arm64: KVM: flush VM pages before letting the guest enable caches
[firefly-linux-kernel-4.4.55.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/mm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/uaccess.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_host.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_coproc.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cputype.h>
33 #include <trace/events/kvm.h>
34
35 #include "sys_regs.h"
36
37 /*
38  * All of this file is extremly similar to the ARM coproc.c, but the
39  * types are different. My gut feeling is that it should be pretty
40  * easy to merge, but that would be an ABI breakage -- again. VFP
41  * would also need to be abstracted.
42  *
43  * For AArch32, we only take care of what is being trapped. Anything
44  * that has to do with init and userspace access has to go via the
45  * 64bit interface.
46  */
47
48 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
49 static u32 cache_levels;
50
51 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
52 #define CSSELR_MAX 12
53
54 /* Which cache CCSIDR represents depends on CSSELR value. */
55 static u32 get_ccsidr(u32 csselr)
56 {
57         u32 ccsidr;
58
59         /* Make sure noone else changes CSSELR during this! */
60         local_irq_disable();
61         /* Put value into CSSELR */
62         asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
63         isb();
64         /* Read result out of CCSIDR */
65         asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
66         local_irq_enable();
67
68         return ccsidr;
69 }
70
71 static void do_dc_cisw(u32 val)
72 {
73         asm volatile("dc cisw, %x0" : : "r" (val));
74         dsb();
75 }
76
77 static void do_dc_csw(u32 val)
78 {
79         asm volatile("dc csw, %x0" : : "r" (val));
80         dsb();
81 }
82
83 /* See note at ARM ARM B1.14.4 */
84 static bool access_dcsw(struct kvm_vcpu *vcpu,
85                         const struct sys_reg_params *p,
86                         const struct sys_reg_desc *r)
87 {
88         unsigned long val;
89         int cpu;
90
91         if (!p->is_write)
92                 return read_from_write_only(vcpu, p);
93
94         cpu = get_cpu();
95
96         cpumask_setall(&vcpu->arch.require_dcache_flush);
97         cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
98
99         /* If we were already preempted, take the long way around */
100         if (cpu != vcpu->arch.last_pcpu) {
101                 flush_cache_all();
102                 goto done;
103         }
104
105         val = *vcpu_reg(vcpu, p->Rt);
106
107         switch (p->CRm) {
108         case 6:                 /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
109         case 14:                /* DCCISW */
110                 do_dc_cisw(val);
111                 break;
112
113         case 10:                /* DCCSW */
114                 do_dc_csw(val);
115                 break;
116         }
117
118 done:
119         put_cpu();
120
121         return true;
122 }
123
124 /*
125  * Generic accessor for VM registers. Only called as long as HCR_TVM
126  * is set.
127  */
128 static bool access_vm_reg(struct kvm_vcpu *vcpu,
129                           const struct sys_reg_params *p,
130                           const struct sys_reg_desc *r)
131 {
132         unsigned long val;
133
134         BUG_ON(!p->is_write);
135
136         val = *vcpu_reg(vcpu, p->Rt);
137         if (!p->is_aarch32) {
138                 vcpu_sys_reg(vcpu, r->reg) = val;
139         } else {
140                 vcpu_cp15(vcpu, r->reg) = val & 0xffffffffUL;
141                 if (!p->is_32bit)
142                         vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
143         }
144         return true;
145 }
146
147 /*
148  * SCTLR_EL1 accessor. Only called as long as HCR_TVM is set.  If the
149  * guest enables the MMU, we stop trapping the VM sys_regs and leave
150  * it in complete control of the caches.
151  */
152 static bool access_sctlr(struct kvm_vcpu *vcpu,
153                          const struct sys_reg_params *p,
154                          const struct sys_reg_desc *r)
155 {
156         access_vm_reg(vcpu, p, r);
157
158         if (vcpu_has_cache_enabled(vcpu)) {     /* MMU+Caches enabled? */
159                 vcpu->arch.hcr_el2 &= ~HCR_TVM;
160                 stage2_flush_vm(vcpu->kvm);
161         }
162
163         return true;
164 }
165
166 /*
167  * We could trap ID_DFR0 and tell the guest we don't support performance
168  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
169  * NAKed, so it will read the PMCR anyway.
