Merge remote-tracking branch 'lsk/v3.10/topic/arm64-ptrace' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/export.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
76
77 /*
78  * Make sure the floating-point register state in the
79  * the thread_struct is up to date for task tsk.
80  */
81 void flush_fp_to_thread(struct task_struct *tsk)
82 {
83         if (tsk->thread.regs) {
84                 /*
85                  * We need to disable preemption here because if we didn't,
86                  * another process could get scheduled after the regs->msr
87                  * test but before we have finished saving the FP registers
88                  * to the thread_struct.  That process could take over the
89                  * FPU, and then when we get scheduled again we would store
90                  * bogus values for the remaining FP registers.
91                  */
92                 preempt_disable();
93                 if (tsk->thread.regs->msr & MSR_FP) {
94 #ifdef CONFIG_SMP
95                         /*
96                          * This should only ever be called for current or
97                          * for a stopped child process.  Since we save away
98                          * the FP register state on context switch on SMP,
99                          * there is something wrong if a stopped child appears
100                          * to still have its FP state in the CPU registers.
101                          */
102                         BUG_ON(tsk != current);
103 #endif
104                         giveup_fpu(tsk);
105                 }
106                 preempt_enable();
107         }
108 }
109 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
110
111 void enable_kernel_fp(void)
112 {
113         WARN_ON(preemptible());
114
115 #ifdef CONFIG_SMP
116         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
117                 giveup_fpu(current);
118         else
119                 giveup_fpu(NULL);       /* just enables FP for kernel */
120 #else
121         giveup_fpu(last_task_used_math);
122 #endif /* CONFIG_SMP */
123 }
124 EXPORT_SYMBOL(enable_kernel_fp);
125
126 #ifdef CONFIG_ALTIVEC
127 void enable_kernel_altivec(void)
128 {
129         WARN_ON(preemptible());
130
131 #ifdef CONFIG_SMP
132         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
133                 giveup_altivec(current);
134         else
135                 giveup_altivec_notask();
136 #else
137         giveup_altivec(last_task_used_altivec);
138 #endif /* CONFIG_SMP */
139 }
140 EXPORT_SYMBOL(enable_kernel_altivec);
141
142 /*
143  * Make sure the VMX/Altivec register state in the
144  * the thread_struct is up to date for task tsk.
145  */
146 void flush_altivec_to_thread(struct task_struct *tsk)
147 {
148         if (tsk->thread.regs) {
149                 preempt_disable();
150                 if (tsk->thread.regs->msr & MSR_VEC) {
151 #ifdef CONFIG_SMP
152                         BUG_ON(tsk != current);
153 #endif
154                         giveup_altivec(tsk);
155                 }
156                 preempt_enable();
157         }
158 }
159 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
160 #endif /* CONFIG_ALTIVEC */
161
162 #ifdef CONFIG_VSX
163 #if 0
164 /* not currently used, but some crazy RAID module might want to later */
165 void enable_kernel_vsx(void)
166 {
167         WARN_ON(preemptible());
168
169 #ifdef CONFIG_SMP
170         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
171                 giveup_vsx(current);
172         else
173                 giveup_vsx(NULL);       /* just enable vsx for kernel - force */
174 #else
175         giveup_vsx(last_task_used_vsx);
176 #endif /* CONFIG_SMP */
177 }
178 EXPORT_SYMBOL(enable_kernel_vsx);
179 #endif
180
181 void giveup_vsx(struct task_struct *tsk)
182 {
183         giveup_fpu(tsk);
184         giveup_altivec(tsk);
185         __giveup_vsx(tsk);
186 }
187
188 void flush_vsx_to_thread(struct task_struct *tsk)
189 {
190         if (tsk->thread.regs) {
191                 preempt_disable();
192                 if (tsk->thread.regs->msr & MSR_VSX) {
193 #ifdef CONFIG_SMP
194                         BUG_ON(tsk != current);
195 #endif
196                         giveup_vsx(tsk);
197                 }
198                 preempt_enable();
199         }
200 }
201 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
202 #endif /* CONFIG_VSX */
203
204 #ifdef CONFIG_SPE
205
206 void enable_kernel_spe(void)
207 {
208         WARN_ON(preemptible());
209
210 #ifdef CONFIG_SMP
211         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
212                 giveup_spe(current);
213         else
214                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
215 #else
216         giveup_spe(last_task_used_spe);
217 #endif /* __SMP __ */
218 }
219 EXPORT_SYMBOL(enable_kernel_spe);
220
221 void flush_spe_to_thread(struct task_struct *tsk)
222 {
223         if (tsk->thread.regs) {
224                 preempt_disable();
225                 if (tsk->thread.regs->msr & MSR_SPE) {
226 #ifdef CONFIG_SMP
227                         BUG_ON(tsk != current);
228 #endif
229                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
230                         giveup_spe(tsk);
231                 }
232                 preempt_enable();
233         }
234 }
235 #endif /* CONFIG_SPE */
236
237 #ifndef CONFIG_SMP
238 /*
239  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
240  * and the current task has some state, discard it.
