4ee111142aad693b0a7d12417848cc68249305ce
[firefly-linux-kernel-4.4.55.git] / arch / mips / kernel / perf_event_mipsxx.c
1 /*
2  * Linux performance counter support for MIPS.
3  *
4  * Copyright (C) 2010 MIPS Technologies, Inc.
5  * Copyright (C) 2011 Cavium Networks, Inc.
6  * Author: Deng-Cheng Zhu
7  *
8  * This code is based on the implementation for ARM, which is in turn
9  * based on the sparc64 perf event code and the x86 code. Performance
10  * counter access is based on the MIPS Oprofile code. And the callchain
11  * support references the code of MIPS stacktrace.c.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
24
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
29
30 #define MIPS_MAX_HWEVENTS 4
31
32 struct cpu_hw_events {
33         /* Array of events on this cpu. */
34         struct perf_event       *events[MIPS_MAX_HWEVENTS];
35
36         /*
37          * Set the bit (indexed by the counter number) when the counter
38          * is used for an event.
39          */
40         unsigned long           used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
41
42         /*
43          * Software copy of the control register for each performance counter.
44          * MIPS CPUs vary in performance counters. They use this differently,
45          * and even may not use it.
46          */
47         unsigned int            saved_ctrl[MIPS_MAX_HWEVENTS];
48 };
49 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
50         .saved_ctrl = {0},
51 };
52
53 /* The description of MIPS performance events. */
54 struct mips_perf_event {
55         unsigned int event_id;
56         /*
57          * MIPS performance counters are indexed starting from 0.
58          * CNTR_EVEN indicates the indexes of the counters to be used are
59          * even numbers.
60          */
61         unsigned int cntr_mask;
62         #define CNTR_EVEN       0x55555555
63         #define CNTR_ODD        0xaaaaaaaa
64         #define CNTR_ALL        0xffffffff
65 #ifdef CONFIG_MIPS_MT_SMP
66         enum {
67                 T  = 0,
68                 V  = 1,
69                 P  = 2,
70         } range;
71 #else
72         #define T
73         #define V
74         #define P
75 #endif
76 };
77
78 static struct mips_perf_event raw_event;
79 static DEFINE_MUTEX(raw_event_mutex);
80
81 #define C(x) PERF_COUNT_HW_CACHE_##x
82
83 struct mips_pmu {
84         u64             max_period;
85         u64             valid_count;
86         u64             overflow;
87         const char      *name;
88         int             irq;
89         u64             (*read_counter)(unsigned int idx);
90         void            (*write_counter)(unsigned int idx, u64 val);
91         const struct mips_perf_event *(*map_raw_event)(u64 config);
92         const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
93         const struct mips_perf_event (*cache_event_map)
94                                 [PERF_COUNT_HW_CACHE_MAX]
95                                 [PERF_COUNT_HW_CACHE_OP_MAX]
96                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
97         unsigned int    num_counters;
98 };
99
100 static struct mips_pmu mipspmu;
101
102 #define M_CONFIG1_PC    (1 << 4)
103
104 #define M_PERFCTL_EXL                   (1      <<  0)
105 #define M_PERFCTL_KERNEL                (1      <<  1)
106 #define M_PERFCTL_SUPERVISOR            (1      <<  2)
107 #define M_PERFCTL_USER                  (1      <<  3)
108 #define M_PERFCTL_INTERRUPT_ENABLE      (1      <<  4)
109 #define M_PERFCTL_EVENT(event)          (((event) & 0x3ff)  << 5)
110 #define M_PERFCTL_VPEID(vpe)            ((vpe)    << 16)
111 #define M_PERFCTL_MT_EN(filter)         ((filter) << 20)
112 #define    M_TC_EN_ALL                  M_PERFCTL_MT_EN(0)
113 #define    M_TC_EN_VPE                  M_PERFCTL_MT_EN(1)
114 #define    M_TC_EN_TC                   M_PERFCTL_MT_EN(2)
115 #define M_PERFCTL_TCID(tcid)            ((tcid)   << 22)
116 #define M_PERFCTL_WIDE                  (1      << 30)
117 #define M_PERFCTL_MORE                  (1      << 31)
118
119 #define M_PERFCTL_COUNT_EVENT_WHENEVER  (M_PERFCTL_EXL |                \
120                                         M_PERFCTL_KERNEL |              \
121                                         M_PERFCTL_USER |                \
122                                         M_PERFCTL_SUPERVISOR |          \
123                                         M_PERFCTL_INTERRUPT_ENABLE)
124
125 #ifdef CONFIG_MIPS_MT_SMP
126 #define M_PERFCTL_CONFIG_MASK           0x3fff801f
127 #else
128 #define M_PERFCTL_CONFIG_MASK           0x1f
129 #endif
130 #define M_PERFCTL_EVENT_MASK            0xfe0
131
132
133 #ifdef CONFIG_MIPS_MT_SMP
134 static int cpu_has_mipsmt_pertccounters;
135
136 static DEFINE_RWLOCK(pmuint_rwlock);
137
138 /*
139  * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
140  * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
141  */
142 #if defined(CONFIG_HW_PERF_EVENTS)
143 #define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
144                         0 : smp_processor_id())
145 #else
146 #define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
147                         0 : cpu_data[smp_processor_id()].vpe_id)
148 #endif
149
150 /* Copied from op_model_mipsxx.c */
151 static unsigned int vpe_shift(void)
152 {
153         if (num_possible_cpus() > 1)
154                 return 1;
155
156         return 0;
157 }
158
159 static unsigned int counters_total_to_per_cpu(unsigned int counters)
160 {
161         return counters >> vpe_shift();
162 }
163
164 #else /* !CONFIG_MIPS_MT_SMP */
165 #define vpe_id()        0
166
167 #endif /* CONFIG_MIPS_MT_SMP */
168
169 static void resume_local_counters(void);
170 static void pause_local_counters(void);
171 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
172 static int mipsxx_pmu_handle_shared_irq(void);
173
174 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
175 {
176         if (vpe_id() == 1)
177                 idx = (idx + 2) & 3;
178         return idx;
179 }
180
181 static u64 mipsxx_pmu_read_counter(unsigned int idx)
182 {
183         idx = mipsxx_pmu_swizzle_perf_idx(idx);
184
185         switch (idx) {
186         case 0:
187                 /*
188                  * The counters are unsigned, we must cast to truncate
189                  * off the high bits.
