arm64/dma-mapping: Fix sizes in __iommu_{alloc,free}_attrs
[firefly-linux-kernel-4.4.55.git] / arch / arm64 / mm / dma-mapping.c
1 /*
2  * SWIOTLB-based DMA API implementation
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/gfp.h>
21 #include <linux/export.h>
22 #include <linux/slab.h>
23 #include <linux/genalloc.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dma-contiguous.h>
26 #include <linux/vmalloc.h>
27 #include <linux/swiotlb.h>
28
29 #include <asm/cacheflush.h>
30
31 struct dma_map_ops *dma_ops;
32 EXPORT_SYMBOL(dma_ops);
33
34 static pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot,
35                                  bool coherent)
36 {
37         if (!coherent || dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
38                 return pgprot_writecombine(prot);
39         return prot;
40 }
41
42 static struct gen_pool *atomic_pool;
43
44 #define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
45 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
46
47 static int __init early_coherent_pool(char *p)
48 {
49         atomic_pool_size = memparse(p, &p);
50         return 0;
51 }
52 early_param("coherent_pool", early_coherent_pool);
53
54 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
55 {
56         unsigned long val;
57         void *ptr = NULL;
58
59         if (!atomic_pool) {
60                 WARN(1, "coherent pool not initialised!\n");
61                 return NULL;
62         }
63
64         val = gen_pool_alloc(atomic_pool, size);
65         if (val) {
66                 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
67
68                 *ret_page = phys_to_page(phys);
69                 ptr = (void *)val;
70                 memset(ptr, 0, size);
71         }
72
73         return ptr;
74 }
75
76 static bool __in_atomic_pool(void *start, size_t size)
77 {
78         return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
79 }
80
81 static int __free_from_pool(void *start, size_t size)
82 {
83         if (!__in_atomic_pool(start, size))
84                 return 0;
85
86         gen_pool_free(atomic_pool, (unsigned long)start, size);
87
88         return 1;
89 }
90
91 static void *__dma_alloc_coherent(struct device *dev, size_t size,
92                                   dma_addr_t *dma_handle, gfp_t flags,
93                                   struct dma_attrs *attrs)
94 {
95         if (dev == NULL) {
96                 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
97                 return NULL;
98         }
99
100         if (IS_ENABLED(CONFIG_ZONE_DMA) &&
101             dev->coherent_dma_mask <= DMA_BIT_MASK(32))
102                 flags |= GFP_DMA;
103         if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) {
104                 struct page *page;
105                 void *addr;
106
107                 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
108                                                         get_order(size));
109                 if (!page)
110                         return NULL;
111
112                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
113                 addr = page_address(page);
114                 memset(addr, 0, size);
115                 return addr;
116         } else {
117                 return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
118         }
119 }
120
121 static void __dma_free_coherent(struct device *dev, size_t size,
122                                 void *vaddr, dma_addr_t dma_handle,
123                                 struct dma_attrs *attrs)
124 {
125         bool freed;
126         phys_addr_t paddr = dma_to_phys(dev, dma_handle);
127
128         if (dev == NULL) {
129                 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
130                 return;
131         }
132
133         freed = dma_release_from_contiguous(dev,
134                                         phys_to_page(paddr),
135                                         size >> PAGE_SHIFT);
136         if (!freed)
137                 swiotlb_free_coherent(dev, size, vaddr, dma_handle);
138 }
139
140 static void *__dma_alloc(struct device *dev, size_t size,
141                          dma_addr_t *dma_handle, gfp_t flags,
142                          struct dma_attrs *attrs)
143 {
144         struct page *page;
145         void *ptr, *coherent_ptr;
146         bool coherent = is_device_dma_coherent(dev);
147         pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
148
149         size = PAGE_ALIGN(size);
150
151         if (!coherent && !gfpflags_allow_blocking(flags)) {
152                 struct page *page = NULL;
153                 void *addr = __alloc_from_pool(size, &page, flags);
154
155                 if (addr)
156                         *dma_handle = phys_to_dma(dev, page_to_phys(page));
157
158                 return addr;
159         }
160
161         ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
162         if (!ptr)
163                 goto no_mem;
164
165         /* no need for non-cacheable mapping if coherent */
166         if (coherent)
167                 return ptr;
168
169         /* remove any dirty cache lines on the kernel alias */
170         __dma_flush_range(ptr, ptr + size);
171
172         /* create a coherent mapping */
