Merge tag 'v4.4.42' into linux-linaro-lsk-v4.4
[firefly-linux-kernel-4.4.55.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <asm/cpu.h>
27 #include <asm/cpufeature.h>
28 #include <asm/cpu_ops.h>
29 #include <asm/processor.h>
30 #include <asm/sysreg.h>
31 #include <asm/virt.h>
32
33 unsigned long elf_hwcap __read_mostly;
34 EXPORT_SYMBOL_GPL(elf_hwcap);
35
36 #ifdef CONFIG_COMPAT
37 #define COMPAT_ELF_HWCAP_DEFAULT        \
38                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
39                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
40                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
41                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
42                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
43                                  COMPAT_HWCAP_LPAE)
44 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
45 unsigned int compat_elf_hwcap2 __read_mostly;
46 #endif
47
48 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
49
50 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
51         {                                               \
52                 .sign = SIGNED,                         \
53                 .strict = STRICT,                       \
54                 .type = TYPE,                           \
55                 .shift = SHIFT,                         \
56                 .width = WIDTH,                         \
57                 .safe_val = SAFE_VAL,                   \
58         }
59
60 /* Define a feature with signed values */
61 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
62         __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
63
64 /* Define a feature with unsigned value */
65 #define U_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
66         __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
67
68 #define ARM64_FTR_END                                   \
69         {                                               \
70                 .width = 0,                             \
71         }
72
73 /* meta feature for alternatives */
74 static bool __maybe_unused
75 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry);
76
77 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
78         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
79         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
80         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
81         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
82         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
83         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
84         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
85         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
86         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
87         ARM64_FTR_END,
88 };
89
90 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
91         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
92         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
93         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
94         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
95         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
96         /* Linux doesn't care about the EL3 */
97         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
98         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
99         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
100         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
101         ARM64_FTR_END,
102 };
103
104 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
105         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
106         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
107         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
108         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
109         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
110         /* Linux shouldn't care about secure memory */
111         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
112         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
113         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
114         /*
115          * Differing PARange is fine as long as all peripherals and memory are mapped
116          * within the minimum PARange of all CPUs
117          */
118         U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
119         ARM64_FTR_END,
120 };
121
122 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
123         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
124         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
125         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
126         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
127         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
128         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
129         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
130         ARM64_FTR_END,
131 };
132
133 static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
134         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
135         ARM64_FTR_END,
136 };
137
138 static struct arm64_ftr_bits ftr_ctr[] = {
139         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),      /* RAO */
140         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
141         U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),        /* CWG */
142         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
143         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
144         /*
145          * Linux can handle differing I-cache policies. Userspace JITs will
146          * make use of *minLine
147          */
148         U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),   /* L1Ip */
149         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),        /* RAZ */
150         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),  /* IminLine */
151         ARM64_FTR_END,
152 };
153
154 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
155         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),        /* InnerShr */
156         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),        /* FCSE */
157         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),        /* AuxReg */
158         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),        /* TCM */
159         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* ShareLvl */
160         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* OuterShr */
161         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
162         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
163         ARM64_FTR_END,
164 };
165
166 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
167         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
168         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
169         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
170         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
171         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
172         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
173         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
174         ARM64_FTR_END,
175 };
176
177 static struct arm64_ftr_bits ftr_mvfr2[] = {
178         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
179         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* FPMisc */
180         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* SIMDMisc */
181         ARM64_FTR_END,
182 };
183
184 static struct arm64_ftr_bits ftr_dczid[] = {
185         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),        /* RAZ */
186         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),         /* DZP */
187         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* BS */