190                  */
191                 return (u32)read_c0_perfcntr0();
192         case 1:
193                 return (u32)read_c0_perfcntr1();
194         case 2:
195                 return (u32)read_c0_perfcntr2();
196         case 3:
197                 return (u32)read_c0_perfcntr3();
198         default:
199                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
200                 return 0;
201         }
202 }
203
204 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
205 {
206         idx = mipsxx_pmu_swizzle_perf_idx(idx);
207
208         switch (idx) {
209         case 0:
210                 return read_c0_perfcntr0_64();
211         case 1:
212                 return read_c0_perfcntr1_64();
213         case 2:
214                 return read_c0_perfcntr2_64();
215         case 3:
216                 return read_c0_perfcntr3_64();
217         default:
218                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
219                 return 0;
220         }
221 }
222
223 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
224 {
225         idx = mipsxx_pmu_swizzle_perf_idx(idx);
226
227         switch (idx) {
228         case 0:
229                 write_c0_perfcntr0(val);
230                 return;
231         case 1:
232                 write_c0_perfcntr1(val);
233                 return;
234         case 2:
235                 write_c0_perfcntr2(val);
236                 return;
237         case 3:
238                 write_c0_perfcntr3(val);
239                 return;
240         }
241 }
242
243 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
244 {
245         idx = mipsxx_pmu_swizzle_perf_idx(idx);
246
247         switch (idx) {
248         case 0:
249                 write_c0_perfcntr0_64(val);
250                 return;
251         case 1:
252                 write_c0_perfcntr1_64(val);
253                 return;
254         case 2:
255                 write_c0_perfcntr2_64(val);
256                 return;
257         case 3:
258                 write_c0_perfcntr3_64(val);
259                 return;
260         }
261 }
262
263 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
264 {
265         idx = mipsxx_pmu_swizzle_perf_idx(idx);
266
267         switch (idx) {
268         case 0:
269                 return read_c0_perfctrl0();
270         case 1:
271                 return read_c0_perfctrl1();
272         case 2:
273                 return read_c0_perfctrl2();
274         case 3:
275                 return read_c0_perfctrl3();
276         default:
277                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
278                 return 0;
279         }
280 }
281
282 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
283 {
284         idx = mipsxx_pmu_swizzle_perf_idx(idx);
285
286         switch (idx) {
287         case 0:
288                 write_c0_perfctrl0(val);
289                 return;
290         case 1:
291                 write_c0_perfctrl1(val);
292                 return;
293         case 2:
294                 write_c0_perfctrl2(val);
295                 return;
296         case 3:
297                 write_c0_perfctrl3(val);
298                 return;
299         }
300 }
301
302 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
303                                     struct hw_perf_event *hwc)
304 {
305         int i;
306
307         /*
308          * We only need to care the counter mask. The range has been
309          * checked definitely.
310          */
311         unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
312
313         for (i = mipspmu.num_counters - 1; i >= 0; i--) {
314                 /*
315                  * Note that some MIPS perf events can be counted by both
316                  * even and odd counters, wheresas many other are only by
317                  * even _or_ odd counters. This introduces an issue that
318                  * when the former kind of event takes the counter the
319                  * latter kind of event wants to use, then the "counter
320                  * allocation" for the latter event will fail. In fact if
321                  * they can be dynamically swapped, they both feel happy.
322                  * But here we leave this issue alone for now.
323                  */
324                 if (test_bit(i, &cntr_mask) &&
325                         !test_and_set_bit(i, cpuc->used_mask))
326                         return i;
327         }
328
329         return -EAGAIN;
330 }
331
332 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
333 {
334         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
335
336         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
337
338         cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
339                 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
340                 /* Make sure interrupt enabled. */
341                 M_PERFCTL_INTERRUPT_ENABLE;
342         /*
343          * We do not actually let the counter run. Leave it until start().
