2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
44 #include <asm/processor.h>
47 #include <asm/machdep.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
53 #include <asm/debug.h>
55 #include <asm/firmware.h>
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
61 /* Transactional Memory debug */
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
65 #define TM_DEBUG(x...) do { } while(0)
68 extern unsigned long _get_SP(void);
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78 void giveup_fpu_maybe_transactional(struct task_struct *tsk)
81 * If we are saving the current thread's registers, and the
82 * thread is in a transactional state, set the TIF_RESTORE_TM
83 * bit so that we know to restore the registers before
84 * returning to userspace.
86 if (tsk == current && tsk->thread.regs &&
87 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
88 !test_thread_flag(TIF_RESTORE_TM)) {
89 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
90 set_thread_flag(TIF_RESTORE_TM);
96 void giveup_altivec_maybe_transactional(struct task_struct *tsk)
99 * If we are saving the current thread's registers, and the
100 * thread is in a transactional state, set the TIF_RESTORE_TM
101 * bit so that we know to restore the registers before
102 * returning to userspace.
104 if (tsk == current && tsk->thread.regs &&
105 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
106 !test_thread_flag(TIF_RESTORE_TM)) {
107 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
108 set_thread_flag(TIF_RESTORE_TM);
115 #define giveup_fpu_maybe_transactional(tsk) giveup_fpu(tsk)
116 #define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
117 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
119 #ifdef CONFIG_PPC_FPU
121 * Make sure the floating-point register state in the
122 * the thread_struct is up to date for task tsk.
124 void flush_fp_to_thread(struct task_struct *tsk)
126 if (tsk->thread.regs) {
128 * We need to disable preemption here because if we didn't,
129 * another process could get scheduled after the regs->msr
130 * test but before we have finished saving the FP registers
131 * to the thread_struct. That process could take over the
132 * FPU, and then when we get scheduled again we would store
133 * bogus values for the remaining FP registers.
136 if (tsk->thread.regs->msr & MSR_FP) {
139 * This should only ever be called for current or
140 * for a stopped child process. Since we save away
141 * the FP register state on context switch on SMP,
142 * there is something wrong if a stopped child appears
143 * to still have its FP state in the CPU registers.
145 BUG_ON(tsk != current);
147 giveup_fpu_maybe_transactional(tsk);
152 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
153 #endif /* CONFIG_PPC_FPU */
155 void enable_kernel_fp(void)
157 WARN_ON(preemptible());
160 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
161 giveup_fpu_maybe_transactional(current);
163 giveup_fpu(NULL); /* just enables FP for kernel */
165 giveup_fpu_maybe_transactional(last_task_used_math);
166 #endif /* CONFIG_SMP */
168 EXPORT_SYMBOL(enable_kernel_fp);
170 #ifdef CONFIG_ALTIVEC
171 void enable_kernel_altivec(void)
173 WARN_ON(preemptible());
176 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
177 giveup_altivec_maybe_transactional(current);
179 giveup_altivec_notask();
181 giveup_altivec_maybe_transactional(last_task_used_altivec);
182 #endif /* CONFIG_SMP */
184 EXPORT_SYMBOL(enable_kernel_altivec);
187 * Make sure the VMX/Altivec register state in the
188 * the thread_struct is up to date for task tsk.
190 void flush_altivec_to_thread(struct task_struct *tsk)
192 if (tsk->thread.regs) {
194 if (tsk->thread.regs->msr & MSR_VEC) {
196 BUG_ON(tsk != current);
198 giveup_altivec_maybe_transactional(tsk);
203 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
204 #endif /* CONFIG_ALTIVEC */
208 /* not currently used, but some crazy RAID module might want to later */
209 void enable_kernel_vsx(void)
211 WARN_ON(preemptible());
214 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
217 giveup_vsx(NULL); /* just enable vsx for kernel - force */
219 giveup_vsx(last_task_used_vsx);
220 #endif /* CONFIG_SMP */
222 EXPORT_SYMBOL(enable_kernel_vsx);
225 void giveup_vsx(struct task_struct *tsk)
227 giveup_fpu_maybe_transactional(tsk);
228 giveup_altivec_maybe_transactional(tsk);
232 void flush_vsx_to_thread(struct task_struct *tsk)
234 if (tsk->thread.regs) {
236 if (tsk->thread.regs->msr & MSR_VSX) {
238 BUG_ON(tsk != current);
245 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
246 #endif /* CONFIG_VSX */
250 void enable_kernel_spe(void)
252 WARN_ON(preemptible());
255 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
258 giveup_spe(NULL); /* just enable SPE for kernel - force */
260 giveup_spe(last_task_used_spe);
261 #endif /* __SMP __ */
263 EXPORT_SYMBOL(enable_kernel_spe);
265 void flush_spe_to_thread(struct task_struct *tsk)
267 if (tsk->thread.regs) {
269 if (tsk->thread.regs->msr & MSR_SPE) {
271 BUG_ON(tsk != current);
273 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
279 #endif /* CONFIG_SPE */
283 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
284 * and the current task has some state, discard it.