170  *
171  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
172  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
173  * all PM registers, which doesn't crash the guest kernel at least.
174  */
175 static bool pm_fake(struct kvm_vcpu *vcpu,
176                     const struct sys_reg_params *p,
177                     const struct sys_reg_desc *r)
178 {
179         if (p->is_write)
180                 return ignore_write(vcpu, p);
181         else
182                 return read_zero(vcpu, p);
183 }
184
185 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
186 {
187         u64 amair;
188
189         asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
190         vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
191 }
192
193 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
194 {
195         /*
196          * Simply map the vcpu_id into the Aff0 field of the MPIDR.
197          */
198         vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
199 }
200
201 /*
202  * Architected system registers.
203  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
204  */
205 static const struct sys_reg_desc sys_reg_descs[] = {
206         /* DC ISW */
207         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
208           access_dcsw },
209         /* DC CSW */
210         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
211           access_dcsw },
212         /* DC CISW */
213         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
214           access_dcsw },
215
216         /* TEECR32_EL1 */
217         { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
218           NULL, reset_val, TEECR32_EL1, 0 },
219         /* TEEHBR32_EL1 */
220         { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
221           NULL, reset_val, TEEHBR32_EL1, 0 },
222         /* DBGVCR32_EL2 */
223         { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
224           NULL, reset_val, DBGVCR32_EL2, 0 },
225
226         /* MPIDR_EL1 */
227         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
228           NULL, reset_mpidr, MPIDR_EL1 },
229         /* SCTLR_EL1 */
230         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
231           access_sctlr, reset_val, SCTLR_EL1, 0x00C50078 },
232         /* CPACR_EL1 */
233         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
234           NULL, reset_val, CPACR_EL1, 0 },
235         /* TTBR0_EL1 */
236         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
237           access_vm_reg, reset_unknown, TTBR0_EL1 },
238         /* TTBR1_EL1 */
239         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
240           access_vm_reg, reset_unknown, TTBR1_EL1 },
241         /* TCR_EL1 */
242         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
243           access_vm_reg, reset_val, TCR_EL1, 0 },
244
245         /* AFSR0_EL1 */
246         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
247           access_vm_reg, reset_unknown, AFSR0_EL1 },
248         /* AFSR1_EL1 */
249         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
250           access_vm_reg, reset_unknown, AFSR1_EL1 },
251         /* ESR_EL1 */
252         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
253           access_vm_reg, reset_unknown, ESR_EL1 },
254         /* FAR_EL1 */
255         { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
256           access_vm_reg, reset_unknown, FAR_EL1 },
257         /* PAR_EL1 */
258         { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
259           NULL, reset_unknown, PAR_EL1 },
260
261         /* PMINTENSET_EL1 */
262         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
263           pm_fake },
264         /* PMINTENCLR_EL1 */
265         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
266           pm_fake },
267
268         /* MAIR_EL1 */
269         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
270           access_vm_reg, reset_unknown, MAIR_EL1 },
271         /* AMAIR_EL1 */
272         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
273           access_vm_reg, reset_amair_el1, AMAIR_EL1 },
274
275         /* VBAR_EL1 */
276         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
277           NULL, reset_val, VBAR_EL1, 0 },
278         /* CONTEXTIDR_EL1 */
279         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
280           access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
281         /* TPIDR_EL1 */
282         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
283           NULL, reset_unknown, TPIDR_EL1 },
284
285         /* CNTKCTL_EL1 */
286         { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
287           NULL, reset_val, CNTKCTL_EL1, 0},
288
289         /* CSSELR_EL1 */
290         { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
291           NULL, reset_unknown, CSSELR_EL1 },
292
293         /* PMCR_EL0 */
294         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
295           pm_fake },
296         /* PMCNTENSET_EL0 */
297         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
298           pm_fake },
299         /* PMCNTENCLR_EL0 */
300         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
301           pm_fake },
302         /* PMOVSCLR_EL0 */
303         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
304           pm_fake },