241  */
242 void discard_lazy_cpu_state(void)
243 {
244         preempt_disable();
245         if (last_task_used_math == current)
246                 last_task_used_math = NULL;
247 #ifdef CONFIG_ALTIVEC
248         if (last_task_used_altivec == current)
249                 last_task_used_altivec = NULL;
250 #endif /* CONFIG_ALTIVEC */
251 #ifdef CONFIG_VSX
252         if (last_task_used_vsx == current)
253                 last_task_used_vsx = NULL;
254 #endif /* CONFIG_VSX */
255 #ifdef CONFIG_SPE
256         if (last_task_used_spe == current)
257                 last_task_used_spe = NULL;
258 #endif
259         preempt_enable();
260 }
261 #endif /* CONFIG_SMP */
262
263 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
264 void do_send_trap(struct pt_regs *regs, unsigned long address,
265                   unsigned long error_code, int signal_code, int breakpt)
266 {
267         siginfo_t info;
268
269         current->thread.trap_nr = signal_code;
270         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
271                         11, SIGSEGV) == NOTIFY_STOP)
272                 return;
273
274         /* Deliver the signal to userspace */
275         info.si_signo = SIGTRAP;
276         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
277         info.si_code = signal_code;
278         info.si_addr = (void __user *)address;
279         force_sig_info(SIGTRAP, &info, current);
280 }
281 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
282 void do_break (struct pt_regs *regs, unsigned long address,
283                     unsigned long error_code)
284 {
285         siginfo_t info;
286
287         current->thread.trap_nr = TRAP_HWBKPT;
288         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
289                         11, SIGSEGV) == NOTIFY_STOP)
290                 return;
291
292         if (debugger_break_match(regs))
293                 return;
294
295         /* Clear the breakpoint */
296         hw_breakpoint_disable();
297
298         /* Deliver the signal to userspace */
299         info.si_signo = SIGTRAP;
300         info.si_errno = 0;
301         info.si_code = TRAP_HWBKPT;
302         info.si_addr = (void __user *)address;
303         force_sig_info(SIGTRAP, &info, current);
304 }
305 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
306
307 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
308
309 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
310 /*
311  * Set the debug registers back to their default "safe" values.
312  */
313 static void set_debug_reg_defaults(struct thread_struct *thread)
314 {
315         thread->iac1 = thread->iac2 = 0;
316 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
317         thread->iac3 = thread->iac4 = 0;
318 #endif
319         thread->dac1 = thread->dac2 = 0;
320 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
321         thread->dvc1 = thread->dvc2 = 0;
322 #endif
323         thread->dbcr0 = 0;
324 #ifdef CONFIG_BOOKE
325         /*
326          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
327          */
328         thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |   \
329                         DBCR1_IAC3US | DBCR1_IAC4US;
330         /*
331          * Force Data Address Compare User/Supervisor bits to be User-only
332          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
333          */
334         thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
335 #else
336         thread->dbcr1 = 0;
337 #endif
338 }
339
340 static void prime_debug_regs(struct thread_struct *thread)
341 {
342         /*
343          * We could have inherited MSR_DE from userspace, since
344          * it doesn't get cleared on exception entry.  Make sure
345          * MSR_DE is clear before we enable any debug events.
346          */
347         mtmsr(mfmsr() & ~MSR_DE);
348
349         mtspr(SPRN_IAC1, thread->iac1);
350         mtspr(SPRN_IAC2, thread->iac2);
351 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
352         mtspr(SPRN_IAC3, thread->iac3);
353         mtspr(SPRN_IAC4, thread->iac4);
354 #endif
355         mtspr(SPRN_DAC1, thread->dac1);
356         mtspr(SPRN_DAC2, thread->dac2);
357 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
358         mtspr(SPRN_DVC1, thread->dvc1);
359         mtspr(SPRN_DVC2, thread->dvc2);
360 #endif
361         mtspr(SPRN_DBCR0, thread->dbcr0);
362         mtspr(SPRN_DBCR1, thread->dbcr1);
363 #ifdef CONFIG_BOOKE
364         mtspr(SPRN_DBCR2, thread->dbcr2);
365 #endif
366 }
367 /*
368  * Unless neither the old or new thread are making use of the
369  * debug registers, set the debug registers from the values
370  * stored in the new thread.
371  */
372 static void switch_booke_debug_regs(struct thread_struct *new_thread)
373 {
374         if ((current->thread.dbcr0 & DBCR0_IDM)
375                 || (new_thread->dbcr0 & DBCR0_IDM))
376                         prime_debug_regs(new_thread);
377 }
378 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
379 #ifndef CONFIG_HAVE_HW_BREAKPOINT
380 static void set_debug_reg_defaults(struct thread_struct *thread)
381 {
382         thread->hw_brk.address = 0;
383         thread->hw_brk.type = 0;
384         set_breakpoint(&thread->hw_brk);
385 }
386 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
387 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
388
389 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
390 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
391 {
392         mtspr(SPRN_DAC1, dabr);
393 #ifdef CONFIG_PPC_47x
394         isync();
395 #endif
396         return 0;
397 }
398 #elif defined(CONFIG_PPC_BOOK3S)
399 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
400 {
401         mtspr(SPRN_DABR, dabr);
402         if (cpu_has_feature(CPU_FTR_DABRX))
403                 mtspr(SPRN_DABRX, dabrx);
404         return 0;
405 }
406 #else
407 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
408 {
409         return -EINVAL;
410 }
411 #endif
412
413 static inline int set_dabr(struct arch_hw_breakpoint *brk)
414 {
415         unsigned long dabr, dabrx;
416
417         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
418         dabrx = ((brk->type >> 3) & 0x7);
419
420         if (ppc_md.set_dabr)
421                 return ppc_md.set_dabr(dabr, dabrx);
422
423         return __set_dabr(dabr, dabrx);
424 }
425
426 static inline int set_dawr(struct arch_hw_breakpoint *brk)
427 {
428         unsigned long dawr, dawrx, mrd;
429
430         dawr = brk->address;
431
432         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
433                                    << (63 - 58); //* read/write bits */
434         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
435                                    << (63 - 59); //* translate */
436         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
437                                    >> 3; //* PRIM bits */
438         /* dawr length is stored in field MDR bits 48:53.  Matches range in
439            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
440            0b111111=64DW.