344          */
345 }
346
347 static void mipsxx_pmu_disable_event(int idx)
348 {
349         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
350         unsigned long flags;
351
352         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
353
354         local_irq_save(flags);
355         cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
356                 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
357         mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
358         local_irq_restore(flags);
359 }
360
361 static int mipspmu_event_set_period(struct perf_event *event,
362                                     struct hw_perf_event *hwc,
363                                     int idx)
364 {
365         u64 left = local64_read(&hwc->period_left);
366         u64 period = hwc->sample_period;
367         int ret = 0;
368
369         if (unlikely((left + period) & (1ULL << 63))) {
370                 /* left underflowed by more than period. */
371                 left = period;
372                 local64_set(&hwc->period_left, left);
373                 hwc->last_period = period;
374                 ret = 1;
375         } else  if (unlikely((left + period) <= period)) {
376                 /* left underflowed by less than period. */
377                 left += period;
378                 local64_set(&hwc->period_left, left);
379                 hwc->last_period = period;
380                 ret = 1;
381         }
382
383         if (left > mipspmu.max_period) {
384                 left = mipspmu.max_period;
385                 local64_set(&hwc->period_left, left);
386         }
387
388         local64_set(&hwc->prev_count, mipspmu.overflow - left);
389
390         mipspmu.write_counter(idx, mipspmu.overflow - left);
391
392         perf_event_update_userpage(event);
393
394         return ret;
395 }
396
397 static void mipspmu_event_update(struct perf_event *event,
398                                  struct hw_perf_event *hwc,
399                                  int idx)
400 {
401         u64 prev_raw_count, new_raw_count;
402         u64 delta;
403
404 again:
405         prev_raw_count = local64_read(&hwc->prev_count);
406         new_raw_count = mipspmu.read_counter(idx);
407
408         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
409                                 new_raw_count) != prev_raw_count)
410                 goto again;
411
412         delta = new_raw_count - prev_raw_count;
413
414         local64_add(delta, &event->count);
415         local64_sub(delta, &hwc->period_left);
416 }
417
418 static void mipspmu_start(struct perf_event *event, int flags)
419 {
420         struct hw_perf_event *hwc = &event->hw;
421
422         if (flags & PERF_EF_RELOAD)
423                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
424
425         hwc->state = 0;
426
427         /* Set the period for the event. */
428         mipspmu_event_set_period(event, hwc, hwc->idx);
429
430         /* Enable the event. */
431         mipsxx_pmu_enable_event(hwc, hwc->idx);
432 }
433
434 static void mipspmu_stop(struct perf_event *event, int flags)
435 {
436         struct hw_perf_event *hwc = &event->hw;
437
438         if (!(hwc->state & PERF_HES_STOPPED)) {
439                 /* We are working on a local event. */
440                 mipsxx_pmu_disable_event(hwc->idx);
441                 barrier();
442                 mipspmu_event_update(event, hwc, hwc->idx);
443                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
444         }
445 }
446
447 static int mipspmu_add(struct perf_event *event, int flags)
448 {
449         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
450         struct hw_perf_event *hwc = &event->hw;
451         int idx;
452         int err = 0;
453
454         perf_pmu_disable(event->pmu);
455
456         /* To look for a free counter for this event. */
457         idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
458         if (idx < 0) {
459                 err = idx;
460                 goto out;
461         }
462
463         /*
464          * If there is an event in the counter we are going to use then
465          * make sure it is disabled.
466          */
467         event->hw.idx = idx;
468         mipsxx_pmu_disable_event(idx);
469         cpuc->events[idx] = event;
470
471         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
472         if (flags & PERF_EF_START)
473                 mipspmu_start(event, PERF_EF_RELOAD);
474
475         /* Propagate our changes to the userspace mapping. */
476         perf_event_update_userpage(event);
477
478 out:
479         perf_pmu_enable(event->pmu);
480         return err;
481 }
482
483 static void mipspmu_del(struct perf_event *event, int flags)
484 {
485         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
486         struct hw_perf_event *hwc = &event->hw;
487         int idx = hwc->idx;
488
489         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
490
491         mipspmu_stop(event, PERF_EF_UPDATE);
492         cpuc->events[idx] = NULL;
493         clear_bit(idx, cpuc->used_mask);
494
495         perf_event_update_userpage(event);
496 }
497
498 static void mipspmu_read(struct perf_event *event)
499 {
500         struct hw_perf_event *hwc = &event->hw;
501
502         /* Don't read disabled counters! */
503         if (hwc->idx < 0)
504                 return;
505
506         mipspmu_event_update(event, hwc, hwc->idx);
507 }
508
509 static void mipspmu_enable(struct pmu *pmu)
510 {
511 #ifdef CONFIG_MIPS_MT_SMP
512         write_unlock(&pmuint_rwlock);
513 #endif
514         resume_local_counters();
515 }
516
517 /*
518  * MIPS performance counters can be per-TC. The control registers can
519  * not be directly accessed accross CPUs. Hence if we want to do global
520  * control, we need cross CPU calls. on_each_cpu() can help us, but we
521  * can not make sure this function is called with interrupts enabled. So
522  * here we pause local counters and then grab a rwlock and leave the
523  * counters on other CPUs alone. If any counter interrupt raises while
524  * we own the write lock, simply pause local counters on that CPU and
525  * spin in the handler. Also we know we won't be switched to another
526  * CPU after pausing local counters and before grabbing the lock.
527  */
528 static void mipspmu_disable(struct pmu *pmu)
529 {
530         pause_local_counters();
531 #ifdef CONFIG_MIPS_MT_SMP
532         write_lock(&pmuint_rwlock);
533 #endif
534 }
535
536 static atomic_t active_events = ATOMIC_INIT(0);
537 static DEFINE_MUTEX(pmu_reserve_mutex);
538 static int (*save_perf_irq)(void);
539
540 static int mipspmu_get_irq(void)
541 {
542         int err;
543
544         if (mipspmu.irq >= 0) {
545                 /* Request my own irq handler. */
546                 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
547                         IRQF_PERCPU | IRQF_NOBALANCING,
548                         "mips_perf_pmu", NULL);
549                 if (err) {
550                         pr_warning("Unable to request IRQ%d for MIPS "
551                            "performance counters!\n", mipspmu.irq);
552                 }
553         } else if (cp0_perfcount_irq < 0) {
554                 /*
555                  * We are sharing the irq number with the timer interrupt.