286 void discard_lazy_cpu_state(void)
289 if (last_task_used_math == current)
290 last_task_used_math = NULL;
291 #ifdef CONFIG_ALTIVEC
292 if (last_task_used_altivec == current)
293 last_task_used_altivec = NULL;
294 #endif /* CONFIG_ALTIVEC */
296 if (last_task_used_vsx == current)
297 last_task_used_vsx = NULL;
298 #endif /* CONFIG_VSX */
300 if (last_task_used_spe == current)
301 last_task_used_spe = NULL;
305 #endif /* CONFIG_SMP */
307 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
308 void do_send_trap(struct pt_regs *regs, unsigned long address,
309 unsigned long error_code, int signal_code, int breakpt)
313 current->thread.trap_nr = signal_code;
314 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
315 11, SIGSEGV) == NOTIFY_STOP)
318 /* Deliver the signal to userspace */
319 info.si_signo = SIGTRAP;
320 info.si_errno = breakpt; /* breakpoint or watchpoint id */
321 info.si_code = signal_code;
322 info.si_addr = (void __user *)address;
323 force_sig_info(SIGTRAP, &info, current);
325 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
326 void do_break (struct pt_regs *regs, unsigned long address,
327 unsigned long error_code)
331 current->thread.trap_nr = TRAP_HWBKPT;
332 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
333 11, SIGSEGV) == NOTIFY_STOP)
336 if (debugger_break_match(regs))
339 /* Clear the breakpoint */
340 hw_breakpoint_disable();
342 /* Deliver the signal to userspace */
343 info.si_signo = SIGTRAP;
345 info.si_code = TRAP_HWBKPT;
346 info.si_addr = (void __user *)address;
347 force_sig_info(SIGTRAP, &info, current);
349 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
351 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
353 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
355 * Set the debug registers back to their default "safe" values.
357 static void set_debug_reg_defaults(struct thread_struct *thread)
359 thread->debug.iac1 = thread->debug.iac2 = 0;
360 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
361 thread->debug.iac3 = thread->debug.iac4 = 0;
363 thread->debug.dac1 = thread->debug.dac2 = 0;
364 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
365 thread->debug.dvc1 = thread->debug.dvc2 = 0;
367 thread->debug.dbcr0 = 0;
370 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
372 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
373 DBCR1_IAC3US | DBCR1_IAC4US;
375 * Force Data Address Compare User/Supervisor bits to be User-only
376 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
378 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
380 thread->debug.dbcr1 = 0;
384 static void prime_debug_regs(struct debug_reg *debug)
387 * We could have inherited MSR_DE from userspace, since
388 * it doesn't get cleared on exception entry. Make sure
389 * MSR_DE is clear before we enable any debug events.
391 mtmsr(mfmsr() & ~MSR_DE);
393 mtspr(SPRN_IAC1, debug->iac1);
394 mtspr(SPRN_IAC2, debug->iac2);
395 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
396 mtspr(SPRN_IAC3, debug->iac3);
397 mtspr(SPRN_IAC4, debug->iac4);
399 mtspr(SPRN_DAC1, debug->dac1);
400 mtspr(SPRN_DAC2, debug->dac2);
401 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
402 mtspr(SPRN_DVC1, debug->dvc1);
403 mtspr(SPRN_DVC2, debug->dvc2);
405 mtspr(SPRN_DBCR0, debug->dbcr0);
406 mtspr(SPRN_DBCR1, debug->dbcr1);
408 mtspr(SPRN_DBCR2, debug->dbcr2);
412 * Unless neither the old or new thread are making use of the
413 * debug registers, set the debug registers from the values
414 * stored in the new thread.
416 void switch_booke_debug_regs(struct debug_reg *new_debug)
418 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
419 || (new_debug->dbcr0 & DBCR0_IDM))
420 prime_debug_regs(new_debug);
422 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
423 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
424 #ifndef CONFIG_HAVE_HW_BREAKPOINT
425 static void set_debug_reg_defaults(struct thread_struct *thread)
427 thread->hw_brk.address = 0;
428 thread->hw_brk.type = 0;
429 set_breakpoint(&thread->hw_brk);
431 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
432 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
434 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
435 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
437 mtspr(SPRN_DAC1, dabr);
438 #ifdef CONFIG_PPC_47x
443 #elif defined(CONFIG_PPC_BOOK3S)
444 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
446 mtspr(SPRN_DABR, dabr);
447 if (cpu_has_feature(CPU_FTR_DABRX))
448 mtspr(SPRN_DABRX, dabrx);
452 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
458 static inline int set_dabr(struct arch_hw_breakpoint *brk)
460 unsigned long dabr, dabrx;
462 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
463 dabrx = ((brk->type >> 3) & 0x7);
466 return ppc_md.set_dabr(dabr, dabrx);
468 return __set_dabr(dabr, dabrx);
471 static inline int set_dawr(struct arch_hw_breakpoint *brk)
473 unsigned long dawr, dawrx, mrd;
477 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
478 << (63 - 58); //* read/write bits */
479 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
480 << (63 - 59); //* translate */
481 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
482 >> 3; //* PRIM bits */
483 /* dawr length is stored in field MDR bits 48:53. Matches range in
484 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
486 brk->len is in bytes.