305         /* PMSWINC_EL0 */
306         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
307           pm_fake },
308         /* PMSELR_EL0 */
309         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
310           pm_fake },
311         /* PMCEID0_EL0 */
312         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
313           pm_fake },
314         /* PMCEID1_EL0 */
315         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
316           pm_fake },
317         /* PMCCNTR_EL0 */
318         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
319           pm_fake },
320         /* PMXEVTYPER_EL0 */
321         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
322           pm_fake },
323         /* PMXEVCNTR_EL0 */
324         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
325           pm_fake },
326         /* PMUSERENR_EL0 */
327         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
328           pm_fake },
329         /* PMOVSSET_EL0 */
330         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
331           pm_fake },
332
333         /* TPIDR_EL0 */
334         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
335           NULL, reset_unknown, TPIDR_EL0 },
336         /* TPIDRRO_EL0 */
337         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
338           NULL, reset_unknown, TPIDRRO_EL0 },
339
340         /* DACR32_EL2 */
341         { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
342           NULL, reset_unknown, DACR32_EL2 },
343         /* IFSR32_EL2 */
344         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
345           NULL, reset_unknown, IFSR32_EL2 },
346         /* FPEXC32_EL2 */
347         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
348           NULL, reset_val, FPEXC32_EL2, 0x70 },
349 };
350
351 /*
352  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
353  * depending on the way they are accessed (as a 32bit or a 64bit
354  * register).
355  */
356 static const struct sys_reg_desc cp15_regs[] = {
357         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
358         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR },
359         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
360         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
361         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
362         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
363         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
364         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
365         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
366         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
367         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
368         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
369
370         /*
371          * DC{C,I,CI}SW operations:
372          */
373         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
374         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
375         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
376
377         { Op1( 0), CRn( 9), CRm(12), Op2( 0), pm_fake },
378         { Op1( 0), CRn( 9), CRm(12), Op2( 1), pm_fake },
379         { Op1( 0), CRn( 9), CRm(12), Op2( 2), pm_fake },
380         { Op1( 0), CRn( 9), CRm(12), Op2( 3), pm_fake },
381         { Op1( 0), CRn( 9), CRm(12), Op2( 5), pm_fake },
382         { Op1( 0), CRn( 9), CRm(12), Op2( 6), pm_fake },
383         { Op1( 0), CRn( 9), CRm(12), Op2( 7), pm_fake },
384         { Op1( 0), CRn( 9), CRm(13), Op2( 0), pm_fake },
385         { Op1( 0), CRn( 9), CRm(13), Op2( 1), pm_fake },
386         { Op1( 0), CRn( 9), CRm(13), Op2( 2), pm_fake },
387         { Op1( 0), CRn( 9), CRm(14), Op2( 0), pm_fake },
388         { Op1( 0), CRn( 9), CRm(14), Op2( 1), pm_fake },
389         { Op1( 0), CRn( 9), CRm(14), Op2( 2), pm_fake },
390
391         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
392         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
393         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
394         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
395         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
396
397         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
398 };
399
400 /* Target specific emulation tables */
401 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
402
403 void kvm_register_target_sys_reg_table(unsigned int target,
404                                        struct kvm_sys_reg_target_table *table)
405 {
406         target_tables[target] = table;
407 }
408
409 /* Get specific register table for this target. */
410 static const struct sys_reg_desc *get_target_table(unsigned target,
411                                                    bool mode_is_64,
412                                                    size_t *num)
413 {
414         struct kvm_sys_reg_target_table *table;
415
416         table = target_tables[target];
417         if (mode_is_64) {
418                 *num = table->table64.num;
419                 return table->table64.table;
420         } else {
421                 *num = table->table32.num;
422                 return table->table32.table;
423         }
424 }
425
426 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
427                                          const struct sys_reg_desc table[],