556                  */
557                 save_perf_irq = perf_irq;
558                 perf_irq = mipsxx_pmu_handle_shared_irq;
559                 err = 0;
560         } else {
561                 pr_warning("The platform hasn't properly defined its "
562                         "interrupt controller.\n");
563                 err = -ENOENT;
564         }
565
566         return err;
567 }
568
569 static void mipspmu_free_irq(void)
570 {
571         if (mipspmu.irq >= 0)
572                 free_irq(mipspmu.irq, NULL);
573         else if (cp0_perfcount_irq < 0)
574                 perf_irq = save_perf_irq;
575 }
576
577 /*
578  * mipsxx/rm9000/loongson2 have different performance counters, they have
579  * specific low-level init routines.
580  */
581 static void reset_counters(void *arg);
582 static int __hw_perf_event_init(struct perf_event *event);
583
584 static void hw_perf_event_destroy(struct perf_event *event)
585 {
586         if (atomic_dec_and_mutex_lock(&active_events,
587                                 &pmu_reserve_mutex)) {
588                 /*
589                  * We must not call the destroy function with interrupts
590                  * disabled.
591                  */
592                 on_each_cpu(reset_counters,
593                         (void *)(long)mipspmu.num_counters, 1);
594                 mipspmu_free_irq();
595                 mutex_unlock(&pmu_reserve_mutex);
596         }
597 }
598
599 static int mipspmu_event_init(struct perf_event *event)
600 {
601         int err = 0;
602
603         /* does not support taken branch sampling */
604         if (has_branch_stack(event))
605                 return -EOPNOTSUPP;
606
607         switch (event->attr.type) {
608         case PERF_TYPE_RAW:
609         case PERF_TYPE_HARDWARE:
610         case PERF_TYPE_HW_CACHE:
611                 break;
612
613         default:
614                 return -ENOENT;
615         }
616
617         if (event->cpu >= nr_cpumask_bits ||
618             (event->cpu >= 0 && !cpu_online(event->cpu)))
619                 return -ENODEV;
620
621         if (!atomic_inc_not_zero(&active_events)) {
622                 mutex_lock(&pmu_reserve_mutex);
623                 if (atomic_read(&active_events) == 0)
624                         err = mipspmu_get_irq();
625
626                 if (!err)
627                         atomic_inc(&active_events);
628                 mutex_unlock(&pmu_reserve_mutex);
629         }
630
631         if (err)
632                 return err;
633
634         return __hw_perf_event_init(event);
635 }
636
637 static struct pmu pmu = {
638         .pmu_enable     = mipspmu_enable,
639         .pmu_disable    = mipspmu_disable,
640         .event_init     = mipspmu_event_init,
641         .add            = mipspmu_add,
642         .del            = mipspmu_del,
643         .start          = mipspmu_start,
644         .stop           = mipspmu_stop,
645         .read           = mipspmu_read,
646 };
647
648 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
649 {
650 /*
651  * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
652  * event_id.
653  */
654 #ifdef CONFIG_MIPS_MT_SMP
655         return ((unsigned int)pev->range << 24) |
656                 (pev->cntr_mask & 0xffff00) |
657                 (pev->event_id & 0xff);
658 #else
659         return (pev->cntr_mask & 0xffff00) |
660                 (pev->event_id & 0xff);
661 #endif
662 }
663
664 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
665 {
666
667         if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
668                 return ERR_PTR(-EOPNOTSUPP);
669         return &(*mipspmu.general_event_map)[idx];
670 }
671
672 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
673 {
674         unsigned int cache_type, cache_op, cache_result;
675         const struct mips_perf_event *pev;
676
677         cache_type = (config >> 0) & 0xff;
678         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
679                 return ERR_PTR(-EINVAL);
680
681         cache_op = (config >> 8) & 0xff;
682         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
683                 return ERR_PTR(-EINVAL);
684
685         cache_result = (config >> 16) & 0xff;
686         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
687                 return ERR_PTR(-EINVAL);
688
689         pev = &((*mipspmu.cache_event_map)
690                                         [cache_type]
691                                         [cache_op]
692                                         [cache_result]);
693
694         if (pev->cntr_mask == 0)
695                 return ERR_PTR(-EOPNOTSUPP);
696
697         return pev;
698
699 }
700
701 static int validate_group(struct perf_event *event)
702 {
703         struct perf_event *sibling, *leader = event->group_leader;
704         struct cpu_hw_events fake_cpuc;
705
706         memset(&fake_cpuc, 0, sizeof(fake_cpuc));
707
708         if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
709                 return -EINVAL;
710
711         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
712                 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
713                         return -EINVAL;
714         }
715
716         if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
717                 return -EINVAL;
718
719         return 0;
720 }
721
722 /* This is needed by specific irq handlers in perf_event_*.c */
723 static void handle_associated_event(struct cpu_hw_events *cpuc,
724                                     int idx, struct perf_sample_data *data,
725                                     struct pt_regs *regs)
726 {
727         struct perf_event *event = cpuc->events[idx];
728         struct hw_perf_event *hwc = &event->hw;
729
730         mipspmu_event_update(event, hwc, idx);
731         data->period = event->hw.last_period;
732         if (!mipspmu_event_set_period(event, hwc, idx))
733                 return;
734
735         if (perf_event_overflow(event, data, regs))
736                 mipsxx_pmu_disable_event(idx);
737 }
738
739
740 static int __n_counters(void)
741 {
742         if (!(read_c0_config1() & M_CONFIG1_PC))
743                 return 0;
744         if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
745                 return 1;
746         if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
747                 return 2;
748         if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
749                 return 3;
750
751         return 4;
752 }
753
754 static int n_counters(void)
755 {
756         int counters;
757
758         switch (current_cpu_type()) {
759         case CPU_R10000:
760                 counters = 2;
761                 break;
762
763         case CPU_R12000:
764         case CPU_R14000:
765                 counters = 4;
766                 break;
767
768         default:
769                 counters = __n_counters();
770         }
771
772         return counters;
773 }
774
775 static void reset_counters(void *arg)
776 {
777         int counters = (int)(long)arg;
