2 * Copyright 2004-2010 Analog Devices Inc.
4 * Licensed under the GPL-2 or later.
7 #include <linux/delay.h>
8 #include <linux/console.h>
9 #include <linux/bootmem.h>
10 #include <linux/seq_file.h>
11 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/tty.h>
15 #include <linux/pfn.h>
17 #ifdef CONFIG_MTD_UCLINUX
18 #include <linux/mtd/map.h>
19 #include <linux/ext2_fs.h>
20 #include <linux/cramfs_fs.h>
21 #include <linux/romfs_fs.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/clocks.h>
29 #include <asm/div64.h>
31 #include <asm/fixed_code.h>
32 #include <asm/early_printk.h>
33 #include <asm/irq_handler.h>
40 EXPORT_SYMBOL(_bfin_swrst);
42 unsigned long memory_start, memory_end, physical_mem_end;
43 unsigned long _rambase, _ramstart, _ramend;
44 unsigned long reserved_mem_dcache_on;
45 unsigned long reserved_mem_icache_on;
46 EXPORT_SYMBOL(memory_start);
47 EXPORT_SYMBOL(memory_end);
48 EXPORT_SYMBOL(physical_mem_end);
49 EXPORT_SYMBOL(_ramend);
50 EXPORT_SYMBOL(reserved_mem_dcache_on);
52 #ifdef CONFIG_MTD_UCLINUX
53 extern struct map_info uclinux_ram_map;
54 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
55 EXPORT_SYMBOL(memory_mtd_end);
56 EXPORT_SYMBOL(memory_mtd_start);
57 EXPORT_SYMBOL(mtd_size);
60 char __initdata command_line[COMMAND_LINE_SIZE];
61 struct blackfin_initial_pda __initdata initial_pda;
63 /* boot memmap, for parsing "memmap=" */
64 #define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */
65 #define BFIN_MEMMAP_RAM 1
66 #define BFIN_MEMMAP_RESERVED 2
67 static struct bfin_memmap {
69 struct bfin_memmap_entry {
70 unsigned long long addr; /* start of memory segment */
71 unsigned long long size;
73 } map[BFIN_MEMMAP_MAX];
74 } bfin_memmap __initdata;
76 /* for memmap sanitization */
77 struct change_member {
78 struct bfin_memmap_entry *pentry; /* pointer to original entry */
79 unsigned long long addr; /* address for this change point */
81 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
82 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
83 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
84 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
86 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
88 static int early_init_clkin_hz(char *buf);
90 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
91 void __init generate_cplb_tables(void)
95 generate_cplb_tables_all();
96 /* Generate per-CPU I&D CPLB tables */
97 for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
98 generate_cplb_tables_cpu(cpu);
102 void bfin_setup_caches(unsigned int cpu)
104 #ifdef CONFIG_BFIN_ICACHE
105 bfin_icache_init(icplb_tbl[cpu]);
108 #ifdef CONFIG_BFIN_DCACHE
109 bfin_dcache_init(dcplb_tbl[cpu]);
112 bfin_setup_cpudata(cpu);
115 * In cache coherence emulation mode, we need to have the
116 * D-cache enabled before running any atomic operation which
117 * might involve cache invalidation (i.e. spinlock, rwlock).
118 * So printk's are deferred until then.
120 #ifdef CONFIG_BFIN_ICACHE
121 printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
122 printk(KERN_INFO " External memory:"
123 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
128 " in instruction cache\n");
130 printk(KERN_INFO " L2 SRAM :"
131 # ifdef CONFIG_BFIN_L2_ICACHEABLE
136 " in instruction cache\n");
139 printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
142 #ifdef CONFIG_BFIN_DCACHE
143 printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
144 printk(KERN_INFO " External memory:"
145 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
146 " cacheable (write-back)"
147 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
148 " cacheable (write-through)"
154 printk(KERN_INFO " L2 SRAM :"
155 # if defined CONFIG_BFIN_L2_WRITEBACK
156 " cacheable (write-back)"
157 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