173         page = virt_to_page(ptr);
174         coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
175                                                    prot, NULL);
176         if (!coherent_ptr)
177                 goto no_map;
178
179         return coherent_ptr;
180
181 no_map:
182         __dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
183 no_mem:
184         *dma_handle = DMA_ERROR_CODE;
185         return NULL;
186 }
187
188 static void __dma_free(struct device *dev, size_t size,
189                        void *vaddr, dma_addr_t dma_handle,
190                        struct dma_attrs *attrs)
191 {
192         void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
193
194         size = PAGE_ALIGN(size);
195
196         if (!is_device_dma_coherent(dev)) {
197                 if (__free_from_pool(vaddr, size))
198                         return;
199                 vunmap(vaddr);
200         }
201         __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
202 }
203
204 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
205                                      unsigned long offset, size_t size,
206                                      enum dma_data_direction dir,
207                                      struct dma_attrs *attrs)
208 {
209         dma_addr_t dev_addr;
210
211         dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
212         if (!is_device_dma_coherent(dev))
213                 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
214
215         return dev_addr;
216 }
217
218
219 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
220                                  size_t size, enum dma_data_direction dir,
221                                  struct dma_attrs *attrs)
222 {
223         if (!is_device_dma_coherent(dev))
224                 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
225         swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
226 }
227
228 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
229                                   int nelems, enum dma_data_direction dir,
230                                   struct dma_attrs *attrs)
231 {
232         struct scatterlist *sg;
233         int i, ret;
234
235         ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
236         if (!is_device_dma_coherent(dev))
237                 for_each_sg(sgl, sg, ret, i)
238                         __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
239                                        sg->length, dir);
240
241         return ret;
242 }
243
244 static void __swiotlb_unmap_sg_attrs(struct device *dev,
245                                      struct scatterlist *sgl, int nelems,
246                                      enum dma_data_direction dir,
247                                      struct dma_attrs *attrs)
248 {
249         struct scatterlist *sg;
250         int i;
251
252         if (!is_device_dma_coherent(dev))
253                 for_each_sg(sgl, sg, nelems, i)
254                         __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
255                                          sg->length, dir);
256         swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
257 }
258
259 static void __swiotlb_sync_single_for_cpu(struct device *dev,
260                                           dma_addr_t dev_addr, size_t size,
261                                           enum dma_data_direction dir)
262 {
263         if (!is_device_dma_coherent(dev))
264                 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
265         swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
266 }
267
268 static void __swiotlb_sync_single_for_device(struct device *dev,
269                                              dma_addr_t dev_addr, size_t size,
270                                              enum dma_data_direction dir)
271 {
272         swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
273         if (!is_device_dma_coherent(dev))
274                 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
275 }
276
277 static void __swiotlb_sync_sg_for_cpu(struct device *dev,
278                                       struct scatterlist *sgl, int nelems,
279                                       enum dma_data_direction dir)
280 {
281         struct scatterlist *sg;
282         int i;
283
284         if (!is_device_dma_coherent(dev))
285                 for_each_sg(sgl, sg, nelems, i)
286                         __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
287                                          sg->length, dir);
288         swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
289 }
290
291 static void __swiotlb_sync_sg_for_device(struct device *dev,
292                                          struct scatterlist *sgl, int nelems,
293                                          enum dma_data_direction dir)
294 {
295         struct scatterlist *sg;
296         int i;
297
298         swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
299         if (!is_device_dma_coherent(dev))
300                 for_each_sg(sgl, sg, nelems, i)
301                         __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
302                                        sg->length, dir);
303 }
304
305 static int __swiotlb_mmap(struct device *dev,