778         switch (counters) {
779         case 4:
780                 mipsxx_pmu_write_control(3, 0);
781                 mipspmu.write_counter(3, 0);
782         case 3:
783                 mipsxx_pmu_write_control(2, 0);
784                 mipspmu.write_counter(2, 0);
785         case 2:
786                 mipsxx_pmu_write_control(1, 0);
787                 mipspmu.write_counter(1, 0);
788         case 1:
789                 mipsxx_pmu_write_control(0, 0);
790                 mipspmu.write_counter(0, 0);
791         }
792 }
793
794 /* 24K/34K/1004K cores can share the same event map. */
795 static const struct mips_perf_event mipsxxcore_event_map
796                                 [PERF_COUNT_HW_MAX] = {
797         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
798         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
799         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
800         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
801 };
802
803 /* 74K core has different branch event code. */
804 static const struct mips_perf_event mipsxx74Kcore_event_map
805                                 [PERF_COUNT_HW_MAX] = {
806         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
807         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
808         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
809         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
810 };
811
812 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
813         [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
814         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
815         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
816         [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL  },
817         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
818         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
819         [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
820 };
821
822 /* 24K/34K/1004K cores can share the same cache event map. */
823 static const struct mips_perf_event mipsxxcore_cache_map
824                                 [PERF_COUNT_HW_CACHE_MAX]
825                                 [PERF_COUNT_HW_CACHE_OP_MAX]
826                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
827 [C(L1D)] = {
828         /*
829          * Like some other architectures (e.g. ARM), the performance
830          * counters don't differentiate between read and write
831          * accesses/misses, so this isn't strictly correct, but it's the
832          * best we can do. Writes and reads get combined.
833          */
834         [C(OP_READ)] = {
835                 [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
836                 [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
837         },
838         [C(OP_WRITE)] = {
839                 [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
840                 [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
841         },
842 },
843 [C(L1I)] = {
844         [C(OP_READ)] = {
845                 [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
846                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
847         },
848         [C(OP_WRITE)] = {
849                 [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
850                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
851         },
852         [C(OP_PREFETCH)] = {
853                 [C(RESULT_ACCESS)]      = { 0x14, CNTR_EVEN, T },
854                 /*
855                  * Note that MIPS has only "hit" events countable for
856                  * the prefetch operation.
857                  */
858         },
859 },
860 [C(LL)] = {
861         [C(OP_READ)] = {
862                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
863                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
864         },
865         [C(OP_WRITE)] = {
866                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
867                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
868         },
869 },
870 [C(DTLB)] = {
871         [C(OP_READ)] = {
872                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
873                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
874         },
875         [C(OP_WRITE)] = {
876                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
877                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
878         },
879 },
880 [C(ITLB)] = {
881         [C(OP_READ)] = {
882                 [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
883                 [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
884         },
885         [C(OP_WRITE)] = {
886                 [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
887                 [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
888         },
889 },
890 [C(BPU)] = {
891         /* Using the same code for *HW_BRANCH* */
892         [C(OP_READ)] = {
893                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
894                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
895         },
896         [C(OP_WRITE)] = {
897                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
898                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
899         },
900 },
901 };
902
903 /* 74K core has completely different cache event map. */
904 static const struct mips_perf_event mipsxx74Kcore_cache_map
905                                 [PERF_COUNT_HW_CACHE_MAX]
906                                 [PERF_COUNT_HW_CACHE_OP_MAX]
907                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
908 [C(L1D)] = {
909         /*
910          * Like some other architectures (e.g. ARM), the performance
911          * counters don't differentiate between read and write
912          * accesses/misses, so this isn't strictly correct, but it's the
913          * best we can do. Writes and reads get combined.
914          */
915         [C(OP_READ)] = {
916                 [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
917                 [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
918         },
919         [C(OP_WRITE)] = {
920                 [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
921                 [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
922         },
923 },
924 [C(L1I)] = {
925         [C(OP_READ)] = {
926                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
927                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
928         },
929         [C(OP_WRITE)] = {
930                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
931                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
932         },
933         [C(OP_PREFETCH)] = {
934                 [C(RESULT_ACCESS)]      = { 0x34, CNTR_EVEN, T },
935                 /*
936                  * Note that MIPS has only "hit" events countable for
937                  * the prefetch operation.