487 This aligns up to double word size, shifts and does the bias.
489 mrd = ((brk->len + 7) >> 3) - 1;
490 dawrx |= (mrd & 0x3f) << (63 - 53);
493 return ppc_md.set_dawr(dawr, dawrx);
494 mtspr(SPRN_DAWR, dawr);
495 mtspr(SPRN_DAWRX, dawrx);
499 int set_breakpoint(struct arch_hw_breakpoint *brk)
501 __get_cpu_var(current_brk) = *brk;
503 if (cpu_has_feature(CPU_FTR_DAWR))
504 return set_dawr(brk);
506 return set_dabr(brk);
510 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
513 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
514 struct arch_hw_breakpoint *b)
516 if (a->address != b->address)
518 if (a->type != b->type)
520 if (a->len != b->len)
525 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
526 static void tm_reclaim_thread(struct thread_struct *thr,
527 struct thread_info *ti, uint8_t cause)
529 unsigned long msr_diff = 0;
532 * If FP/VSX registers have been already saved to the
533 * thread_struct, move them to the transact_fp array.
534 * We clear the TIF_RESTORE_TM bit since after the reclaim
535 * the thread will no longer be transactional.
537 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
538 msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
539 if (msr_diff & MSR_FP)
540 memcpy(&thr->transact_fp, &thr->fp_state,
541 sizeof(struct thread_fp_state));
542 if (msr_diff & MSR_VEC)
543 memcpy(&thr->transact_vr, &thr->vr_state,
544 sizeof(struct thread_vr_state));
545 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
546 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
549 tm_reclaim(thr, thr->regs->msr, cause);
551 /* Having done the reclaim, we now have the checkpointed
552 * FP/VSX values in the registers. These might be valid
553 * even if we have previously called enable_kernel_fp() or
554 * flush_fp_to_thread(), so update thr->regs->msr to
555 * indicate their current validity.
557 thr->regs->msr |= msr_diff;
560 void tm_reclaim_current(uint8_t cause)
563 tm_reclaim_thread(¤t->thread, current_thread_info(), cause);
566 static inline void tm_reclaim_task(struct task_struct *tsk)
568 /* We have to work out if we're switching from/to a task that's in the
569 * middle of a transaction.
571 * In switching we need to maintain a 2nd register state as
572 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
573 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
574 * (current) FPRs into oldtask->thread.transact_fpr[].
576 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
578 struct thread_struct *thr = &tsk->thread;
583 if (!MSR_TM_ACTIVE(thr->regs->msr))
584 goto out_and_saveregs;
586 /* Stash the original thread MSR, as giveup_fpu et al will
587 * modify it. We hold onto it to see whether the task used
588 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
589 * tm_orig_msr is already set.
591 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
592 thr->tm_orig_msr = thr->regs->msr;
594 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
595 "ccr=%lx, msr=%lx, trap=%lx)\n",
596 tsk->pid, thr->regs->nip,
597 thr->regs->ccr, thr->regs->msr,
600 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
602 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
606 /* Always save the regs here, even if a transaction's not active.
607 * This context-switches a thread's TM info SPRs. We do it here to
608 * be consistent with the restore path (in recheckpoint) which
609 * cannot happen later in _switch().
614 extern void __tm_recheckpoint(struct thread_struct *thread,
615 unsigned long orig_msr);
617 void tm_recheckpoint(struct thread_struct *thread,
618 unsigned long orig_msr)
622 /* We really can't be interrupted here as the TEXASR registers can't
623 * change and later in the trecheckpoint code, we have a userspace R1.
624 * So let's hard disable over this region.
626 local_irq_save(flags);
629 /* The TM SPRs are restored here, so that TEXASR.FS can be set
630 * before the trecheckpoint and no explosion occurs.
632 tm_restore_sprs(thread);
634 __tm_recheckpoint(thread, orig_msr);
636 local_irq_restore(flags);
639 static inline void tm_recheckpoint_new_task(struct task_struct *new)
643 if (!cpu_has_feature(CPU_FTR_TM))
646 /* Recheckpoint the registers of the thread we're about to switch to.