441            brk->len is in bytes.
442            This aligns up to double word size, shifts and does the bias.
443         */
444         mrd = ((brk->len + 7) >> 3) - 1;
445         dawrx |= (mrd & 0x3f) << (63 - 53);
446
447         if (ppc_md.set_dawr)
448                 return ppc_md.set_dawr(dawr, dawrx);
449         mtspr(SPRN_DAWR, dawr);
450         mtspr(SPRN_DAWRX, dawrx);
451         return 0;
452 }
453
454 int set_breakpoint(struct arch_hw_breakpoint *brk)
455 {
456         __get_cpu_var(current_brk) = *brk;
457
458         if (cpu_has_feature(CPU_FTR_DAWR))
459                 return set_dawr(brk);
460
461         return set_dabr(brk);
462 }
463
464 #ifdef CONFIG_PPC64
465 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
466 #endif
467
468 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
469                               struct arch_hw_breakpoint *b)
470 {
471         if (a->address != b->address)
472                 return false;
473         if (a->type != b->type)
474                 return false;
475         if (a->len != b->len)
476                 return false;
477         return true;
478 }
479 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
480 static inline void tm_reclaim_task(struct task_struct *tsk)
481 {
482         /* We have to work out if we're switching from/to a task that's in the
483          * middle of a transaction.
484          *
485          * In switching we need to maintain a 2nd register state as
486          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
487          * checkpointed (tbegin) state in ckpt_regs and saves the transactional
488          * (current) FPRs into oldtask->thread.transact_fpr[].
489          *
490          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
491          */
492         struct thread_struct *thr = &tsk->thread;
493
494         if (!thr->regs)
495                 return;
496
497         if (!MSR_TM_ACTIVE(thr->regs->msr))
498                 goto out_and_saveregs;
499
500         /* Stash the original thread MSR, as giveup_fpu et al will
501          * modify it.  We hold onto it to see whether the task used
502          * FP & vector regs.
503          */
504         thr->tm_orig_msr = thr->regs->msr;
505
506         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
507                  "ccr=%lx, msr=%lx, trap=%lx)\n",
508                  tsk->pid, thr->regs->nip,
509                  thr->regs->ccr, thr->regs->msr,
510                  thr->regs->trap);
511
512         tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);
513
514         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
515                  tsk->pid);
516
517 out_and_saveregs:
518         /* Always save the regs here, even if a transaction's not active.
519          * This context-switches a thread's TM info SPRs.  We do it here to
520          * be consistent with the restore path (in recheckpoint) which
521          * cannot happen later in _switch().
522          */
523         tm_save_sprs(thr);
524 }
525
526 extern void __tm_recheckpoint(struct thread_struct *thread,
527                               unsigned long orig_msr);
528
529 void tm_recheckpoint(struct thread_struct *thread,
530                      unsigned long orig_msr)
531 {
532         unsigned long flags;
533
534         /* We really can't be interrupted here as the TEXASR registers can't
535          * change and later in the trecheckpoint code, we have a userspace R1.
536          * So let's hard disable over this region.
537          */
538         local_irq_save(flags);
539         hard_irq_disable();
540
541         /* The TM SPRs are restored here, so that TEXASR.FS can be set
542          * before the trecheckpoint and no explosion occurs.
543          */
544         tm_restore_sprs(thread);
545
546         __tm_recheckpoint(thread, orig_msr);
547
548         local_irq_restore(flags);
549 }
550
551 static inline void tm_recheckpoint_new_task(struct task_struct *new)
552 {
553         unsigned long msr;
554
555         if (!cpu_has_feature(CPU_FTR_TM))
556                 return;
557
558         /* Recheckpoint the registers of the thread we're about to switch to.
559          *
560          * If the task was using FP, we non-lazily reload both the original and
561          * the speculative FP register states.  This is because the kernel
562          * doesn't see if/when a TM rollback occurs, so if we take an FP
563          * unavoidable later, we are unable to determine which set of FP regs
564          * need to be restored.
565          */
566         if (!new->thread.regs)
567                 return;
568
569         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
570                 tm_restore_sprs(&new->thread);
571                 return;
572         }
573         msr = new->thread.tm_orig_msr;
574         /* Recheckpoint to restore original checkpointed register state. */
575         TM_DEBUG("*** tm_recheckpoint of pid %d "
576                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
577                  new->pid, new->thread.regs->msr, msr);
578
579         /* This loads the checkpointed FP/VEC state, if used */
580         tm_recheckpoint(&new->thread, msr);
581
582         /* This loads the speculative FP/VEC state, if used */
583         if (msr & MSR_FP) {
584                 do_load_up_transact_fpu(&new->thread);
585                 new->thread.regs->msr |=
586                         (MSR_FP | new->thread.fpexc_mode);
587         }
588 #ifdef CONFIG_ALTIVEC
589         if (msr & MSR_VEC) {
590                 do_load_up_transact_altivec(&new->thread);
591                 new->thread.regs->msr |= MSR_VEC;
592         }
593 #endif
594         /* We may as well turn on VSX too since all the state is restored now */
595         if (msr & MSR_VSX)
596                 new->thread.regs->msr |= MSR_VSX;
597
598         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
599                  "(kernel msr 0x%lx)\n",
600                  new->pid, mfmsr());
601 }
602
603 static inline void __switch_to_tm(struct task_struct *prev)
604 {
605         if (cpu_has_feature(CPU_FTR_TM)) {
606                 tm_enable();
607                 tm_reclaim_task(prev);
608         }
609 }
610 #else
611 #define tm_recheckpoint_new_task(new)
612 #define __switch_to_tm(prev)
613 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
614
615 struct task_struct *__switch_to(struct task_struct *prev,
616         struct task_struct *new)
617 {
618         struct thread_struct *new_thread, *old_thread;
619         unsigned long flags;
620         struct task_struct *last;
621 #ifdef CONFIG_PPC_BOOK3S_64
622         struct ppc64_tlb_batch *batch;
623 #endif
624
625         /* Back up the TAR across context switches.