938                  */
939         },
940 },
941 [C(LL)] = {
942         [C(OP_READ)] = {
943                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
944                 [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
945         },
946         [C(OP_WRITE)] = {
947                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
948                 [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
949         },
950 },
951 [C(ITLB)] = {
952         [C(OP_READ)] = {
953                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
954                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
955         },
956         [C(OP_WRITE)] = {
957                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
958                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
959         },
960 },
961 [C(BPU)] = {
962         /* Using the same code for *HW_BRANCH* */
963         [C(OP_READ)] = {
964                 [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
965                 [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
966         },
967         [C(OP_WRITE)] = {
968                 [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
969                 [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
970         },
971 },
972 };
973
974
975 static const struct mips_perf_event octeon_cache_map
976                                 [PERF_COUNT_HW_CACHE_MAX]
977                                 [PERF_COUNT_HW_CACHE_OP_MAX]
978                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
979 [C(L1D)] = {
980         [C(OP_READ)] = {
981                 [C(RESULT_ACCESS)]      = { 0x2b, CNTR_ALL },
982                 [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL },
983         },
984         [C(OP_WRITE)] = {
985                 [C(RESULT_ACCESS)]      = { 0x30, CNTR_ALL },
986         },
987 },
988 [C(L1I)] = {
989         [C(OP_READ)] = {
990                 [C(RESULT_ACCESS)]      = { 0x18, CNTR_ALL },
991         },
992         [C(OP_PREFETCH)] = {
993                 [C(RESULT_ACCESS)]      = { 0x19, CNTR_ALL },
994         },
995 },
996 [C(DTLB)] = {
997         /*
998          * Only general DTLB misses are counted use the same event for
999          * read and write.
1000          */
1001         [C(OP_READ)] = {
1002                 [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1003         },
1004         [C(OP_WRITE)] = {
1005                 [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1006         },
1007 },
1008 [C(ITLB)] = {
1009         [C(OP_READ)] = {
1010                 [C(RESULT_MISS)]        = { 0x37, CNTR_ALL },
1011         },
1012 },
1013 };
1014
1015 #ifdef CONFIG_MIPS_MT_SMP
1016 static void check_and_calc_range(struct perf_event *event,
1017                                  const struct mips_perf_event *pev)
1018 {
1019         struct hw_perf_event *hwc = &event->hw;
1020
1021         if (event->cpu >= 0) {
1022                 if (pev->range > V) {
1023                         /*
1024                          * The user selected an event that is processor
1025                          * wide, while expecting it to be VPE wide.
1026                          */
1027                         hwc->config_base |= M_TC_EN_ALL;
1028                 } else {
1029                         /*
1030                          * FIXME: cpu_data[event->cpu].vpe_id reports 0
1031                          * for both CPUs.
1032                          */
1033                         hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1034                         hwc->config_base |= M_TC_EN_VPE;
1035                 }
1036         } else
1037                 hwc->config_base |= M_TC_EN_ALL;
1038 }
1039 #else
1040 static void check_and_calc_range(struct perf_event *event,
1041                                  const struct mips_perf_event *pev)
1042 {
1043 }
1044 #endif
1045
1046 static int __hw_perf_event_init(struct perf_event *event)
1047 {
1048         struct perf_event_attr *attr = &event->attr;
1049         struct hw_perf_event *hwc = &event->hw;
1050         const struct mips_perf_event *pev;
1051         int err;
1052
1053         /* Returning MIPS event descriptor for generic perf event. */
1054         if (PERF_TYPE_HARDWARE == event->attr.type) {
1055                 if (event->attr.config >= PERF_COUNT_HW_MAX)
1056                         return -EINVAL;
1057                 pev = mipspmu_map_general_event(event->attr.config);
1058         } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1059                 pev = mipspmu_map_cache_event(event->attr.config);
1060         } else if (PERF_TYPE_RAW == event->attr.type) {
1061                 /* We are working on the global raw event. */
1062                 mutex_lock(&raw_event_mutex);
1063                 pev = mipspmu.map_raw_event(event->attr.config);
1064         } else {
1065                 /* The event type is not (yet) supported. */
1066                 return -EOPNOTSUPP;
1067         }
1068
1069         if (IS_ERR(pev)) {
1070                 if (PERF_TYPE_RAW == event->attr.type)
1071                         mutex_unlock(&raw_event_mutex);
1072                 return PTR_ERR(pev);
1073         }
1074
1075         /*
1076          * We allow max flexibility on how each individual counter shared
1077          * by the single CPU operates (the mode exclusion and the range).
1078          */
1079         hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1080
1081         /* Calculate range bits and validate it. */
1082         if (num_possible_cpus() > 1)
1083                 check_and_calc_range(event, pev);
1084
1085         hwc->event_base = mipspmu_perf_event_encode(pev);
1086         if (PERF_TYPE_RAW == event->attr.type)
1087                 mutex_unlock(&raw_event_mutex);
1088
1089         if (!attr->exclude_user)
1090                 hwc->config_base |= M_PERFCTL_USER;
1091         if (!attr->exclude_kernel) {
1092                 hwc->config_base |= M_PERFCTL_KERNEL;
1093                 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1094                 hwc->config_base |= M_PERFCTL_EXL;
1095         }
1096         if (!attr->exclude_hv)
1097                 hwc->config_base |= M_PERFCTL_SUPERVISOR;
1098
1099         hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1100         /*
1101          * The event can belong to another cpu. We do not assign a local
1102          * counter for it for now.