648 * If the task was using FP, we non-lazily reload both the original and
649 * the speculative FP register states. This is because the kernel
650 * doesn't see if/when a TM rollback occurs, so if we take an FP
651 * unavoidable later, we are unable to determine which set of FP regs
652 * need to be restored.
654 if (!new->thread.regs)
657 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
658 tm_restore_sprs(&new->thread);
661 msr = new->thread.tm_orig_msr;
662 /* Recheckpoint to restore original checkpointed register state. */
663 TM_DEBUG("*** tm_recheckpoint of pid %d "
664 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
665 new->pid, new->thread.regs->msr, msr);
667 /* This loads the checkpointed FP/VEC state, if used */
668 tm_recheckpoint(&new->thread, msr);
670 /* This loads the speculative FP/VEC state, if used */
672 do_load_up_transact_fpu(&new->thread);
673 new->thread.regs->msr |=
674 (MSR_FP | new->thread.fpexc_mode);
676 #ifdef CONFIG_ALTIVEC
678 do_load_up_transact_altivec(&new->thread);
679 new->thread.regs->msr |= MSR_VEC;
682 /* We may as well turn on VSX too since all the state is restored now */
684 new->thread.regs->msr |= MSR_VSX;
686 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
687 "(kernel msr 0x%lx)\n",
691 static inline void __switch_to_tm(struct task_struct *prev)
693 if (cpu_has_feature(CPU_FTR_TM)) {
695 tm_reclaim_task(prev);
700 * This is called if we are on the way out to userspace and the
701 * TIF_RESTORE_TM flag is set. It checks if we need to reload
702 * FP and/or vector state and does so if necessary.
703 * If userspace is inside a transaction (whether active or
704 * suspended) and FP/VMX/VSX instructions have ever been enabled
705 * inside that transaction, then we have to keep them enabled
706 * and keep the FP/VMX/VSX state loaded while ever the transaction
707 * continues. The reason is that if we didn't, and subsequently
708 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
709 * we don't know whether it's the same transaction, and thus we
710 * don't know which of the checkpointed state and the transactional
713 void restore_tm_state(struct pt_regs *regs)
715 unsigned long msr_diff;
717 clear_thread_flag(TIF_RESTORE_TM);
718 if (!MSR_TM_ACTIVE(regs->msr))
721 msr_diff = current->thread.tm_orig_msr & ~regs->msr;
722 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
723 if (msr_diff & MSR_FP) {
725 load_fp_state(¤t->thread.fp_state);
726 regs->msr |= current->thread.fpexc_mode;
728 if (msr_diff & MSR_VEC) {
730 load_vr_state(¤t->thread.vr_state);
732 regs->msr |= msr_diff;
736 #define tm_recheckpoint_new_task(new)
737 #define __switch_to_tm(prev)
738 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
740 struct task_struct *__switch_to(struct task_struct *prev,
741 struct task_struct *new)
743 struct thread_struct *new_thread, *old_thread;
744 struct task_struct *last;
745 #ifdef CONFIG_PPC_BOOK3S_64
746 struct ppc64_tlb_batch *batch;
749 WARN_ON(!irqs_disabled());
751 /* Back up the TAR across context switches.
752 * Note that the TAR is not available for use in the kernel. (To
753 * provide this, the TAR should be backed up/restored on exception
754 * entry/exit instead, and be in pt_regs. FIXME, this should be in
755 * pt_regs anyway (for debug).)
756 * Save the TAR here before we do treclaim/trecheckpoint as these
757 * will change the TAR.
759 save_tar(&prev->thread);
761 __switch_to_tm(prev);
764 /* avoid complexity of lazy save/restore of fpu
765 * by just saving it every time we switch out if
766 * this task used the fpu during the last quantum.
768 * If it tries to use the fpu again, it'll trap and
769 * reload its fp regs. So we don't have to do a restore
770 * every switch, just a save.
773 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
775 #ifdef CONFIG_ALTIVEC
777 * If the previous thread used altivec in the last quantum
778 * (thus changing altivec regs) then save them.
779 * We used to check the VRSAVE register but not all apps
780 * set it, so we don't rely on it now (and in fact we need
781 * to save & restore VSCR even if VRSAVE == 0). -- paulus
783 * On SMP we always save/restore altivec regs just to avoid the
784 * complexity of changing processors.
787 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
788 giveup_altivec(prev);
789 #endif /* CONFIG_ALTIVEC */
791 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
792 /* VMX and FPU registers are already save here */
794 #endif /* CONFIG_VSX */
797 * If the previous thread used spe in the last quantum
798 * (thus changing spe regs) then save them.
800 * On SMP we always save/restore spe regs just to avoid the
801 * complexity of changing processors.