626          * Note that the TAR is not available for use in the kernel.  (To
627          * provide this, the TAR should be backed up/restored on exception
628          * entry/exit instead, and be in pt_regs.  FIXME, this should be in
629          * pt_regs anyway (for debug).)
630          * Save the TAR here before we do treclaim/trecheckpoint as these
631          * will change the TAR.
632          */
633         save_tar(&prev->thread);
634
635         __switch_to_tm(prev);
636
637 #ifdef CONFIG_SMP
638         /* avoid complexity of lazy save/restore of fpu
639          * by just saving it every time we switch out if
640          * this task used the fpu during the last quantum.
641          *
642          * If it tries to use the fpu again, it'll trap and
643          * reload its fp regs.  So we don't have to do a restore
644          * every switch, just a save.
645          *  -- Cort
646          */
647         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
648                 giveup_fpu(prev);
649 #ifdef CONFIG_ALTIVEC
650         /*
651          * If the previous thread used altivec in the last quantum
652          * (thus changing altivec regs) then save them.
653          * We used to check the VRSAVE register but not all apps
654          * set it, so we don't rely on it now (and in fact we need
655          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
656          *
657          * On SMP we always save/restore altivec regs just to avoid the
658          * complexity of changing processors.
659          *  -- Cort
660          */
661         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
662                 giveup_altivec(prev);
663 #endif /* CONFIG_ALTIVEC */
664 #ifdef CONFIG_VSX
665         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
666                 /* VMX and FPU registers are already save here */
667                 __giveup_vsx(prev);
668 #endif /* CONFIG_VSX */
669 #ifdef CONFIG_SPE
670         /*
671          * If the previous thread used spe in the last quantum
672          * (thus changing spe regs) then save them.
673          *
674          * On SMP we always save/restore spe regs just to avoid the
675          * complexity of changing processors.
676          */
677         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
678                 giveup_spe(prev);
679 #endif /* CONFIG_SPE */
680
681 #else  /* CONFIG_SMP */
682 #ifdef CONFIG_ALTIVEC
683         /* Avoid the trap.  On smp this this never happens since
684          * we don't set last_task_used_altivec -- Cort
685          */
686         if (new->thread.regs && last_task_used_altivec == new)
687                 new->thread.regs->msr |= MSR_VEC;
688 #endif /* CONFIG_ALTIVEC */
689 #ifdef CONFIG_VSX
690         if (new->thread.regs && last_task_used_vsx == new)
691                 new->thread.regs->msr |= MSR_VSX;
692 #endif /* CONFIG_VSX */
693 #ifdef CONFIG_SPE
694         /* Avoid the trap.  On smp this this never happens since
695          * we don't set last_task_used_spe
696          */
697         if (new->thread.regs && last_task_used_spe == new)
698                 new->thread.regs->msr |= MSR_SPE;
699 #endif /* CONFIG_SPE */
700
701 #endif /* CONFIG_SMP */
702
703 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
704         switch_booke_debug_regs(&new->thread);
705 #else
706 /*
707  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
708  * schedule DABR
709  */
710 #ifndef CONFIG_HAVE_HW_BREAKPOINT
711         if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
712                 set_breakpoint(&new->thread.hw_brk);
713 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
714 #endif
715
716
717         new_thread = &new->thread;
718         old_thread = &current->thread;
719
720 #ifdef CONFIG_PPC64
721         /*
722          * Collect processor utilization data per process
723          */
724         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
725                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
726                 long unsigned start_tb, current_tb;
727                 start_tb = old_thread->start_tb;
728                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
729                 old_thread->accum_tb += (current_tb - start_tb);
730                 new_thread->start_tb = current_tb;
731         }
732 #endif /* CONFIG_PPC64 */
733
734 #ifdef CONFIG_PPC_BOOK3S_64
735         batch = &__get_cpu_var(ppc64_tlb_batch);
736         if (batch->active) {
737                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
738                 if (batch->index)
739                         __flush_tlb_pending(batch);
740                 batch->active = 0;
741         }
742 #endif /* CONFIG_PPC_BOOK3S_64 */
743
744         local_irq_save(flags);
745
746         /*
747          * We can't take a PMU exception inside _switch() since there is a
748          * window where the kernel stack SLB and the kernel stack are out
749          * of sync. Hard disable here.
750          */
751         hard_irq_disable();
752
753         tm_recheckpoint_new_task(new);
754
755         last = _switch(old_thread, new_thread);
756
757 #ifdef CONFIG_PPC_BOOK3S_64
758         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
759                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
760                 batch = &__get_cpu_var(ppc64_tlb_batch);
761                 batch->active = 1;
762         }
763 #endif /* CONFIG_PPC_BOOK3S_64 */
764
765         local_irq_restore(flags);
766
767         return last;
768 }
769
770 static int instructions_to_print = 16;
771
772 static void show_instructions(struct pt_regs *regs)
773 {
774         int i;
775         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
776                         sizeof(int));
777
778         printk("Instruction dump:");
779
780         for (i = 0; i < instructions_to_print; i++) {
781                 int instr;
782
783                 if (!(i % 8))
784                         printk("\n");
785
786 #if !defined(CONFIG_BOOKE)
787                 /* If executing with the IMMU off, adjust pc rather
788                  * than print XXXXXXXX.