188         ARM64_FTR_END,
189 };
190
191
192 static struct arm64_ftr_bits ftr_id_isar5[] = {
193         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
194         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),        /* RAZ */
195         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
196         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
197         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
198         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
199         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
200         ARM64_FTR_END,
201 };
202
203 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
204         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
205         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* ac2 */
206         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* RAZ */
207         ARM64_FTR_END,
208 };
209
210 static struct arm64_ftr_bits ftr_id_pfr0[] = {
211         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),       /* RAZ */
212         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* State3 */
213         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),         /* State2 */
214         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* State1 */
215         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* State0 */
216         ARM64_FTR_END,
217 };
218
219 /*
220  * Common ftr bits for a 32bit register with all hidden, strict
221  * attributes, with 4bit feature fields and a default safe value of
222  * 0. Covers the following 32bit registers:
223  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
224  */
225 static struct arm64_ftr_bits ftr_generic_32bits[] = {
226         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
227         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
228         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
229         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
230         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
231         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
232         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
233         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
234         ARM64_FTR_END,
235 };
236
237 static struct arm64_ftr_bits ftr_generic[] = {
238         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
239         ARM64_FTR_END,
240 };
241
242 static struct arm64_ftr_bits ftr_generic32[] = {
243         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
244         ARM64_FTR_END,
245 };
246
247 static struct arm64_ftr_bits ftr_aa64raz[] = {
248         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
249         ARM64_FTR_END,
250 };
251
252 #define ARM64_FTR_REG(id, table)                \
253         {                                       \
254                 .sys_id = id,                   \
255                 .name = #id,                    \
256                 .ftr_bits = &((table)[0]),      \
257         }
258
259 static struct arm64_ftr_reg arm64_ftr_regs[] = {
260
261         /* Op1 = 0, CRn = 0, CRm = 1 */
262         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
263         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
264         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits),
265         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
266         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
267         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
268         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
269
270         /* Op1 = 0, CRn = 0, CRm = 2 */
271         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
272         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
273         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
274         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
275         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
276         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
277         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
278
279         /* Op1 = 0, CRn = 0, CRm = 3 */
280         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
281         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
282         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
283
284         /* Op1 = 0, CRn = 0, CRm = 4 */
285         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
286         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
287
288         /* Op1 = 0, CRn = 0, CRm = 5 */
289         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
290         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
291
292         /* Op1 = 0, CRn = 0, CRm = 6 */
293         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
294         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
295
296         /* Op1 = 0, CRn = 0, CRm = 7 */
297         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
298         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
299         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
300
301         /* Op1 = 3, CRn = 0, CRm = 0 */
302         ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
303         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
304
305         /* Op1 = 3, CRn = 14, CRm = 0 */
306         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
307 };
308
309 static int search_cmp_ftr_reg(const void *id, const void *regp)
310 {
311         return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
312 }
313
314 /*
315  * get_arm64_ftr_reg - Lookup a feature register entry using its
316  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
317  * ascending order of sys_id , we use binary search to find a matching
318  * entry.
319  *
320  * returns - Upon success,  matching ftr_reg entry for id.
321  *         - NULL on failure. It is upto the caller to decide
322  *           the impact of a failure.
323  */
324 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
325 {
326         return bsearch((const void *)(unsigned long)sys_id,
327                         arm64_ftr_regs,
328                         ARRAY_SIZE(arm64_ftr_regs),
329                         sizeof(arm64_ftr_regs[0]),
330                         search_cmp_ftr_reg);
331 }
332
333 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
334 {
335         u64 mask = arm64_ftr_mask(ftrp);
336
337         reg &= ~mask;
338         reg |= (ftr_val << ftrp->shift) & mask;
339         return reg;
340 }
341
342 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
343 {
344         s64 ret = 0;
345
346         switch (ftrp->type) {
347         case FTR_EXACT:
348                 ret = ftrp->safe_val;
349                 break;
350         case FTR_LOWER_SAFE:
351                 ret = new < cur ? new : cur;
352                 break;
353         case FTR_HIGHER_SAFE:
354                 ret = new > cur ? new : cur;
355                 break;
356         default:
357                 BUG();
358         }
359
360         return ret;
361 }
362
363 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
364 {
365         return ((const struct arm64_ftr_reg *)a)->sys_id -
366                  ((const struct arm64_ftr_reg *)b)->sys_id;
367 }
368
369 static void __init swap_ftr_regs(void *a, void *b, int size)
370 {
371         struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
372         *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
373         *(struct arm64_ftr_reg *)b = tmp;
374 }
375
376 static void __init sort_ftr_regs(void)
377 {
378         /* Keep the array sorted so that we can do the binary search */
379         sort(arm64_ftr_regs,
380                 ARRAY_SIZE(arm64_ftr_regs),
381                 sizeof(arm64_ftr_regs[0]),
382                 sort_cmp_ftr_regs,
383                 swap_ftr_regs);
384 }
385
386 /*
387  * Initialise the CPU feature register from Boot CPU values.
