48b1b7554f05cedc2c6461e8c589a4c2e30fa56c
[firefly-linux-kernel-4.4.55.git] / arch / mips / kernel / smp-cps.c
1 /*
2  * Copyright (C) 2013 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10
11 #include <linux/delay.h>
12 #include <linux/io.h>
13 #include <linux/irqchip/mips-gic.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/smp.h>
17 #include <linux/types.h>
18
19 #include <asm/bcache.h>
20 #include <asm/mips-cm.h>
21 #include <asm/mips-cpc.h>
22 #include <asm/mips_mt.h>
23 #include <asm/mipsregs.h>
24 #include <asm/pm-cps.h>
25 #include <asm/r4kcache.h>
26 #include <asm/smp-cps.h>
27 #include <asm/time.h>
28 #include <asm/uasm.h>
29
30 static DECLARE_BITMAP(core_power, NR_CPUS);
31
32 struct core_boot_config *mips_cps_core_bootcfg;
33
34 static unsigned core_vpe_count(unsigned core)
35 {
36         unsigned cfg;
37
38         if (!config_enabled(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
39                 return 1;
40
41         write_gcr_cl_other(core << CM_GCR_Cx_OTHER_CORENUM_SHF);
42         cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
43         return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
44 }
45
46 static void __init cps_smp_setup(void)
47 {
48         unsigned int ncores, nvpes, core_vpes;
49         int c, v;
50
51         /* Detect & record VPE topology */
52         ncores = mips_cm_numcores();
53         pr_info("VPE topology ");
54         for (c = nvpes = 0; c < ncores; c++) {
55                 core_vpes = core_vpe_count(c);
56                 pr_cont("%c%u", c ? ',' : '{', core_vpes);
57
58                 /* Use the number of VPEs in core 0 for smp_num_siblings */
59                 if (!c)
60                         smp_num_siblings = core_vpes;
61
62                 for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
63                         cpu_data[nvpes + v].core = c;
64 #ifdef CONFIG_MIPS_MT_SMP
65                         cpu_data[nvpes + v].vpe_id = v;
66 #endif
67                 }
68
69                 nvpes += core_vpes;
70         }
71         pr_cont("} total %u\n", nvpes);
72
73         /* Indicate present CPUs (CPU being synonymous with VPE) */
74         for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
75                 set_cpu_possible(v, true);
76                 set_cpu_present(v, true);
77                 __cpu_number_map[v] = v;
78                 __cpu_logical_map[v] = v;
79         }
80
81         /* Set a coherent default CCA (CWB) */
82         change_c0_config(CONF_CM_CMASK, 0x5);
83
84         /* Core 0 is powered up (we're running on it) */
85         bitmap_set(core_power, 0, 1);
86
87         /* Initialise core 0 */
88         mips_cps_core_init();
89
90         /* Make core 0 coherent with everything */
91         write_gcr_cl_coherence(0xff);
92
93 #ifdef CONFIG_MIPS_MT_FPAFF
94         /* If we have an FPU, enroll ourselves in the FPU-full mask */
95         if (cpu_has_fpu)
96                 cpumask_set_cpu(0, &mt_fpu_cpumask);
97 #endif /* CONFIG_MIPS_MT_FPAFF */
98 }
99
100 static void __init cps_prepare_cpus(unsigned int max_cpus)
101 {
102         unsigned ncores, core_vpes, c, cca;
103         bool cca_unsuitable;
104         u32 *entry_code;
105
106         mips_mt_set_cpuoptions();
107
108         /* Detect whether the CCA is unsuited to multi-core SMP */
109         cca = read_c0_config() & CONF_CM_CMASK;
110         switch (cca) {
111         case 0x4: /* CWBE */
112         case 0x5: /* CWB */
113                 /* The CCA is coherent, multi-core is fine */
114                 cca_unsuitable = false;
115                 break;
116
117         default:
118                 /* CCA is not coherent, multi-core is not usable */
119                 cca_unsuitable = true;
120         }
121
122         /* Warn the user if the CCA prevents multi-core */
123         ncores = mips_cm_numcores();
124         if (cca_unsuitable && ncores > 1) {
125                 pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
126                         cca);
127
128                 for_each_present_cpu(c) {
129                         if (cpu_data[c].core)
130                                 set_cpu_present(c, false);
131                 }
132         }
133
134         /*