1103          */
1104         hwc->idx = -1;
1105         hwc->config = 0;
1106
1107         if (!hwc->sample_period) {
1108                 hwc->sample_period  = mipspmu.max_period;
1109                 hwc->last_period    = hwc->sample_period;
1110                 local64_set(&hwc->period_left, hwc->sample_period);
1111         }
1112
1113         err = 0;
1114         if (event->group_leader != event)
1115                 err = validate_group(event);
1116
1117         event->destroy = hw_perf_event_destroy;
1118
1119         if (err)
1120                 event->destroy(event);
1121
1122         return err;
1123 }
1124
1125 static void pause_local_counters(void)
1126 {
1127         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1128         int ctr = mipspmu.num_counters;
1129         unsigned long flags;
1130
1131         local_irq_save(flags);
1132         do {
1133                 ctr--;
1134                 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1135                 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1136                                          ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1137         } while (ctr > 0);
1138         local_irq_restore(flags);
1139 }
1140
1141 static void resume_local_counters(void)
1142 {
1143         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1144         int ctr = mipspmu.num_counters;
1145
1146         do {
1147                 ctr--;
1148                 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1149         } while (ctr > 0);
1150 }
1151
1152 static int mipsxx_pmu_handle_shared_irq(void)
1153 {
1154         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1155         struct perf_sample_data data;
1156         unsigned int counters = mipspmu.num_counters;
1157         u64 counter;
1158         int handled = IRQ_NONE;
1159         struct pt_regs *regs;
1160
1161         if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1162                 return handled;
1163         /*
1164          * First we pause the local counters, so that when we are locked
1165          * here, the counters are all paused. When it gets locked due to
1166          * perf_disable(), the timer interrupt handler will be delayed.
1167          *
1168          * See also mipsxx_pmu_start().
1169          */
1170         pause_local_counters();
1171 #ifdef CONFIG_MIPS_MT_SMP
1172         read_lock(&pmuint_rwlock);
1173 #endif
1174
1175         regs = get_irq_regs();
1176
1177         perf_sample_data_init(&data, 0, 0);
1178
1179         switch (counters) {
1180 #define HANDLE_COUNTER(n)                                               \
1181         case n + 1:                                                     \
1182                 if (test_bit(n, cpuc->used_mask)) {                     \
1183                         counter = mipspmu.read_counter(n);              \
1184                         if (counter & mipspmu.overflow) {               \
1185                                 handle_associated_event(cpuc, n, &data, regs); \
1186                                 handled = IRQ_HANDLED;                  \
1187                         }                                               \
1188                 }
1189         HANDLE_COUNTER(3)
1190         HANDLE_COUNTER(2)
1191         HANDLE_COUNTER(1)
1192         HANDLE_COUNTER(0)
1193         }
1194
1195         /*
1196          * Do all the work for the pending perf events. We can do this
1197          * in here because the performance counter interrupt is a regular
1198          * interrupt, not NMI.
1199          */
1200         if (handled == IRQ_HANDLED)
1201                 irq_work_run();
1202
1203 #ifdef CONFIG_MIPS_MT_SMP
1204         read_unlock(&pmuint_rwlock);
1205 #endif
1206         resume_local_counters();
1207         return handled;
1208 }
1209
1210 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1211 {
1212         return mipsxx_pmu_handle_shared_irq();
1213 }
1214
1215 /* 24K */
1216 #define IS_BOTH_COUNTERS_24K_EVENT(b)                                   \
1217         ((b) == 0 || (b) == 1 || (b) == 11)
1218
1219 /* 34K */
1220 #define IS_BOTH_COUNTERS_34K_EVENT(b)                                   \
1221         ((b) == 0 || (b) == 1 || (b) == 11)
1222 #ifdef CONFIG_MIPS_MT_SMP
1223 #define IS_RANGE_P_34K_EVENT(r, b)                                      \
1224         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1225          (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||           \
1226          (r) == 176 || ((b) >= 50 && (b) <= 55) ||                      \
1227          ((b) >= 64 && (b) <= 67))
1228 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1229 #endif
1230
1231 /* 74K */
1232 #define IS_BOTH_COUNTERS_74K_EVENT(b)                                   \
1233         ((b) == 0 || (b) == 1)
1234
1235 /* 1004K */
1236 #define IS_BOTH_COUNTERS_1004K_EVENT(b)                                 \
1237         ((b) == 0 || (b) == 1 || (b) == 11)
1238 #ifdef CONFIG_MIPS_MT_SMP
1239 #define IS_RANGE_P_1004K_EVENT(r, b)                                    \
1240         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1241          (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||            \
1242          (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||        \
1243          (r) == 188 || (b) == 61 || (b) == 62 ||                        \
1244          ((b) >= 64 && (b) <= 67))
1245 #define IS_RANGE_V_1004K_EVENT(r)       ((r) == 47)
1246 #endif
1247
1248 /*
1249  * User can use 0-255 raw events, where 0-127 for the events of even
1250  * counters, and 128-255 for odd counters. Note that bit 7 is used to
1251  * indicate the parity. So, for example, when user wants to take the
1252  * Event Num of 15 for odd counters (by referring to the user manual),
1253  * then 128 needs to be added to 15 as the input for the event config,
1254  * i.e., 143 (0x8F) to be used.
1255  */
1256 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1257 {
1258         unsigned int raw_id = config & 0xff;
1259         unsigned int base_id = raw_id & 0x7f;
1260
1261         raw_event.event_id = base_id;
1262
1263         switch (current_cpu_type()) {
1264         case CPU_24K:
1265                 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1266                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1267                 else
1268                         raw_event.cntr_mask =
1269                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1270 #ifdef CONFIG_MIPS_MT_SMP
1271                 /*
1272                  * This is actually doing nothing. Non-multithreading
1273                  * CPUs will not check and calculate the range.