803 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
805 #endif /* CONFIG_SPE */
807 #else /* CONFIG_SMP */
808 #ifdef CONFIG_ALTIVEC
809 /* Avoid the trap. On smp this this never happens since
810 * we don't set last_task_used_altivec -- Cort
812 if (new->thread.regs && last_task_used_altivec == new)
813 new->thread.regs->msr |= MSR_VEC;
814 #endif /* CONFIG_ALTIVEC */
816 if (new->thread.regs && last_task_used_vsx == new)
817 new->thread.regs->msr |= MSR_VSX;
818 #endif /* CONFIG_VSX */
820 /* Avoid the trap. On smp this this never happens since
821 * we don't set last_task_used_spe
823 if (new->thread.regs && last_task_used_spe == new)
824 new->thread.regs->msr |= MSR_SPE;
825 #endif /* CONFIG_SPE */
827 #endif /* CONFIG_SMP */
829 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
830 switch_booke_debug_regs(&new->thread.debug);
833 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
836 #ifndef CONFIG_HAVE_HW_BREAKPOINT
837 if (unlikely(!hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
838 set_breakpoint(&new->thread.hw_brk);
839 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
843 new_thread = &new->thread;
844 old_thread = ¤t->thread;
848 * Collect processor utilization data per process
850 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
851 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
852 long unsigned start_tb, current_tb;
853 start_tb = old_thread->start_tb;
854 cu->current_tb = current_tb = mfspr(SPRN_PURR);
855 old_thread->accum_tb += (current_tb - start_tb);
856 new_thread->start_tb = current_tb;
858 #endif /* CONFIG_PPC64 */
860 #ifdef CONFIG_PPC_BOOK3S_64
861 batch = &__get_cpu_var(ppc64_tlb_batch);
863 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
865 __flush_tlb_pending(batch);
868 #endif /* CONFIG_PPC_BOOK3S_64 */
871 * We can't take a PMU exception inside _switch() since there is a
872 * window where the kernel stack SLB and the kernel stack are out
873 * of sync. Hard disable here.
877 tm_recheckpoint_new_task(new);
879 last = _switch(old_thread, new_thread);
881 #ifdef CONFIG_PPC_BOOK3S_64
882 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
883 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
884 batch = &__get_cpu_var(ppc64_tlb_batch);
887 #endif /* CONFIG_PPC_BOOK3S_64 */
892 static int instructions_to_print = 16;
894 static void show_instructions(struct pt_regs *regs)
897 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
900 printk("Instruction dump:");
902 for (i = 0; i < instructions_to_print; i++) {
908 #if !defined(CONFIG_BOOKE)
909 /* If executing with the IMMU off, adjust pc rather
910 * than print XXXXXXXX.
912 if (!(regs->msr & MSR_IR))
913 pc = (unsigned long)phys_to_virt(pc);
916 /* We use __get_user here *only* to avoid an OOPS on a
917 * bad address because the pc *should* only be a
920 if (!__kernel_text_address(pc) ||
921 __get_user(instr, (unsigned int __user *)pc)) {
922 printk(KERN_CONT "XXXXXXXX ");
925 printk(KERN_CONT "<%08x> ", instr);
927 printk(KERN_CONT "%08x ", instr);
936 static struct regbit {
940 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
969 static void printbits(unsigned long val, struct regbit *bits)
971 const char *sep = "";
974 for (; bits->bit; ++bits)
975 if (val & bits->bit) {
976 printk("%s%s", sep, bits->name);
984 #define REGS_PER_LINE 4
985 #define LAST_VOLATILE 13
988 #define REGS_PER_LINE 8
989 #define LAST_VOLATILE 12
992 void show_regs(struct pt_regs * regs)
996 show_regs_print_info(KERN_DEFAULT);
998 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
999 regs->nip, regs->link, regs->ctr);
1000 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1001 regs, regs->trap, print_tainted(), init_utsname()->release);
1002 printk("MSR: "REG" ", regs->msr);
1003 printbits(regs->msr, msr_bits);
1004 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1006 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1007 printk("CFAR: "REG" ", regs->orig_gpr3);
1008 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1009 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1010 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1012 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1015 printk("SOFTE: %ld ", regs->softe);
1017 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1018 if (MSR_TM_ACTIVE(regs->msr))
1019 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1022 for (i = 0; i < 32; i++) {
1023 if ((i % REGS_PER_LINE) == 0)
1024 printk("\nGPR%02d: ", i);
1025 printk(REG " ", regs->gpr[i]);
1026 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1030 #ifdef CONFIG_KALLSYMS
1032 * Lookup NIP late so we have the best change of getting the
1033 * above info out without failing
1035 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1036 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1038 show_stack(current, (unsigned long *) regs->gpr[1]);
1039 if (!user_mode(regs))
1040 show_instructions(regs);
1043 void exit_thread(void)
1045 discard_lazy_cpu_state();
1048 void flush_thread(void)
1050 discard_lazy_cpu_state();
1052 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1053 flush_ptrace_hw_breakpoint(current);
1054 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1055 set_debug_reg_defaults(¤t->thread);
1056 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1060 release_thread(struct task_struct *t)
1065 * this gets called so that we can store coprocessor state into memory and
1066 * copy the current task into the new thread.