135          * Patch the start of mips_cps_core_entry to provide:
136          *
137          * s0 = kseg0 CCA
138          */
139         entry_code = (u32 *)&mips_cps_core_entry;
140         uasm_i_addiu(&entry_code, 16, 0, cca);
141         blast_dcache_range((unsigned long)&mips_cps_core_entry,
142                            (unsigned long)entry_code);
143         bc_wback_inv((unsigned long)&mips_cps_core_entry,
144                      (void *)entry_code - (void *)&mips_cps_core_entry);
145         __sync();
146
147         /* Allocate core boot configuration structs */
148         mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
149                                         GFP_KERNEL);
150         if (!mips_cps_core_bootcfg) {
151                 pr_err("Failed to allocate boot config for %u cores\n", ncores);
152                 goto err_out;
153         }
154
155         /* Allocate VPE boot configuration structs */
156         for (c = 0; c < ncores; c++) {
157                 core_vpes = core_vpe_count(c);
158                 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
159                                 sizeof(*mips_cps_core_bootcfg[c].vpe_config),
160                                 GFP_KERNEL);
161                 if (!mips_cps_core_bootcfg[c].vpe_config) {
162                         pr_err("Failed to allocate %u VPE boot configs\n",
163                                core_vpes);
164                         goto err_out;
165                 }
166         }
167
168         /* Mark this CPU as booted */
169         atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
170                    1 << cpu_vpe_id(&current_cpu_data));
171
172         return;
173 err_out:
174         /* Clean up allocations */
175         if (mips_cps_core_bootcfg) {
176                 for (c = 0; c < ncores; c++)
177                         kfree(mips_cps_core_bootcfg[c].vpe_config);
178                 kfree(mips_cps_core_bootcfg);
179                 mips_cps_core_bootcfg = NULL;
180         }
181
182         /* Effectively disable SMP by declaring CPUs not present */
183         for_each_possible_cpu(c) {
184                 if (c == 0)
185                         continue;
186                 set_cpu_present(c, false);
187         }
188 }
189
190 static void boot_core(unsigned core)
191 {
192         u32 access, stat, seq_state;
193         unsigned timeout;
194
195         /* Select the appropriate core */
196         write_gcr_cl_other(core << CM_GCR_Cx_OTHER_CORENUM_SHF);
197
198         /* Set its reset vector */
199         write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
200
201         /* Ensure its coherency is disabled */
202         write_gcr_co_coherence(0);
203
204         /* Ensure the core can access the GCRs */
205         access = read_gcr_access();
206         access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
207         write_gcr_access(access);
208
209         if (mips_cpc_present()) {
210                 /* Reset the core */
211                 mips_cpc_lock_other(core);
212                 write_cpc_co_cmd(CPC_Cx_CMD_RESET);
213
214                 timeout = 100;
215                 while (true) {
216                         stat = read_cpc_co_stat_conf();
217                         seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK;
218
219                         /* U6 == coherent execution, ie. the core is up */
220                         if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
221                                 break;
222
223                         /* Delay a little while before we start warning */
224                         if (timeout) {
225                                 timeout--;
226                                 mdelay(10);
227                                 continue;
228                         }
229
230                         pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
231                                 core, stat);
232                         mdelay(1000);
233                 }
234
235                 mips_cpc_unlock_other();
236         } else {
237                 /* Take the core out of reset */
238                 write_gcr_co_reset_release(0);
239         }
240
