0, boot->reg_id_isar0);
547         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
548                                         info->reg_id_isar1, boot->reg_id_isar1);
549         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
550                                         info->reg_id_isar2, boot->reg_id_isar2);
551         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
552                                         info->reg_id_isar3, boot->reg_id_isar3);
553         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
554                                         info->reg_id_isar4, boot->reg_id_isar4);
555         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
556                                         info->reg_id_isar5, boot->reg_id_isar5);
557
558         /*
559          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
560          * ACTLR formats could differ across CPUs and therefore would have to
561          * be trapped for virtualization anyway.
562          */
563         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
564                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
565         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
566                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
567         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
568                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
569         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
570                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
571         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
572                                         info->reg_id_pfr0, boot->reg_id_pfr0);
573         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
574                                         info->reg_id_pfr1, boot->reg_id_pfr1);
575         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
576                                         info->reg_mvfr0, boot->reg_mvfr0);
577         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
578                                         info->reg_mvfr1, boot->reg_mvfr1);
579         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
580                                         info->reg_mvfr2, boot->reg_mvfr2);
581
582         /*
583          * Mismatched CPU features are a recipe for disaster. Don't even
584          * pretend to support them.
585          */
586         WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
587                         "Unsupported CPU feature variation.\n");
588 }
589
590 u64 read_system_reg(u32 id)
591 {
592         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
593
594         /* We shouldn't get a request for an unsupported register */
595         BUG_ON(!regp);
596         return regp->sys_val;
597 }
598
599 #include <linux/irqchip/arm-gic-v3.h>
600
601 static bool
602 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
603 {
604         int val = cpuid_feature_extract_field(reg, entry->field_pos);
605
606         return val >= entry->min_field_value;
607 }
608
609 static bool
610 has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
611 {
612         u64 val;
613
614         val = read_system_reg(entry->sys_reg);
615         return feature_matches(val, entry);
616 }
617
618 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry)
619 {
620         bool has_sre;
621
622         if (!has_cpuid_feature(entry))
623                 return false;
624
625         has_sre = gic_enable_sre();
626         if (!has_sre)
627                 pr_warn_once("%s present but disabled by higher exception level\n",
628                              entry->desc);
629
630         return has_sre;
631 }
632
633 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry)
634 {
635         u32 midr = read_cpuid_id();
636         u32 rv_min, rv_max;
637
638         /* Cavium ThunderX pass 1.x and 2.x */
639         rv_min = 0;
640         rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
641
642         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
643 }
644
645 static const struct arm64_cpu_capabilities arm64_features[] = {
646         {
647                 .desc = "GIC system register CPU interface",
648                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
649                 .matches = has_useable_gicv3_cpuif,
650                 .sys_reg = SYS_ID_AA64PFR0_EL1,
651                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
652                 .min_field_value = 1,
653         },
654 #ifdef CONFIG_ARM64_PAN
655         {
656                 .desc = "Privileged Access Never",
657                 .capability = ARM64_HAS_PAN,
658                 .matches = has_cpuid_feature,
659                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
660                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
661                 .min_field_value = 1,
662                 .enable = cpu_enable_pan,
663         },
664 #endif /* CONFIG_ARM64_PAN */
665 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
666         {
667                 .desc = "LSE atomic instructions",
668                 .capability = ARM64_HAS_LSE_ATOMICS,
669                 .matches = has_cpuid_feature,
670                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
671                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
672                 .min_field_value = 2,
673         },
674 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
675         {
676                 .desc = "Software prefetching using PRFM",
677                 .capability = ARM64_HAS_NO_HW_PREFETCH,
678                 .matches = has_no_hw_prefetch,
679         },
680 #ifdef CONFIG_ARM64_UAO