388  * Also initiliases the strict_mask for the register.
389  */
390 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
391 {
392         u64 val = 0;
393         u64 strict_mask = ~0x0ULL;
394         struct arm64_ftr_bits *ftrp;
395         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
396
397         BUG_ON(!reg);
398
399         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
400                 s64 ftr_new = arm64_ftr_value(ftrp, new);
401
402                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
403                 if (!ftrp->strict)
404                         strict_mask &= ~arm64_ftr_mask(ftrp);
405         }
406         reg->sys_val = val;
407         reg->strict_mask = strict_mask;
408 }
409
410 void __init init_cpu_features(struct cpuinfo_arm64 *info)
411 {
412         /* Before we start using the tables, make sure it is sorted */
413         sort_ftr_regs();
414
415         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
416         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
417         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
418         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
419         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
420         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
421         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
422         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
423         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
424         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
425         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
426         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
427         init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
428         init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
429         init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
430         init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
431         init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
432         init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
433         init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
434         init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
435         init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
436         init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
437         init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
438         init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
439         init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
440         init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
441         init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
442         init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
443 }
444
445 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
446 {
447         struct arm64_ftr_bits *ftrp;
448
449         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
450                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
451                 s64 ftr_new = arm64_ftr_value(ftrp, new);
452
453                 if (ftr_cur == ftr_new)
454                         continue;
455                 /* Find a safe value */
456                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
457                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
458         }
459
460 }
461
462 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
463 {
464         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
465
466         BUG_ON(!regp);
467         update_cpu_ftr_reg(regp, val);
468         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
469                 return 0;
470         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
471                         regp->name, boot, cpu, val);
472         return 1;
473 }
474
475 /*
476  * Update system wide CPU feature registers with the values from a
477  * non-boot CPU. Also performs SANITY checks to make sure that there
478  * aren't any insane variations from that of the boot CPU.
479  */
480 void update_cpu_features(int cpu,
481                          struct cpuinfo_arm64 *info,
482                          struct cpuinfo_arm64 *boot)
483 {
484         int taint = 0;
485
486         /*
487          * The kernel can handle differing I-cache policies, but otherwise
488          * caches should look identical. Userspace JITs will make use of
489          * *minLine.
490          */
491         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
492                                       info->reg_ctr, boot->reg_ctr);
493
494         /*
495          * Userspace may perform DC ZVA instructions. Mismatched block sizes
496          * could result in too much or too little memory being zeroed if a
497          * process is preempted and migrated between CPUs.
498          */
499         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
500                                       info->reg_dczid, boot->reg_dczid);
501
502         /* If different, timekeeping will be broken (especially with KVM) */
503         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
504                                       info->reg_cntfrq, boot->reg_cntfrq);
505
506         /*
507          * The kernel uses self-hosted debug features and expects CPUs to
508          * support identical debug features. We presently need CTX_CMPs, WRPs,
509          * and BRPs to be identical.
510          * ID_AA64DFR1 is currently RES0.
511          */
512         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
513                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
514         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
515                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
516         /*
517          * Even in big.LITTLE, processors should be identical instruction-set
518          * wise.
519          */
520         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
521                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
522         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
523                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
524
525         /*
526          * Differing PARange support is fine as long as all peripherals and
527          * memory are mapped within the minimum PARange of all CPUs.
528          * Linux should not care about secure memory.
