KVM: MIPS: Drop other CPU ASIDs on guest MMU changes
[firefly-linux-kernel-4.4.55.git] / arch / mips / kvm / emulate.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <linux/random.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
26 #include <asm/inst.h>
27
28 #undef CONFIG_MIPS_MT
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
31
32 #include "opcode.h"
33 #include "interrupt.h"
34 #include "commpage.h"
35
36 #include "trace.h"
37
38 /*
39  * Compute the return address and do emulate branch simulation, if required.
40  * This function should be called only in branch delay slot active.
41  */
42 unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43         unsigned long instpc)
44 {
45         unsigned int dspcontrol;
46         union mips_instruction insn;
47         struct kvm_vcpu_arch *arch = &vcpu->arch;
48         long epc = instpc;
49         long nextpc = KVM_INVALID_INST;
50
51         if (epc & 3)
52                 goto unaligned;
53
54         /* Read the instruction */
55         insn.word = kvm_get_inst((uint32_t *) epc, vcpu);
56
57         if (insn.word == KVM_INVALID_INST)
58                 return KVM_INVALID_INST;
59
60         switch (insn.i_format.opcode) {
61                 /* jr and jalr are in r_format format. */
62         case spec_op:
63                 switch (insn.r_format.func) {
64                 case jalr_op:
65                         arch->gprs[insn.r_format.rd] = epc + 8;
66                         /* Fall through */
67                 case jr_op:
68                         nextpc = arch->gprs[insn.r_format.rs];
69                         break;
70                 }
71                 break;
72
73                 /*
74                  * This group contains:
75                  * bltz_op, bgez_op, bltzl_op, bgezl_op,
76                  * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77                  */
78         case bcond_op:
79                 switch (insn.i_format.rt) {
80                 case bltz_op:
81                 case bltzl_op:
82                         if ((long)arch->gprs[insn.i_format.rs] < 0)
83                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
84                         else
85                                 epc += 8;
86                         nextpc = epc;
87                         break;
88
89                 case bgez_op:
90                 case bgezl_op:
91                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
92                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
93                         else
94                                 epc += 8;
95                         nextpc = epc;
96                         break;
97
98                 case bltzal_op:
99                 case bltzall_op:
100                         arch->gprs[31] = epc + 8;
101                         if ((long)arch->gprs[insn.i_format.rs] < 0)
102                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
103                         else
104                                 epc += 8;
105                         nextpc = epc;
106                         break;
107
108                 case bgezal_op:
109                 case bgezall_op:
110                         arch->gprs[31] = epc + 8;
111                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
112                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
113                         else
114                                 epc += 8;
115                         nextpc = epc;
116                         break;
117                 case bposge32_op:
118                         if (!cpu_has_dsp)
119                                 goto sigill;
120
121                         dspcontrol = rddsp(0x01);
122
123                         if (dspcontrol >= 32)
124                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
125                         else
126                                 epc += 8;
127                         nextpc = epc;
128                         break;
129                 }
130                 break;
131
132                 /* These are unconditional and in j_format. */
133         case jal_op:
134                 arch->gprs[31] = instpc + 8;
135         case j_op:
136                 epc += 4;
137                 epc >>= 28;
138                 epc <<= 28;
139                 epc |= (insn.j_format.target << 2);
140                 nextpc = epc;
141                 break;
142
143                 /* These are conditional and in i_format. */
144         case beq_op:
145         case beql_op:
146                 if (arch->gprs[insn.i_format.rs] ==
147                     arch->gprs[insn.i_format.rt])
148                         epc = epc + 4 + (insn.i_format.simmediate << 2);
149                 else
150                         epc += 8;
151                 nextpc = epc;
152                 break;
153
154         case bne_op:
155         case bnel_op:
156                 if (arch->gprs[insn.i_format.rs] !=
157                     arch->gprs[insn.i_format.rt])
158                         epc = epc + 4 + (insn.i_format.simmediate << 2);
159                 else
160                         epc += 8;
161                 nextpc = epc;
162                 break;
163
164         case blez_op:           /* not really i_format */
165         case blezl_op:
166                 /* rt field assumed to be zero */
167                 if ((long)arch->gprs[insn.i_format.rs] <= 0)
168                         epc = epc + 4 + (insn.i_format.simmediate << 2);
169                 else
170                         epc += 8;
171                 nextpc = epc;
172                 break;
173
174         case bgtz_op:
175         case bgtzl_op:
176                 /* rt field assumed to be zero */
177                 if ((long)arch->gprs[insn.i_format.rs] > 0)
178                         epc = epc + 4 + (insn.i_format.simmediate << 2);
179                 else
180                         epc += 8;
181                 nextpc = epc;
182                 break;
183
184                 /* And now the FPA/cp1 branch instructions. */
185         case cop1_op:
186                 kvm_err("%s: unsupported cop1_op\n", __func__);
187                 break;
188         }
189
190         return nextpc;
191
192 unaligned:
193         kvm_err("%s: unaligned epc\n", __func__);
194         return nextpc;
195
196 sigill:
197         kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
198         return nextpc;
199 }
200
201 enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause)
202 {
203         unsigned long branch_pc;
204         enum emulation_result er = EMULATE_DONE;
205
206         if (cause & CAUSEF_BD) {
207                 branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
208                 if (branch_pc == KVM_INVALID_INST) {
209                         er = EMULATE_FAIL;
210                 } else {
211                         vcpu->arch.pc = branch_pc;
212                         kvm_debug("BD update_pc(): New PC: %#lx\n",
213                                   vcpu->arch.pc);
214                 }
215         } else
216                 vcpu->arch.pc += 4;
217
218         kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
219
220         return er;
221 }
222
223 /**
224  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
225  * @vcpu:       Virtual CPU.
226  *
227  * Returns:     1 if the CP0_Count timer is disabled by either the guest
228  *              CP0_Cause.DC bit or the count_ctl.DC bit.
229  *              0 otherwise (in which case CP0_Count timer is running).
230  */
231 static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
232 {
233         struct mips_coproc *cop0 = vcpu->arch.cop0;
234
235         return  (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
236                 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
237 }
238
239 /**
240  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
241  *
242  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
243  *
244  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
245  */
246 static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
247 {
248         s64 now_ns, periods;
249         u64 delta;
250
251         now_ns = ktime_to_ns(now);
252         delta = now_ns + vcpu->arch.count_dyn_bias;
253
254         if (delta >= vcpu->arch.count_period) {
255                 /* If delta is out of safe range the bias needs adjusting */
256                 periods = div64_s64(now_ns, vcpu->arch.count_period);
257                 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
258                 /* Recalculate delta with new bias */
259                 delta = now_ns + vcpu->arch.count_dyn_bias;
260         }
261
262         /*
263          * We've ensured that:
264          *   delta < count_period
265          *
266          * Therefore the intermediate delta*count_hz will never overflow since
267          * at the boundary condition:
268          *   delta = count_period
269          *   delta = NSEC_PER_SEC * 2^32 / count_hz
270          *   delta * count_hz = NSEC_PER_SEC * 2^32
271          */
272         return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
273 }
274
275 /**
276  * kvm_mips_count_time() - Get effective current time.
277  * @vcpu:       Virtual CPU.
278  *
279  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
280  * except when the master disable bit is set in count_ctl, in which case it is
281  * count_resume, i.e. the time that the count was disabled.
282  *
283  * Returns:     Effective monotonic ktime for CP0_Count.
284  */
285 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
286 {
287         if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
288                 return vcpu->arch.count_resume;
289
290         return ktime_get();
291 }
292
293 /**
294  * kvm_mips_read_count_running() - Read the current count value as if running.
295  * @vcpu:       Virtual CPU.
296  * @now:        Kernel time to read CP0_Count at.
297  *
298  * Returns the current guest CP0_Count register at time @now and handles if the
299  * timer interrupt is pending and hasn't been handled yet.
300  *
301  * Returns:     The current value of the guest CP0_Count register.
302  */
303 static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
304 {
305         struct mips_coproc *cop0 = vcpu->arch.cop0;
306         ktime_t expires, threshold;
307         uint32_t count, compare;
308         int running;
309
310         /* Calculate the biased and scaled guest CP0_Count */
311         count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
312         compare = kvm_read_c0_guest_compare(cop0);
313
314         /*
315          * Find whether CP0_Count has reached the closest timer interrupt. If
316          * not, we shouldn't inject it.
317          */
318         if ((int32_t)(count - compare) < 0)
319                 return count;
320
321         /*
322          * The CP0_Count we're going to return has already reached the closest
323          * timer interrupt. Quickly check if it really is a new interrupt by
324          * looking at whether the interval until the hrtimer expiry time is
325          * less than 1/4 of the timer period.
326          */
327         expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
328         threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
329         if (ktime_before(expires, threshold)) {
330                 /*
331                  * Cancel it while we handle it so there's no chance of
332                  * interference with the timeout handler.
333                  */
334                 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
335
336                 /* Nothing should be waiting on the timeout */
337                 kvm_mips_callbacks->queue_timer_int(vcpu);
338
339                 /*
340                  * Restart the timer if it was running based on the expiry time
341                  * we read, so that we don't push it back 2 periods.
342                  */
343                 if (running) {
344                         expires = ktime_add_ns(expires,
345                                                vcpu->arch.count_period);
346                         hrtimer_start(&vcpu->arch.comparecount_timer, expires,
347                                       HRTIMER_MODE_ABS);
348                 }
349         }
350
351         return count;
352 }
353
354 /**
355  * kvm_mips_read_count() - Read the current count value.
356  * @vcpu:       Virtual CPU.
357  *
358  * Read the current guest CP0_Count value, taking into account whether the timer
359  * is stopped.
360  *
361  * Returns:     The current guest CP0_Count value.
362  */
363 uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu)
364 {
365         struct mips_coproc *cop0 = vcpu->arch.cop0;
366
367         /* If count disabled just read static copy of count */
368         if (kvm_mips_count_disabled(vcpu))
369                 return kvm_read_c0_guest_count(cop0);
370
371         return kvm_mips_read_count_running(vcpu, ktime_get());
372 }
373
374 /**
375  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
376  * @vcpu:       Virtual CPU.
377  * @count:      Output pointer for CP0_Count value at point of freeze.
378  *
379  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
380  * at the point it was frozen. It is guaranteed that any pending interrupts at
381  * the point it was frozen are handled, and none after that point.