1068 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1070 flush_fp_to_thread(src);
1071 flush_altivec_to_thread(src);
1072 flush_vsx_to_thread(src);
1073 flush_spe_to_thread(src);
1075 * Flush TM state out so we can copy it. __switch_to_tm() does this
1076 * flush but it removes the checkpointed state from the current CPU and
1077 * transitions the CPU out of TM mode. Hence we need to call
1078 * tm_recheckpoint_new_task() (on the same task) to restore the
1079 * checkpointed state back and the TM mode.
1081 __switch_to_tm(src);
1082 tm_recheckpoint_new_task(src);
1086 clear_task_ebb(dst);
1094 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
1096 int copy_thread(unsigned long clone_flags, unsigned long usp,
1097 unsigned long arg, struct task_struct *p)
1099 struct pt_regs *childregs, *kregs;
1100 extern void ret_from_fork(void);
1101 extern void ret_from_kernel_thread(void);
1103 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1105 /* Copy registers */
1106 sp -= sizeof(struct pt_regs);
1107 childregs = (struct pt_regs *) sp;
1108 if (unlikely(p->flags & PF_KTHREAD)) {
1109 struct thread_info *ti = (void *)task_stack_page(p);
1110 memset(childregs, 0, sizeof(struct pt_regs));
1111 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1114 childregs->gpr[14] = ppc_function_entry((void *)usp);
1116 clear_tsk_thread_flag(p, TIF_32BIT);
1117 childregs->softe = 1;
1119 childregs->gpr[15] = arg;
1120 p->thread.regs = NULL; /* no user register state */
1121 ti->flags |= _TIF_RESTOREALL;
1122 f = ret_from_kernel_thread;
1124 struct pt_regs *regs = current_pt_regs();
1125 CHECK_FULL_REGS(regs);
1128 childregs->gpr[1] = usp;
1129 p->thread.regs = childregs;
1130 childregs->gpr[3] = 0; /* Result from fork() */
1131 if (clone_flags & CLONE_SETTLS) {
1133 if (!is_32bit_task())
1134 childregs->gpr[13] = childregs->gpr[6];
1137 childregs->gpr[2] = childregs->gpr[6];
1142 sp -= STACK_FRAME_OVERHEAD;
1145 * The way this works is that at some point in the future
1146 * some task will call _switch to switch to the new task.
1147 * That will pop off the stack frame created below and start
1148 * the new task running at ret_from_fork. The new task will
1149 * do some house keeping and then return from the fork or clone
1150 * system call, using the stack frame created above.
1152 ((unsigned long *)sp)[0] = 0;
1153 sp -= sizeof(struct pt_regs);
1154 kregs = (struct pt_regs *) sp;
1155 sp -= STACK_FRAME_OVERHEAD;
1158 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1159 _ALIGN_UP(sizeof(struct thread_info), 16);
1161 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1162 p->thread.ptrace_bps[0] = NULL;
1165 p->thread.fp_save_area = NULL;
1166 #ifdef CONFIG_ALTIVEC
1167 p->thread.vr_save_area = NULL;
1170 #ifdef CONFIG_PPC_STD_MMU_64
1171 if (mmu_has_feature(MMU_FTR_SLB)) {
1172 unsigned long sp_vsid;
1173 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1175 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1176 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1177 << SLB_VSID_SHIFT_1T;
1179 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1181 sp_vsid |= SLB_VSID_KERNEL | llp;
1182 p->thread.ksp_vsid = sp_vsid;
1184 #endif /* CONFIG_PPC_STD_MMU_64 */
1186 if (cpu_has_feature(CPU_FTR_DSCR)) {
1187 p->thread.dscr_inherit = current->thread.dscr_inherit;
1188 p->thread.dscr = current->thread.dscr;
1190 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1191 p->thread.ppr = INIT_PPR;
1193 kregs->nip = ppc_function_entry(f);
1198 * Set up a thread for executing a new program
1200 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1203 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1207 * If we exec out of a kernel thread then thread.regs will not be
1210 if (!current->thread.regs) {
1211 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1212 current->thread.regs = regs - 1;
1215 memset(regs->gpr, 0, sizeof(regs->gpr));
1223 * We have just cleared all the nonvolatile GPRs, so make
1224 * FULL_REGS(regs) return true. This is necessary to allow
1225 * ptrace to examine the thread immediately after exec.
1232 regs->msr = MSR_USER;
1234 if (!is_32bit_task()) {
1235 unsigned long entry;
1237 if (is_elf2_task()) {
1238 /* Look ma, no function descriptors! */
1243 * The latest iteration of the ABI requires that when
1244 * calling a function (at its global entry point),
1245 * the caller must ensure r12 holds the entry point
1246 * address (so that the function can quickly
1247 * establish addressability).