306                           struct vm_area_struct *vma,
307                           void *cpu_addr, dma_addr_t dma_addr, size_t size,
308                           struct dma_attrs *attrs)
309 {
310         int ret = -ENXIO;
311         unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
312                                         PAGE_SHIFT;
313         unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
314         unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
315         unsigned long off = vma->vm_pgoff;
316
317         vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
318                                              is_device_dma_coherent(dev));
319
320         if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
321                 return ret;
322
323         if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
324                 ret = remap_pfn_range(vma, vma->vm_start,
325                                       pfn + off,
326                                       vma->vm_end - vma->vm_start,
327                                       vma->vm_page_prot);
328         }
329
330         return ret;
331 }
332
333 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
334                                  void *cpu_addr, dma_addr_t handle, size_t size,
335                                  struct dma_attrs *attrs)
336 {
337         int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
338
339         if (!ret)
340                 sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)),
341                             PAGE_ALIGN(size), 0);
342
343         return ret;
344 }
345
346 static struct dma_map_ops swiotlb_dma_ops = {
347         .alloc = __dma_alloc,
348         .free = __dma_free,
349         .mmap = __swiotlb_mmap,
350         .get_sgtable = __swiotlb_get_sgtable,
351         .map_page = __swiotlb_map_page,
352         .unmap_page = __swiotlb_unmap_page,
353         .map_sg = __swiotlb_map_sg_attrs,
354         .unmap_sg = __swiotlb_unmap_sg_attrs,
355         .sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
356         .sync_single_for_device = __swiotlb_sync_single_for_device,
357         .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
358         .sync_sg_for_device = __swiotlb_sync_sg_for_device,
359         .dma_supported = swiotlb_dma_supported,
360         .mapping_error = swiotlb_dma_mapping_error,
361 };
362
363 static int __init atomic_pool_init(void)
364 {
365         pgprot_t prot = __pgprot(PROT_NORMAL_NC);
366         unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
367         struct page *page;
368         void *addr;
369         unsigned int pool_size_order = get_order(atomic_pool_size);
370
371         if (dev_get_cma_area(NULL))
372                 page = dma_alloc_from_contiguous(NULL, nr_pages,
373                                                         pool_size_order);
374         else
375                 page = alloc_pages(GFP_DMA, pool_size_order);
376
377         if (page) {
378                 int ret;
379                 void *page_addr = page_address(page);
380
381                 memset(page_addr, 0, atomic_pool_size);
382                 __dma_flush_range(page_addr, page_addr + atomic_pool_size);
383
384                 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
385                 if (!atomic_pool)
386                         goto free_page;
387
388                 addr = dma_common_contiguous_remap(page, atomic_pool_size,
389                                         VM_USERMAP, prot, atomic_pool_init);
390
391                 if (!addr)
392                         goto destroy_genpool;
393
394                 ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
395                                         page_to_phys(page),
396                                         atomic_pool_size, -1);
397                 if (ret)
398                         goto remove_mapping;
399
400                 gen_pool_set_algo(atomic_pool,
401                                   gen_pool_first_fit_order_align,
402                                   (void *)PAGE_SHIFT);
403
404                 pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
405                         atomic_pool_size / 1024);
406                 return 0;
407         }
408         goto out;
409
410 remove_mapping:
411         dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
412 destroy_genpool:
413         gen_pool_destroy(atomic_pool);
414         atomic_pool = NULL;
415 free_page:
416         if (!dma_release_from_contiguous(NULL, page, nr_pages))
417                 __free_pages(page, pool_size_order);
418 out:
419         pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
420                 atomic_pool_size / 1024);
421         return -ENOMEM;
422 }
423
424 /********************************************
425  * The following APIs are for dummy DMA ops *
426  ********************************************/
427
428 static void *__dummy_alloc(struct device *dev, size_t size,
429                            dma_addr_t *dma_handle, gfp_t flags,
430                            struct dma_attrs *attrs)
431 {
432         return NULL;
433 }
434
435 static void __dummy_free(struct device *dev, size_t size,
436                          void *vaddr, dma_addr_t dma_handle,