382  *
383  * This is useful where the time/CP0_Count is needed in the calculation of the
384  * new parameters.
385  *
386  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
387  *
388  * Returns:     The ktime at the point of freeze.
389  */
390 static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu,
391                                        uint32_t *count)
392 {
393         ktime_t now;
394
395         /* stop hrtimer before finding time */
396         hrtimer_cancel(&vcpu->arch.comparecount_timer);
397         now = ktime_get();
398
399         /* find count at this point and handle pending hrtimer */
400         *count = kvm_mips_read_count_running(vcpu, now);
401
402         return now;
403 }
404
405 /**
406  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
407  * @vcpu:       Virtual CPU.
408  * @now:        ktime at point of resume.
409  * @count:      CP0_Count at point of resume.
410  *
411  * Resumes the timer and updates the timer expiry based on @now and @count.
412  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
413  * parameters need to be changed.
414  *
415  * It is guaranteed that a timer interrupt immediately after resume will be
416  * handled, but not if CP_Compare is exactly at @count. That case is already
417  * handled by kvm_mips_freeze_timer().
418  *
419  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
420  */
421 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
422                                     ktime_t now, uint32_t count)
423 {
424         struct mips_coproc *cop0 = vcpu->arch.cop0;
425         uint32_t compare;
426         u64 delta;
427         ktime_t expire;
428
429         /* Calculate timeout (wrap 0 to 2^32) */
430         compare = kvm_read_c0_guest_compare(cop0);
431         delta = (u64)(uint32_t)(compare - count - 1) + 1;
432         delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
433         expire = ktime_add_ns(now, delta);
434
435         /* Update hrtimer to use new timeout */
436         hrtimer_cancel(&vcpu->arch.comparecount_timer);
437         hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
438 }
439
440 /**
441  * kvm_mips_write_count() - Modify the count and update timer.
442  * @vcpu:       Virtual CPU.
443  * @count:      Guest CP0_Count value to set.
444  *
445  * Sets the CP0_Count value and updates the timer accordingly.
446  */
447 void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count)
448 {
449         struct mips_coproc *cop0 = vcpu->arch.cop0;
450         ktime_t now;
451
452         /* Calculate bias */
453         now = kvm_mips_count_time(vcpu);
454         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
455
456         if (kvm_mips_count_disabled(vcpu))
457                 /* The timer's disabled, adjust the static count */
458                 kvm_write_c0_guest_count(cop0, count);
459         else
460                 /* Update timeout */
461                 kvm_mips_resume_hrtimer(vcpu, now, count);
462 }
463
464 /**
465  * kvm_mips_init_count() - Initialise timer.
466  * @vcpu:       Virtual CPU.
467  *
468  * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
469  * it going if it's enabled.
470  */
471 void kvm_mips_init_count(struct kvm_vcpu *vcpu)
472 {
473         /* 100 MHz */
474         vcpu->arch.count_hz = 100*1000*1000;
475         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
476                                           vcpu->arch.count_hz);
477         vcpu->arch.count_dyn_bias = 0;
478
479         /* Starting at 0 */
480         kvm_mips_write_count(vcpu, 0);
481 }
482
483 /**
484  * kvm_mips_set_count_hz() - Update the frequency of the timer.
485  * @vcpu:       Virtual CPU.
486  * @count_hz:   Frequency of CP0_Count timer in Hz.
487  *
488  * Change the frequency of the CP0_Count timer. This is done atomically so that
489  * CP0_Count is continuous and no timer interrupt is lost.
490  *
491  * Returns:     -EINVAL if @count_hz is out of range.
492  *              0 on success.
493  */
494 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
495 {
496         struct mips_coproc *cop0 = vcpu->arch.cop0;
497         int dc;
498         ktime_t now;
499         u32 count;
500
501         /* ensure the frequency is in a sensible range... */
502         if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
503                 return -EINVAL;
504         /* ... and has actually changed */
505         if (vcpu->arch.count_hz == count_hz)
506                 return 0;
507
508         /* Safely freeze timer so we can keep it continuous */
509         dc = kvm_mips_count_disabled(vcpu);
510         if (dc) {
511                 now = kvm_mips_count_time(vcpu);
512                 count = kvm_read_c0_guest_count(cop0);
513         } else {
514                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
515         }
516
517         /* Update the frequency */
518         vcpu->arch.count_hz = count_hz;
519         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
520         vcpu->arch.count_dyn_bias = 0;
521
522         /* Calculate adjusted bias so dynamic count is unchanged */
523         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
524
525         /* Update and resume hrtimer */
526         if (!dc)
527                 kvm_mips_resume_hrtimer(vcpu, now, count);
528         return 0;
529 }
530
531 /**
532  * kvm_mips_write_compare() - Modify compare and update timer.
533  * @vcpu:       Virtual CPU.
534  * @compare:    New CP0_Compare value.
535  * @ack:        Whether to acknowledge timer interrupt.
536  *
537  * Update CP0_Compare to a new value and update the timeout.
538  * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
539  * any pending timer interrupt is preserved.
540  */
541 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare, bool ack)
542 {
543         struct mips_coproc *cop0 = vcpu->arch.cop0;
544         int dc;
545         u32 old_compare = kvm_read_c0_guest_compare(cop0);
546         ktime_t now;
547         uint32_t count;
548
549         /* if unchanged, must just be an ack */
550         if (old_compare == compare) {
551                 if (!ack)
552                         return;
553                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
554                 kvm_write_c0_guest_compare(cop0, compare);
555                 return;
556         }
557
558         /* freeze_hrtimer() takes care of timer interrupts <= count */
559         dc = kvm_mips_count_disabled(vcpu);
560         if (!dc)
561                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
562
563         if (ack)
564                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
565
566         kvm_write_c0_guest_compare(cop0, compare);
567
568         /* resume_hrtimer() takes care of timer interrupts > count */
569         if (!dc)
570                 kvm_mips_resume_hrtimer(vcpu, now, count);
571 }
572
573 /**
574  * kvm_mips_count_disable() - Disable count.
575  * @vcpu:       Virtual CPU.
576  *
577  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
578  * time will be handled but not after.
579  *
580  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
581  * count_ctl.DC has been set (count disabled).
582  *
583  * Returns:     The time that the timer was stopped.
584  */
585 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
586 {
587         struct mips_coproc *cop0 = vcpu->arch.cop0;
588         uint32_t count;
589         ktime_t now;
590
591         /* Stop hrtimer */
592         hrtimer_cancel(&vcpu->arch.comparecount_timer);
593
594         /* Set the static count from the dynamic count, handling pending TI */
595         now = ktime_get();
596         count = kvm_mips_read_count_running(vcpu, now);
597         kvm_write_c0_guest_count(cop0, count);
598
599         return now;
600 }
601
602 /**
603  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
604  * @vcpu:       Virtual CPU.
605  *
606  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
607  * before the final stop time will be handled if the timer isn't disabled by
608  * count_ctl.DC, but not after.
609  *
610  * Assumes CP0_Cause.DC is clear (count enabled).
611  */
612 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
613 {
614         struct mips_coproc *cop0 = vcpu->arch.cop0;
615
616         kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
617         if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
618                 kvm_mips_count_disable(vcpu);
619 }
620
621 /**
622  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
623  * @vcpu:       Virtual CPU.
624  *
625  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
626  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
627  * potentially before even returning, so the caller should be careful with
628  * ordering of CP0_Cause modifications so as not to lose it.
629  *
630  * Assumes CP0_Cause.DC is set (count disabled).
631  */
632 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
633 {
634         struct mips_coproc *cop0 = vcpu->arch.cop0;
635         uint32_t count;
636
637         kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
638
639         /*
640          * Set the dynamic count to match the static count.
641          * This starts the hrtimer if count_ctl.DC allows it.
642          * Otherwise it conveniently updates the biases.
643          */
644         count = kvm_read_c0_guest_count(cop0);
645         kvm_mips_write_count(vcpu, count);
646 }
647
648 /**
649  * kvm_mips_set_count_ctl() - Update the count control KVM register.
650  * @vcpu:       Virtual CPU.
651  * @count_ctl:  Count control register new value.
652  *
653  * Set the count control KVM register. The timer is updated accordingly.
654  *
655  * Returns:     -EINVAL if reserved bits are set.
656  *              0 on success.
657  */
658 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
659 {
660         struct mips_coproc *cop0 = vcpu->arch.cop0;
661         s64 changed = count_ctl ^ vcpu->arch.count_ctl;
662         s64 delta;
663         ktime_t expire, now;
664         uint32_t count, compare;
665
666         /* Only allow defined bits to be changed */
667         if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
668                 return -EINVAL;
669
670         /* Apply new value */
671         vcpu->arch.count_ctl = count_ctl;
672
673         /* Master CP0_Count disable */
674         if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
675                 /* Is CP0_Cause.DC already disabling CP0_Count? */
676                 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
677                         if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
678                                 /* Just record the current time */
679                                 vcpu->arch.count_resume = ktime_get();
680                 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
681                         /* disable timer and record current time */
682                         vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
683                 } else {
684                         /*
685                          * Calculate timeout relative to static count at resume
686                          * time (wrap 0 to 2^32).
687                          */
688                         count = kvm_read_c0_guest_count(cop0);
689                         compare = kvm_read_c0_guest_compare(cop0);
690                         delta = (u64)(uint32_t)(compare - count - 1) + 1;
691                         delta = div_u64(delta * NSEC_PER_SEC,
692                                         vcpu->arch.count_hz);
693                         expire = ktime_add_ns(vcpu->arch.count_resume, delta);
694
695                         /* Handle pending interrupt */
696                         now = ktime_get();
697                         if (ktime_compare(now, expire) >= 0)
698                                 /* Nothing should be waiting on the timeout */
699                                 kvm_mips_callbacks->queue_timer_int(vcpu);
700
701                         /* Resume hrtimer without changing bias */
702                         count = kvm_mips_read_count_running(vcpu, now);
703                         kvm_mips_resume_hrtimer(vcpu, now, count);
704                 }
705         }
706
707         return 0;
708 }
709
710 /**
711  * kvm_mips_set_count_resume() - Update the count resume KVM register.
712  * @vcpu:               Virtual CPU.
713  * @count_resume:       Count resume register new value.
714  *
715  * Set the count resume KVM register.
716  *
717  * Returns:     -EINVAL if out of valid range (0..now).