1249 regs->gpr[12] = start;
1250 /* Make sure that's restored on entry to userspace. */
1251 set_thread_flag(TIF_RESTOREALL);
1255 /* start is a relocated pointer to the function
1256 * descriptor for the elf _start routine. The first
1257 * entry in the function descriptor is the entry
1258 * address of _start and the second entry is the TOC
1259 * value we need to use.
1261 __get_user(entry, (unsigned long __user *)start);
1262 __get_user(toc, (unsigned long __user *)start+1);
1264 /* Check whether the e_entry function descriptor entries
1265 * need to be relocated before we can use them.
1267 if (load_addr != 0) {
1274 regs->msr = MSR_USER64;
1278 regs->msr = MSR_USER32;
1281 discard_lazy_cpu_state();
1283 current->thread.used_vsr = 0;
1285 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state));
1286 current->thread.fp_save_area = NULL;
1287 #ifdef CONFIG_ALTIVEC
1288 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state));
1289 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1290 current->thread.vr_save_area = NULL;
1291 current->thread.vrsave = 0;
1292 current->thread.used_vr = 0;
1293 #endif /* CONFIG_ALTIVEC */
1295 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1296 current->thread.acc = 0;
1297 current->thread.spefscr = 0;
1298 current->thread.used_spe = 0;
1299 #endif /* CONFIG_SPE */
1300 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1301 if (cpu_has_feature(CPU_FTR_TM))
1302 regs->msr |= MSR_TM;
1303 current->thread.tm_tfhar = 0;
1304 current->thread.tm_texasr = 0;
1305 current->thread.tm_tfiar = 0;
1306 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1309 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1310 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1312 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1314 struct pt_regs *regs = tsk->thread.regs;
1316 /* This is a bit hairy. If we are an SPE enabled processor
1317 * (have embedded fp) we store the IEEE exception enable flags in
1318 * fpexc_mode. fpexc_mode is also used for setting FP exception
1319 * mode (asyn, precise, disabled) for 'Classic' FP. */
1320 if (val & PR_FP_EXC_SW_ENABLE) {
1322 if (cpu_has_feature(CPU_FTR_SPE)) {
1324 * When the sticky exception bits are set
1325 * directly by userspace, it must call prctl
1326 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1327 * in the existing prctl settings) or
1328 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1329 * the bits being set). <fenv.h> functions
1330 * saving and restoring the whole
1331 * floating-point environment need to do so
1332 * anyway to restore the prctl settings from
1333 * the saved environment.
1335 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1336 tsk->thread.fpexc_mode = val &
1337 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1347 /* on a CONFIG_SPE this does not hurt us. The bits that
1348 * __pack_fe01 use do not overlap with bits used for
1349 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1350 * on CONFIG_SPE implementations are reserved so writing to
1351 * them does not change anything */
1352 if (val > PR_FP_EXC_PRECISE)
1354 tsk->thread.fpexc_mode = __pack_fe01(val);
1355 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1356 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1357 | tsk->thread.fpexc_mode;
1361 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1365 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1367 if (cpu_has_feature(CPU_FTR_SPE)) {
1369 * When the sticky exception bits are set
1370 * directly by userspace, it must call prctl
1371 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1372 * in the existing prctl settings) or
1373 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1374 * the bits being set). <fenv.h> functions
1375 * saving and restoring the whole
1376 * floating-point environment need to do so
1377 * anyway to restore the prctl settings from
1378 * the saved environment.
1380 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1381 val = tsk->thread.fpexc_mode;
1388 val = __unpack_fe01(tsk->thread.fpexc_mode);
1389 return put_user(val, (unsigned int __user *) adr);
1392 int set_endian(struct task_struct *tsk, unsigned int val)
1394 struct pt_regs *regs = tsk->thread.regs;
1396 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1397 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1403 if (val == PR_ENDIAN_BIG)
1404 regs->msr &= ~MSR_LE;
1405 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1406 regs->msr |= MSR_LE;
1413 int get_endian(struct task_struct *tsk, unsigned long adr)
1415 struct pt_regs *regs = tsk->thread.regs;
1418 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1419 !cpu_has_feature(CPU_FTR_REAL_LE))
1425 if (regs->msr & MSR_LE) {
1426 if (cpu_has_feature(CPU_FTR_REAL_LE))
1427 val = PR_ENDIAN_LITTLE;
1429 val = PR_ENDIAN_PPC_LITTLE;
1431 val = PR_ENDIAN_BIG;
1433 return put_user(val, (unsigned int __user *)adr);
1436 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1438 tsk->thread.align_ctl = val;
1442 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1444 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1447 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1448 unsigned long nbytes)
1450 unsigned long stack_page;
1451 unsigned long cpu = task_cpu(p);
1454 * Avoid crashing if the stack has overflowed and corrupted
1455 * task_cpu(p), which is in the thread_info struct.