158 " cacheable (write-through)"
164 printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
168 void bfin_setup_cpudata(unsigned int cpu)
170 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
172 cpudata->imemctl = bfin_read_IMEM_CONTROL();
173 cpudata->dmemctl = bfin_read_DMEM_CONTROL();
176 void __init bfin_cache_init(void)
178 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
179 generate_cplb_tables();
181 bfin_setup_caches(0);
184 void __init bfin_relocate_l1_mem(void)
186 unsigned long text_l1_len = (unsigned long)_text_l1_len;
187 unsigned long data_l1_len = (unsigned long)_data_l1_len;
188 unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
189 unsigned long l2_len = (unsigned long)_l2_len;
191 early_shadow_stamp();
194 * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
195 * we know that everything about l1 text/data is nice and aligned,
196 * so copy by 4 byte chunks, and don't worry about overlapping
199 * We can't use the dma_memcpy functions, since they can call
200 * scheduler functions which might be in L1 :( and core writes
201 * into L1 instruction cause bad access errors, so we are stuck,
202 * we are required to use DMA, but can't use the common dma
203 * functions. We can't use memcpy either - since that might be
204 * going to be in the relocated L1
207 blackfin_dma_early_init();
209 /* if necessary, copy L1 text to L1 instruction SRAM */
210 if (L1_CODE_LENGTH && text_l1_len)
211 early_dma_memcpy(_stext_l1, _text_l1_lma, text_l1_len);
213 /* if necessary, copy L1 data to L1 data bank A SRAM */
214 if (L1_DATA_A_LENGTH && data_l1_len)
215 early_dma_memcpy(_sdata_l1, _data_l1_lma, data_l1_len);
217 /* if necessary, copy L1 data B to L1 data bank B SRAM */
218 if (L1_DATA_B_LENGTH && data_b_l1_len)
219 early_dma_memcpy(_sdata_b_l1, _data_b_l1_lma, data_b_l1_len);
221 early_dma_memcpy_done();
223 #if defined(CONFIG_SMP) && defined(CONFIG_ICACHE_FLUSH_L1)
224 blackfin_iflush_l1_entry[0] = (unsigned long)blackfin_icache_flush_range_l1;
227 /* if necessary, copy L2 text/data to L2 SRAM */
228 if (L2_LENGTH && l2_len)
229 memcpy(_stext_l2, _l2_lma, l2_len);
233 void __init bfin_relocate_coreb_l1_mem(void)
235 unsigned long text_l1_len = (unsigned long)_text_l1_len;
236 unsigned long data_l1_len = (unsigned long)_data_l1_len;
237 unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
239 blackfin_dma_early_init();
241 /* if necessary, copy L1 text to L1 instruction SRAM */
242 if (L1_CODE_LENGTH && text_l1_len)
243 early_dma_memcpy((void *)COREB_L1_CODE_START, _text_l1_lma,
246 /* if necessary, copy L1 data to L1 data bank A SRAM */
247 if (L1_DATA_A_LENGTH && data_l1_len)
248 early_dma_memcpy((void *)COREB_L1_DATA_A_START, _data_l1_lma,
251 /* if necessary, copy L1 data B to L1 data bank B SRAM */
252 if (L1_DATA_B_LENGTH && data_b_l1_len)
253 early_dma_memcpy((void *)COREB_L1_DATA_B_START, _data_b_l1_lma,
256 early_dma_memcpy_done();
258 #ifdef CONFIG_ICACHE_FLUSH_L1
259 blackfin_iflush_l1_entry[1] = (unsigned long)blackfin_icache_flush_range_l1 -
260 (unsigned long)_stext_l1 + COREB_L1_CODE_START;
265 #ifdef CONFIG_ROMKERNEL
266 void __init bfin_relocate_xip_data(void)
268 early_shadow_stamp();
270 memcpy(_sdata, _data_lma, (unsigned long)_data_len - THREAD_SIZE + sizeof(struct thread_info));
271 memcpy(_sinitdata, _init_data_lma, (unsigned long)_init_data_len);
275 /* add_memory_region to memmap */
276 static void __init add_memory_region(unsigned long long start,
277 unsigned long long size, int type)
281 i = bfin_memmap.nr_map;
283 if (i == BFIN_MEMMAP_MAX) {
284 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
288 bfin_memmap.map[i].addr = start;
289 bfin_memmap.map[i].size = size;
290 bfin_memmap.map[i].type = type;
291 bfin_memmap.nr_map++;
295 * Sanitize the boot memmap, removing overlaps.