529          */
530         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
531                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
532         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
533                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
534         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
535                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
536
537         /*
538          * EL3 is not our concern.
539          * ID_AA64PFR1 is currently RES0.
540          */
541         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
542                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
543         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
544                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
545
546         /*
547          * If we have AArch32, we care about 32-bit features for compat. These
548          * registers should be RES0 otherwise.
549          */
550         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
551                                         info->reg_id_dfr0, boot->reg_id_dfr0);
552         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
553                                         info->reg_id_isar0, boot->reg_id_isar0);
554         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
555                                         info->reg_id_isar1, boot->reg_id_isar1);
556         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
557                                         info->reg_id_isar2, boot->reg_id_isar2);
558         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
559                                         info->reg_id_isar3, boot->reg_id_isar3);
560         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
561                                         info->reg_id_isar4, boot->reg_id_isar4);
562         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
563                                         info->reg_id_isar5, boot->reg_id_isar5);
564
565         /*
566          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
567          * ACTLR formats could differ across CPUs and therefore would have to
568          * be trapped for virtualization anyway.
569          */
570         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
571                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
572         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
573                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
574         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
575                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
576         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
577                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
578         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
579                                         info->reg_id_pfr0, boot->reg_id_pfr0);
580         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
581                                         info->reg_id_pfr1, boot->reg_id_pfr1);
582         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
583                                         info->reg_mvfr0, boot->reg_mvfr0);
584         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
585                                         info->reg_mvfr1, boot->reg_mvfr1);
586         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
587                                         info->reg_mvfr2, boot->reg_mvfr2);
588
589         /*
590          * Mismatched CPU features are a recipe for disaster. Don't even
591          * pretend to support them.
592          */
593         WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
594                         "Unsupported CPU feature variation.\n");
595 }
596
597 u64 read_system_reg(u32 id)
598 {
599         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
600
601         /* We shouldn't get a request for an unsupported register */
602         BUG_ON(!regp);
603         return regp->sys_val;
604 }
605
606 #include <linux/irqchip/arm-gic-v3.h>
607
608 static bool
609 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
610 {
611         int val = cpuid_feature_extract_field(reg, entry->field_pos);
612
613         return val >= entry->min_field_value;
614 }
615
616 static bool
617 has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
618 {
619         u64 val;
620
621         val = read_system_reg(entry->sys_reg);
622         return feature_matches(val, entry);
623 }
624
625 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry)
626 {
627         bool has_sre;
628
629         if (!has_cpuid_feature(entry))
630                 return false;
631
632         has_sre = gic_enable_sre();
633         if (!has_sre)
634                 pr_warn_once("%s present but disabled by higher exception level\n",
635                              entry->desc);
636
637         return has_sre;
638 }
639
640 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry)
641 {
642         u32 midr = read_cpuid_id();
643         u32 rv_min, rv_max;
644
645         /* Cavium ThunderX pass 1.x and 2.x */
646         rv_min = 0;
647         rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
648
649         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
650 }
651
652 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry)
653 {
654         return is_kernel_in_hyp_mode();
655 }
656
657 static const struct arm64_cpu_capabilities arm64_features[] = {
658         {
659                 .desc = "GIC system register CPU interface",
660                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
661                 .matches = has_useable_gicv3_cpuif,
662                 .sys_reg = SYS_ID_AA64PFR0_EL1,
663                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
664                 .min_field_value = 1,
665         },
666 #ifdef CONFIG_ARM64_PAN
667         {
668                 .desc = "Privileged Access Never",
669                 .capability = ARM64_HAS_PAN,
670                 .matches = has_cpuid_feature,
671                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
672                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
673                 .min_field_value = 1,