1457 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1458 stack_page = (unsigned long) hardirq_ctx[cpu];
1459 if (sp >= stack_page + sizeof(struct thread_struct)
1460 && sp <= stack_page + THREAD_SIZE - nbytes)
1463 stack_page = (unsigned long) softirq_ctx[cpu];
1464 if (sp >= stack_page + sizeof(struct thread_struct)
1465 && sp <= stack_page + THREAD_SIZE - nbytes)
1471 int validate_sp(unsigned long sp, struct task_struct *p,
1472 unsigned long nbytes)
1474 unsigned long stack_page = (unsigned long)task_stack_page(p);
1476 if (sp >= stack_page + sizeof(struct thread_struct)
1477 && sp <= stack_page + THREAD_SIZE - nbytes)
1480 return valid_irq_stack(sp, p, nbytes);
1483 EXPORT_SYMBOL(validate_sp);
1485 unsigned long get_wchan(struct task_struct *p)
1487 unsigned long ip, sp;
1490 if (!p || p == current || p->state == TASK_RUNNING)
1494 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1498 sp = *(unsigned long *)sp;
1499 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1502 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1503 if (!in_sched_functions(ip))
1506 } while (count++ < 16);
1510 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1512 void show_stack(struct task_struct *tsk, unsigned long *stack)
1514 unsigned long sp, ip, lr, newsp;
1517 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1518 int curr_frame = current->curr_ret_stack;
1519 extern void return_to_handler(void);
1520 unsigned long rth = (unsigned long)return_to_handler;
1521 unsigned long mrth = -1;
1523 extern void mod_return_to_handler(void);
1524 rth = *(unsigned long *)rth;
1525 mrth = (unsigned long)mod_return_to_handler;
1526 mrth = *(unsigned long *)mrth;
1530 sp = (unsigned long) stack;
1535 asm("mr %0,1" : "=r" (sp));
1537 sp = tsk->thread.ksp;
1541 printk("Call Trace:\n");
1543 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1546 stack = (unsigned long *) sp;
1548 ip = stack[STACK_FRAME_LR_SAVE];
1549 if (!firstframe || ip != lr) {
1550 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1551 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1552 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1554 (void *)current->ret_stack[curr_frame].ret);
1559 printk(" (unreliable)");
1565 * See if this is an exception frame.
1566 * We look for the "regshere" marker in the current frame.
1568 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1569 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1570 struct pt_regs *regs = (struct pt_regs *)
1571 (sp + STACK_FRAME_OVERHEAD);
1573 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1574 regs->trap, (void *)regs->nip, (void *)lr);
1579 } while (count++ < kstack_depth_to_print);
1583 /* Called with hard IRQs off */
1584 void notrace __ppc64_runlatch_on(void)
1586 struct thread_info *ti = current_thread_info();
1589 ctrl = mfspr(SPRN_CTRLF);
1590 ctrl |= CTRL_RUNLATCH;
1591 mtspr(SPRN_CTRLT, ctrl);
1593 ti->local_flags |= _TLF_RUNLATCH;
1596 /* Called with hard IRQs off */
1597 void notrace __ppc64_runlatch_off(void)
1599 struct thread_info *ti = current_thread_info();
1602 ti->local_flags &= ~_TLF_RUNLATCH;
1604 ctrl = mfspr(SPRN_CTRLF);
1605 ctrl &= ~CTRL_RUNLATCH;
1606 mtspr(SPRN_CTRLT, ctrl);
1608 #endif /* CONFIG_PPC64 */
1610 unsigned long arch_align_stack(unsigned long sp)
1612 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1613 sp -= get_random_int() & ~PAGE_MASK;
1617 static inline unsigned long brk_rnd(void)
1619 unsigned long rnd = 0;
1621 /* 8MB for 32bit, 1GB for 64bit */
1622 if (is_32bit_task())
1623 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1625 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1627 return rnd << PAGE_SHIFT;
1630 unsigned long arch_randomize_brk(struct mm_struct *mm)
1632 unsigned long base = mm->brk;
1635 #ifdef CONFIG_PPC_STD_MMU_64
1637 * If we are using 1TB segments and we are allowed to randomise
1638 * the heap, we can put it above 1TB so it is backed by a 1TB
1639 * segment. Otherwise the heap will be in the bottom 1TB
1640 * which always uses 256MB segments and this may result in a
1641 * performance penalty.
1643 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1644 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1647 ret = PAGE_ALIGN(base + brk_rnd());
1655 unsigned long randomize_et_dyn(unsigned long base)
1657 unsigned long ret = PAGE_ALIGN(base + brk_rnd());