297 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
299 struct change_member *change_tmp;
300 unsigned long current_type, last_type;
301 unsigned long long last_addr;
302 int chgidx, still_changing;
305 int old_nr, new_nr, chg_nr;
309 Visually we're performing the following (1,2,3,4 = memory types)
311 Sample memory map (w/overlaps):
312 ____22__________________
313 ______________________4_
314 ____1111________________
315 _44_____________________
316 11111111________________
317 ____________________33__
318 ___________44___________
319 __________33333_________
320 ______________22________
321 ___________________2222_
322 _________111111111______
323 _____________________11_
324 _________________4______
326 Sanitized equivalent (no overlap):
327 1_______________________
328 _44_____________________
329 ___1____________________
330 ____22__________________
331 ______11________________
332 _________1______________
333 __________3_____________
334 ___________44___________
335 _____________33_________
336 _______________2________
337 ________________1_______
338 _________________4______
339 ___________________2____
340 ____________________33__
341 ______________________4_
343 /* if there's only one memory region, don't bother */
349 /* bail out if we find any unreasonable addresses in memmap */
350 for (i = 0; i < old_nr; i++)
351 if (map[i].addr + map[i].size < map[i].addr)
354 /* create pointers for initial change-point information (for sorting) */
355 for (i = 0; i < 2*old_nr; i++)
356 change_point[i] = &change_point_list[i];
358 /* record all known change-points (starting and ending addresses),
359 omitting those that are for empty memory regions */
361 for (i = 0; i < old_nr; i++) {
362 if (map[i].size != 0) {
363 change_point[chgidx]->addr = map[i].addr;
364 change_point[chgidx++]->pentry = &map[i];
365 change_point[chgidx]->addr = map[i].addr + map[i].size;
366 change_point[chgidx++]->pentry = &map[i];
369 chg_nr = chgidx; /* true number of change-points */
371 /* sort change-point list by memory addresses (low -> high) */
373 while (still_changing) {
375 for (i = 1; i < chg_nr; i++) {
376 /* if <current_addr> > <last_addr>, swap */
377 /* or, if current=<start_addr> & last=<end_addr>, swap */
378 if ((change_point[i]->addr < change_point[i-1]->addr) ||
379 ((change_point[i]->addr == change_point[i-1]->addr) &&
380 (change_point[i]->addr == change_point[i]->pentry->addr) &&
381 (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
383 change_tmp = change_point[i];
384 change_point[i] = change_point[i-1];
385 change_point[i-1] = change_tmp;
391 /* create a new memmap, removing overlaps */
392 overlap_entries = 0; /* number of entries in the overlap table */
393 new_entry = 0; /* index for creating new memmap entries */
394 last_type = 0; /* start with undefined memory type */
395 last_addr = 0; /* start with 0 as last starting address */
396 /* loop through change-points, determining affect on the new memmap */
397 for (chgidx = 0; chgidx < chg_nr; chgidx++) {
398 /* keep track of all overlapping memmap entries */
399 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
400 /* add map entry to overlap list (> 1 entry implies an overlap) */
401 overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
403 /* remove entry from list (order independent, so swap with last) */
404 for (i = 0; i < overlap_entries; i++) {
405 if (overlap_list[i] == change_point[chgidx]->pentry)
406 overlap_list[i] = overlap_list[overlap_entries-1];
410 /* if there are overlapping entries, decide which "type" to use */
411 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
413 for (i = 0; i < overlap_entries; i++)
414 if (overlap_list[i]->type > current_type)
415 current_type = overlap_list[i]->type;
416 /* continue building up new memmap based on this information */
417 if (current_type != last_type) {
418 if (last_type != 0) {
419 new_map[new_entry].size =
420 change_point[chgidx]->addr - last_addr;
421 /* move forward only if the new size was non-zero */
422 if (new_map[new_entry].size != 0)
423 if (++new_entry >= BFIN_MEMMAP_MAX)
424 break; /* no more space left for new entries */
426 if (current_type != 0) {
427 new_map[new_entry].addr = change_point[chgidx]->addr;
428 new_map[new_entry].type = current_type;
429 last_addr = change_point[chgidx]->addr;
431 last_type = current_type;
434 new_nr = new_entry; /* retain count for new entries */
436 /* copy new mapping into original location */
437 memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
443 static void __init print_memory_map(char *who)
447 for (i = 0; i < bfin_memmap.nr_map; i++) {
448 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
449 bfin_memmap.map[i].addr,
450 bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
451 switch (bfin_memmap.map[i].type) {
452 case BFIN_MEMMAP_RAM:
453 printk(KERN_CONT "(usable)\n");
455 case BFIN_MEMMAP_RESERVED:
456 printk(KERN_CONT "(reserved)\n");
459 printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
465 static __init int parse_memmap(char *arg)
467 unsigned long long start_at, mem_size;
472 mem_size = memparse(arg, &arg);
474 start_at = memparse(arg+1, &arg);
475 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
476 } else if (*arg == '$') {
477 start_at = memparse(arg+1, &arg);
478 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
485 * Initial parsing of the command line. Currently, we support:
486 * - Controlling the linux memory size: mem=xxx[KMG]
487 * - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
488 * $ -> reserved memory is dcacheable
489 * # -> reserved memory is icacheable
490 * - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
491 * @ from <start> to <start>+<mem>, type RAM
492 * $ from <start> to <start>+<mem>, type RESERVED
494 static __init void parse_cmdline_early(char *cmdline_p)
496 char c = ' ', *to = cmdline_p;
497 unsigned int memsize;
500 if (!memcmp(to, "mem=", 4)) {
502 memsize = memparse(to, &to);
506 } else if (!memcmp(to, "max_mem=", 8)) {
508 memsize = memparse(to, &to);
510 physical_mem_end = memsize;
514 reserved_mem_dcache_on = 1;
517 reserved_mem_icache_on = 1;
520 } else if (!memcmp(to, "clkin_hz=", 9)) {
522 early_init_clkin_hz(to);
523 #ifdef CONFIG_EARLY_PRINTK
524 } else if (!memcmp(to, "earlyprintk=", 12)) {
526 setup_early_printk(to);
528 } else if (!memcmp(to, "memmap=", 7)) {
540 * Setup memory defaults from user config.