428                                          unsigned int num)
429 {
430         unsigned int i;
431
432         for (i = 0; i < num; i++) {
433                 const struct sys_reg_desc *r = &table[i];
434
435                 if (params->Op0 != r->Op0)
436                         continue;
437                 if (params->Op1 != r->Op1)
438                         continue;
439                 if (params->CRn != r->CRn)
440                         continue;
441                 if (params->CRm != r->CRm)
442                         continue;
443                 if (params->Op2 != r->Op2)
444                         continue;
445
446                 return r;
447         }
448         return NULL;
449 }
450
451 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
452 {
453         kvm_inject_undefined(vcpu);
454         return 1;
455 }
456
457 int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
458 {
459         kvm_inject_undefined(vcpu);
460         return 1;
461 }
462
463 static void emulate_cp15(struct kvm_vcpu *vcpu,
464                          const struct sys_reg_params *params)
465 {
466         size_t num;
467         const struct sys_reg_desc *table, *r;
468
469         table = get_target_table(vcpu->arch.target, false, &num);
470
471         /* Search target-specific then generic table. */
472         r = find_reg(params, table, num);
473         if (!r)
474                 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
475
476         if (likely(r)) {
477                 /*
478                  * Not having an accessor means that we have
479                  * configured a trap that we don't know how to
480                  * handle. This certainly qualifies as a gross bug
481                  * that should be fixed right away.
482                  */
483                 BUG_ON(!r->access);
484
485                 if (likely(r->access(vcpu, params, r))) {
486                         /* Skip instruction, since it was emulated */
487                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
488                         return;
489                 }
490                 /* If access function fails, it should complain. */
491         }
492
493         kvm_err("Unsupported guest CP15 access at: %08lx\n", *vcpu_pc(vcpu));
494         print_sys_reg_instr(params);
495         kvm_inject_undefined(vcpu);
496 }
497
498 /**
499  * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
500  * @vcpu: The VCPU pointer
501  * @run:  The kvm_run struct
502  */
503 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
504 {
505         struct sys_reg_params params;
506         u32 hsr = kvm_vcpu_get_hsr(vcpu);
507         int Rt2 = (hsr >> 10) & 0xf;
508
509         params.is_aarch32 = true;
510         params.is_32bit = false;
511         params.CRm = (hsr >> 1) & 0xf;
512         params.Rt = (hsr >> 5) & 0xf;
513         params.is_write = ((hsr & 1) == 0);
514
515         params.Op0 = 0;
516         params.Op1 = (hsr >> 16) & 0xf;
517         params.Op2 = 0;
518         params.CRn = 0;
519
520         /*
521          * Massive hack here. Store Rt2 in the top 32bits so we only
522          * have one register to deal with. As we use the same trap
523          * backends between AArch32 and AArch64, we get away with it.
524          */
525         if (params.is_write) {
526                 u64 val = *vcpu_reg(vcpu, params.Rt);
527                 val &= 0xffffffff;
528                 val |= *vcpu_reg(vcpu, Rt2) << 32;
529                 *vcpu_reg(vcpu, params.Rt) = val;
530         }
531
532         emulate_cp15(vcpu, &params);
533
534         /* Do the opposite hack for the read side */
535         if (!params.is_write) {
536                 u64 val = *vcpu_reg(vcpu, params.Rt);
537                 val >>= 32;
538                 *vcpu_reg(vcpu, Rt2) = val;
539         }
540
541         return 1;
542 }
543
544 /**
545  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
546  * @vcpu: The VCPU pointer
547  * @run:  The kvm_run struct
548  */
549 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
550 {
551         struct sys_reg_params params;
552         u32 hsr = kvm_vcpu_get_hsr(vcpu);
553
554         params.is_aarch32 = true;
555         params.is_32bit = true;
556         params.CRm = (hsr >> 1) & 0xf;
557         params.Rt  = (hsr >> 5) & 0xf;
558         params.is_write = ((hsr & 1) == 0);
559         params.CRn = (hsr >> 10) & 0xf;
560         params.Op0 = 0;
561         params.Op1 = (hsr >> 14) & 0x7;
562         params.Op2 = (hsr >> 17) & 0x7;
563
564         emulate_cp15(vcpu, &params);
565         return 1;
566 }
567
568 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
569                            const struct sys_reg_params *params)
570 {
571         size_t num;
572         const struct sys_reg_desc *table, *r;
573
574         table = get_target_table(vcpu->arch.target, true, &num);
575
576         /* Search target-specific then generic table. */
577         r = find_reg(params, table, num);
578         if (!r)
579                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
580
581         if (likely(r)) {
582                 /*
583                  * Not having an accessor means that we have
584                  * configured a trap that we don't know how to
585                  * handle. This certainly qualifies as a gross bug
586                  * that should be fixed right away.