241         /* The core is now powered up */
242         bitmap_set(core_power, core, 1);
243 }
244
245 static void remote_vpe_boot(void *dummy)
246 {
247         mips_cps_boot_vpes();
248 }
249
250 static void cps_boot_secondary(int cpu, struct task_struct *idle)
251 {
252         unsigned core = cpu_data[cpu].core;
253         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
254         struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
255         struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
256         unsigned int remote;
257         int err;
258
259         vpe_cfg->pc = (unsigned long)&smp_bootstrap;
260         vpe_cfg->sp = __KSTK_TOS(idle);
261         vpe_cfg->gp = (unsigned long)task_thread_info(idle);
262
263         atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
264
265         preempt_disable();
266
267         if (!test_bit(core, core_power)) {
268                 /* Boot a VPE on a powered down core */
269                 boot_core(core);
270                 goto out;
271         }
272
273         if (core != current_cpu_data.core) {
274                 /* Boot a VPE on another powered up core */
275                 for (remote = 0; remote < NR_CPUS; remote++) {
276                         if (cpu_data[remote].core != core)
277                                 continue;
278                         if (cpu_online(remote))
279                                 break;
280                 }
281                 BUG_ON(remote >= NR_CPUS);
282
283                 err = smp_call_function_single(remote, remote_vpe_boot,
284                                                NULL, 1);
285                 if (err)
286                         panic("Failed to call remote CPU\n");
287                 goto out;
288         }
289
290         BUG_ON(!cpu_has_mipsmt);
291
292         /* Boot a VPE on this core */
293         mips_cps_boot_vpes();
294 out:
295         preempt_enable();
296 }
297
298 static void cps_init_secondary(void)
299 {
300         /* Disable MT - we only want to run 1 TC per VPE */
301         if (cpu_has_mipsmt)
302                 dmt();
303
304         change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | STATUSF_IP4 |
305                                  STATUSF_IP5 | STATUSF_IP6 | STATUSF_IP7);
306 }
307
308 static void cps_smp_finish(void)
309 {
310         write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
311
312 #ifdef CONFIG_MIPS_MT_FPAFF
313         /* If we have an FPU, enroll ourselves in the FPU-full mask */
314         if (cpu_has_fpu)
315                 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
316 #endif /* CONFIG_MIPS_MT_FPAFF */
317
318         local_irq_enable();
319 }
320
321 #ifdef CONFIG_HOTPLUG_CPU
322
323 static int cps_cpu_disable(void)
324 {
325         unsigned cpu = smp_processor_id();
326         struct core_boot_config *core_cfg;
327
328         if (!cpu)
329                 return -EBUSY;
330
331         if (!cps_pm_support_state(CPS_PM_POWER_GATED))
332                 return -EINVAL;
333
334         core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
335         atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
336         smp_mb__after_atomic();
337         set_cpu_online(cpu, false);
338         cpumask_clear_cpu(cpu, &cpu_callin_map);
339
340         return 0;
341 }
342
343 static DECLARE_COMPLETION(cpu_death_chosen);
344 static unsigned cpu_death_sibling;
345 static enum {
346         CPU_DEATH_HALT,
347         CPU_DEATH_POWER,
348 } cpu_death;
349
350 void play_dead(void)
351 {
352         unsigned cpu, core;
353
354         local_irq_disable();
355         idle_task_exit();
356         cpu = smp_processor_id();
357         cpu_death = CPU_DEATH_POWER;
358
359         if (cpu_has_mipsmt) {
360                 core = cpu_data[cpu].core;
361
362                 /* Look for another online VPE within the core */
363                 for_each_online_cpu(cpu_death_sibling) {
364                         if (cpu_data[cpu_death_sibling].core != core)
365                                 continue;
366
367                         /*
368                          * There is an online VPE within the core. Just halt
369                          * this TC and leave the core alone.