541 * The physical memory layout looks like:
543 * [_rambase, _ramstart]: kernel image
544 * [memory_start, memory_end]: dynamic memory managed by kernel
545 * [memory_end, _ramend]: reserved memory
546 * [memory_mtd_start(memory_end),
547 * memory_mtd_start + mtd_size]: rootfs (if any)
548 * [_ramend - DMA_UNCACHED_REGION,
549 * _ramend]: uncached DMA region
550 * [_ramend, physical_mem_end]: memory not managed by kernel
552 static __init void memory_setup(void)
554 #ifdef CONFIG_MTD_UCLINUX
555 unsigned long mtd_phys = 0;
557 unsigned long max_mem;
559 _rambase = CONFIG_BOOT_LOAD;
560 _ramstart = (unsigned long)_end;
562 if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
564 panic("DMA region exceeds memory limit: %lu.",
565 _ramend - _ramstart);
567 max_mem = memory_end = _ramend - DMA_UNCACHED_REGION;
569 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
570 /* Due to a Hardware Anomaly we need to limit the size of usable
571 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
572 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
574 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
575 if (max_mem >= 56 * 1024 * 1024)
576 max_mem = 56 * 1024 * 1024;
578 if (max_mem >= 60 * 1024 * 1024)
579 max_mem = 60 * 1024 * 1024;
580 # endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
581 #endif /* ANOMALY_05000263 */
585 /* Round up to multiple of 4MB */
586 memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
588 memory_start = PAGE_ALIGN(_ramstart);
591 #if defined(CONFIG_MTD_UCLINUX)
592 /* generic memory mapped MTD driver */
593 memory_mtd_end = memory_end;
595 mtd_phys = _ramstart;
596 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
598 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
599 if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
601 PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
604 # if defined(CONFIG_CRAMFS)
605 if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
606 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
609 # if defined(CONFIG_ROMFS_FS)
610 if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
611 && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) {
613 PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
615 /* ROM_FS is XIP, so if we found it, we need to limit memory */
616 if (memory_end > max_mem) {
617 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n",
618 (max_mem - CONFIG_PHY_RAM_BASE_ADDRESS) >> 20);
619 memory_end = max_mem;
622 # endif /* CONFIG_ROMFS_FS */
624 /* Since the default MTD_UCLINUX has no magic number, we just blindly
625 * read 8 past the end of the kernel's image, and look at it.
626 * When no image is attached, mtd_size is set to a random number
627 * Do some basic sanity checks before operating on things
629 if (mtd_size == 0 || memory_end <= mtd_size) {
630 pr_emerg("Could not find valid ram mtd attached.\n");
632 memory_end -= mtd_size;
634 /* Relocate MTD image to the top of memory after the uncached memory area */
635 uclinux_ram_map.phys = memory_mtd_start = memory_end;
636 uclinux_ram_map.size = mtd_size;
637 pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
638 _end, mtd_size, (void *)memory_mtd_start);
639 dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
641 #endif /* CONFIG_MTD_UCLINUX */
643 /* We need lo limit memory, since everything could have a text section
644 * of userspace in it, and expose anomaly 05000263. If the anomaly
645 * doesn't exist, or we don't need to - then dont.