681         {
682                 .desc = "User Access Override",
683                 .capability = ARM64_HAS_UAO,
684                 .matches = has_cpuid_feature,
685                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
686                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
687                 .min_field_value = 1,
688                 .enable = cpu_enable_uao,
689         },
690 #endif /* CONFIG_ARM64_UAO */
691         {},
692 };
693
694 #define HWCAP_CAP(reg, field, min_value, type, cap)             \
695         {                                                       \
696                 .desc = #cap,                                   \
697                 .matches = has_cpuid_feature,                   \
698                 .sys_reg = reg,                                 \
699                 .field_pos = field,                             \
700                 .min_field_value = min_value,                   \
701                 .hwcap_type = type,                             \
702                 .hwcap = cap,                                   \
703         }
704
705 static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
706         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 2, CAP_HWCAP, HWCAP_PMULL),
707         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 1, CAP_HWCAP, HWCAP_AES),
708         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, 1, CAP_HWCAP, HWCAP_SHA1),
709         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 1, CAP_HWCAP, HWCAP_SHA2),
710         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, 1, CAP_HWCAP, HWCAP_CRC32),
711         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, 2, CAP_HWCAP, HWCAP_ATOMICS),
712         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 0, CAP_HWCAP, HWCAP_FP),
713         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 0, CAP_HWCAP, HWCAP_ASIMD),
714 #ifdef CONFIG_COMPAT
715         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
716         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
717         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
718         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
719         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
720 #endif
721         {},
722 };
723
724 static void __init cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
725 {
726         switch (cap->hwcap_type) {
727         case CAP_HWCAP:
728                 elf_hwcap |= cap->hwcap;
729                 break;
730 #ifdef CONFIG_COMPAT
731         case CAP_COMPAT_HWCAP:
732                 compat_elf_hwcap |= (u32)cap->hwcap;
733                 break;
734         case CAP_COMPAT_HWCAP2:
735                 compat_elf_hwcap2 |= (u32)cap->hwcap;
736                 break;
737 #endif
738         default:
739                 WARN_ON(1);
740                 break;
741         }
742 }
743
744 /* Check if we have a particular HWCAP enabled */
745 static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
746 {
747         bool rc;
748
749         switch (cap->hwcap_type) {
750         case CAP_HWCAP:
751                 rc = (elf_hwcap & cap->hwcap) != 0;
752                 break;
753 #ifdef CONFIG_COMPAT
754         case CAP_COMPAT_HWCAP:
755                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
756                 break;
757         case CAP_COMPAT_HWCAP2:
758                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
759                 break;
760 #endif
761         default:
762                 WARN_ON(1);
763                 rc = false;
764         }
765
766         return rc;
767 }
768
769 static void __init setup_cpu_hwcaps(void)
770 {
771         int i;
772         const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
773
774         for (i = 0; hwcaps[i].matches; i++)
775                 if (hwcaps[i].matches(&hwcaps[i]))
776                         cap_set_hwcap(&hwcaps[i]);
777 }
778
779 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
780                             const char *info)
781 {
782         int i;
783
784         for (i = 0; caps[i].matches; i++) {
785                 if (!caps[i].matches(&caps[i]))
786                         continue;
787
788                 if (!cpus_have_cap(caps[i].capability) && caps[i].desc)
789                         pr_info("%s %s\n", info, caps[i].desc);
790                 cpus_set_cap(caps[i].capability);
791         }
792 }
793
794 /*
795  * Run through the enabled capabilities and enable() it on all active
796  * CPUs
797  */
798 static void __init
799 enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
800 {
801         int i;
802
803         for (i = 0; caps[i].matches; i++)
804                 if (caps[i].enable && cpus_have_cap(caps[i].capability))
805                         on_each_cpu(caps[i].enable, NULL, true);
806 }
807
808 #ifdef CONFIG_HOTPLUG_CPU
809
810 /*
811  * Flag to indicate if we have computed the system wide
812  * capabilities based on the boot time active CPUs. This
813  * will be used to determine if a new booting CPU should
814  * go through the verification process to make sure that it
815  * supports the system capabilities, without using a hotplug
816  * notifier.
817  */
818 static bool sys_caps_initialised;
819
820 static inline void set_sys_caps_initialised(void)
821 {
822         sys_caps_initialised = true;
823 }
824
825 /*
826  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
827  */
828 static u64 __raw_read_system_reg(u32 sys_id)
829 {
830         switch (sys_id) {
831         case SYS_ID_PFR0_EL1:           return read_cpuid(SYS_ID_PFR0_EL1);
832         case SYS_ID_PFR1_EL1:           return read_cpuid(SYS_ID_PFR1_EL1);