789                  */
790                 if (!(regs->msr & MSR_IR))
791                         pc = (unsigned long)phys_to_virt(pc);
792 #endif
793
794                 /* We use __get_user here *only* to avoid an OOPS on a
795                  * bad address because the pc *should* only be a
796                  * kernel address.
797                  */
798                 if (!__kernel_text_address(pc) ||
799                      __get_user(instr, (unsigned int __user *)pc)) {
800                         printk(KERN_CONT "XXXXXXXX ");
801                 } else {
802                         if (regs->nip == pc)
803                                 printk(KERN_CONT "<%08x> ", instr);
804                         else
805                                 printk(KERN_CONT "%08x ", instr);
806                 }
807
808                 pc += sizeof(int);
809         }
810
811         printk("\n");
812 }
813
814 static struct regbit {
815         unsigned long bit;
816         const char *name;
817 } msr_bits[] = {
818 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
819         {MSR_SF,        "SF"},
820         {MSR_HV,        "HV"},
821 #endif
822         {MSR_VEC,       "VEC"},
823         {MSR_VSX,       "VSX"},
824 #ifdef CONFIG_BOOKE
825         {MSR_CE,        "CE"},
826 #endif
827         {MSR_EE,        "EE"},
828         {MSR_PR,        "PR"},
829         {MSR_FP,        "FP"},
830         {MSR_ME,        "ME"},
831 #ifdef CONFIG_BOOKE
832         {MSR_DE,        "DE"},
833 #else
834         {MSR_SE,        "SE"},
835         {MSR_BE,        "BE"},
836 #endif
837         {MSR_IR,        "IR"},
838         {MSR_DR,        "DR"},
839         {MSR_PMM,       "PMM"},
840 #ifndef CONFIG_BOOKE
841         {MSR_RI,        "RI"},
842         {MSR_LE,        "LE"},
843 #endif
844         {0,             NULL}
845 };
846
847 static void printbits(unsigned long val, struct regbit *bits)
848 {
849         const char *sep = "";
850
851         printk("<");
852         for (; bits->bit; ++bits)
853                 if (val & bits->bit) {
854                         printk("%s%s", sep, bits->name);
855                         sep = ",";
856                 }
857         printk(">");
858 }
859
860 #ifdef CONFIG_PPC64
861 #define REG             "%016lx"
862 #define REGS_PER_LINE   4
863 #define LAST_VOLATILE   13
864 #else
865 #define REG             "%08lx"
866 #define REGS_PER_LINE   8
867 #define LAST_VOLATILE   12
868 #endif
869
870 void show_regs(struct pt_regs * regs)
871 {
872         int i, trap;
873
874         show_regs_print_info(KERN_DEFAULT);
875
876         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
877                regs->nip, regs->link, regs->ctr);
878         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
879                regs, regs->trap, print_tainted(), init_utsname()->release);
880         printk("MSR: "REG" ", regs->msr);
881         printbits(regs->msr, msr_bits);
882         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
883 #ifdef CONFIG_PPC64
884         printk("SOFTE: %ld\n", regs->softe);
885 #endif
886         trap = TRAP(regs);
887         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
888                 printk("CFAR: "REG"\n", regs->orig_gpr3);
889         if (trap == 0x300 || trap == 0x600)
890 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
891                 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
892 #else
893                 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
894 #endif
895
896         for (i = 0;  i < 32;  i++) {
897                 if ((i % REGS_PER_LINE) == 0)
898                         printk("\nGPR%02d: ", i);
899                 printk(REG " ", regs->gpr[i]);
900                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
901                         break;
902         }
903         printk("\n");
904 #ifdef CONFIG_KALLSYMS
905         /*
906          * Lookup NIP late so we have the best change of getting the
907          * above info out without failing
908          */
909         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
910         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
911 #endif
912 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
913         printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch);
914 #endif
915         show_stack(current, (unsigned long *) regs->gpr[1]);
916         if (!user_mode(regs))
917                 show_instructions(regs);
918 }
919
920 void exit_thread(void)
921 {
922         discard_lazy_cpu_state();
923 }
924
925 void flush_thread(void)
926 {
927         discard_lazy_cpu_state();
928
929 #ifdef CONFIG_HAVE_HW_BREAKPOINT
930         flush_ptrace_hw_breakpoint(current);
931 #else /* CONFIG_HAVE_HW_BREAKPOINT */
932         set_debug_reg_defaults(&current->thread);
933 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
934 }
935
936 void
937 release_thread(struct task_struct *t)
938 {
939 }
940
941 /*
942  * this gets called so that we can store coprocessor state into memory and
943  * copy the current task into the new thread.
944  */
945 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
946 {
947         flush_fp_to_thread(src);
948         flush_altivec_to_thread(src);
949         flush_vsx_to_thread(src);
950         flush_spe_to_thread(src);
951         *dst = *src;
952         return 0;
953 }
954
955 /*
956  * Copy a thread..