647 if (memory_end > max_mem) {
648 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n",
649 (max_mem - CONFIG_PHY_RAM_BASE_ADDRESS) >> 20);
650 memory_end = max_mem;
654 #if defined(CONFIG_ROMFS_ON_MTD) && defined(CONFIG_MTD_ROM)
655 page_mask_nelts = (((_ramend + ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE -
656 ASYNC_BANK0_BASE) >> PAGE_SHIFT) + 31) / 32;
658 page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
660 page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
663 init_mm.start_code = (unsigned long)_stext;
664 init_mm.end_code = (unsigned long)_etext;
665 init_mm.end_data = (unsigned long)_edata;
666 init_mm.brk = (unsigned long)0;
668 printk(KERN_INFO "Board Memory: %ldMB\n", (physical_mem_end - CONFIG_PHY_RAM_BASE_ADDRESS) >> 20);
669 printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", (_ramend - CONFIG_PHY_RAM_BASE_ADDRESS) >> 20);
671 printk(KERN_INFO "Memory map:\n"
672 " fixedcode = 0x%p-0x%p\n"
673 " text = 0x%p-0x%p\n"
674 " rodata = 0x%p-0x%p\n"
676 " data = 0x%p-0x%p\n"
677 " stack = 0x%p-0x%p\n"
678 " init = 0x%p-0x%p\n"
679 " available = 0x%p-0x%p\n"
680 #ifdef CONFIG_MTD_UCLINUX
681 " rootfs = 0x%p-0x%p\n"
683 #if DMA_UNCACHED_REGION > 0
684 " DMA Zone = 0x%p-0x%p\n"
686 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
688 __start_rodata, __end_rodata,
689 __bss_start, __bss_stop,
691 (void *)&init_thread_union,
692 (void *)((int)(&init_thread_union) + THREAD_SIZE),
693 __init_begin, __init_end,
694 (void *)_ramstart, (void *)memory_end
695 #ifdef CONFIG_MTD_UCLINUX
696 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
698 #if DMA_UNCACHED_REGION > 0
699 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
705 * Find the lowest, highest page frame number we have available
707 void __init find_min_max_pfn(void)
712 min_low_pfn = PFN_DOWN(memory_end);
714 for (i = 0; i < bfin_memmap.nr_map; i++) {
715 unsigned long start, end;
717 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
719 start = PFN_UP(bfin_memmap.map[i].addr);
720 end = PFN_DOWN(bfin_memmap.map[i].addr +
721 bfin_memmap.map[i].size);
726 if (start < min_low_pfn)
731 static __init void setup_bootmem_allocator(void)
735 unsigned long start_pfn, end_pfn;
736 unsigned long curr_pfn, last_pfn, size;
738 /* mark memory between memory_start and memory_end usable */
739 add_memory_region(memory_start,
740 memory_end - memory_start, BFIN_MEMMAP_RAM);
741 /* sanity check for overlap */
742 sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
743 print_memory_map("boot memmap");
745 /* initialize globals in linux/bootmem.h */
747 /* pfn of the last usable page frame */
748 if (max_pfn > memory_end >> PAGE_SHIFT)
749 max_pfn = memory_end >> PAGE_SHIFT;
750 /* pfn of last page frame directly mapped by kernel */
751 max_low_pfn = max_pfn;
752 /* pfn of the first usable page frame after kernel image*/
753 if (min_low_pfn < memory_start >> PAGE_SHIFT)
754 min_low_pfn = memory_start >> PAGE_SHIFT;
755 start_pfn = CONFIG_PHY_RAM_BASE_ADDRESS >> PAGE_SHIFT;
756 end_pfn = memory_end >> PAGE_SHIFT;
759 * give all the memory to the bootmap allocator, tell it to put the
760 * boot mem_map at the start of memory.
762 bootmap_size = init_bootmem_node(NODE_DATA(0),
763 memory_start >> PAGE_SHIFT, /* map goes here */
766 /* register the memmap regions with the bootmem allocator */
767 for (i = 0; i < bfin_memmap.nr_map; i++) {
769 * Reserve usable memory
771 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
774 * We are rounding up the start address of usable memory:
776 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
777 if (curr_pfn >= end_pfn)
780 * ... and at the end of the usable range downwards:
782 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
783 bfin_memmap.map[i].size);
785 if (last_pfn > end_pfn)
789 * .. finally, did all the rounding and playing
790 * around just make the area go away?
792 if (last_pfn <= curr_pfn)
795 size = last_pfn - curr_pfn;
796 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
799 /* reserve memory before memory_start, including bootmap */
800 reserve_bootmem(CONFIG_PHY_RAM_BASE_ADDRESS,
801 memory_start + bootmap_size + PAGE_SIZE - 1 - CONFIG_PHY_RAM_BASE_ADDRESS,
805 #define EBSZ_TO_MEG(ebsz) \
808 switch (ebsz & 0xf) { \
809 case 0x1: meg = 16; break; \
810 case 0x3: meg = 32; break; \
811 case 0x5: meg = 64; break; \
812 case 0x7: meg = 128; break; \
813 case 0x9: meg = 256; break; \
814 case 0xb: meg = 512; break; \
818 static inline int __init get_mem_size(void)
820 #if defined(EBIU_SDBCTL)
821 # if defined(BF561_FAMILY)
823 u32 sdbctl = bfin_read_EBIU_SDBCTL();
824 ret += EBSZ_TO_MEG(sdbctl >> 0);
825 ret += EBSZ_TO_MEG(sdbctl >> 8);