587                  */
588                 BUG_ON(!r->access);
589
590                 if (likely(r->access(vcpu, params, r))) {
591                         /* Skip instruction, since it was emulated */
592                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
593                         return 1;
594                 }
595                 /* If access function fails, it should complain. */
596         } else {
597                 kvm_err("Unsupported guest sys_reg access at: %lx\n",
598                         *vcpu_pc(vcpu));
599                 print_sys_reg_instr(params);
600         }
601         kvm_inject_undefined(vcpu);
602         return 1;
603 }
604
605 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
606                               const struct sys_reg_desc *table, size_t num)
607 {
608         unsigned long i;
609
610         for (i = 0; i < num; i++)
611                 if (table[i].reset)
612                         table[i].reset(vcpu, &table[i]);
613 }
614
615 /**
616  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
617  * @vcpu: The VCPU pointer
618  * @run:  The kvm_run struct
619  */
620 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
621 {
622         struct sys_reg_params params;
623         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
624
625         params.is_aarch32 = false;
626         params.is_32bit = false;
627         params.Op0 = (esr >> 20) & 3;
628         params.Op1 = (esr >> 14) & 0x7;
629         params.CRn = (esr >> 10) & 0xf;
630         params.CRm = (esr >> 1) & 0xf;
631         params.Op2 = (esr >> 17) & 0x7;
632         params.Rt = (esr >> 5) & 0x1f;
633         params.is_write = !(esr & 1);
634
635         return emulate_sys_reg(vcpu, &params);
636 }
637
638 /******************************************************************************
639  * Userspace API
640  *****************************************************************************/
641
642 static bool index_to_params(u64 id, struct sys_reg_params *params)
643 {
644         switch (id & KVM_REG_SIZE_MASK) {
645         case KVM_REG_SIZE_U64:
646                 /* Any unused index bits means it's not valid. */
647                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
648                               | KVM_REG_ARM_COPROC_MASK
649                               | KVM_REG_ARM64_SYSREG_OP0_MASK
650                               | KVM_REG_ARM64_SYSREG_OP1_MASK
651                               | KVM_REG_ARM64_SYSREG_CRN_MASK
652                               | KVM_REG_ARM64_SYSREG_CRM_MASK
653                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
654                         return false;
655                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
656                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
657                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
658                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
659                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
660                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
661                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
662                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
663                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
664                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
665                 return true;
666         default:
667                 return false;
668         }
669 }
670
671 /* Decode an index value, and find the sys_reg_desc entry. */
672 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
673                                                     u64 id)
674 {
675         size_t num;
676         const struct sys_reg_desc *table, *r;
677         struct sys_reg_params params;
678
679         /* We only do sys_reg for now. */
680         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
681                 return NULL;
682
683         if (!index_to_params(id, &params))
684                 return NULL;
685
686         table = get_target_table(vcpu->arch.target, true, &num);
687         r = find_reg(&params, table, num);
688         if (!r)
689                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
690
691         /* Not saved in the sys_reg array? */
692         if (r && !r->reg)
693                 r = NULL;
694
695         return r;
696 }
697
698 /*
699  * These are the invariant sys_reg registers: we let the guest see the
700  * host versions of these, so they're part of the guest state.
701  *
702  * A future CPU may provide a mechanism to present different values to
703  * the guest, or a future kvm may trap them.