718  *              0 on success.
719  */
720 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
721 {
722         /*
723          * It doesn't make sense for the resume time to be in the future, as it
724          * would be possible for the next interrupt to be more than a full
725          * period in the future.
726          */
727         if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
728                 return -EINVAL;
729
730         vcpu->arch.count_resume = ns_to_ktime(count_resume);
731         return 0;
732 }
733
734 /**
735  * kvm_mips_count_timeout() - Push timer forward on timeout.
736  * @vcpu:       Virtual CPU.
737  *
738  * Handle an hrtimer event by push the hrtimer forward a period.
739  *
740  * Returns:     The hrtimer_restart value to return to the hrtimer subsystem.
741  */
742 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
743 {
744         /* Add the Count period to the current expiry time */
745         hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
746                                vcpu->arch.count_period);
747         return HRTIMER_RESTART;
748 }
749
750 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
751 {
752         struct mips_coproc *cop0 = vcpu->arch.cop0;
753         enum emulation_result er = EMULATE_DONE;
754
755         if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
756                 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
757                           kvm_read_c0_guest_epc(cop0));
758                 kvm_clear_c0_guest_status(cop0, ST0_EXL);
759                 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
760
761         } else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
762                 kvm_clear_c0_guest_status(cop0, ST0_ERL);
763                 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
764         } else {
765                 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
766                         vcpu->arch.pc);
767                 er = EMULATE_FAIL;
768         }
769
770         return er;
771 }
772
773 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
774 {
775         kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
776                   vcpu->arch.pending_exceptions);
777
778         ++vcpu->stat.wait_exits;
779         trace_kvm_exit(vcpu, WAIT_EXITS);
780         if (!vcpu->arch.pending_exceptions) {
781                 vcpu->arch.wait = 1;
782                 kvm_vcpu_block(vcpu);
783
784                 /*
785                  * We we are runnable, then definitely go off to user space to
786                  * check if any I/O interrupts are pending.
787                  */
788                 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
789                         clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
790                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
791                 }
792         }
793
794         return EMULATE_DONE;
795 }
796
797 /*
798  * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
799  * we can catch this, if things ever change
800  */
801 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
802 {
803         struct mips_coproc *cop0 = vcpu->arch.cop0;
804         uint32_t pc = vcpu->arch.pc;
805
806         kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
807         return EMULATE_FAIL;
808 }
809
810 /**
811  * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
812  * @vcpu:       VCPU with changed mappings.
813  * @tlb:        TLB entry being removed.
814  *
815  * This is called to indicate a single change in guest MMU mappings, so that we
816  * can arrange TLB flushes on this and other CPUs.
817  */
818 static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu,
819                                           struct kvm_mips_tlb *tlb)
820 {
821         int cpu, i;
822         bool user;
823
824         /* No need to flush for entries which are already invalid */
825         if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V))
826                 return;
827         /* User address space doesn't need flushing for KSeg2/3 changes */
828         user = tlb->tlb_hi < KVM_GUEST_KSEG0;
829
830         preempt_disable();
831
832         /*
833          * Probe the shadow host TLB for the entry being overwritten, if one
834          * matches, invalidate it
835          */
836         kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
837
838         /* Invalidate the whole ASID on other CPUs */
839         cpu = smp_processor_id();
840         for_each_possible_cpu(i) {
841                 if (i == cpu)
842                         continue;
843                 if (user)
844                         vcpu->arch.guest_user_asid[i] = 0;
845                 vcpu->arch.guest_kernel_asid[i] = 0;
846         }
847
848         preempt_enable();
849 }
850
851 /* Write Guest TLB Entry @ Index */
852 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
853 {
854         struct mips_coproc *cop0 = vcpu->arch.cop0;
855         int index = kvm_read_c0_guest_index(cop0);
856         struct kvm_mips_tlb *tlb = NULL;
857         uint32_t pc = vcpu->arch.pc;
858
859         if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
860                 kvm_debug("%s: illegal index: %d\n", __func__, index);
861                 kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
862                           pc, index, kvm_read_c0_guest_entryhi(cop0),
863                           kvm_read_c0_guest_entrylo0(cop0),
864                           kvm_read_c0_guest_entrylo1(cop0),
865                           kvm_read_c0_guest_pagemask(cop0));
866                 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
867         }
868
869         tlb = &vcpu->arch.guest_tlb[index];
870
871         kvm_mips_invalidate_guest_tlb(vcpu, tlb);
872
873         tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
874         tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
875         tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
876         tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
877
878         kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
879                   pc, index, kvm_read_c0_guest_entryhi(cop0),
880                   kvm_read_c0_guest_entrylo0(cop0),
881                   kvm_read_c0_guest_entrylo1(cop0),
882                   kvm_read_c0_guest_pagemask(cop0));
883
884         return EMULATE_DONE;
885 }
886
887 /* Write Guest TLB Entry @ Random Index */
888 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
889 {
890         struct mips_coproc *cop0 = vcpu->arch.cop0;
891         struct kvm_mips_tlb *tlb = NULL;
892         uint32_t pc = vcpu->arch.pc;
893         int index;
894
895         get_random_bytes(&index, sizeof(index));
896         index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
897
898         tlb = &vcpu->arch.guest_tlb[index];
899
900         kvm_mips_invalidate_guest_tlb(vcpu, tlb);
901
902         tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
903         tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
904         tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
905         tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
906
907         kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
908                   pc, index, kvm_read_c0_guest_entryhi(cop0),
909                   kvm_read_c0_guest_entrylo0(cop0),
910                   kvm_read_c0_guest_entrylo1(cop0));
911
912         return EMULATE_DONE;
913 }
914
915 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
916 {
917         struct mips_coproc *cop0 = vcpu->arch.cop0;
918         long entryhi = kvm_read_c0_guest_entryhi(cop0);
919         uint32_t pc = vcpu->arch.pc;
920         int index = -1;
921
922         index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
923
924         kvm_write_c0_guest_index(cop0, index);
925
926         kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
927                   index);
928
929         return EMULATE_DONE;
930 }
931
932 /**
933  * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
934  * @vcpu:       Virtual CPU.
935  *
936  * Finds the mask of bits which are writable in the guest's Config1 CP0
937  * register, by userland (currently read-only to the guest).
938  */
939 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
940 {
941         unsigned int mask = 0;
942
943         /* Permit FPU to be present if FPU is supported */
944         if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
945                 mask |= MIPS_CONF1_FP;
946
947         return mask;
948 }
949
950 /**
951  * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
952  * @vcpu:       Virtual CPU.
953  *
954  * Finds the mask of bits which are writable in the guest's Config3 CP0
955  * register, by userland (currently read-only to the guest).
956  */
957 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
958 {
959         /* Config4 is optional */
960         unsigned int mask = MIPS_CONF_M;
961
962         /* Permit MSA to be present if MSA is supported */
963         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
964                 mask |= MIPS_CONF3_MSA;
965
966         return mask;
967 }
968
969 /**
970  * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
971  * @vcpu:       Virtual CPU.
972  *
973  * Finds the mask of bits which are writable in the guest's Config4 CP0
974  * register, by userland (currently read-only to the guest).
975  */
976 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
977 {
978         /* Config5 is optional */
979         return MIPS_CONF_M;
980 }
981
982 /**
983  * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
984  * @vcpu:       Virtual CPU.
985  *
986  * Finds the mask of bits which are writable in the guest's Config5 CP0
987  * register, by the guest itself.
988  */
989 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
990 {
991         unsigned int mask = 0;
992
993         /* Permit MSAEn changes if MSA supported and enabled */
994         if (kvm_mips_guest_has_msa(&vcpu->arch))
995                 mask |= MIPS_CONF5_MSAEN;
996
997         /*
998          * Permit guest FPU mode changes if FPU is enabled and the relevant
999          * feature exists according to FIR register.