826 ret += EBSZ_TO_MEG(sdbctl >> 16);
827 ret += EBSZ_TO_MEG(sdbctl >> 24);
830 return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
832 #elif defined(EBIU_DDRCTL1)
833 u32 ddrctl = bfin_read_EBIU_DDRCTL1();
835 switch (ddrctl & 0xc0000) {
849 switch (ddrctl & 0x30000) {
857 if ((ddrctl & 0xc000) == 0x4000)
860 #elif defined(CONFIG_BF60x)
861 u32 ddrctl = bfin_read_DMC0_CFG();
863 switch (ddrctl & 0xf00) {
888 __attribute__((weak))
889 void __init native_machine_early_platform_add_devices(void)
894 static inline u_long bfin_get_clk(char *name)
899 clk = clk_get(NULL, name);
903 clk_rate = clk_get_rate(clk);
909 void __init setup_arch(char **cmdline_p)
912 unsigned long sclk, cclk;
914 native_machine_early_platform_add_devices();
916 enable_shadow_console();
918 /* Check to make sure we are running on the right processor */
920 if (unlikely(CPUID != bfin_cpuid()))
921 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
922 CPU, bfin_cpuid(), bfin_revid());
924 #ifdef CONFIG_DUMMY_CONSOLE
925 conswitchp = &dummy_con;
928 #if defined(CONFIG_CMDLINE_BOOL)
929 strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
930 command_line[sizeof(command_line) - 1] = 0;
933 /* Keep a copy of command line */
934 *cmdline_p = &command_line[0];
935 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
936 boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
938 memset(&bfin_memmap, 0, sizeof(bfin_memmap));
941 /* Should init clock device before parse command early */
944 /* If the user does not specify things on the command line, use
945 * what the bootloader set things up as
947 physical_mem_end = 0;
948 parse_cmdline_early(&command_line[0]);
951 _ramend = get_mem_size() * 1024 * 1024;
953 if (physical_mem_end == 0)
954 physical_mem_end = _ramend;
959 /* Initialize Async memory banks */
960 bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
961 bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
962 bfin_write_EBIU_AMGCTL(AMGCTLVAL);
963 #ifdef CONFIG_EBIU_MBSCTLVAL
964 bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
965 bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
966 bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
969 #ifdef CONFIG_BFIN_HYSTERESIS_CONTROL
970 bfin_write_PORTF_HYSTERESIS(HYST_PORTF_0_15);
971 bfin_write_PORTG_HYSTERESIS(HYST_PORTG_0_15);
972 bfin_write_PORTH_HYSTERESIS(HYST_PORTH_0_15);
973 bfin_write_MISCPORT_HYSTERESIS((bfin_read_MISCPORT_HYSTERESIS() &
974 ~HYST_NONEGPIO_MASK) | HYST_NONEGPIO);
980 if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
981 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
984 if (ANOMALY_05000266) {
985 bfin_read_IMDMA_D0_IRQ_STATUS();
986 bfin_read_IMDMA_D1_IRQ_STATUS();
990 mmr = bfin_read_TBUFCTL();
991 printk(KERN_INFO "Hardware Trace %s and %sabled\n",
992 (mmr & 0x1) ? "active" : "off",
993 (mmr & 0x2) ? "en" : "dis");
995 mmr = bfin_read_SYSCR();
996 printk(KERN_INFO "Boot Mode: %i\n", mmr & 0xF);
998 /* Newer parts mirror SWRST bits in SYSCR */
999 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
1000 defined(CONFIG_BF538) || defined(CONFIG_BF539)
1001 _bfin_swrst = bfin_read_SWRST();
1003 /* Clear boot mode field */
1004 _bfin_swrst = mmr & ~0xf;
1007 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
1008 bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
1010 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
1011 bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
1015 if (_bfin_swrst & SWRST_DBL_FAULT_A) {
1017 if (_bfin_swrst & RESET_DOUBLE) {
1019 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
1020 #ifdef CONFIG_DEBUG_DOUBLEFAULT
1021 /* We assume the crashing kernel, and the current symbol table match */
1022 printk(KERN_EMERG " While handling exception (EXCAUSE = %#x) at %pF\n",
1023 initial_pda.seqstat_doublefault & SEQSTAT_EXCAUSE,
1024 initial_pda.retx_doublefault);
1025 printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %pF\n",
1026 initial_pda.dcplb_doublefault_addr);
1027 printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %pF\n",
1028 initial_pda.icplb_doublefault_addr);
1030 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
1032 } else if (_bfin_swrst & RESET_WDOG)
1033 printk(KERN_INFO "Recovering from Watchdog event\n");
1034 else if (_bfin_swrst & RESET_SOFTWARE)
1035 printk(KERN_NOTICE "Reset caused by Software reset\n");
1037 printk(KERN_INFO "Blackfin support (C) 2004-2010 Analog Devices, Inc.\n");
1038 if (bfin_compiled_revid() == 0xffff)
1039 printk(KERN_INFO "Compiled for ADSP-%s Rev any, running on 0.%d\n", CPU, bfin_revid());
1040 else if (bfin_compiled_revid() == -1)
1041 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