674                 .enable = cpu_enable_pan,
675         },
676 #endif /* CONFIG_ARM64_PAN */
677 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
678         {
679                 .desc = "LSE atomic instructions",
680                 .capability = ARM64_HAS_LSE_ATOMICS,
681                 .matches = has_cpuid_feature,
682                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
683                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
684                 .min_field_value = 2,
685         },
686 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
687         {
688                 .desc = "Software prefetching using PRFM",
689                 .capability = ARM64_HAS_NO_HW_PREFETCH,
690                 .matches = has_no_hw_prefetch,
691         },
692 #ifdef CONFIG_ARM64_UAO
693         {
694                 .desc = "User Access Override",
695                 .capability = ARM64_HAS_UAO,
696                 .matches = has_cpuid_feature,
697                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
698                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
699                 .min_field_value = 1,
700                 .enable = cpu_enable_uao,
701         },
702 #endif /* CONFIG_ARM64_UAO */
703 #ifdef CONFIG_ARM64_PAN
704         {
705                 .capability = ARM64_ALT_PAN_NOT_UAO,
706                 .matches = cpufeature_pan_not_uao,
707         },
708 #endif /* CONFIG_ARM64_PAN */
709         {
710                 .desc = "Virtualization Host Extensions",
711                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
712                 .matches = runs_at_el2,
713         },
714         {},
715 };
716
717 #define HWCAP_CAP(reg, field, min_value, type, cap)             \
718         {                                                       \
719                 .desc = #cap,                                   \
720                 .matches = has_cpuid_feature,                   \
721                 .sys_reg = reg,                                 \
722                 .field_pos = field,                             \
723                 .min_field_value = min_value,                   \
724                 .hwcap_type = type,                             \
725                 .hwcap = cap,                                   \
726         }
727
728 static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
729         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 2, CAP_HWCAP, HWCAP_PMULL),
730         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 1, CAP_HWCAP, HWCAP_AES),
731         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, 1, CAP_HWCAP, HWCAP_SHA1),
732         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 1, CAP_HWCAP, HWCAP_SHA2),
733         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, 1, CAP_HWCAP, HWCAP_CRC32),
734         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, 2, CAP_HWCAP, HWCAP_ATOMICS),
735         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 0, CAP_HWCAP, HWCAP_FP),
736         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 0, CAP_HWCAP, HWCAP_ASIMD),
737 #ifdef CONFIG_COMPAT
738         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
739         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
740         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
741         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
742         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
743 #endif
744         {},
745 };
746
747 static void __init cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
748 {
749         switch (cap->hwcap_type) {
750         case CAP_HWCAP:
751                 elf_hwcap |= cap->hwcap;
752                 break;
753 #ifdef CONFIG_COMPAT
754         case CAP_COMPAT_HWCAP:
755                 compat_elf_hwcap |= (u32)cap->hwcap;
756                 break;
757         case CAP_COMPAT_HWCAP2:
758                 compat_elf_hwcap2 |= (u32)cap->hwcap;
759                 break;
760 #endif
761         default:
762                 WARN_ON(1);
763                 break;
764         }
765 }
766
767 /* Check if we have a particular HWCAP enabled */
768 static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
769 {
770         bool rc;
771
772         switch (cap->hwcap_type) {
773         case CAP_HWCAP:
774                 rc = (elf_hwcap & cap->hwcap) != 0;
775                 break;
776 #ifdef CONFIG_COMPAT
777         case CAP_COMPAT_HWCAP:
778                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
779                 break;
780         case CAP_COMPAT_HWCAP2:
781                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
782                 break;
783 #endif
784         default:
785                 WARN_ON(1);
786                 rc = false;
787         }
788
789         return rc;
790 }
791
792 static void __init setup_cpu_hwcaps(void)
793 {
794         int i;
795         const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
796
797         for (i = 0; hwcaps[i].matches; i++)
798                 if (hwcaps[i].matches(&hwcaps[i]))
799                         cap_set_hwcap(&hwcaps[i]);
800 }
801
802 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
803                             const char *info)
804 {
805         int i;
806
807         for (i = 0; caps[i].matches; i++) {
808                 if (!caps[i].matches(&caps[i]))
809                         continue;
810
811                 if (!cpus_have_cap(caps[i].capability) && caps[i].desc)
812                         pr_info("%s %s\n", info, caps[i].desc);
813                 cpus_set_cap(caps[i].capability);
814         }
815 }
816
817 /*
818  * Run through the enabled capabilities and enable() it on all active
819  * CPUs
820  */
821 static void __init
822 enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
823 {
824         int i;
825
826         for (i = 0; caps[i].matches; i++)
827                 if (caps[i].enable && cpus_have_cap(caps[i].capability))
828                         /*
829                          * Use stop_machine() as it schedules the work allowing
830                          * us to modify PSTATE, instead of on_each_cpu() which
831                          * uses an IPI, giving us a PSTATE that disappears when
832                          * we return.