1000          */
1001         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1002                 if (cpu_has_fre)
1003                         mask |= MIPS_CONF5_FRE;
1004                 /* We don't support UFR or UFE */
1005         }
1006
1007         return mask;
1008 }
1009
1010 enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc,
1011                                            uint32_t cause, struct kvm_run *run,
1012                                            struct kvm_vcpu *vcpu)
1013 {
1014         struct mips_coproc *cop0 = vcpu->arch.cop0;
1015         enum emulation_result er = EMULATE_DONE;
1016         int32_t rt, rd, copz, sel, co_bit, op;
1017         uint32_t pc = vcpu->arch.pc;
1018         unsigned long curr_pc;
1019         int cpu, i;
1020
1021         /*
1022          * Update PC and hold onto current PC in case there is
1023          * an error and we want to rollback the PC
1024          */
1025         curr_pc = vcpu->arch.pc;
1026         er = update_pc(vcpu, cause);
1027         if (er == EMULATE_FAIL)
1028                 return er;
1029
1030         copz = (inst >> 21) & 0x1f;
1031         rt = (inst >> 16) & 0x1f;
1032         rd = (inst >> 11) & 0x1f;
1033         sel = inst & 0x7;
1034         co_bit = (inst >> 25) & 1;
1035
1036         if (co_bit) {
1037                 op = (inst) & 0xff;
1038
1039                 switch (op) {
1040                 case tlbr_op:   /*  Read indexed TLB entry  */
1041                         er = kvm_mips_emul_tlbr(vcpu);
1042                         break;
1043                 case tlbwi_op:  /*  Write indexed  */
1044                         er = kvm_mips_emul_tlbwi(vcpu);
1045                         break;
1046                 case tlbwr_op:  /*  Write random  */
1047                         er = kvm_mips_emul_tlbwr(vcpu);
1048                         break;
1049                 case tlbp_op:   /* TLB Probe */
1050                         er = kvm_mips_emul_tlbp(vcpu);
1051                         break;
1052                 case rfe_op:
1053                         kvm_err("!!!COP0_RFE!!!\n");
1054                         break;
1055                 case eret_op:
1056                         er = kvm_mips_emul_eret(vcpu);
1057                         goto dont_update_pc;
1058                         break;
1059                 case wait_op:
1060                         er = kvm_mips_emul_wait(vcpu);
1061                         break;
1062                 }
1063         } else {
1064                 switch (copz) {
1065                 case mfc_op:
1066 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1067                         cop0->stat[rd][sel]++;
1068 #endif
1069                         /* Get reg */
1070                         if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1071                                 vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
1072                         } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1073                                 vcpu->arch.gprs[rt] = 0x0;
1074 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1075                                 kvm_mips_trans_mfc0(inst, opc, vcpu);
1076 #endif
1077                         } else {
1078                                 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1079
1080 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1081                                 kvm_mips_trans_mfc0(inst, opc, vcpu);
1082 #endif
1083                         }
1084
1085                         kvm_debug
1086                             ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
1087                              pc, rd, sel, rt, vcpu->arch.gprs[rt]);
1088
1089                         break;
1090
1091                 case dmfc_op:
1092                         vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1093                         break;
1094
1095                 case mtc_op:
1096 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1097                         cop0->stat[rd][sel]++;
1098 #endif
1099                         if ((rd == MIPS_CP0_TLB_INDEX)
1100                             && (vcpu->arch.gprs[rt] >=
1101                                 KVM_MIPS_GUEST_TLB_SIZE)) {
1102                                 kvm_err("Invalid TLB Index: %ld",
1103                                         vcpu->arch.gprs[rt]);
1104                                 er = EMULATE_FAIL;
1105                                 break;
1106                         }
1107 #define C0_EBASE_CORE_MASK 0xff
1108                         if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1109                                 /* Preserve CORE number */
1110                                 kvm_change_c0_guest_ebase(cop0,
1111                                                           ~(C0_EBASE_CORE_MASK),
1112                                                           vcpu->arch.gprs[rt]);
1113                                 kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1114                                         kvm_read_c0_guest_ebase(cop0));
1115                         } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1116                                 uint32_t nasid =
1117                                         vcpu->arch.gprs[rt] & ASID_MASK;
1118                                 if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
1119                                     ((kvm_read_c0_guest_entryhi(cop0) &
1120                                       ASID_MASK) != nasid)) {
1121                                         kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
1122                                                 kvm_read_c0_guest_entryhi(cop0)
1123                                                 & ASID_MASK,
1124                                                 vcpu->arch.gprs[rt]
1125                                                 & ASID_MASK);
1126
1127                                         preempt_disable();
1128                                         /* Blow away the shadow host TLBs */
1129                                         kvm_mips_flush_host_tlb(1);
1130                                         cpu = smp_processor_id();
1131                                         for_each_possible_cpu(i)
1132                                                 if (i != cpu) {
1133                                                         vcpu->arch.guest_user_asid[i] = 0;
1134                                                         vcpu->arch.guest_kernel_asid[i] = 0;
1135                                                 }
1136                                         preempt_enable();
1137                                 }
1138                                 kvm_write_c0_guest_entryhi(cop0,
1139                                                            vcpu->arch.gprs[rt]);
1140                         }
1141                         /* Are we writing to COUNT */
1142                         else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1143                                 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1144                                 goto done;
1145                         } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1146                                 kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
1147                                           pc, kvm_read_c0_guest_compare(cop0),
1148                                           vcpu->arch.gprs[rt]);
1149
1150                                 /* If we are writing to COMPARE */
1151                                 /* Clear pending timer interrupt, if any */
1152                                 kvm_mips_write_compare(vcpu,
1153                                                        vcpu->arch.gprs[rt],
1154                                                        true);
1155                         } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1156                                 unsigned int old_val, val, change;
1157
1158                                 old_val = kvm_read_c0_guest_status(cop0);
1159                                 val = vcpu->arch.gprs[rt];
1160                                 change = val ^ old_val;
1161
1162                                 /* Make sure that the NMI bit is never set */
1163                                 val &= ~ST0_NMI;
1164
1165                                 /*
1166                                  * Don't allow CU1 or FR to be set unless FPU
1167                                  * capability enabled and exists in guest
1168                                  * configuration.
1169                                  */
1170                                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1171                                         val &= ~(ST0_CU1 | ST0_FR);
1172
1173                                 /*
1174                                  * Also don't allow FR to be set if host doesn't
1175                                  * support it.
1176                                  */
1177                                 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1178                                         val &= ~ST0_FR;
1179
1180
1181                                 /* Handle changes in FPU mode */
1182                                 preempt_disable();
1183
1184                                 /*
1185                                  * FPU and Vector register state is made
1186                                  * UNPREDICTABLE by a change of FR, so don't
1187                                  * even bother saving it.
1188                                  */
1189                                 if (change & ST0_FR)
1190                                         kvm_drop_fpu(vcpu);
1191
1192                                 /*
1193                                  * If MSA state is already live, it is undefined
1194                                  * how it interacts with FR=0 FPU state, and we
1195                                  * don't want to hit reserved instruction
1196                                  * exceptions trying to save the MSA state later
1197                                  * when CU=1 && FR=1, so play it safe and save
1198                                  * it first.
1199                                  */
1200                                 if (change & ST0_CU1 && !(val & ST0_FR) &&
1201                                     vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1202                                         kvm_lose_fpu(vcpu);
1203
1204                                 /*
1205                                  * Propagate CU1 (FPU enable) changes
1206                                  * immediately if the FPU context is already
1207                                  * loaded. When disabling we leave the context
1208                                  * loaded so it can be quickly enabled again in
1209                                  * the near future.
1210                                  */
1211                                 if (change & ST0_CU1 &&
1212                                     vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1213                                         change_c0_status(ST0_CU1, val);
1214
1215                                 preempt_enable();
1216
1217                                 kvm_write_c0_guest_status(cop0, val);
1218
1219 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1220                                 /*
1221                                  * If FPU present, we need CU1/FR bits to take
1222                                  * effect fairly soon.
1223                                  */
1224                                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1225                                         kvm_mips_trans_mtc0(inst, opc, vcpu);
1226 #endif
1227                         } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1228                                 unsigned int old_val, val, change, wrmask;
1229
1230                                 old_val = kvm_read_c0_guest_config5(cop0);
1231                                 val = vcpu->arch.gprs[rt];
1232
1233                                 /* Only a few bits are writable in Config5 */
1234                                 wrmask = kvm_mips_config5_wrmask(vcpu);
1235                                 change = (val ^ old_val) & wrmask;
1236                                 val = old_val ^ change;
1237
1238
1239                                 /* Handle changes in FPU/MSA modes */
1240                                 preempt_disable();
1241
1242                                 /*
1243                                  * Propagate FRE changes immediately if the FPU
1244                                  * context is already loaded.
1245                                  */
1246                                 if (change & MIPS_CONF5_FRE &&
1247                                     vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1248                                         change_c0_config5(MIPS_CONF5_FRE, val);
1249
1250                                 /*
1251                                  * Propagate MSAEn changes immediately if the
1252                                  * MSA context is already loaded. When disabling
1253                                  * we leave the context loaded so it can be
1254                                  * quickly enabled again in the near future.
1255                                  */
1256                                 if (change & MIPS_CONF5_MSAEN &&
1257                                     vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1258                                         change_c0_config5(MIPS_CONF5_MSAEN,
1259                                                           val);
1260
1261                                 preempt_enable();
1262
1263                                 kvm_write_c0_guest_config5(cop0, val);
1264                         } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1265                                 uint32_t old_cause, new_cause;
1266
1267                                 old_cause = kvm_read_c0_guest_cause(cop0);
1268                                 new_cause = vcpu->arch.gprs[rt];
1269                                 /* Update R/W bits */
1270                                 kvm_change_c0_guest_cause(cop0, 0x08800300,
1271                                                           new_cause);
1272                                 /* DC bit enabling/disabling timer? */
1273                                 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1274                                         if (new_cause & CAUSEF_DC)
1275                                                 kvm_mips_count_disable_cause(vcpu);
1276                                         else
1277                                                 kvm_mips_count_enable_cause(vcpu);
1278                                 }
1279                         } else {
1280                                 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1281 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1282                                 kvm_mips_trans_mtc0(inst, opc, vcpu);
1283 #endif
1284                         }
1285
1286                         kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
1287                                   rd, sel, cop0->reg[rd][sel]);
1288                         break;
1289
1290                 case dmtc_op:
1291                         kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1292                                 vcpu->arch.pc, rt, rd, sel);
1293                         er = EMULATE_FAIL;
1294                         break;
1295
1296                 case mfmcz_op:
1297 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1298                         cop0->stat[MIPS_CP0_STATUS][0]++;
1299 #endif
1300                         if (rt != 0) {
1301                                 vcpu->arch.gprs[rt] =
1302                                     kvm_read_c0_guest_status(cop0);
1303                         }
