2ae1b99166c63895784539f1c87a7488278ddf05
[firefly-linux-kernel-4.4.55.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
76
77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78 void giveup_fpu_maybe_transactional(struct task_struct *tsk)
79 {
80         /*
81          * If we are saving the current thread's registers, and the
82          * thread is in a transactional state, set the TIF_RESTORE_TM
83          * bit so that we know to restore the registers before
84          * returning to userspace.
85          */
86         if (tsk == current && tsk->thread.regs &&
87             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
88             !test_thread_flag(TIF_RESTORE_TM)) {
89                 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
90                 set_thread_flag(TIF_RESTORE_TM);
91         }
92
93         giveup_fpu(tsk);
94 }
95
96 void giveup_altivec_maybe_transactional(struct task_struct *tsk)
97 {
98         /*
99          * If we are saving the current thread's registers, and the
100          * thread is in a transactional state, set the TIF_RESTORE_TM
101          * bit so that we know to restore the registers before
102          * returning to userspace.
103          */
104         if (tsk == current && tsk->thread.regs &&
105             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
106             !test_thread_flag(TIF_RESTORE_TM)) {
107                 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
108                 set_thread_flag(TIF_RESTORE_TM);
109         }
110
111         giveup_altivec(tsk);
112 }
113
114 #else
115 #define giveup_fpu_maybe_transactional(tsk)     giveup_fpu(tsk)
116 #define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
117 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
118
119 #ifdef CONFIG_PPC_FPU
120 /*
121  * Make sure the floating-point register state in the
122  * the thread_struct is up to date for task tsk.
123  */
124 void flush_fp_to_thread(struct task_struct *tsk)
125 {
126         if (tsk->thread.regs) {
127                 /*
128                  * We need to disable preemption here because if we didn't,
129                  * another process could get scheduled after the regs->msr
130                  * test but before we have finished saving the FP registers
131                  * to the thread_struct.  That process could take over the
132                  * FPU, and then when we get scheduled again we would store
133                  * bogus values for the remaining FP registers.
134                  */
135                 preempt_disable();
136                 if (tsk->thread.regs->msr & MSR_FP) {
137 #ifdef CONFIG_SMP
138                         /*
139                          * This should only ever be called for current or
140                          * for a stopped child process.  Since we save away
141                          * the FP register state on context switch on SMP,
142                          * there is something wrong if a stopped child appears
143                          * to still have its FP state in the CPU registers.
144                          */
145                         BUG_ON(tsk != current);
146 #endif
147                         giveup_fpu_maybe_transactional(tsk);
148                 }
149                 preempt_enable();
150         }
151 }
152 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
153 #endif /* CONFIG_PPC_FPU */
154
155 void enable_kernel_fp(void)
156 {
157         WARN_ON(preemptible());
158
159 #ifdef CONFIG_SMP
160         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
161                 giveup_fpu_maybe_transactional(current);
162         else
163                 giveup_fpu(NULL);       /* just enables FP for kernel */
164 #else
165         giveup_fpu_maybe_transactional(last_task_used_math);
166 #endif /* CONFIG_SMP */
167 }
168 EXPORT_SYMBOL(enable_kernel_fp);
169
170 #ifdef CONFIG_ALTIVEC
171 void enable_kernel_altivec(void)
172 {
173         WARN_ON(preemptible());
174
175 #ifdef CONFIG_SMP
176         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
177                 giveup_altivec_maybe_transactional(current);
178         else
179                 giveup_altivec_notask();
180 #else
181         giveup_altivec_maybe_transactional(last_task_used_altivec);
182 #endif /* CONFIG_SMP */
183 }
184 EXPORT_SYMBOL(enable_kernel_altivec);
185
186 /*
187  * Make sure the VMX/Altivec register state in the
188  * the thread_struct is up to date for task tsk.