833                          */
834                         stop_machine(caps[i].enable, NULL, cpu_online_mask);
835 }
836
837 #ifdef CONFIG_HOTPLUG_CPU
838
839 /*
840  * Flag to indicate if we have computed the system wide
841  * capabilities based on the boot time active CPUs. This
842  * will be used to determine if a new booting CPU should
843  * go through the verification process to make sure that it
844  * supports the system capabilities, without using a hotplug
845  * notifier.
846  */
847 static bool sys_caps_initialised;
848
849 static inline void set_sys_caps_initialised(void)
850 {
851         sys_caps_initialised = true;
852 }
853
854 /*
855  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
856  */
857 static u64 __raw_read_system_reg(u32 sys_id)
858 {
859         switch (sys_id) {
860         case SYS_ID_PFR0_EL1:           return read_cpuid(SYS_ID_PFR0_EL1);
861         case SYS_ID_PFR1_EL1:           return read_cpuid(SYS_ID_PFR1_EL1);
862         case SYS_ID_DFR0_EL1:           return read_cpuid(SYS_ID_DFR0_EL1);
863         case SYS_ID_MMFR0_EL1:          return read_cpuid(SYS_ID_MMFR0_EL1);
864         case SYS_ID_MMFR1_EL1:          return read_cpuid(SYS_ID_MMFR1_EL1);
865         case SYS_ID_MMFR2_EL1:          return read_cpuid(SYS_ID_MMFR2_EL1);
866         case SYS_ID_MMFR3_EL1:          return read_cpuid(SYS_ID_MMFR3_EL1);
867         case SYS_ID_ISAR0_EL1:          return read_cpuid(SYS_ID_ISAR0_EL1);
868         case SYS_ID_ISAR1_EL1:          return read_cpuid(SYS_ID_ISAR1_EL1);
869         case SYS_ID_ISAR2_EL1:          return read_cpuid(SYS_ID_ISAR2_EL1);
870         case SYS_ID_ISAR3_EL1:          return read_cpuid(SYS_ID_ISAR3_EL1);
871         case SYS_ID_ISAR4_EL1:          return read_cpuid(SYS_ID_ISAR4_EL1);
872         case SYS_ID_ISAR5_EL1:          return read_cpuid(SYS_ID_ISAR4_EL1);
873         case SYS_MVFR0_EL1:             return read_cpuid(SYS_MVFR0_EL1);
874         case SYS_MVFR1_EL1:             return read_cpuid(SYS_MVFR1_EL1);
875         case SYS_MVFR2_EL1:             return read_cpuid(SYS_MVFR2_EL1);
876
877         case SYS_ID_AA64PFR0_EL1:       return read_cpuid(SYS_ID_AA64PFR0_EL1);
878         case SYS_ID_AA64PFR1_EL1:       return read_cpuid(SYS_ID_AA64PFR0_EL1);
879         case SYS_ID_AA64DFR0_EL1:       return read_cpuid(SYS_ID_AA64DFR0_EL1);
880         case SYS_ID_AA64DFR1_EL1:       return read_cpuid(SYS_ID_AA64DFR0_EL1);
881         case SYS_ID_AA64MMFR0_EL1:      return read_cpuid(SYS_ID_AA64MMFR0_EL1);
882         case SYS_ID_AA64MMFR1_EL1:      return read_cpuid(SYS_ID_AA64MMFR1_EL1);
883         case SYS_ID_AA64MMFR2_EL1:      return read_cpuid(SYS_ID_AA64MMFR2_EL1);
884         case SYS_ID_AA64ISAR0_EL1:      return read_cpuid(SYS_ID_AA64ISAR0_EL1);
885         case SYS_ID_AA64ISAR1_EL1:      return read_cpuid(SYS_ID_AA64ISAR1_EL1);
886
887         case SYS_CNTFRQ_EL0:            return read_cpuid(SYS_CNTFRQ_EL0);
888         case SYS_CTR_EL0:               return read_cpuid(SYS_CTR_EL0);
889         case SYS_DCZID_EL0:             return read_cpuid(SYS_DCZID_EL0);
890         default:
891                 BUG();
892                 return 0;
893         }
894 }
895
896 /*
897  * Park the CPU which doesn't have the capability as advertised
898  * by the system.