957  */
958 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
959
960 int copy_thread(unsigned long clone_flags, unsigned long usp,
961                 unsigned long arg, struct task_struct *p)
962 {
963         struct pt_regs *childregs, *kregs;
964         extern void ret_from_fork(void);
965         extern void ret_from_kernel_thread(void);
966         void (*f)(void);
967         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
968
969         /* Copy registers */
970         sp -= sizeof(struct pt_regs);
971         childregs = (struct pt_regs *) sp;
972         if (unlikely(p->flags & PF_KTHREAD)) {
973                 struct thread_info *ti = (void *)task_stack_page(p);
974                 memset(childregs, 0, sizeof(struct pt_regs));
975                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
976                 childregs->gpr[14] = usp;       /* function */
977 #ifdef CONFIG_PPC64
978                 clear_tsk_thread_flag(p, TIF_32BIT);
979                 childregs->softe = 1;
980 #endif
981                 childregs->gpr[15] = arg;
982                 p->thread.regs = NULL;  /* no user register state */
983                 ti->flags |= _TIF_RESTOREALL;
984                 f = ret_from_kernel_thread;
985         } else {
986                 struct pt_regs *regs = current_pt_regs();
987                 CHECK_FULL_REGS(regs);
988                 *childregs = *regs;
989                 if (usp)
990                         childregs->gpr[1] = usp;
991                 p->thread.regs = childregs;
992                 childregs->gpr[3] = 0;  /* Result from fork() */
993                 if (clone_flags & CLONE_SETTLS) {
994 #ifdef CONFIG_PPC64
995                         if (!is_32bit_task())
996                                 childregs->gpr[13] = childregs->gpr[6];
997                         else
998 #endif
999                                 childregs->gpr[2] = childregs->gpr[6];
1000                 }
1001
1002                 f = ret_from_fork;
1003         }
1004         sp -= STACK_FRAME_OVERHEAD;
1005
1006         /*
1007          * The way this works is that at some point in the future
1008          * some task will call _switch to switch to the new task.
1009          * That will pop off the stack frame created below and start
1010          * the new task running at ret_from_fork.  The new task will
1011          * do some house keeping and then return from the fork or clone
1012          * system call, using the stack frame created above.
1013          */
1014         ((unsigned long *)sp)[0] = 0;
1015         sp -= sizeof(struct pt_regs);
1016         kregs = (struct pt_regs *) sp;
1017         sp -= STACK_FRAME_OVERHEAD;
1018         p->thread.ksp = sp;
1019         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1020                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1021
1022 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1023         p->thread.ptrace_bps[0] = NULL;
1024 #endif
1025
1026 #ifdef CONFIG_PPC_STD_MMU_64
1027         if (mmu_has_feature(MMU_FTR_SLB)) {
1028                 unsigned long sp_vsid;
1029                 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1030
1031                 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1032                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1033                                 << SLB_VSID_SHIFT_1T;
1034                 else
1035                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1036                                 << SLB_VSID_SHIFT;
1037                 sp_vsid |= SLB_VSID_KERNEL | llp;
1038                 p->thread.ksp_vsid = sp_vsid;
1039         }
1040 #endif /* CONFIG_PPC_STD_MMU_64 */
1041 #ifdef CONFIG_PPC64 
1042         if (cpu_has_feature(CPU_FTR_DSCR)) {
1043                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1044                 p->thread.dscr = current->thread.dscr;
1045         }
1046         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1047                 p->thread.ppr = INIT_PPR;
1048 #endif
1049         /*
1050          * The PPC64 ABI makes use of a TOC to contain function 
1051          * pointers.  The function (ret_from_except) is actually a pointer
1052          * to the TOC entry.  The first entry is a pointer to the actual
1053          * function.
1054          */
1055 #ifdef CONFIG_PPC64
1056         kregs->nip = *((unsigned long *)f);
1057 #else
1058         kregs->nip = (unsigned long)f;
1059 #endif
1060         return 0;
1061 }
1062
1063 /*
1064  * Set up a thread for executing a new program
1065  */
1066 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1067 {
1068 #ifdef CONFIG_PPC64
1069         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1070 #endif
1071
1072         /*
1073          * If we exec out of a kernel thread then thread.regs will not be
1074          * set.  Do it now.
1075          */
1076         if (!current->thread.regs) {
1077                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1078                 current->thread.regs = regs - 1;
1079         }
1080
1081         memset(regs->gpr, 0, sizeof(regs->gpr));
1082         regs->ctr = 0;
1083         regs->link = 0;
1084         regs->xer = 0;
1085         regs->ccr = 0;
1086         regs->gpr[1] = sp;
1087
1088         /*
1089          * We have just cleared all the nonvolatile GPRs, so make
1090          * FULL_REGS(regs) return true.  This is necessary to allow
1091          * ptrace to examine the thread immediately after exec.
1092          */
1093         regs->trap &= ~1UL;
1094
1095 #ifdef CONFIG_PPC32
1096         regs->mq = 0;
1097         regs->nip = start;
1098         regs->msr = MSR_USER;
1099 #else
1100         if (!is_32bit_task()) {
1101                 unsigned long entry, toc;
1102
1103                 /* start is a relocated pointer to the function descriptor for
1104                  * the elf _start routine.  The first entry in the function
1105                  * descriptor is the entry address of _start and the second
1106                  * entry is the TOC value we need to use.
1107                  */
1108                 __get_user(entry, (unsigned long __user *)start);
1109                 __get_user(toc, (unsigned long __user *)start+1);
1110
1111                 /* Check whether the e_entry function descriptor entries
1112                  * need to be relocated before we can use them.