437                          struct dma_attrs *attrs)
438 {
439 }
440
441 static int __dummy_mmap(struct device *dev,
442                         struct vm_area_struct *vma,
443                         void *cpu_addr, dma_addr_t dma_addr, size_t size,
444                         struct dma_attrs *attrs)
445 {
446         return -ENXIO;
447 }
448
449 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
450                                    unsigned long offset, size_t size,
451                                    enum dma_data_direction dir,
452                                    struct dma_attrs *attrs)
453 {
454         return DMA_ERROR_CODE;
455 }
456
457 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
458                                size_t size, enum dma_data_direction dir,
459                                struct dma_attrs *attrs)
460 {
461 }
462
463 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
464                           int nelems, enum dma_data_direction dir,
465                           struct dma_attrs *attrs)
466 {
467         return 0;
468 }
469
470 static void __dummy_unmap_sg(struct device *dev,
471                              struct scatterlist *sgl, int nelems,
472                              enum dma_data_direction dir,
473                              struct dma_attrs *attrs)
474 {
475 }
476
477 static void __dummy_sync_single(struct device *dev,
478                                 dma_addr_t dev_addr, size_t size,
479                                 enum dma_data_direction dir)
480 {
481 }
482
483 static void __dummy_sync_sg(struct device *dev,
484                             struct scatterlist *sgl, int nelems,
485                             enum dma_data_direction dir)
486 {
487 }
488
489 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
490 {
491         return 1;
492 }
493
494 static int __dummy_dma_supported(struct device *hwdev, u64 mask)
495 {
496         return 0;
497 }
498
499 struct dma_map_ops dummy_dma_ops = {
500         .alloc                  = __dummy_alloc,
501         .free                   = __dummy_free,
502         .mmap                   = __dummy_mmap,
503         .map_page               = __dummy_map_page,
504         .unmap_page             = __dummy_unmap_page,
505         .map_sg                 = __dummy_map_sg,
506         .unmap_sg               = __dummy_unmap_sg,
507         .sync_single_for_cpu    = __dummy_sync_single,
508         .sync_single_for_device = __dummy_sync_single,
509         .sync_sg_for_cpu        = __dummy_sync_sg,
510         .sync_sg_for_device     = __dummy_sync_sg,
511         .mapping_error          = __dummy_mapping_error,
512         .dma_supported          = __dummy_dma_supported,
513 };
514 EXPORT_SYMBOL(dummy_dma_ops);
515
516 static int __init arm64_dma_init(void)
517 {
518         int ret;
519
520         dma_ops = &swiotlb_dma_ops;
521
522         ret = atomic_pool_init();
523
524         return ret;
525 }
526 arch_initcall(arm64_dma_init);
527
528 #define PREALLOC_DMA_DEBUG_ENTRIES      4096
529
530 static int __init dma_debug_do_init(void)
531 {
532         dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
533         return 0;
534 }
535 fs_initcall(dma_debug_do_init);
536
537
538 #ifdef CONFIG_IOMMU_DMA
539 #include <linux/dma-iommu.h>
540 #include <linux/platform_device.h>
541 #include <linux/amba/bus.h>
542
543 /* Thankfully, all cache ops are by VA so we can ignore phys here */
544 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
545 {
546         __dma_flush_range(virt, virt + PAGE_SIZE);
547 }
548
549 static void *__iommu_alloc_attrs(struct device *dev, size_t size,
550                                  dma_addr_t *handle, gfp_t gfp,
551                                  struct dma_attrs *attrs)
552 {
553         bool coherent = is_device_dma_coherent(dev);
554         int ioprot = dma_direction_to_prot(DMA_BIDIRECTIONAL, coherent);
555         size_t iosize = size;
556         void *addr;
557
558         if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
559                 return NULL;
560
561         size = PAGE_ALIGN(size);
562
563         /*
564          * Some drivers rely on this, and we probably don't want the
565          * possibility of stale kernel data being read by devices anyway.
566          */
567         gfp |= __GFP_ZERO;
568
569         if (gfpflags_allow_blocking(gfp)) {
570                 struct page **pages;
571                 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
572
573                 pages = iommu_dma_alloc(dev, iosize, gfp, ioprot, handle,
574                                         flush_page);
575                 if (!pages)
576                         return NULL;
577
578                 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
579                                               __builtin_return_address(0));
580                 if (!addr)
581                         iommu_dma_free(dev, pages, iosize, handle);
582         } else {
583                 struct page *page;
584                 /*
585                  * In atomic context we can't remap anything, so we'll only
586                  * get the virtually contiguous buffer we need by way of a
587                  * physically contiguous allocation.