704  */
705
706 #define FUNCTION_INVARIANT(reg)                                         \
707         static void get_##reg(struct kvm_vcpu *v,                       \
708                               const struct sys_reg_desc *r)             \
709         {                                                               \
710                 u64 val;                                                \
711                                                                         \
712                 asm volatile("mrs %0, " __stringify(reg) "\n"           \
713                              : "=r" (val));                             \
714                 ((struct sys_reg_desc *)r)->val = val;                  \
715         }
716
717 FUNCTION_INVARIANT(midr_el1)
718 FUNCTION_INVARIANT(ctr_el0)
719 FUNCTION_INVARIANT(revidr_el1)
720 FUNCTION_INVARIANT(id_pfr0_el1)
721 FUNCTION_INVARIANT(id_pfr1_el1)
722 FUNCTION_INVARIANT(id_dfr0_el1)
723 FUNCTION_INVARIANT(id_afr0_el1)
724 FUNCTION_INVARIANT(id_mmfr0_el1)
725 FUNCTION_INVARIANT(id_mmfr1_el1)
726 FUNCTION_INVARIANT(id_mmfr2_el1)
727 FUNCTION_INVARIANT(id_mmfr3_el1)
728 FUNCTION_INVARIANT(id_isar0_el1)
729 FUNCTION_INVARIANT(id_isar1_el1)
730 FUNCTION_INVARIANT(id_isar2_el1)
731 FUNCTION_INVARIANT(id_isar3_el1)
732 FUNCTION_INVARIANT(id_isar4_el1)
733 FUNCTION_INVARIANT(id_isar5_el1)
734 FUNCTION_INVARIANT(clidr_el1)
735 FUNCTION_INVARIANT(aidr_el1)
736
737 /* ->val is filled in by kvm_sys_reg_table_init() */
738 static struct sys_reg_desc invariant_sys_regs[] = {
739         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
740           NULL, get_midr_el1 },
741         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
742           NULL, get_revidr_el1 },
743         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
744           NULL, get_id_pfr0_el1 },
745         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
746           NULL, get_id_pfr1_el1 },
747         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
748           NULL, get_id_dfr0_el1 },
749         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
750           NULL, get_id_afr0_el1 },
751         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
752           NULL, get_id_mmfr0_el1 },
753         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
754           NULL, get_id_mmfr1_el1 },
755         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
756           NULL, get_id_mmfr2_el1 },
757         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
758           NULL, get_id_mmfr3_el1 },
759         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
760           NULL, get_id_isar0_el1 },
761         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
762           NULL, get_id_isar1_el1 },
763         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
764           NULL, get_id_isar2_el1 },
765         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
766           NULL, get_id_isar3_el1 },
767         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
768           NULL, get_id_isar4_el1 },
769         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
770           NULL, get_id_isar5_el1 },
771         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
772           NULL, get_clidr_el1 },
773         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
774           NULL, get_aidr_el1 },
775         { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
776           NULL, get_ctr_el0 },
777 };
778
779 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
780 {
781         /* This Just Works because we are little endian. */
782         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
783                 return -EFAULT;
784         return 0;
785 }
786
787 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
788 {
789         /* This Just Works because we are little endian. */
790         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
791                 return -EFAULT;
792         return 0;
793 }
794
795 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
796 {
797         struct sys_reg_params params;
798         const struct sys_reg_desc *r;
799
800         if (!index_to_params(id, &params))
801                 return -ENOENT;
802
803         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
804         if (!r)
805                 return -ENOENT;
806
807         return reg_to_user(uaddr, &r->val, id);
808 }
809
810 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
811 {
812         struct sys_reg_params params;
813         const struct sys_reg_desc *r;
814         int err;
815         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
816
817         if (!index_to_params(id, &params))
818                 return -ENOENT;
819         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
820         if (!r)
821                 return -ENOENT;
822
823         err = reg_from_user(&val, uaddr, id);
824         if (err)
825                 return err;
826
827         /* This is what we mean by invariant: you can't change it. */
828         if (r->val != val)
829                 return -EINVAL;
830
831         return 0;
832 }
833
834 static bool is_valid_cache(u32 val)
835 {
836         u32 level, ctype;
837
838         if (val >= CSSELR_MAX)
839                 return -ENOENT;
840
841         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