1113                  */
1114                 if (load_addr != 0) {
1115                         entry += load_addr;
1116                         toc   += load_addr;
1117                 }
1118                 regs->nip = entry;
1119                 regs->gpr[2] = toc;
1120                 regs->msr = MSR_USER64;
1121         } else {
1122                 regs->nip = start;
1123                 regs->gpr[2] = 0;
1124                 regs->msr = MSR_USER32;
1125         }
1126 #endif
1127         discard_lazy_cpu_state();
1128 #ifdef CONFIG_VSX
1129         current->thread.used_vsr = 0;
1130 #endif
1131         memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
1132         current->thread.fpscr.val = 0;
1133 #ifdef CONFIG_ALTIVEC
1134         memset(current->thread.vr, 0, sizeof(current->thread.vr));
1135         memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
1136         current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
1137         current->thread.vrsave = 0;
1138         current->thread.used_vr = 0;
1139 #endif /* CONFIG_ALTIVEC */
1140 #ifdef CONFIG_SPE
1141         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1142         current->thread.acc = 0;
1143         current->thread.spefscr = 0;
1144         current->thread.used_spe = 0;
1145 #endif /* CONFIG_SPE */
1146 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1147         if (cpu_has_feature(CPU_FTR_TM))
1148                 regs->msr |= MSR_TM;
1149         current->thread.tm_tfhar = 0;
1150         current->thread.tm_texasr = 0;
1151         current->thread.tm_tfiar = 0;
1152 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1153 }
1154
1155 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1156                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1157
1158 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1159 {
1160         struct pt_regs *regs = tsk->thread.regs;
1161
1162         /* This is a bit hairy.  If we are an SPE enabled  processor
1163          * (have embedded fp) we store the IEEE exception enable flags in
1164          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1165          * mode (asyn, precise, disabled) for 'Classic' FP. */
1166         if (val & PR_FP_EXC_SW_ENABLE) {
1167 #ifdef CONFIG_SPE
1168                 if (cpu_has_feature(CPU_FTR_SPE)) {
1169                         tsk->thread.fpexc_mode = val &
1170                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1171                         return 0;
1172                 } else {
1173                         return -EINVAL;
1174                 }
1175 #else
1176                 return -EINVAL;
1177 #endif
1178         }
1179
1180         /* on a CONFIG_SPE this does not hurt us.  The bits that
1181          * __pack_fe01 use do not overlap with bits used for
1182          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1183          * on CONFIG_SPE implementations are reserved so writing to
1184          * them does not change anything */
1185         if (val > PR_FP_EXC_PRECISE)
1186                 return -EINVAL;
1187         tsk->thread.fpexc_mode = __pack_fe01(val);
1188         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1189                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1190                         | tsk->thread.fpexc_mode;
1191         return 0;
1192 }
1193
1194 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1195 {
1196         unsigned int val;
1197
1198         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1199 #ifdef CONFIG_SPE
1200                 if (cpu_has_feature(CPU_FTR_SPE))
1201                         val = tsk->thread.fpexc_mode;
1202                 else
1203                         return -EINVAL;
1204 #else
1205                 return -EINVAL;
1206 #endif
1207         else
1208                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1209         return put_user(val, (unsigned int __user *) adr);
1210 }
1211
1212 int set_endian(struct task_struct *tsk, unsigned int val)
1213 {
1214         struct pt_regs *regs = tsk->thread.regs;
1215
1216         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1217             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1218                 return -EINVAL;
1219
1220         if (regs == NULL)
1221                 return -EINVAL;
1222
1223         if (val == PR_ENDIAN_BIG)
1224                 regs->msr &= ~MSR_LE;
1225         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1226                 regs->msr |= MSR_LE;
1227         else
1228                 return -EINVAL;
1229
1230         return 0;
1231 }
1232
1233 int get_endian(struct task_struct *tsk, unsigned long adr)
1234 {
1235         struct pt_regs *regs = tsk->thread.regs;
1236         unsigned int val;
1237
1238         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1239             !cpu_has_feature(CPU_FTR_REAL_LE))
1240                 return -EINVAL;
1241
1242         if (regs == NULL)
1243                 return -EINVAL;
1244
1245         if (regs->msr & MSR_LE) {
1246                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1247                         val = PR_ENDIAN_LITTLE;
1248                 else
1249                         val = PR_ENDIAN_PPC_LITTLE;
1250         } else
1251                 val = PR_ENDIAN_BIG;
1252
1253         return put_user(val, (unsigned int __user *)adr);
1254 }
1255
1256 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1257 {
1258         tsk->thread.align_ctl = val;
1259         return 0;
1260 }
1261
1262 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1263 {
1264         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1265 }
1266
1267 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1268                                   unsigned long nbytes)
1269 {
1270         unsigned long stack_page;
1271         unsigned long cpu = task_cpu(p);
1272
1273         /*
1274          * Avoid crashing if the stack has overflowed and corrupted
1275          * task_cpu(p), which is in the thread_info struct.