1043 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
1045 if (likely(CPUID == bfin_cpuid())) {
1046 if (bfin_revid() != bfin_compiled_revid()) {
1047 if (bfin_compiled_revid() == -1)
1048 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
1050 else if (bfin_compiled_revid() != 0xffff) {
1051 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
1052 bfin_compiled_revid(), bfin_revid());
1053 if (bfin_compiled_revid() > bfin_revid())
1054 panic("Error: you are missing anomaly workarounds for this rev");
1057 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
1058 printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
1062 printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
1065 printk(KERN_INFO "Processor Speed: %lu MHz core clock, %lu MHz SCLk, %lu MHz SCLK0, %lu MHz SCLK1 and %lu MHz DCLK\n",
1066 cclk / 1000000, bfin_get_clk("SYSCLK") / 1000000, get_sclk0() / 1000000, get_sclk1() / 1000000, get_dclk() / 1000000);
1068 printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
1069 cclk / 1000000, sclk / 1000000);
1072 setup_bootmem_allocator();
1076 /* Copy atomic sequences to their fixed location, and sanity check that
1077 these locations are the ones that we advertise to userspace. */
1078 memcpy((void *)FIXED_CODE_START, &fixed_code_start,
1079 FIXED_CODE_END - FIXED_CODE_START);
1080 BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
1081 != SIGRETURN_STUB - FIXED_CODE_START);
1082 BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
1083 != ATOMIC_XCHG32 - FIXED_CODE_START);
1084 BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
1085 != ATOMIC_CAS32 - FIXED_CODE_START);
1086 BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
1087 != ATOMIC_ADD32 - FIXED_CODE_START);
1088 BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
1089 != ATOMIC_SUB32 - FIXED_CODE_START);
1090 BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
1091 != ATOMIC_IOR32 - FIXED_CODE_START);
1092 BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
1093 != ATOMIC_AND32 - FIXED_CODE_START);
1094 BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
1095 != ATOMIC_XOR32 - FIXED_CODE_START);
1096 BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
1097 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
1100 platform_init_cpus();
1102 init_exception_vectors();
1103 bfin_cache_init(); /* Initialize caches for the boot CPU */
1106 static int __init topology_init(void)
1110 for_each_possible_cpu(cpu) {
1111 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
1117 subsys_initcall(topology_init);
1119 /* Get the input clock frequency */
1120 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
1121 #ifndef CONFIG_BF60x
1122 static u_long get_clkin_hz(void)
1124 return cached_clkin_hz;
1127 static int __init early_init_clkin_hz(char *buf)
1129 cached_clkin_hz = simple_strtoul(buf, NULL, 0);
1130 #ifdef BFIN_KERNEL_CLOCK
1131 if (cached_clkin_hz != CONFIG_CLKIN_HZ)
1132 panic("cannot change clkin_hz when reprogramming clocks");
1136 early_param("clkin_hz=", early_init_clkin_hz);
1138 #ifndef CONFIG_BF60x
1139 /* Get the voltage input multiplier */
1140 static u_long get_vco(void)
1142 static u_long cached_vco;
1143 u_long msel, pll_ctl;
1145 /* The assumption here is that VCO never changes at runtime.
1146 * If, someday, we support that, then we'll have to change this.
1151 pll_ctl = bfin_read_PLL_CTL();
1152 msel = (pll_ctl >> 9) & 0x3F;
1156 cached_vco = get_clkin_hz();
1157 cached_vco >>= (1 & pll_ctl); /* DF bit */
1163 /* Get the Core clock */
1164 u_long get_cclk(void)
1167 return bfin_get_clk("CCLK");
1169 static u_long cached_cclk_pll_div, cached_cclk;
1172 if (bfin_read_PLL_STAT() & 0x1)
1173 return get_clkin_hz();
1175 ssel = bfin_read_PLL_DIV();
1176 if (ssel == cached_cclk_pll_div)
1179 cached_cclk_pll_div = ssel;
1181 csel = ((ssel >> 4) & 0x03);
1183 if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
1184 cached_cclk = get_vco() / ssel;
1186 cached_cclk = get_vco() >> csel;
1190 EXPORT_SYMBOL(get_cclk);
1193 /* Get the bf60x clock of SCLK0 domain */
1194 u_long get_sclk0(void)
1196 return bfin_get_clk("SCLK0");
1198 EXPORT_SYMBOL(get_sclk0);
1200 /* Get the bf60x clock of SCLK1 domain */
1201 u_long get_sclk1(void)
1203 return bfin_get_clk("SCLK1");
1205 EXPORT_SYMBOL(get_sclk1);
1207 /* Get the bf60x DRAM clock */
1208 u_long get_dclk(void)
1210 return bfin_get_clk("DCLK");
1212 EXPORT_SYMBOL(get_dclk);
1215 /* Get the default system clock */
1216 u_long get_sclk(void)
1221 static u_long cached_sclk;
1224 /* The assumption here is that SCLK never changes at runtime.
1225 * If, someday, we support that, then we'll have to change this.