833         case SYS_ID_DFR0_EL1:           return read_cpuid(SYS_ID_DFR0_EL1);
834         case SYS_ID_MMFR0_EL1:          return read_cpuid(SYS_ID_MMFR0_EL1);
835         case SYS_ID_MMFR1_EL1:          return read_cpuid(SYS_ID_MMFR1_EL1);
836         case SYS_ID_MMFR2_EL1:          return read_cpuid(SYS_ID_MMFR2_EL1);
837         case SYS_ID_MMFR3_EL1:          return read_cpuid(SYS_ID_MMFR3_EL1);
838         case SYS_ID_ISAR0_EL1:          return read_cpuid(SYS_ID_ISAR0_EL1);
839         case SYS_ID_ISAR1_EL1:          return read_cpuid(SYS_ID_ISAR1_EL1);
840         case SYS_ID_ISAR2_EL1:          return read_cpuid(SYS_ID_ISAR2_EL1);
841         case SYS_ID_ISAR3_EL1:          return read_cpuid(SYS_ID_ISAR3_EL1);
842         case SYS_ID_ISAR4_EL1:          return read_cpuid(SYS_ID_ISAR4_EL1);
843         case SYS_ID_ISAR5_EL1:          return read_cpuid(SYS_ID_ISAR4_EL1);
844         case SYS_MVFR0_EL1:             return read_cpuid(SYS_MVFR0_EL1);
845         case SYS_MVFR1_EL1:             return read_cpuid(SYS_MVFR1_EL1);
846         case SYS_MVFR2_EL1:             return read_cpuid(SYS_MVFR2_EL1);
847
848         case SYS_ID_AA64PFR0_EL1:       return read_cpuid(SYS_ID_AA64PFR0_EL1);
849         case SYS_ID_AA64PFR1_EL1:       return read_cpuid(SYS_ID_AA64PFR0_EL1);
850         case SYS_ID_AA64DFR0_EL1:       return read_cpuid(SYS_ID_AA64DFR0_EL1);
851         case SYS_ID_AA64DFR1_EL1:       return read_cpuid(SYS_ID_AA64DFR0_EL1);
852         case SYS_ID_AA64MMFR0_EL1:      return read_cpuid(SYS_ID_AA64MMFR0_EL1);
853         case SYS_ID_AA64MMFR1_EL1:      return read_cpuid(SYS_ID_AA64MMFR1_EL1);
854         case SYS_ID_AA64MMFR2_EL1:      return read_cpuid(SYS_ID_AA64MMFR2_EL1);
855         case SYS_ID_AA64ISAR0_EL1:      return read_cpuid(SYS_ID_AA64ISAR0_EL1);
856         case SYS_ID_AA64ISAR1_EL1:      return read_cpuid(SYS_ID_AA64ISAR1_EL1);
857
858         case SYS_CNTFRQ_EL0:            return read_cpuid(SYS_CNTFRQ_EL0);
859         case SYS_CTR_EL0:               return read_cpuid(SYS_CTR_EL0);
860         case SYS_DCZID_EL0:             return read_cpuid(SYS_DCZID_EL0);
861         default:
862                 BUG();
863                 return 0;
864         }
865 }
866
867 /*
868  * Park the CPU which doesn't have the capability as advertised
869  * by the system.
870  */
871 static void fail_incapable_cpu(char *cap_type,
872                                  const struct arm64_cpu_capabilities *cap)
873 {
874         int cpu = smp_processor_id();
875
876         pr_crit("CPU%d: missing %s : %s\n", cpu, cap_type, cap->desc);
877         /* Mark this CPU absent */
878         set_cpu_present(cpu, 0);
879
880         /* Check if we can park ourselves */
881         if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
882                 cpu_ops[cpu]->cpu_die(cpu);
883         asm(
884         "1:     wfe\n"
885         "       wfi\n"
886         "       b       1b");
887 }
888
889 /*
890  * Run through the enabled system capabilities and enable() it on this CPU.
891  * The capabilities were decided based on the available CPUs at the boot time.
892  * Any new CPU should match the system wide status of the capability. If the
893  * new CPU doesn't have a capability which the system now has enabled, we
894  * cannot do anything to fix it up and could cause unexpected failures. So
895  * we park the CPU.
896  */
897 void verify_local_cpu_capabilities(void)
898 {
899         int i;
900         const struct arm64_cpu_capabilities *caps;
901
902         /*
903          * If we haven't computed the system capabilities, there is nothing
904          * to verify.
905          */
906         if (!sys_caps_initialised)
907                 return;
908
909         caps = arm64_features;
910         for (i = 0; caps[i].matches; i++) {
911                 if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
912                         continue;
913                 /*
914                  * If the new CPU misses an advertised feature, we cannot proceed
915                  * further, park the cpu.
916                  */
917                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
918                         fail_incapable_cpu("arm64_features", &caps[i]);
919                 if (caps[i].enable)
920                         caps[i].enable(NULL);
921         }
922
923         for (i = 0, caps = arm64_hwcaps; caps[i].matches; i++) {
924                 if (!cpus_have_hwcap(&caps[i]))
925                         continue;
926                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
927                         fail_incapable_cpu("arm64_hwcaps", &caps[i]);
928         }
929 }
930
931 #else   /* !CONFIG_HOTPLUG_CPU */
932
933 static inline void set_sys_caps_initialised(void)
934 {
935 }
936
937 #endif  /* CONFIG_HOTPLUG_CPU */
938
939 static void __init setup_feature_capabilities(void)
940 {
941         update_cpu_capabilities(arm64_features, "detected feature:");
942         enable_cpu_capabilities(arm64_features);
943 }
944
945 void __init setup_cpu_features(void)
946 {
947         u32 cwg;
948         int cls;
949
950         /* Set the CPU feature capabilies */
951         setup_feature_capabilities();
952         setup_cpu_hwcaps();
953
954         /* Advertise that we have computed the system capabilities */
955         set_sys_caps_initialised();
956
957         /*
958          * Check for sane CTR_EL0.CWG value.
959          */
960         cwg = cache_type_cwg();
961         cls = cache_line_size();
962         if (!cwg)
963                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
964                         cls);
965         if (L1_CACHE_BYTES < cls)
966                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
967                         L1_CACHE_BYTES, cls);
968 }