842         level = (val >> 1);
843         ctype = (cache_levels >> (level * 3)) & 7;
844
845         switch (ctype) {
846         case 0: /* No cache */
847                 return false;
848         case 1: /* Instruction cache only */
849                 return (val & 1);
850         case 2: /* Data cache only */
851         case 4: /* Unified cache */
852                 return !(val & 1);
853         case 3: /* Separate instruction and data caches */
854                 return true;
855         default: /* Reserved: we can't know instruction or data. */
856                 return false;
857         }
858 }
859
860 static int demux_c15_get(u64 id, void __user *uaddr)
861 {
862         u32 val;
863         u32 __user *uval = uaddr;
864
865         /* Fail if we have unknown bits set. */
866         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
867                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
868                 return -ENOENT;
869
870         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
871         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
872                 if (KVM_REG_SIZE(id) != 4)
873                         return -ENOENT;
874                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
875                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
876                 if (!is_valid_cache(val))
877                         return -ENOENT;
878
879                 return put_user(get_ccsidr(val), uval);
880         default:
881                 return -ENOENT;
882         }
883 }
884
885 static int demux_c15_set(u64 id, void __user *uaddr)
886 {
887         u32 val, newval;
888         u32 __user *uval = uaddr;
889
890         /* Fail if we have unknown bits set. */
891         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
892                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
893                 return -ENOENT;
894
895         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
896         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
897                 if (KVM_REG_SIZE(id) != 4)
898                         return -ENOENT;
899                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
900                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
901                 if (!is_valid_cache(val))
902                         return -ENOENT;
903
904                 if (get_user(newval, uval))
905                         return -EFAULT;
906
907                 /* This is also invariant: you can't change it. */
908                 if (newval != get_ccsidr(val))
909                         return -EINVAL;
910                 return 0;
911         default:
912                 return -ENOENT;
913         }
914 }
915
916 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
917 {
918         const struct sys_reg_desc *r;
919         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
920
921         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
922                 return demux_c15_get(reg->id, uaddr);
923
924         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
925                 return -ENOENT;
926
927         r = index_to_sys_reg_desc(vcpu, reg->id);
928         if (!r)
929                 return get_invariant_sys_reg(reg->id, uaddr);
930
931         return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
932 }
933
934 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
935 {
936         const struct sys_reg_desc *r;
937         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
938
939         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
940                 return demux_c15_set(reg->id, uaddr);
941
942         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
943                 return -ENOENT;
944
945         r = index_to_sys_reg_desc(vcpu, reg->id);
946         if (!r)
947                 return set_invariant_sys_reg(reg->id, uaddr);
948
949         return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
950 }
951
952 static unsigned int num_demux_regs(void)
953 {
954         unsigned int i, count = 0;
955
956         for (i = 0; i < CSSELR_MAX; i++)
957                 if (is_valid_cache(i))
958                         count++;
959
960         return count;
961 }
962
963 static int write_demux_regids(u64 __user *uindices)
964 {
965         u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
966         unsigned int i;
967
968         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
969         for (i = 0; i < CSSELR_MAX; i++) {
970                 if (!is_valid_cache(i))
971                         continue;
972                 if (put_user(val | i, uindices))
973                         return -EFAULT;
974                 uindices++;
975         }
976         return 0;
977 }
978
979 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
980 {
981         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
982                 KVM_REG_ARM64_SYSREG |
983                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
984                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
985                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
986                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
987                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
988 }