1304                         /* EI */
1305                         if (inst & 0x20) {
1306                                 kvm_debug("[%#lx] mfmcz_op: EI\n",
1307                                           vcpu->arch.pc);
1308                                 kvm_set_c0_guest_status(cop0, ST0_IE);
1309                         } else {
1310                                 kvm_debug("[%#lx] mfmcz_op: DI\n",
1311                                           vcpu->arch.pc);
1312                                 kvm_clear_c0_guest_status(cop0, ST0_IE);
1313                         }
1314
1315                         break;
1316
1317                 case wrpgpr_op:
1318                         {
1319                                 uint32_t css =
1320                                     cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1321                                 uint32_t pss =
1322                                     (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1323                                 /*
1324                                  * We don't support any shadow register sets, so
1325                                  * SRSCtl[PSS] == SRSCtl[CSS] = 0
1326                                  */
1327                                 if (css || pss) {
1328                                         er = EMULATE_FAIL;
1329                                         break;
1330                                 }
1331                                 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1332                                           vcpu->arch.gprs[rt]);
1333                                 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1334                         }
1335                         break;
1336                 default:
1337                         kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1338                                 vcpu->arch.pc, copz);
1339                         er = EMULATE_FAIL;
1340                         break;
1341                 }
1342         }
1343
1344 done:
1345         /* Rollback PC only if emulation was unsuccessful */
1346         if (er == EMULATE_FAIL)
1347                 vcpu->arch.pc = curr_pc;
1348
1349 dont_update_pc:
1350         /*
1351          * This is for special instructions whose emulation
1352          * updates the PC, so do not overwrite the PC under
1353          * any circumstances
1354          */
1355
1356         return er;
1357 }
1358
1359 enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause,
1360                                              struct kvm_run *run,
1361                                              struct kvm_vcpu *vcpu)
1362 {
1363         enum emulation_result er = EMULATE_DO_MMIO;
1364         int32_t op, base, rt, offset;
1365         uint32_t bytes;
1366         void *data = run->mmio.data;
1367         unsigned long curr_pc;
1368
1369         /*
1370          * Update PC and hold onto current PC in case there is
1371          * an error and we want to rollback the PC
1372          */
1373         curr_pc = vcpu->arch.pc;
1374         er = update_pc(vcpu, cause);
1375         if (er == EMULATE_FAIL)
1376                 return er;
1377
1378         rt = (inst >> 16) & 0x1f;
1379         base = (inst >> 21) & 0x1f;
1380         offset = inst & 0xffff;
1381         op = (inst >> 26) & 0x3f;
1382
1383         switch (op) {
1384         case sb_op:
1385                 bytes = 1;
1386                 if (bytes > sizeof(run->mmio.data)) {
1387                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1388                                run->mmio.len);
1389                 }
1390                 run->mmio.phys_addr =
1391                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1392                                                    host_cp0_badvaddr);
1393                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1394                         er = EMULATE_FAIL;
1395                         break;
1396                 }
1397                 run->mmio.len = bytes;
1398                 run->mmio.is_write = 1;
1399                 vcpu->mmio_needed = 1;
1400                 vcpu->mmio_is_write = 1;
1401                 *(u8 *) data = vcpu->arch.gprs[rt];
1402                 kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1403                           vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1404                           *(uint8_t *) data);
1405
1406                 break;
1407
1408         case sw_op:
1409                 bytes = 4;
1410                 if (bytes > sizeof(run->mmio.data)) {
1411                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1412                                run->mmio.len);
1413                 }
1414                 run->mmio.phys_addr =
1415                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1416                                                    host_cp0_badvaddr);
1417                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1418                         er = EMULATE_FAIL;
1419                         break;
1420                 }
1421
1422                 run->mmio.len = bytes;
1423                 run->mmio.is_write = 1;
1424                 vcpu->mmio_needed = 1;
1425                 vcpu->mmio_is_write = 1;
1426                 *(uint32_t *) data = vcpu->arch.gprs[rt];
1427
1428                 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1429                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1430                           vcpu->arch.gprs[rt], *(uint32_t *) data);
1431                 break;
1432
1433         case sh_op:
1434                 bytes = 2;
1435                 if (bytes > sizeof(run->mmio.data)) {
1436                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1437                                run->mmio.len);
1438                 }
1439                 run->mmio.phys_addr =
1440                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1441                                                    host_cp0_badvaddr);
1442                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1443                         er = EMULATE_FAIL;
1444                         break;
1445                 }
1446
1447                 run->mmio.len = bytes;
1448                 run->mmio.is_write = 1;
1449                 vcpu->mmio_needed = 1;
1450                 vcpu->mmio_is_write = 1;
1451                 *(uint16_t *) data = vcpu->arch.gprs[rt];
1452
1453                 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1454                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1455                           vcpu->arch.gprs[rt], *(uint32_t *) data);
1456                 break;
1457
1458         default:
1459                 kvm_err("Store not yet supported");
1460                 er = EMULATE_FAIL;
1461                 break;
1462         }
1463
1464         /* Rollback PC if emulation was unsuccessful */
1465         if (er == EMULATE_FAIL)
1466                 vcpu->arch.pc = curr_pc;
1467
1468         return er;
1469 }
1470
1471 enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause,
1472                                             struct kvm_run *run,
1473                                             struct kvm_vcpu *vcpu)
1474 {
1475         enum emulation_result er = EMULATE_DO_MMIO;
1476         int32_t op, base, rt, offset;
1477         uint32_t bytes;
1478
1479         rt = (inst >> 16) & 0x1f;
1480         base = (inst >> 21) & 0x1f;
1481         offset = inst & 0xffff;
1482         op = (inst >> 26) & 0x3f;
1483
1484         vcpu->arch.pending_load_cause = cause;
1485         vcpu->arch.io_gpr = rt;
1486
1487         switch (op) {
1488         case lw_op:
1489                 bytes = 4;
1490                 if (bytes > sizeof(run->mmio.data)) {
1491                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1492                                run->mmio.len);
1493                         er = EMULATE_FAIL;
1494                         break;
1495                 }
1496                 run->mmio.phys_addr =
1497                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1498                                                    host_cp0_badvaddr);
1499                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1500                         er = EMULATE_FAIL;
1501                         break;
1502                 }
1503
1504                 run->mmio.len = bytes;
1505                 run->mmio.is_write = 0;
1506                 vcpu->mmio_needed = 1;
1507                 vcpu->mmio_is_write = 0;
1508                 break;
1509
1510         case lh_op:
1511         case lhu_op:
1512                 bytes = 2;
1513                 if (bytes > sizeof(run->mmio.data)) {
1514                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1515                                run->mmio.len);
1516                         er = EMULATE_FAIL;
1517                         break;
1518                 }
1519                 run->mmio.phys_addr =
1520                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1521                                                    host_cp0_badvaddr);
1522                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1523                         er = EMULATE_FAIL;
1524                         break;
1525                 }
1526
1527                 run->mmio.len = bytes;
1528                 run->mmio.is_write = 0;
1529                 vcpu->mmio_needed = 1;
1530                 vcpu->mmio_is_write = 0;
1531
1532                 if (op == lh_op)
1533                         vcpu->mmio_needed = 2;
1534                 else
1535                         vcpu->mmio_needed = 1;
1536
1537                 break;
1538
1539         case lbu_op:
1540         case lb_op:
1541                 bytes = 1;
1542                 if (bytes > sizeof(run->mmio.data)) {
1543                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1544                                run->mmio.len);
1545                         er = EMULATE_FAIL;
1546                         break;
1547                 }
1548                 run->mmio.phys_addr =
1549                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1550                                                    host_cp0_badvaddr);
1551                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1552                         er = EMULATE_FAIL;
1553                         break;
1554                 }
1555
1556                 run->mmio.len = bytes;
1557                 run->mmio.is_write = 0;
1558                 vcpu->mmio_is_write = 0;
1559
1560                 if (op == lb_op)
1561                         vcpu->mmio_needed = 2;
1562                 else
1563                         vcpu->mmio_needed = 1;
1564
1565                 break;
1566
1567         default:
1568                 kvm_err("Load not yet supported");
1569                 er = EMULATE_FAIL;
1570                 break;
1571         }
1572
1573         return er;
1574 }
1575
1576 int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu)
1577 {
1578         unsigned long offset = (va & ~PAGE_MASK);
1579         struct kvm *kvm = vcpu->kvm;
1580         unsigned long pa;
1581         gfn_t gfn;
1582         pfn_t pfn;
1583
1584         gfn = va >> PAGE_SHIFT;
1585
1586         if (gfn >= kvm->arch.guest_pmap_npages) {
1587                 kvm_err("%s: Invalid gfn: %#llx\n", __func__, gfn);
1588                 kvm_mips_dump_host_tlbs();
1589                 kvm_arch_vcpu_dump_regs(vcpu);
1590                 return -1;
1591         }
1592         pfn = kvm->arch.guest_pmap[gfn];
1593         pa = (pfn << PAGE_SHIFT) | offset;
1594
1595         kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__, va,
1596                   CKSEG0ADDR(pa));
1597
1598         local_flush_icache_range(CKSEG0ADDR(pa), 32);
1599         return 0;
1600 }
1601
1602 #define MIPS_CACHE_OP_INDEX_INV         0x0
1603 #define MIPS_CACHE_OP_INDEX_LD_TAG      0x1
1604 #define MIPS_CACHE_OP_INDEX_ST_TAG      0x2
1605 #define MIPS_CACHE_OP_IMP               0x3
1606 #define MIPS_CACHE_OP_HIT_INV           0x4
1607 #define MIPS_CACHE_OP_FILL_WB_INV       0x5
1608 #define MIPS_CACHE_OP_HIT_HB            0x6
1609 #define MIPS_CACHE_OP_FETCH_LOCK        0x7
1610
1611 #define MIPS_CACHE_ICACHE               0x0
1612 #define MIPS_CACHE_DCACHE               0x1
1613 #define MIPS_CACHE_SEC                  0x3
1614
1615 enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc,
1616                                              uint32_t cause,
1617                                              struct kvm_run *run,
1618                                              struct kvm_vcpu *vcpu)
1619 {
1620         struct mips_coproc *cop0 = vcpu->arch.cop0;
1621         enum emulation_result er = EMULATE_DONE;
1622         int32_t offset, cache, op_inst, op, base;
1623         struct kvm_vcpu_arch *arch = &vcpu->arch;
1624         unsigned long va;
1625         unsigned long curr_pc;
1626
1627         /*
1628          * Update PC and hold onto current PC in case there is
1629          * an error and we want to rollback the PC
1630          */
1631         curr_pc = vcpu->arch.pc;
1632         er = update_pc(vcpu, cause);
1633         if (er == EMULATE_FAIL)
1634                 return er;
1635
1636         base = (inst >> 21) & 0x1f;
1637         op_inst = (inst >> 16) & 0x1f;
1638         offset = (int16_t)inst;
1639         cache = (inst >> 16) & 0x3;
1640         op = (inst >> 18) & 0x7;
1641
1642         va = arch->gprs[base] + offset;
1643
1644         kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1645                   cache, op, base, arch->gprs[base], offset);
1646
1647         /*
1648          * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1649          * invalidate the caches entirely by stepping through all the
1650          * ways/indexes
1651          */
1652         if (op == MIPS_CACHE_OP_INDEX_INV) {
1653                 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1654                           vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1655                           arch->gprs[base], offset);
1656
1657                 if (cache == MIPS_CACHE_DCACHE)
1658                         r4k_blast_dcache();
1659                 else if (cache == MIPS_CACHE_ICACHE)
1660                         r4k_blast_icache();
1661                 else {
1662                         kvm_err("%s: unsupported CACHE INDEX operation\n",
1663                                 __func__);
1664                         return EMULATE_FAIL;
1665                 }
1666
1667 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1668                 kvm_mips_trans_cache_index(inst, opc, vcpu);
1669 #endif
1670                 goto done;
1671         }
1672
1673         preempt_disable();
1674         if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1675                 if (kvm_mips_host_tlb_lookup(vcpu, va) < 0 &&
1676                     kvm_mips_handle_kseg0_tlb_fault(va, vcpu)) {
1677                         kvm_err("%s: handling mapped kseg0 tlb fault for %lx, vcpu: %p, ASID: %#lx\n",
1678                                 __func__, va, vcpu, read_c0_entryhi());
1679                         er = EMULATE_FAIL;
1680                         preempt_enable();
1681                         goto done;
1682                 }
1683         } else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1684                    KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1685                 int index;
1686
1687                 /* If an entry already exists then skip */
1688                 if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1689                         goto skip_fault;
1690
1691                 /*
1692                  * If address not in the guest TLB, then give the guest a fault,
1693                  * the resulting handler will do the right thing
1694                  */
1695                 index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1696                                                   (kvm_read_c0_guest_entryhi