1274                  */
1275                 raw_event.range = P;
1276 #endif
1277                 break;
1278         case CPU_34K:
1279                 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1280                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1281                 else
1282                         raw_event.cntr_mask =
1283                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1284 #ifdef CONFIG_MIPS_MT_SMP
1285                 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1286                         raw_event.range = P;
1287                 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1288                         raw_event.range = V;
1289                 else
1290                         raw_event.range = T;
1291 #endif
1292                 break;
1293         case CPU_74K:
1294                 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1295                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1296                 else
1297                         raw_event.cntr_mask =
1298                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1299 #ifdef CONFIG_MIPS_MT_SMP
1300                 raw_event.range = P;
1301 #endif
1302                 break;
1303         case CPU_1004K:
1304                 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1305                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1306                 else
1307                         raw_event.cntr_mask =
1308                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1309 #ifdef CONFIG_MIPS_MT_SMP
1310                 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1311                         raw_event.range = P;
1312                 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1313                         raw_event.range = V;
1314                 else
1315                         raw_event.range = T;
1316 #endif
1317                 break;
1318         }
1319
1320         return &raw_event;
1321 }
1322
1323 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1324 {
1325         unsigned int raw_id = config & 0xff;
1326         unsigned int base_id = raw_id & 0x7f;
1327
1328
1329         raw_event.cntr_mask = CNTR_ALL;
1330         raw_event.event_id = base_id;
1331
1332         if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1333                 if (base_id > 0x42)
1334                         return ERR_PTR(-EOPNOTSUPP);
1335         } else {
1336                 if (base_id > 0x3a)
1337                         return ERR_PTR(-EOPNOTSUPP);
1338         }
1339
1340         switch (base_id) {
1341         case 0x00:
1342         case 0x0f:
1343         case 0x1e:
1344         case 0x1f:
1345         case 0x2f:
1346         case 0x34:
1347         case 0x3b ... 0x3f:
1348                 return ERR_PTR(-EOPNOTSUPP);
1349         default:
1350                 break;
1351         }
1352
1353         return &raw_event;
1354 }
1355
1356 static int __init
1357 init_hw_perf_events(void)
1358 {
1359         int counters, irq;
1360         int counter_bits;
1361
1362         pr_info("Performance counters: ");
1363
1364         counters = n_counters();
1365         if (counters == 0) {
1366                 pr_cont("No available PMU.\n");
1367                 return -ENODEV;
1368         }
1369
1370 #ifdef CONFIG_MIPS_MT_SMP
1371         cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1372         if (!cpu_has_mipsmt_pertccounters)
1373                 counters = counters_total_to_per_cpu(counters);
1374 #endif
1375
1376 #ifdef MSC01E_INT_BASE
1377         if (cpu_has_veic) {
1378                 /*
1379                  * Using platform specific interrupt controller defines.
1380                  */
1381                 irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1382         } else {
1383 #endif
1384                 if ((cp0_perfcount_irq >= 0) &&
1385                                 (cp0_compare_irq != cp0_perfcount_irq))
1386                         irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1387                 else
1388                         irq = -1;
1389 #ifdef MSC01E_INT_BASE
1390         }
1391 #endif
1392
1393         mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1394
1395         switch (current_cpu_type()) {
1396         case CPU_24K:
1397                 mipspmu.name = "mips/24K";
1398                 mipspmu.general_event_map = &mipsxxcore_event_map;
1399                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1400                 break;
1401         case CPU_34K:
1402                 mipspmu.name = "mips/34K";
1403                 mipspmu.general_event_map = &mipsxxcore_event_map;
1404                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1405                 break;
1406         case CPU_74K:
1407                 mipspmu.name = "mips/74K";
1408                 mipspmu.general_event_map = &mipsxx74Kcore_event_map;
1409                 mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
1410                 break;
1411         case CPU_1004K:
1412                 mipspmu.name = "mips/1004K";
1413                 mipspmu.general_event_map = &mipsxxcore_event_map;
1414                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1415                 break;
1416         case CPU_LOONGSON1:
1417                 mipspmu.name = "mips/loongson1";
1418                 mipspmu.general_event_map = &mipsxxcore_event_map;
1419                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1420                 break;
1421         case CPU_CAVIUM_OCTEON:
1422         case CPU_CAVIUM_OCTEON_PLUS:
1423         case CPU_CAVIUM_OCTEON2:
1424                 mipspmu.name = "octeon";
1425                 mipspmu.general_event_map = &octeon_event_map;
1426                 mipspmu.cache_event_map = &octeon_cache_map;
1427                 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1428                 break;
1429         default:
1430                 pr_cont("Either hardware does not support performance "
1431                         "counters, or not yet implemented.\n");
1432                 return -ENODEV;
1433         }
1434
1435         mipspmu.num_counters = counters;
1436         mipspmu.irq = irq;
1437
1438         if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1439                 mipspmu.max_period = (1ULL << 63) - 1;
1440                 mipspmu.valid_count = (1ULL << 63) - 1;
1441                 mipspmu.overflow = 1ULL << 63;
1442                 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1443                 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1444                 counter_bits = 64;
1445         } else {
1446                 mipspmu.max_period = (1ULL << 31) - 1;
1447                 mipspmu.valid_count = (1ULL << 31) - 1;
1448                 mipspmu.overflow = 1ULL << 31;
1449                 mipspmu.read_counter = mipsxx_pmu_read_counter;
1450                 mipspmu.write_counter = mipsxx_pmu_write_counter;
1451                 counter_bits = 32;
1452         }
1453
1454         on_each_cpu(reset_counters, (void *)(long)counters, 1);
1455
1456         pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1457                 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1458                 irq < 0 ? " (share with timer interrupt)" : "");
1459
1460         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1461
1462         return 0;
1463 }
1464 early_initcall(init_hw_perf_events);