989
990 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
991 {
992         if (!*uind)
993                 return true;
994
995         if (put_user(sys_reg_to_index(reg), *uind))
996                 return false;
997
998         (*uind)++;
999         return true;
1000 }
1001
1002 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
1003 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1004 {
1005         const struct sys_reg_desc *i1, *i2, *end1, *end2;
1006         unsigned int total = 0;
1007         size_t num;
1008
1009         /* We check for duplicates here, to allow arch-specific overrides. */
1010         i1 = get_target_table(vcpu->arch.target, true, &num);
1011         end1 = i1 + num;
1012         i2 = sys_reg_descs;
1013         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1014
1015         BUG_ON(i1 == end1 || i2 == end2);
1016
1017         /* Walk carefully, as both tables may refer to the same register. */
1018         while (i1 || i2) {
1019                 int cmp = cmp_sys_reg(i1, i2);
1020                 /* target-specific overrides generic entry. */
1021                 if (cmp <= 0) {
1022                         /* Ignore registers we trap but don't save. */
1023                         if (i1->reg) {
1024                                 if (!copy_reg_to_user(i1, &uind))
1025                                         return -EFAULT;
1026                                 total++;
1027                         }
1028                 } else {
1029                         /* Ignore registers we trap but don't save. */
1030                         if (i2->reg) {
1031                                 if (!copy_reg_to_user(i2, &uind))
1032                                         return -EFAULT;
1033                                 total++;
1034                         }
1035                 }
1036
1037                 if (cmp <= 0 && ++i1 == end1)
1038                         i1 = NULL;
1039                 if (cmp >= 0 && ++i2 == end2)
1040                         i2 = NULL;
1041         }
1042         return total;
1043 }
1044
1045 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1046 {
1047         return ARRAY_SIZE(invariant_sys_regs)
1048                 + num_demux_regs()
1049                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1050 }
1051
1052 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1053 {
1054         unsigned int i;
1055         int err;
1056
1057         /* Then give them all the invariant registers' indices. */
1058         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1059                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1060                         return -EFAULT;
1061                 uindices++;
1062         }
1063
1064         err = walk_sys_regs(vcpu, uindices);
1065         if (err < 0)
1066                 return err;
1067         uindices += err;
1068
1069         return write_demux_regids(uindices);
1070 }
1071
1072 void kvm_sys_reg_table_init(void)
1073 {
1074         unsigned int i;
1075         struct sys_reg_desc clidr;
1076
1077         /* Make sure tables are unique and in order. */
1078         for (i = 1; i < ARRAY_SIZE(sys_reg_descs); i++)
1079                 BUG_ON(cmp_sys_reg(&sys_reg_descs[i-1], &sys_reg_descs[i]) >= 0);
1080
1081         /* We abuse the reset function to overwrite the table itself. */
1082         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1083                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1084
1085         /*
1086          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1087          *
1088          *   If software reads the Cache Type fields from Ctype1
1089          *   upwards, once it has seen a value of 0b000, no caches
1090          *   exist at further-out levels of the hierarchy. So, for
1091          *   example, if Ctype3 is the first Cache Type field with a
1092          *   value of 0b000, the values of Ctype4 to Ctype7 must be
1093          *   ignored.
1094          */
1095         get_clidr_el1(NULL, &clidr); /* Ugly... */
1096         cache_levels = clidr.val;
1097         for (i = 0; i < 7; i++)
1098                 if (((cache_levels >> (i*3)) & 7) == 0)
1099                         break;
1100         /* Clear all higher bits. */
1101         cache_levels &= (1 << (i*3))-1;
1102 }
1103
1104 /**
1105  * kvm_reset_sys_regs - sets system registers to reset value
1106  * @vcpu: The VCPU pointer
1107  *
1108  * This function finds the right table above and sets the registers on the
1109  * virtual CPU struct to their architecturally defined reset values.
1110  */
1111 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1112 {
1113         size_t num;
1114         const struct sys_reg_desc *table;
1115
1116         /* Catch someone adding a register without putting in reset entry. */
1117         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1118
1119         /* Generic chip reset first (so target could override). */
1120         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1121
1122         table = get_target_table(vcpu->arch.target, true, &num);
1123         reset_sys_reg_descs(vcpu, table, num);
1124
1125         for (num = 1; num < NR_SYS_REGS; num++)
1126                 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1127                         panic("Didn't reset vcpu_sys_reg(%zi)", num);
1128 }