588                  */
589                 if (coherent) {
590                         page = alloc_pages(gfp, get_order(size));
591                         addr = page ? page_address(page) : NULL;
592                 } else {
593                         addr = __alloc_from_pool(size, &page, gfp);
594                 }
595                 if (!addr)
596                         return NULL;
597
598                 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
599                 if (iommu_dma_mapping_error(dev, *handle)) {
600                         if (coherent)
601                                 __free_pages(page, get_order(size));
602                         else
603                                 __free_from_pool(addr, size);
604                         addr = NULL;
605                 }
606         }
607         return addr;
608 }
609
610 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
611                                dma_addr_t handle, struct dma_attrs *attrs)
612 {
613         size_t iosize = size;
614
615         size = PAGE_ALIGN(size);
616         /*
617          * @cpu_addr will be one of 3 things depending on how it was allocated:
618          * - A remapped array of pages from iommu_dma_alloc(), for all
619          *   non-atomic allocations.
620          * - A non-cacheable alias from the atomic pool, for atomic
621          *   allocations by non-coherent devices.
622          * - A normal lowmem address, for atomic allocations by
623          *   coherent devices.
624          * Hence how dodgy the below logic looks...
625          */
626         if (__in_atomic_pool(cpu_addr, size)) {
627                 iommu_dma_unmap_page(dev, handle, iosize, 0, NULL);
628                 __free_from_pool(cpu_addr, size);
629         } else if (is_vmalloc_addr(cpu_addr)){
630                 struct vm_struct *area = find_vm_area(cpu_addr);
631
632                 if (WARN_ON(!area || !area->pages))
633                         return;
634                 iommu_dma_free(dev, area->pages, iosize, &handle);
635                 dma_common_free_remap(cpu_addr, size, VM_USERMAP);
636         } else {
637                 iommu_dma_unmap_page(dev, handle, iosize, 0, NULL);
638                 __free_pages(virt_to_page(cpu_addr), get_order(size));
639         }
640 }
641
642 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
643                               void *cpu_addr, dma_addr_t dma_addr, size_t size,
644                               struct dma_attrs *attrs)
645 {
646         struct vm_struct *area;
647         int ret;
648
649         vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
650                                              is_device_dma_coherent(dev));
651
652         if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
653                 return ret;
654
655         area = find_vm_area(cpu_addr);
656         if (WARN_ON(!area || !area->pages))
657                 return -ENXIO;
658
659         return iommu_dma_mmap(area->pages, size, vma);
660 }
661
662 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
663                                void *cpu_addr, dma_addr_t dma_addr,
664                                size_t size, struct dma_attrs *attrs)
665 {
666         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
667         struct vm_struct *area = find_vm_area(cpu_addr);
668
669         if (WARN_ON(!area || !area->pages))
670                 return -ENXIO;
671
672         return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
673                                          GFP_KERNEL);
674 }
675
676 static void __iommu_sync_single_for_cpu(struct device *dev,
677                                         dma_addr_t dev_addr, size_t size,
678                                         enum dma_data_direction dir)
679 {
680         phys_addr_t phys;
681
682         if (is_device_dma_coherent(dev))
683                 return;
684
685         phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
686         __dma_unmap_area(phys_to_virt(phys), size, dir);
687 }
688
689 static void __iommu_sync_single_for_device(struct device *dev,
690                                            dma_addr_t dev_addr, size_t size,
691                                            enum dma_data_direction dir)
692 {
693         phys_addr_t phys;
694
695         if (is_device_dma_coherent(dev))
696                 return;
697
698         phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
699         __dma_map_area(phys_to_virt(phys), size, dir);
700 }
701
702 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
703                                    unsigned long offset, size_t size,
704                                    enum dma_data_direction dir,
705                                    struct dma_attrs *attrs)
706 {
707         bool coherent = is_device_dma_coherent(dev);
708         int prot = dma_direction_to_prot(dir, coherent);
709         dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
710
711         if (!iommu_dma_mapping_error(dev, dev_addr) &&
712             !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