370                          */
371                         cpu_death = CPU_DEATH_HALT;
372                         break;
373                 }
374         }
375
376         /* This CPU has chosen its way out */
377         complete(&cpu_death_chosen);
378
379         if (cpu_death == CPU_DEATH_HALT) {
380                 /* Halt this TC */
381                 write_c0_tchalt(TCHALT_H);
382                 instruction_hazard();
383         } else {
384                 /* Power down the core */
385                 cps_pm_enter_state(CPS_PM_POWER_GATED);
386         }
387
388         /* This should never be reached */
389         panic("Failed to offline CPU %u", cpu);
390 }
391
392 static void wait_for_sibling_halt(void *ptr_cpu)
393 {
394         unsigned cpu = (unsigned long)ptr_cpu;
395         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
396         unsigned halted;
397         unsigned long flags;
398
399         do {
400                 local_irq_save(flags);
401                 settc(vpe_id);
402                 halted = read_tc_c0_tchalt();
403                 local_irq_restore(flags);
404         } while (!(halted & TCHALT_H));
405 }
406
407 static void cps_cpu_die(unsigned int cpu)
408 {
409         unsigned core = cpu_data[cpu].core;
410         unsigned stat;
411         int err;
412
413         /* Wait for the cpu to choose its way out */
414         if (!wait_for_completion_timeout(&cpu_death_chosen,
415                                          msecs_to_jiffies(5000))) {
416                 pr_err("CPU%u: didn't offline\n", cpu);
417                 return;
418         }
419
420         /*
421          * Now wait for the CPU to actually offline. Without doing this that
422          * offlining may race with one or more of:
423          *
424          *   - Onlining the CPU again.
425          *   - Powering down the core if another VPE within it is offlined.
426          *   - A sibling VPE entering a non-coherent state.
427          *
428          * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
429          * with which we could race, so do nothing.
430          */
431         if (cpu_death == CPU_DEATH_POWER) {
432                 /*
433                  * Wait for the core to enter a powered down or clock gated
434                  * state, the latter happening when a JTAG probe is connected
435                  * in which case the CPC will refuse to power down the core.
436                  */
437                 do {
438                         mips_cpc_lock_other(core);
439                         stat = read_cpc_co_stat_conf();
440                         stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
441                         mips_cpc_unlock_other();
442                 } while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
443                          stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
444                          stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
445
446                 /* Indicate the core is powered off */
447                 bitmap_clear(core_power, core, 1);
448         } else if (cpu_has_mipsmt) {
449                 /*
450                  * Have a CPU with access to the offlined CPUs registers wait
451                  * for its TC to halt.
452                  */
453                 err = smp_call_function_single(cpu_death_sibling,
454                                                wait_for_sibling_halt,
455                                                (void *)(unsigned long)cpu, 1);
456                 if (err)
457                         panic("Failed to call remote sibling CPU\n");
458         }
459 }
460
461 #endif /* CONFIG_HOTPLUG_CPU */
462
463 static struct plat_smp_ops cps_smp_ops = {
464         .smp_setup              = cps_smp_setup,
465         .prepare_cpus           = cps_prepare_cpus,
466         .boot_secondary         = cps_boot_secondary,
467         .init_secondary         = cps_init_secondary,
468         .smp_finish             = cps_smp_finish,
469         .send_ipi_single        = gic_send_ipi_single,
470         .send_ipi_mask          = gic_send_ipi_mask,
471 #ifdef CONFIG_HOTPLUG_CPU
472         .cpu_disable            = cps_cpu_disable,
473         .cpu_die                = cps_cpu_die,
474 #endif
475 };
476
477 bool mips_cps_smp_in_use(void)
478 {
479         extern struct plat_smp_ops *mp_ops;
480         return mp_ops == &cps_smp_ops;
481 }
482
483 int register_cps_smp_ops(void)
484 {
485         if (!mips_cm_present()) {
486                 pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
487                 return -ENODEV;
488         }
489
490         /* check we have a GIC - we need one for IPIs */
491         if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
492                 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
493                 return -ENODEV;
494         }
495
496         register_smp_ops(&cps_smp_ops);
497         return 0;
498 }