899  */
900 static void fail_incapable_cpu(char *cap_type,
901                                  const struct arm64_cpu_capabilities *cap)
902 {
903         int cpu = smp_processor_id();
904
905         pr_crit("CPU%d: missing %s : %s\n", cpu, cap_type, cap->desc);
906         /* Mark this CPU absent */
907         set_cpu_present(cpu, 0);
908
909         /* Check if we can park ourselves */
910         if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
911                 cpu_ops[cpu]->cpu_die(cpu);
912         asm(
913         "1:     wfe\n"
914         "       wfi\n"
915         "       b       1b");
916 }
917
918 /*
919  * Run through the enabled system capabilities and enable() it on this CPU.
920  * The capabilities were decided based on the available CPUs at the boot time.
921  * Any new CPU should match the system wide status of the capability. If the
922  * new CPU doesn't have a capability which the system now has enabled, we
923  * cannot do anything to fix it up and could cause unexpected failures. So
924  * we park the CPU.
925  */
926 void verify_local_cpu_capabilities(void)
927 {
928         int i;
929         const struct arm64_cpu_capabilities *caps;
930
931         /*
932          * If we haven't computed the system capabilities, there is nothing
933          * to verify.
934          */
935         if (!sys_caps_initialised)
936                 return;
937
938         caps = arm64_features;
939         for (i = 0; caps[i].matches; i++) {
940                 if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
941                         continue;
942                 /*
943                  * If the new CPU misses an advertised feature, we cannot proceed
944                  * further, park the cpu.
945                  */
946                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
947                         fail_incapable_cpu("arm64_features", &caps[i]);
948                 if (caps[i].enable)
949                         caps[i].enable(NULL);
950         }
951
952         for (i = 0, caps = arm64_hwcaps; caps[i].matches; i++) {
953                 if (!cpus_have_hwcap(&caps[i]))
954                         continue;
955                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
956                         fail_incapable_cpu("arm64_hwcaps", &caps[i]);
957         }
958 }
959
960 #else   /* !CONFIG_HOTPLUG_CPU */
961
962 static inline void set_sys_caps_initialised(void)
963 {
964 }
965
966 #endif  /* CONFIG_HOTPLUG_CPU */
967
968 static void __init setup_feature_capabilities(void)
969 {
970         update_cpu_capabilities(arm64_features, "detected feature:");
971         enable_cpu_capabilities(arm64_features);
972 }
973
974 void __init setup_cpu_features(void)
975 {
976         u32 cwg;
977         int cls;
978
979         /* Set the CPU feature capabilies */
980         setup_feature_capabilities();
981         setup_cpu_hwcaps();
982
983         /* Advertise that we have computed the system capabilities */
984         set_sys_caps_initialised();
985
986         /*
987          * Check for sane CTR_EL0.CWG value.
988          */
989         cwg = cache_type_cwg();
990         cls = cache_line_size();
991         if (!cwg)
992                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
993                         cls);
994         if (L1_CACHE_BYTES < cls)
995                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
996                         L1_CACHE_BYTES, cls);
997 }
998
999 static bool __maybe_unused
1000 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry)
1001 {
1002         return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
1003 }