713                 __iommu_sync_single_for_device(dev, dev_addr, size, dir);
714
715         return dev_addr;
716 }
717
718 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
719                                size_t size, enum dma_data_direction dir,
720                                struct dma_attrs *attrs)
721 {
722         if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
723                 __iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
724
725         iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
726 }
727
728 static void __iommu_sync_sg_for_cpu(struct device *dev,
729                                     struct scatterlist *sgl, int nelems,
730                                     enum dma_data_direction dir)
731 {
732         struct scatterlist *sg;
733         int i;
734
735         if (is_device_dma_coherent(dev))
736                 return;
737
738         for_each_sg(sgl, sg, nelems, i)
739                 __dma_unmap_area(sg_virt(sg), sg->length, dir);
740 }
741
742 static void __iommu_sync_sg_for_device(struct device *dev,
743                                        struct scatterlist *sgl, int nelems,
744                                        enum dma_data_direction dir)
745 {
746         struct scatterlist *sg;
747         int i;
748
749         if (is_device_dma_coherent(dev))
750                 return;
751
752         for_each_sg(sgl, sg, nelems, i)
753                 __dma_map_area(sg_virt(sg), sg->length, dir);
754 }
755
756 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
757                                 int nelems, enum dma_data_direction dir,
758                                 struct dma_attrs *attrs)
759 {
760         bool coherent = is_device_dma_coherent(dev);
761
762         if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
763                 __iommu_sync_sg_for_device(dev, sgl, nelems, dir);
764
765         return iommu_dma_map_sg(dev, sgl, nelems,
766                         dma_direction_to_prot(dir, coherent));
767 }
768
769 static void __iommu_unmap_sg_attrs(struct device *dev,
770                                    struct scatterlist *sgl, int nelems,
771                                    enum dma_data_direction dir,
772                                    struct dma_attrs *attrs)
773 {
774         if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
775                 __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
776
777         iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
778 }
779
780 static struct dma_map_ops iommu_dma_ops = {
781         .alloc = __iommu_alloc_attrs,
782         .free = __iommu_free_attrs,
783         .mmap = __iommu_mmap_attrs,
784         .get_sgtable = __iommu_get_sgtable,
785         .map_page = __iommu_map_page,
786         .unmap_page = __iommu_unmap_page,
787         .map_sg = __iommu_map_sg_attrs,
788         .unmap_sg = __iommu_unmap_sg_attrs,
789         .sync_single_for_cpu = __iommu_sync_single_for_cpu,
790         .sync_single_for_device = __iommu_sync_single_for_device,
791         .sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
792         .sync_sg_for_device = __iommu_sync_sg_for_device,
793         .dma_supported = iommu_dma_supported,
794         .mapping_error = iommu_dma_mapping_error,
795 };
796
797 /*
798  * TODO: Right now __iommu_setup_dma_ops() gets called too early to do
799  * everything it needs to - the device is only partially created and the
800  * IOMMU driver hasn't seen it yet, so it can't have a group. Thus we
801  * need this delayed attachment dance. Once IOMMU probe ordering is sorted
802  * to move the arch_setup_dma_ops() call later, all the notifier bits below
803  * become unnecessary, and will go away.
804  */
805 struct iommu_dma_notifier_data {
806         struct list_head list;
807         struct device *dev;
808         const struct iommu_ops *ops;
809         u64 dma_base;
810         u64 size;
811 };
812 static LIST_HEAD(iommu_dma_masters);
813 static DEFINE_MUTEX(iommu_dma_notifier_lock);
814
815 /*
816  * Temporarily "borrow" a domain feature flag to to tell if we had to resort
817  * to creating our own domain here, in case we need to clean it up again.
818  */
819 #define __IOMMU_DOMAIN_FAKE_DEFAULT             (1U << 31)
820
821 static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops,
822                            u64 dma_base, u64 size)
823 {
824         struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
825
826         /*
827          * Best case: The device is either part of a group which was
828          * already attached to a domain in a previous call, or it's
829          * been put in a default DMA domain by the IOMMU core.
830          */
831         if (!domain) {
832                 /*
833                  * Urgh. The IOMMU core isn't going to do default domains
834                  * for non-PCI devices anyway, until it has some means of
835                  * abstracting the entirely implementation-specific
836                  * sideband data/SoC topology/unicorn dust that may or
837                  * may not differentiate upstream masters.
838                  * So until then, HORRIBLE HACKS!