1697                                                    (cop0) & ASID_MASK));
1698
1699                 if (index < 0) {
1700                         vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK);
1701                         vcpu->arch.host_cp0_badvaddr = va;
1702                         er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1703                                                          vcpu);
1704                         preempt_enable();
1705                         goto dont_update_pc;
1706                 } else {
1707                         struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1708                         /*
1709                          * Check if the entry is valid, if not then setup a TLB
1710                          * invalid exception to the guest
1711                          */
1712                         if (!TLB_IS_VALID(*tlb, va)) {
1713                                 er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1714                                                                 run, vcpu);
1715                                 preempt_enable();
1716                                 goto dont_update_pc;
1717                         }
1718                         /*
1719                          * We fault an entry from the guest tlb to the
1720                          * shadow host TLB
1721                          */
1722                         if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
1723                                                                  NULL, NULL)) {
1724                                 kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
1725                                         __func__, va, index, vcpu,
1726                                         read_c0_entryhi());
1727                                 er = EMULATE_FAIL;
1728                                 preempt_enable();
1729                                 goto done;
1730                         }
1731                 }
1732         } else {
1733                 kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1734                         cache, op, base, arch->gprs[base], offset);
1735                 er = EMULATE_FAIL;
1736                 preempt_enable();
1737                 goto dont_update_pc;
1738
1739         }
1740
1741 skip_fault:
1742         /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1743         if (cache == MIPS_CACHE_DCACHE
1744             && (op == MIPS_CACHE_OP_FILL_WB_INV
1745                 || op == MIPS_CACHE_OP_HIT_INV)) {
1746                 flush_dcache_line(va);
1747
1748 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1749                 /*
1750                  * Replace the CACHE instruction, with a SYNCI, not the same,
1751                  * but avoids a trap
1752                  */
1753                 kvm_mips_trans_cache_va(inst, opc, vcpu);
1754 #endif
1755         } else if (op == MIPS_CACHE_OP_HIT_INV && cache == MIPS_CACHE_ICACHE) {
1756                 flush_dcache_line(va);
1757                 flush_icache_line(va);
1758
1759 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1760                 /* Replace the CACHE instruction, with a SYNCI */
1761                 kvm_mips_trans_cache_va(inst, opc, vcpu);
1762 #endif
1763         } else {
1764                 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1765                         cache, op, base, arch->gprs[base], offset);
1766                 er = EMULATE_FAIL;
1767                 preempt_enable();
1768                 goto dont_update_pc;
1769         }
1770
1771         preempt_enable();
1772
1773 dont_update_pc:
1774         /* Rollback PC */
1775         vcpu->arch.pc = curr_pc;
1776 done:
1777         return er;
1778 }
1779
1780 enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc,
1781                                             struct kvm_run *run,
1782                                             struct kvm_vcpu *vcpu)
1783 {
1784         enum emulation_result er = EMULATE_DONE;
1785         uint32_t inst;
1786
1787         /* Fetch the instruction. */
1788         if (cause & CAUSEF_BD)
1789                 opc += 1;
1790
1791         inst = kvm_get_inst(opc, vcpu);
1792
1793         switch (((union mips_instruction)inst).r_format.opcode) {
1794         case cop0_op:
1795                 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1796                 break;
1797         case sb_op:
1798         case sh_op:
1799         case sw_op:
1800                 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1801                 break;
1802         case lb_op:
1803         case lbu_op:
1804         case lhu_op:
1805         case lh_op:
1806         case lw_op:
1807                 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1808                 break;
1809
1810         case cache_op:
1811                 ++vcpu->stat.cache_exits;
1812                 trace_kvm_exit(vcpu, CACHE_EXITS);
1813                 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1814                 break;
1815
1816         default:
1817                 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1818                         inst);
1819                 kvm_arch_vcpu_dump_regs(vcpu);
1820                 er = EMULATE_FAIL;
1821                 break;
1822         }
1823
1824         return er;
1825 }
1826
1827 enum emulation_result kvm_mips_emulate_syscall(unsigned long cause,
1828                                                uint32_t *opc,
1829                                                struct kvm_run *run,
1830                                                struct kvm_vcpu *vcpu)
1831 {
1832         struct mips_coproc *cop0 = vcpu->arch.cop0;
1833         struct kvm_vcpu_arch *arch = &vcpu->arch;
1834         enum emulation_result er = EMULATE_DONE;
1835
1836         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1837                 /* save old pc */
1838                 kvm_write_c0_guest_epc(cop0, arch->pc);
1839                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1840
1841                 if (cause & CAUSEF_BD)
1842                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1843                 else
1844                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1845
1846                 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1847
1848                 kvm_change_c0_guest_cause(cop0, (0xff),
1849                                           (T_SYSCALL << CAUSEB_EXCCODE));
1850
1851                 /* Set PC to the exception entry point */
1852                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1853
1854         } else {
1855                 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1856                 er = EMULATE_FAIL;
1857         }
1858
1859         return er;
1860 }
1861
1862 enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause,
1863                                                   uint32_t *opc,
1864                                                   struct kvm_run *run,
1865                                                   struct kvm_vcpu *vcpu)
1866 {
1867         struct mips_coproc *cop0 = vcpu->arch.cop0;
1868         struct kvm_vcpu_arch *arch = &vcpu->arch;
1869         unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1870                                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1871
1872         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1873                 /* save old pc */
1874                 kvm_write_c0_guest_epc(cop0, arch->pc);
1875                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1876
1877                 if (cause & CAUSEF_BD)
1878                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1879                 else
1880                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1881
1882                 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1883                           arch->pc);
1884
1885                 /* set pc to the exception entry point */
1886                 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1887
1888         } else {
1889                 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1890                           arch->pc);
1891
1892                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1893         }
1894
1895         kvm_change_c0_guest_cause(cop0, (0xff),
1896                                   (T_TLB_LD_MISS << CAUSEB_EXCCODE));
1897
1898         /* setup badvaddr, context and entryhi registers for the guest */
1899         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1900         /* XXXKYMA: is the context register used by linux??? */
1901         kvm_write_c0_guest_entryhi(cop0, entryhi);
1902         /* Blow away the shadow host TLBs */
1903         kvm_mips_flush_host_tlb(1);
1904
1905         return EMULATE_DONE;
1906 }
1907
1908 enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause,
1909                                                  uint32_t *opc,
1910                                                  struct kvm_run *run,
1911                                                  struct kvm_vcpu *vcpu)
1912 {
1913         struct mips_coproc *cop0 = vcpu->arch.cop0;
1914         struct kvm_vcpu_arch *arch = &vcpu->arch;
1915         unsigned long entryhi =
1916                 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1917                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1918
1919         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1920                 /* save old pc */
1921                 kvm_write_c0_guest_epc(cop0, arch->pc);
1922                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1923
1924                 if (cause & CAUSEF_BD)
1925                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1926                 else
1927                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1928
1929                 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1930                           arch->pc);
1931
1932                 /* set pc to the exception entry point */
1933                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1934
1935         } else {
1936                 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1937                           arch->pc);
1938                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1939         }
1940
1941         kvm_change_c0_guest_cause(cop0, (0xff),
1942                                   (T_TLB_LD_MISS << CAUSEB_EXCCODE));
1943
1944         /* setup badvaddr, context and entryhi registers for the guest */
1945         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1946         /* XXXKYMA: is the context register used by linux??? */
1947         kvm_write_c0_guest_entryhi(cop0, entryhi);
1948         /* Blow away the shadow host TLBs */
1949         kvm_mips_flush_host_tlb(1);
1950
1951         return EMULATE_DONE;
1952 }
1953
1954 enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause,
1955                                                   uint32_t *opc,
1956                                                   struct kvm_run *run,
1957                                                   struct kvm_vcpu *vcpu)
1958 {
1959         struct mips_coproc *cop0 = vcpu->arch.cop0;
1960         struct kvm_vcpu_arch *arch = &vcpu->arch;
1961         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1962                                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1963
1964         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1965                 /* save old pc */
1966                 kvm_write_c0_guest_epc(cop0, arch->pc);
1967                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1968
1969                 if (cause & CAUSEF_BD)
1970                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1971                 else
1972                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1973
1974                 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1975                           arch->pc);
1976
1977                 /* Set PC to the exception entry point */
1978                 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1979         } else {
1980                 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1981                           arch->pc);
1982                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1983         }
1984
1985         kvm_change_c0_guest_cause(cop0, (0xff),
1986                                   (T_TLB_ST_MISS << CAUSEB_EXCCODE));
1987
1988         /* setup badvaddr, context and entryhi registers for the guest */
1989         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1990         /* XXXKYMA: is the context register used by linux??? */
1991         kvm_write_c0_guest_entryhi(cop0, entryhi);
1992         /* Blow away the shadow host TLBs */
1993         kvm_mips_flush_host_tlb(1);
1994
1995         return EMULATE_DONE;
1996 }
1997
1998 enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause,
1999                                                  uint32_t *opc,
2000                                                  struct kvm_run *run,
2001                                                  struct kvm_vcpu *vcpu)
2002 {
2003         struct mips_coproc *cop0 = vcpu->arch.cop0;
2004         struct kvm_vcpu_arch *arch = &vcpu->arch;
2005         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2006                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
2007
2008         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2009                 /* save old pc */
2010                 kvm_write_c0_guest_epc(cop0, arch->pc);
2011                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2012
2013                 if (cause & CAUSEF_BD)
2014                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2015                 else
2016                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2017
2018                 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2019                           arch->pc);
2020
2021                 /* Set PC to the exception entry point */
2022                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2023         } else {
2024                 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2025                           arch->pc);
2026                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2027         }
2028
2029         kvm_change_c0_guest_cause(cop0, (0xff),
2030                                   (T_TLB_ST_MISS << CAUSEB_EXCCODE));
2031
2032         /* setup badvaddr, context and entryhi registers for the guest */
2033         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2034         /* XXXKYMA: is the context register used by linux??? */
2035         kvm_write_c0_guest_entryhi(cop0, entryhi);
2036         /* Blow away the shadow host TLBs */
2037         kvm_mips_flush_host_tlb(1);
2038
2039         return EMULATE_DONE;
2040 }
2041
2042 /* TLBMOD: store into address matching TLB with Dirty bit off */
2043 enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc,
2044                                              struct kvm_run *run,
2045                                              struct kvm_vcpu *vcpu)
2046 {
2047         enum emulation_result er = EMULATE_DONE;
2048 #ifdef DEBUG
2049         struct mips_coproc *cop0 = vcpu->arch.cop0;
2050         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2051                                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
2052         int index;
2053
2054         /* If address not in the guest TLB, then we are in trouble */
2055         index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
2056         if (index < 0) {
2057                 /* XXXKYMA Invalidate and retry */
2058                 kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
2059                 kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
2060                      __func__, entryhi);