1230 if (bfin_read_PLL_STAT() & 0x1)
1231 return get_clkin_hz();
1233 ssel = bfin_read_PLL_DIV() & 0xf;
1235 printk(KERN_WARNING "Invalid System Clock\n");
1239 cached_sclk = get_vco() / ssel;
1243 EXPORT_SYMBOL(get_sclk);
1245 unsigned long sclk_to_usecs(unsigned long sclk)
1247 u64 tmp = USEC_PER_SEC * (u64)sclk;
1248 do_div(tmp, get_sclk());
1251 EXPORT_SYMBOL(sclk_to_usecs);
1253 unsigned long usecs_to_sclk(unsigned long usecs)
1255 u64 tmp = get_sclk() * (u64)usecs;
1256 do_div(tmp, USEC_PER_SEC);
1259 EXPORT_SYMBOL(usecs_to_sclk);
1262 * Get CPU information for use by the procfs.
1264 static int show_cpuinfo(struct seq_file *m, void *v)
1266 char *cpu, *mmu, *fpu, *vendor, *cache;
1268 int cpu_num = *(unsigned int *)v;
1270 u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1271 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1276 revid = bfin_revid();
1281 switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1283 vendor = "Analog Devices";
1290 seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1292 if (CPUID == bfin_cpuid())
1293 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1295 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1296 CPUID, bfin_cpuid());
1298 seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1300 cpu, cclk/1000000, sclk/1000000,
1308 if (bfin_revid() != bfin_compiled_revid()) {
1309 if (bfin_compiled_revid() == -1)
1310 seq_printf(m, "(Compiled for Rev none)");
1311 else if (bfin_compiled_revid() == 0xffff)
1312 seq_printf(m, "(Compiled for Rev any)");
1314 seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1317 seq_printf(m, "\ncpu MHz\t\t: %lu.%06lu/%lu.%06lu\n",
1318 cclk/1000000, cclk%1000000,
1319 sclk/1000000, sclk%1000000);
1320 seq_printf(m, "bogomips\t: %lu.%02lu\n"
1321 "Calibration\t: %lu loops\n",
1322 (loops_per_jiffy * HZ) / 500000,
1323 ((loops_per_jiffy * HZ) / 5000) % 100,
1324 (loops_per_jiffy * HZ));
1326 /* Check Cache configutation */
1327 switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1329 cache = "dbank-A/B\t: cache/sram";
1334 cache = "dbank-A/B\t: cache/cache";
1339 cache = "dbank-A/B\t: sram/sram";
1350 /* Is it turned on? */
1351 if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1354 if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1357 seq_printf(m, "cache size\t: %d KB(L1 icache) "
1358 "%d KB(L1 dcache) %d KB(L2 cache)\n",
1359 icache_size, dcache_size, 0);
1360 seq_printf(m, "%s\n", cache);
1361 seq_printf(m, "external memory\t: "
1362 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1367 " in instruction cache\n");
1368 seq_printf(m, "external memory\t: "
1369 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1370 "cacheable (write-back)"
1371 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1372 "cacheable (write-through)"
1376 " in data cache\n");
1379 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1380 BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1382 seq_printf(m, "icache setup\t: off\n");
1385 "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1386 dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1388 #ifdef __ARCH_SYNC_CORE_DCACHE
1389 seq_printf(m, "dcache flushes\t: %lu\n", dcache_invld_count[cpu_num]);
1391 #ifdef __ARCH_SYNC_CORE_ICACHE
1392 seq_printf(m, "icache flushes\t: %lu\n", icache_invld_count[cpu_num]);
1395 seq_printf(m, "\n");
1397 if (cpu_num != num_possible_cpus() - 1)
1401 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1402 seq_printf(m, "L2 SRAM\t\t: "
1403 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1408 " in instruction cache\n");
1409 seq_printf(m, "L2 SRAM\t\t: "
1410 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1411 "cacheable (write-back)"
1412 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1413 "cacheable (write-through)"
1417 " in data cache\n");
1419 seq_printf(m, "board name\t: %s\n", bfin_board_name);
1420 seq_printf(m, "board memory\t: %ld kB (0x%08lx -> 0x%08lx)\n",
1421 physical_mem_end >> 10, 0ul, physical_mem_end);
1422 seq_printf(m, "kernel memory\t: %d kB (0x%08lx -> 0x%08lx)\n",
1423 ((int)memory_end - (int)_rambase) >> 10,
1424 _rambase, memory_end);
1429 static void *c_start(struct seq_file *m, loff_t *pos)
1432 *pos = cpumask_first(cpu_online_mask);
1433 if (*pos >= num_online_cpus())
1439 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1441 *pos = cpumask_next(*pos, cpu_online_mask);
1443 return c_start(m, pos);
1446 static void c_stop(struct seq_file *m, void *v)
1450 const struct seq_operations cpuinfo_op = {
1454 .show = show_cpuinfo,
1457 void __init cmdline_init(const char *r0)
1459 early_shadow_stamp();
1461 strncpy(command_line, r0, COMMAND_LINE_SIZE);