839                  */
840                 domain = ops->domain_alloc(IOMMU_DOMAIN_DMA);
841                 if (!domain)
842                         goto out_no_domain;
843
844                 domain->ops = ops;
845                 domain->type = IOMMU_DOMAIN_DMA | __IOMMU_DOMAIN_FAKE_DEFAULT;
846
847                 if (iommu_attach_device(domain, dev))
848                         goto out_put_domain;
849         }
850
851         if (iommu_dma_init_domain(domain, dma_base, size))
852                 goto out_detach;
853
854         dev->archdata.dma_ops = &iommu_dma_ops;
855         return true;
856
857 out_detach:
858         iommu_detach_device(domain, dev);
859 out_put_domain:
860         if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT)
861                 iommu_domain_free(domain);
862 out_no_domain:
863         pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
864                 dev_name(dev));
865         return false;
866 }
867
868 static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops,
869                               u64 dma_base, u64 size)
870 {
871         struct iommu_dma_notifier_data *iommudata;
872
873         iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL);
874         if (!iommudata)
875                 return;
876
877         iommudata->dev = dev;
878         iommudata->ops = ops;
879         iommudata->dma_base = dma_base;
880         iommudata->size = size;
881
882         mutex_lock(&iommu_dma_notifier_lock);
883         list_add(&iommudata->list, &iommu_dma_masters);
884         mutex_unlock(&iommu_dma_notifier_lock);
885 }
886
887 static int __iommu_attach_notifier(struct notifier_block *nb,
888                                    unsigned long action, void *data)
889 {
890         struct iommu_dma_notifier_data *master, *tmp;
891
892         if (action != BUS_NOTIFY_ADD_DEVICE)
893                 return 0;
894
895         mutex_lock(&iommu_dma_notifier_lock);
896         list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) {
897                 if (do_iommu_attach(master->dev, master->ops,
898                                 master->dma_base, master->size)) {
899                         list_del(&master->list);
900                         kfree(master);
901                 }
902         }
903         mutex_unlock(&iommu_dma_notifier_lock);
904         return 0;
905 }
906
907 static int register_iommu_dma_ops_notifier(struct bus_type *bus)
908 {
909         struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL);
910         int ret;
911
912         if (!nb)
913                 return -ENOMEM;
914         /*
915          * The device must be attached to a domain before the driver probe
916          * routine gets a chance to start allocating DMA buffers. However,
917          * the IOMMU driver also needs a chance to configure the iommu_group
918          * via its add_device callback first, so we need to make the attach
919          * happen between those two points. Since the IOMMU core uses a bus
920          * notifier with default priority for add_device, do the same but
921          * with a lower priority to ensure the appropriate ordering.
922          */
923         nb->notifier_call = __iommu_attach_notifier;
924         nb->priority = -100;
925
926         ret = bus_register_notifier(bus, nb);
927         if (ret) {
928                 pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n",
929                         bus->name);
930                 kfree(nb);
931         }
932         return ret;
933 }
934
935 static int __init __iommu_dma_init(void)
936 {
937         int ret;
938
939         ret = iommu_dma_init();
940         if (!ret)
941                 ret = register_iommu_dma_ops_notifier(&platform_bus_type);
942         if (!ret)
943                 ret = register_iommu_dma_ops_notifier(&amba_bustype);
944         return ret;
945 }
946 arch_initcall(__iommu_dma_init);
947
948 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
949                                   const struct iommu_ops *ops)
950 {
951         struct iommu_group *group;
952
953         if (!ops)
954                 return;
955         /*
956          * TODO: As a concession to the future, we're ready to handle being
957          * called both early and late (i.e. after bus_add_device). Once all
958          * the platform bus code is reworked to call us late and the notifier
959          * junk above goes away, move the body of do_iommu_attach here.
960          */
961         group = iommu_group_get(dev);
962         if (group) {
963                 do_iommu_attach(dev, ops, dma_base, size);
964                 iommu_group_put(group);
965         } else {
966                 queue_iommu_attach(dev, ops, dma_base, size);
967         }
968 }
969
970 void arch_teardown_dma_ops(struct device *dev)
971 {
972         struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
973
974         if (domain) {
975                 iommu_detach_device(domain, dev);
976                 if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT)
977                         iommu_domain_free(domain);
978         }
979
980         dev->archdata.dma_ops = NULL;
981 }
982
983 #else
984
985 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
986                                   struct iommu_ops *iommu)
987 { }
988
989 #endif  /* CONFIG_IOMMU_DMA */
990
991 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
992                         struct iommu_ops *iommu, bool coherent)
993 {
994         if (!acpi_disabled && !dev->archdata.dma_ops)
995                 dev->archdata.dma_ops = dma_ops;
996
997         dev->archdata.dma_coherent = coherent;
998         __iommu_setup_dma_ops(dev, dma_base, size, iommu);
999 }