1276          */
1277         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1278                 stack_page = (unsigned long) hardirq_ctx[cpu];
1279                 if (sp >= stack_page + sizeof(struct thread_struct)
1280                     && sp <= stack_page + THREAD_SIZE - nbytes)
1281                         return 1;
1282
1283                 stack_page = (unsigned long) softirq_ctx[cpu];
1284                 if (sp >= stack_page + sizeof(struct thread_struct)
1285                     && sp <= stack_page + THREAD_SIZE - nbytes)
1286                         return 1;
1287         }
1288         return 0;
1289 }
1290
1291 int validate_sp(unsigned long sp, struct task_struct *p,
1292                        unsigned long nbytes)
1293 {
1294         unsigned long stack_page = (unsigned long)task_stack_page(p);
1295
1296         if (sp >= stack_page + sizeof(struct thread_struct)
1297             && sp <= stack_page + THREAD_SIZE - nbytes)
1298                 return 1;
1299
1300         return valid_irq_stack(sp, p, nbytes);
1301 }
1302
1303 EXPORT_SYMBOL(validate_sp);
1304
1305 unsigned long get_wchan(struct task_struct *p)
1306 {
1307         unsigned long ip, sp;
1308         int count = 0;
1309
1310         if (!p || p == current || p->state == TASK_RUNNING)
1311                 return 0;
1312
1313         sp = p->thread.ksp;
1314         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1315                 return 0;
1316
1317         do {
1318                 sp = *(unsigned long *)sp;
1319                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1320                         return 0;
1321                 if (count > 0) {
1322                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1323                         if (!in_sched_functions(ip))
1324                                 return ip;
1325                 }
1326         } while (count++ < 16);
1327         return 0;
1328 }
1329
1330 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1331
1332 void show_stack(struct task_struct *tsk, unsigned long *stack)
1333 {
1334         unsigned long sp, ip, lr, newsp;
1335         int count = 0;
1336         int firstframe = 1;
1337 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1338         int curr_frame = current->curr_ret_stack;
1339         extern void return_to_handler(void);
1340         unsigned long rth = (unsigned long)return_to_handler;
1341         unsigned long mrth = -1;
1342 #ifdef CONFIG_PPC64
1343         extern void mod_return_to_handler(void);
1344         rth = *(unsigned long *)rth;
1345         mrth = (unsigned long)mod_return_to_handler;
1346         mrth = *(unsigned long *)mrth;
1347 #endif
1348 #endif
1349
1350         sp = (unsigned long) stack;
1351         if (tsk == NULL)
1352                 tsk = current;
1353         if (sp == 0) {
1354                 if (tsk == current)
1355                         asm("mr %0,1" : "=r" (sp));
1356                 else
1357                         sp = tsk->thread.ksp;
1358         }
1359
1360         lr = 0;
1361         printk("Call Trace:\n");
1362         do {
1363                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1364                         return;
1365
1366                 stack = (unsigned long *) sp;
1367                 newsp = stack[0];
1368                 ip = stack[STACK_FRAME_LR_SAVE];
1369                 if (!firstframe || ip != lr) {
1370                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1371 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1372                         if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1373                                 printk(" (%pS)",
1374                                        (void *)current->ret_stack[curr_frame].ret);
1375                                 curr_frame--;
1376                         }
1377 #endif
1378                         if (firstframe)
1379                                 printk(" (unreliable)");
1380                         printk("\n");
1381                 }
1382                 firstframe = 0;
1383
1384                 /*
1385                  * See if this is an exception frame.
1386                  * We look for the "regshere" marker in the current frame.
1387                  */
1388                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1389                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1390                         struct pt_regs *regs = (struct pt_regs *)
1391                                 (sp + STACK_FRAME_OVERHEAD);
1392                         lr = regs->link;
1393                         printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1394                                regs->trap, (void *)regs->nip, (void *)lr);
1395                         firstframe = 1;
1396                 }
1397
1398                 sp = newsp;
1399         } while (count++ < kstack_depth_to_print);
1400 }
1401
1402 #ifdef CONFIG_PPC64
1403 /* Called with hard IRQs off */
1404 void notrace __ppc64_runlatch_on(void)
1405 {
1406         struct thread_info *ti = current_thread_info();
1407         unsigned long ctrl;
1408
1409         ctrl = mfspr(SPRN_CTRLF);
1410         ctrl |= CTRL_RUNLATCH;
1411         mtspr(SPRN_CTRLT, ctrl);
1412
1413         ti->local_flags |= _TLF_RUNLATCH;
1414 }
1415
1416 /* Called with hard IRQs off */
1417 void notrace __ppc64_runlatch_off(void)
1418 {
1419         struct thread_info *ti = current_thread_info();
1420         unsigned long ctrl;
1421
1422         ti->local_flags &= ~_TLF_RUNLATCH;
1423
1424         ctrl = mfspr(SPRN_CTRLF);
1425         ctrl &= ~CTRL_RUNLATCH;
1426         mtspr(SPRN_CTRLT, ctrl);
1427 }
1428 #endif /* CONFIG_PPC64 */
1429
1430 unsigned long arch_align_stack(unsigned long sp)
1431 {
1432         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1433                 sp -= get_random_int() & ~PAGE_MASK;
1434         return sp & ~0xf;
1435 }
1436
1437 static inline unsigned long brk_rnd(void)
1438 {
1439         unsigned long rnd = 0;
1440
1441         /* 8MB for 32bit, 1GB for 64bit */
1442         if (is_32bit_task())
1443                 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1444         else
1445                 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1446
1447         return rnd << PAGE_SHIFT;
1448 }
1449
1450 unsigned long arch_randomize_brk(struct mm_struct *mm)
1451 {
1452         unsigned long base = mm->brk;
1453         unsigned long ret;
1454
1455 #ifdef CONFIG_PPC_STD_MMU_64
1456         /*
1457          * If we are using 1TB segments and we are allowed to randomise
1458          * the heap, we can put it above 1TB so it is backed by a 1TB
1459          * segment. Otherwise the heap will be in the bottom 1TB
1460          * which always uses 256MB segments and this may result in a
1461          * performance penalty.
1462          */
1463         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1464                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1465 #endif
1466
1467         ret = PAGE_ALIGN(base + brk_rnd());
1468
1469         if (ret < mm->brk)
1470                 return mm->brk;
1471
1472         return ret;
1473 }
1474
1475 unsigned long randomize_et_dyn(unsigned long base)
1476 {
1477         unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1478
1479         if (ret < base)
1480                 return base;
1481
1482         return ret;
1483 }