2061                 kvm_mips_dump_guest_tlbs(vcpu);
2062                 kvm_mips_dump_host_tlbs();
2063                 return EMULATE_FAIL;
2064         }
2065 #endif
2066
2067         er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
2068         return er;
2069 }
2070
2071 enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause,
2072                                               uint32_t *opc,
2073                                               struct kvm_run *run,
2074                                               struct kvm_vcpu *vcpu)
2075 {
2076         struct mips_coproc *cop0 = vcpu->arch.cop0;
2077         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2078                                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
2079         struct kvm_vcpu_arch *arch = &vcpu->arch;
2080
2081         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2082                 /* save old pc */
2083                 kvm_write_c0_guest_epc(cop0, arch->pc);
2084                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2085
2086                 if (cause & CAUSEF_BD)
2087                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2088                 else
2089                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2090
2091                 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2092                           arch->pc);
2093
2094                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2095         } else {
2096                 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2097                           arch->pc);
2098                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2099         }
2100
2101         kvm_change_c0_guest_cause(cop0, (0xff), (T_TLB_MOD << CAUSEB_EXCCODE));
2102
2103         /* setup badvaddr, context and entryhi registers for the guest */
2104         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2105         /* XXXKYMA: is the context register used by linux??? */
2106         kvm_write_c0_guest_entryhi(cop0, entryhi);
2107         /* Blow away the shadow host TLBs */
2108         kvm_mips_flush_host_tlb(1);
2109
2110         return EMULATE_DONE;
2111 }
2112
2113 enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause,
2114                                                uint32_t *opc,
2115                                                struct kvm_run *run,
2116                                                struct kvm_vcpu *vcpu)
2117 {
2118         struct mips_coproc *cop0 = vcpu->arch.cop0;
2119         struct kvm_vcpu_arch *arch = &vcpu->arch;
2120
2121         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2122                 /* save old pc */
2123                 kvm_write_c0_guest_epc(cop0, arch->pc);
2124                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2125
2126                 if (cause & CAUSEF_BD)
2127                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2128                 else
2129                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2130
2131         }
2132
2133         arch->pc = KVM_GUEST_KSEG0 + 0x180;
2134
2135         kvm_change_c0_guest_cause(cop0, (0xff),
2136                                   (T_COP_UNUSABLE << CAUSEB_EXCCODE));
2137         kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2138
2139         return EMULATE_DONE;
2140 }
2141
2142 enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause,
2143                                               uint32_t *opc,
2144                                               struct kvm_run *run,
2145                                               struct kvm_vcpu *vcpu)
2146 {
2147         struct mips_coproc *cop0 = vcpu->arch.cop0;
2148         struct kvm_vcpu_arch *arch = &vcpu->arch;
2149         enum emulation_result er = EMULATE_DONE;
2150
2151         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2152                 /* save old pc */
2153                 kvm_write_c0_guest_epc(cop0, arch->pc);
2154                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2155
2156                 if (cause & CAUSEF_BD)
2157                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2158                 else
2159                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2160
2161                 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2162
2163                 kvm_change_c0_guest_cause(cop0, (0xff),
2164                                           (T_RES_INST << CAUSEB_EXCCODE));
2165
2166                 /* Set PC to the exception entry point */
2167                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2168
2169         } else {
2170                 kvm_err("Trying to deliver RI when EXL is already set\n");
2171                 er = EMULATE_FAIL;
2172         }
2173
2174         return er;
2175 }
2176
2177 enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause,
2178                                               uint32_t *opc,
2179                                               struct kvm_run *run,
2180                                               struct kvm_vcpu *vcpu)
2181 {
2182         struct mips_coproc *cop0 = vcpu->arch.cop0;
2183         struct kvm_vcpu_arch *arch = &vcpu->arch;
2184         enum emulation_result er = EMULATE_DONE;
2185
2186         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2187                 /* save old pc */
2188                 kvm_write_c0_guest_epc(cop0, arch->pc);
2189                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2190
2191                 if (cause & CAUSEF_BD)
2192                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2193                 else
2194                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2195
2196                 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2197
2198                 kvm_change_c0_guest_cause(cop0, (0xff),
2199                                           (T_BREAK << CAUSEB_EXCCODE));
2200
2201                 /* Set PC to the exception entry point */
2202                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2203
2204         } else {
2205                 kvm_err("Trying to deliver BP when EXL is already set\n");
2206                 er = EMULATE_FAIL;
2207         }
2208
2209         return er;
2210 }
2211
2212 enum emulation_result kvm_mips_emulate_trap_exc(unsigned long cause,
2213                                                 uint32_t *opc,
2214                                                 struct kvm_run *run,
2215                                                 struct kvm_vcpu *vcpu)
2216 {
2217         struct mips_coproc *cop0 = vcpu->arch.cop0;
2218         struct kvm_vcpu_arch *arch = &vcpu->arch;
2219         enum emulation_result er = EMULATE_DONE;
2220
2221         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2222                 /* save old pc */
2223                 kvm_write_c0_guest_epc(cop0, arch->pc);
2224                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2225
2226                 if (cause & CAUSEF_BD)
2227                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2228                 else
2229                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2230
2231                 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2232
2233                 kvm_change_c0_guest_cause(cop0, (0xff),
2234                                           (T_TRAP << CAUSEB_EXCCODE));
2235
2236                 /* Set PC to the exception entry point */
2237                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2238
2239         } else {
2240                 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2241                 er = EMULATE_FAIL;
2242         }
2243
2244         return er;
2245 }
2246
2247 enum emulation_result kvm_mips_emulate_msafpe_exc(unsigned long cause,
2248                                                   uint32_t *opc,
2249                                                   struct kvm_run *run,
2250                                                   struct kvm_vcpu *vcpu)
2251 {
2252         struct mips_coproc *cop0 = vcpu->arch.cop0;
2253         struct kvm_vcpu_arch *arch = &vcpu->arch;
2254         enum emulation_result er = EMULATE_DONE;
2255
2256         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2257                 /* save old pc */
2258                 kvm_write_c0_guest_epc(cop0, arch->pc);
2259                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2260
2261                 if (cause & CAUSEF_BD)
2262                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2263                 else
2264                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2265
2266                 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2267
2268                 kvm_change_c0_guest_cause(cop0, (0xff),
2269                                           (T_MSAFPE << CAUSEB_EXCCODE));
2270
2271                 /* Set PC to the exception entry point */
2272                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2273
2274         } else {
2275                 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2276                 er = EMULATE_FAIL;
2277         }
2278
2279         return er;
2280 }
2281
2282 enum emulation_result kvm_mips_emulate_fpe_exc(unsigned long cause,
2283                                                uint32_t *opc,
2284                                                struct kvm_run *run,
2285                                                struct kvm_vcpu *vcpu)
2286 {
2287         struct mips_coproc *cop0 = vcpu->arch.cop0;
2288         struct kvm_vcpu_arch *arch = &vcpu->arch;
2289         enum emulation_result er = EMULATE_DONE;
2290
2291         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2292                 /* save old pc */
2293                 kvm_write_c0_guest_epc(cop0, arch->pc);
2294                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2295
2296                 if (cause & CAUSEF_BD)
2297                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2298                 else
2299                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2300
2301                 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2302
2303                 kvm_change_c0_guest_cause(cop0, (0xff),
2304                                           (T_FPE << CAUSEB_EXCCODE));
2305
2306                 /* Set PC to the exception entry point */
2307                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2308
2309         } else {
2310                 kvm_err("Trying to deliver FPE when EXL is already set\n");
2311                 er = EMULATE_FAIL;
2312         }
2313
2314         return er;
2315 }
2316
2317 enum emulation_result kvm_mips_emulate_msadis_exc(unsigned long cause,
2318                                                   uint32_t *opc,
2319                                                   struct kvm_run *run,
2320                                                   struct kvm_vcpu *vcpu)
2321 {
2322         struct mips_coproc *cop0 = vcpu->arch.cop0;
2323         struct kvm_vcpu_arch *arch = &vcpu->arch;
2324         enum emulation_result er = EMULATE_DONE;
2325
2326         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2327                 /* save old pc */
2328                 kvm_write_c0_guest_epc(cop0, arch->pc);
2329                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2330
2331                 if (cause & CAUSEF_BD)
2332                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2333                 else
2334                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2335
2336                 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2337
2338                 kvm_change_c0_guest_cause(cop0, (0xff),
2339                                           (T_MSADIS << CAUSEB_EXCCODE));
2340
2341                 /* Set PC to the exception entry point */
2342                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2343
2344         } else {
2345                 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2346                 er = EMULATE_FAIL;
2347         }
2348
2349         return er;
2350 }
2351
2352 /* ll/sc, rdhwr, sync emulation */
2353
2354 #define OPCODE 0xfc000000
2355 #define BASE   0x03e00000
2356 #define RT     0x001f0000
2357 #define OFFSET 0x0000ffff
2358 #define LL     0xc0000000
2359 #define SC     0xe0000000
2360 #define SPEC0  0x00000000
2361 #define SPEC3  0x7c000000
2362 #define RD     0x0000f800
2363 #define FUNC   0x0000003f
2364 #define SYNC   0x0000000f
2365 #define RDHWR  0x0000003b
2366
2367 enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc,
2368                                          struct kvm_run *run,
2369                                          struct kvm_vcpu *vcpu)
2370 {
2371         struct mips_coproc *cop0 = vcpu->arch.cop0;
2372         struct kvm_vcpu_arch *arch = &vcpu->arch;
2373         enum emulation_result er = EMULATE_DONE;
2374         unsigned long curr_pc;
2375         uint32_t inst;
2376
2377         /*
2378          * Update PC and hold onto current PC in case there is
2379          * an error and we want to rollback the PC
2380          */
2381         curr_pc = vcpu->arch.pc;
2382         er = update_pc(vcpu, cause);
2383         if (er == EMULATE_FAIL)
2384                 return er;
2385
2386         /* Fetch the instruction. */
2387         if (cause & CAUSEF_BD)
2388                 opc += 1;
2389
2390         inst = kvm_get_inst(opc, vcpu);
2391
2392         if (inst == KVM_INVALID_INST) {
2393                 kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2394                 return EMULATE_FAIL;
2395         }
2396
2397         if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
2398                 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2399                 int rd = (inst & RD) >> 11;
2400                 int rt = (inst & RT) >> 16;
2401                 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2402                 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2403                         kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2404                                   rd, opc);
2405                         goto emulate_ri;
2406                 }
2407                 switch (rd) {
2408                 case 0: /* CPU number */
2409                         arch->gprs[rt] = 0;
2410                         break;
2411                 case 1: /* SYNCI length */
2412                         arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2413                                              current_cpu_data.icache.linesz);
2414                         break;
2415                 case 2: /* Read count register */
2416                         arch->gprs[rt] = kvm_mips_read_count(vcpu);
2417                         break;
2418                 case 3: /* Count register resolution */
2419                         switch (current_cpu_data.cputype) {
2420                         case CPU_20KC:
2421                         case CPU_25KF:
2422                                 arch->gprs[rt] = 1;
2423                                 break;
2424                         default:
2425                                 arch->gprs[rt] = 2;
2426                         }
2427                         break;
2428                 case 29:
2429                         arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2430                         break;
2431
2432                 default:
2433                         kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2434                         goto emulate_ri;
2435                 }
2436         } else {
2437                 kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
2438                 goto emulate_ri;
2439         }
2440
2441         return EMULATE_DONE;
2442
2443 emulate_ri:
2444         /*
2445          * Rollback PC (if in branch delay slot then the PC already points to
2446          * branch target), and pass the RI exception to the guest OS.
2447          */
2448         vcpu->arch.pc = curr_pc;
2449         return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2450 }
2451
2452 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2453                                                   struct kvm_run *run)
2454 {
2455         unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2456         enum emulation_result er = EMULATE_DONE;
2457
2458         if (run->mmio.len > sizeof(*gpr)) {
2459                 kvm_err("Bad MMIO length: %d", run->mmio.len);
2460                 er = EMULATE_FAIL;
2461                 goto done;
2462         }
2463
2464         er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2465         if (er == EMULATE_FAIL)
2466                 return er;
2467
2468         switch (run->mmio.len) {
2469         case 4:
2470                 *gpr = *(int32_t *) run->mmio.data;
2471                 break;
2472
2473         case 2:
2474                 if (vcpu->mmio_needed == 2)
2475                         *gpr = *(int16_t *) run->mmio.data;
2476                 else
2477                         *gpr = *(uint16_t *)run->mmio.data;
2478
2479                 break;
2480         case 1:
2481                 if (vcpu->mmio_needed == 2)
2482                         *gpr = *(int8_t *) run->mmio.data;
2483                 else
2484                         *gpr = *(u8 *) run->mmio.data;
2485                 break;
2486         }
2487
2488         if (vcpu->arch.pending_load_cause & CAUSEF_BD)
2489                 kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2490                           vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2491                           vcpu->mmio_needed);
2492
2493 done:
2494         return er;
2495 }
2496
2497 static enum emulation_result kvm_mips_emulate_exc(unsigned long cause,
2498                                                   uint32_t *opc,
2499                                                   struct kvm_run *run,
2500                                                   struct kvm_vcpu *vcpu)
2501 {
2502         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2503         struct mips_coproc *cop0 = vcpu->arch.cop0;
2504         struct kvm_vcpu_arch *arch = &vcpu->arch;
2505         enum emulation_result er = EMULATE_DONE;
2506
2507         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2508                 /* save old pc */
2509                 kvm_write_c0_guest_epc(cop0, arch->pc);
2510                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2511
2512                 if (cause & CAUSEF_BD)
2513                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2514                 else
2515                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2516
2517                 kvm_change_c0_guest_cause(cop0, (0xff),
2518                                           (exccode << CAUSEB_EXCCODE));
2519
2520                 /* Set PC to the exception entry point */
2521                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2522                 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2523
2524                 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2525                           exccode, kvm_read_c0_guest_epc(cop0),
2526                           kvm_read_c0_guest_badvaddr(cop0));
2527         } else {
2528                 kvm_err("Trying to deliver EXC when EXL is already set\n");
2529                 er = EMULATE_FAIL;
2530         }
2531
2532         return er;
2533 }
2534
2535 enum emulation_result kvm_mips_check_privilege(unsigned long cause,
2536                                                uint32_t *opc,
2537                                                struct kvm_run *run,
2538                                                struct kvm_vcpu *vcpu)
2539 {
2540         enum emulation_result er = EMULATE_DONE;
2541         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2542         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2543
2544         int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2545
2546         if (usermode) {
2547                 switch (exccode) {
2548                 case T_INT:
2549                 case T_SYSCALL:
2550                 case T_BREAK:
2551                 case T_RES_INST:
2552                 case T_TRAP:
2553                 case T_MSAFPE:
2554                 case T_FPE:
2555                 case T_MSADIS:
2556                         break;
2557
2558                 case T_COP_UNUSABLE:
2559                         if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2560                                 er = EMULATE_PRIV_FAIL;
2561                         break;
2562
2563                 case T_TLB_MOD:
2564                         break;
2565
2566                 case T_TLB_LD_MISS:
2567                         /*
2568                          * We we are accessing Guest kernel space, then send an
2569                          * address error exception to the guest
2570                          */
2571                         if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2572                                 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2573                                           badvaddr);
2574                                 cause &= ~0xff;
2575                                 cause |= (T_ADDR_ERR_LD << CAUSEB_EXCCODE);
2576                                 er = EMULATE_PRIV_FAIL;
2577                         }
2578                         break;
2579
2580                 case T_TLB_ST_MISS:
2581                         /*
2582                          * We we are accessing Guest kernel space, then send an
2583                          * address error exception to the guest
2584                          */
2585                         if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2586                                 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2587                                           badvaddr);
2588                                 cause &= ~0xff;
2589                                 cause |= (T_ADDR_ERR_ST << CAUSEB_EXCCODE);
2590                                 er = EMULATE_PRIV_FAIL;
2591                         }
2592                         break;
2593
2594                 case T_ADDR_ERR_ST:
2595                         kvm_debug("%s: address error ST @ %#lx\n", __func__,
2596                                   badvaddr);
2597                         if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2598                                 cause &= ~0xff;
2599                                 cause |= (T_TLB_ST_MISS << CAUSEB_EXCCODE);
2600                         }
2601                         er = EMULATE_PRIV_FAIL;
2602                         break;
2603                 case T_ADDR_ERR_LD:
2604                         kvm_debug("%s: address error LD @ %#lx\n", __func__,
2605                                   badvaddr);
2606                         if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2607                                 cause &= ~0xff;
2608                                 cause |= (T_TLB_LD_MISS << CAUSEB_EXCCODE);
2609                         }
2610                         er = EMULATE_PRIV_FAIL;
2611                         break;
2612                 default:
2613                         er = EMULATE_PRIV_FAIL;
2614                         break;
2615                 }
2616         }
2617
2618         if (er == EMULATE_PRIV_FAIL)
2619                 kvm_mips_emulate_exc(cause, opc, run, vcpu);
2620
2621         return er;
2622 }
2623
2624 /*
2625  * User Address (UA) fault, this could happen if
2626  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2627  *     case we pass on the fault to the guest kernel and let it handle it.
2628  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2629  *     case we inject the TLB from the Guest TLB into the shadow host TLB
2630  */
2631 enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause,
2632                                               uint32_t *opc,
2633                                               struct kvm_run *run,
2634                                               struct kvm_vcpu *vcpu)
2635 {
2636         enum emulation_result er = EMULATE_DONE;
2637         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2638         unsigned long va = vcpu->arch.host_cp0_badvaddr;
2639         int index;
2640
2641         kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n",
2642                   vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi);
2643
2644         /*
2645          * KVM would not have got the exception if this entry was valid in the
2646          * shadow host TLB. Check the Guest TLB, if the entry is not there then
2647          * send the guest an exception. The guest exc handler should then inject
2648          * an entry into the guest TLB.
2649          */
2650         index = kvm_mips_guest_tlb_lookup(vcpu,
2651                                           (va & VPN2_MASK) |
2652                                           (kvm_read_c0_guest_entryhi
2653                                            (vcpu->arch.cop0) & ASID_MASK));
2654         if (index < 0) {
2655                 if (exccode == T_TLB_LD_MISS) {
2656                         er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2657                 } else if (exccode == T_TLB_ST_MISS) {
2658                         er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2659                 } else {
2660                         kvm_err("%s: invalid exc code: %d\n", __func__,
2661                                 exccode);
2662                         er = EMULATE_FAIL;
2663                 }
2664         } else {
2665                 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2666
2667                 /*
2668                  * Check if the entry is valid, if not then setup a TLB invalid
2669                  * exception to the guest
2670                  */
2671                 if (!TLB_IS_VALID(*tlb, va)) {
2672                         if (exccode == T_TLB_LD_MISS) {
2673                                 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2674                                                                 vcpu);
2675                         } else if (exccode == T_TLB_ST_MISS) {
2676                                 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2677                                                                 vcpu);
2678                         } else {
2679                                 kvm_err("%s: invalid exc code: %d\n", __func__,
2680                                         exccode);
2681                                 er = EMULATE_FAIL;
2682                         }
2683                 } else {
2684                         kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2685                                   tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
2686                         /*
2687                          * OK we have a Guest TLB entry, now inject it into the
2688                          * shadow host TLB
2689                          */
2690                         if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
2691                                                                  NULL, NULL)) {
2692                                 kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
2693                                         __func__, va, index, vcpu,
2694                                         read_c0_entryhi());
2695                                 er = EMULATE_FAIL;
2696                         }
2697                 }
2698         }
2699
2700         return er;
2701 }