189  */
190 void flush_altivec_to_thread(struct task_struct *tsk)
191 {
192         if (tsk->thread.regs) {
193                 preempt_disable();
194                 if (tsk->thread.regs->msr & MSR_VEC) {
195 #ifdef CONFIG_SMP
196                         BUG_ON(tsk != current);
197 #endif
198                         giveup_altivec_maybe_transactional(tsk);
199                 }
200                 preempt_enable();
201         }
202 }
203 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
204 #endif /* CONFIG_ALTIVEC */
205
206 #ifdef CONFIG_VSX
207 #if 0
208 /* not currently used, but some crazy RAID module might want to later */
209 void enable_kernel_vsx(void)
210 {
211         WARN_ON(preemptible());
212
213 #ifdef CONFIG_SMP
214         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
215                 giveup_vsx(current);
216         else
217                 giveup_vsx(NULL);       /* just enable vsx for kernel - force */
218 #else
219         giveup_vsx(last_task_used_vsx);
220 #endif /* CONFIG_SMP */
221 }
222 EXPORT_SYMBOL(enable_kernel_vsx);
223 #endif
224
225 void giveup_vsx(struct task_struct *tsk)
226 {
227         giveup_fpu_maybe_transactional(tsk);
228         giveup_altivec_maybe_transactional(tsk);
229         __giveup_vsx(tsk);
230 }
231
232 void flush_vsx_to_thread(struct task_struct *tsk)
233 {
234         if (tsk->thread.regs) {
235                 preempt_disable();
236                 if (tsk->thread.regs->msr & MSR_VSX) {
237 #ifdef CONFIG_SMP
238                         BUG_ON(tsk != current);
239 #endif
240                         giveup_vsx(tsk);
241                 }
242                 preempt_enable();
243         }
244 }
245 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
246 #endif /* CONFIG_VSX */
247
248 #ifdef CONFIG_SPE
249
250 void enable_kernel_spe(void)
251 {
252         WARN_ON(preemptible());
253
254 #ifdef CONFIG_SMP
255         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
256                 giveup_spe(current);
257         else
258                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
259 #else
260         giveup_spe(last_task_used_spe);
261 #endif /* __SMP __ */
262 }
263 EXPORT_SYMBOL(enable_kernel_spe);
264
265 void flush_spe_to_thread(struct task_struct *tsk)
266 {
267         if (tsk->thread.regs) {
268                 preempt_disable();
269                 if (tsk->thread.regs->msr & MSR_SPE) {
270 #ifdef CONFIG_SMP
271                         BUG_ON(tsk != current);
272 #endif
273                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
274                         giveup_spe(tsk);
275                 }
276                 preempt_enable();
277         }
278 }
279 #endif /* CONFIG_SPE */
280
281 #ifndef CONFIG_SMP
282 /*
283  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
284  * and the current task has some state, discard it.
285  */
286 void discard_lazy_cpu_state(void)
287 {
288         preempt_disable();
289         if (last_task_used_math == current)
290                 last_task_used_math = NULL;
291 #ifdef CONFIG_ALTIVEC
292         if (last_task_used_altivec == current)
293                 last_task_used_altivec = NULL;
294 #endif /* CONFIG_ALTIVEC */
295 #ifdef CONFIG_VSX
296         if (last_task_used_vsx == current)
297                 last_task_used_vsx = NULL;
298 #endif /* CONFIG_VSX */
299 #ifdef CONFIG_SPE
300         if (last_task_used_spe == current)
301                 last_task_used_spe = NULL;
302 #endif
303         preempt_enable();
304 }
305 #endif /* CONFIG_SMP */
306
307 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
308 void do_send_trap(struct pt_regs *regs, unsigned long address,
309                   unsigned long error_code, int signal_code, int breakpt)
310 {
311         siginfo_t info;
312
313         current->thread.trap_nr = signal_code;
314         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
315                         11, SIGSEGV) == NOTIFY_STOP)
316                 return;
317
318         /* Deliver the signal to userspace */
319         info.si_signo = SIGTRAP;
320         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
321         info.si_code = signal_code;
322         info.si_addr = (void __user *)address;
323         force_sig_info(SIGTRAP, &info, current);
324 }
325 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
326 void do_break (struct pt_regs *regs, unsigned long address,
327                     unsigned long error_code)
328 {
329         siginfo_t info;
330
331         current->thread.trap_nr = TRAP_HWBKPT;
332         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
333                         11, SIGSEGV) == NOTIFY_STOP)
334                 return;
335
336         if (debugger_break_match(regs))
337                 return;
338
339         /* Clear the breakpoint */
340         hw_breakpoint_disable();
341
342         /* Deliver the signal to userspace */
343         info.si_signo = SIGTRAP;
344         info.si_errno = 0;
345         info.si_code = TRAP_HWBKPT;
346         info.si_addr = (void __user *)address;
347         force_sig_info(SIGTRAP, &info, current);
348 }
349 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
350
351 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
352
353 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
354 /*
355  * Set the debug registers back to their default "safe" values.
356  */
357 static void set_debug_reg_defaults(struct thread_struct *thread)
358 {
359         thread->debug.iac1 = thread->debug.iac2 = 0;
360 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
361         thread->debug.iac3 = thread->debug.iac4 = 0;
362 #endif
363         thread->debug.dac1 = thread->debug.dac2 = 0;
364 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
365         thread->debug.dvc1 = thread->debug.dvc2 = 0;
366 #endif
367         thread->debug.dbcr0 = 0;
368 #ifdef CONFIG_BOOKE
369         /*
370          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
371          */
372         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
373                         DBCR1_IAC3US | DBCR1_IAC4US;
374         /*
375          * Force Data Address Compare User/Supervisor bits to be User-only
376          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
377          */
378         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
379 #else
380         thread->debug.dbcr1 = 0;
381 #endif
382 }
383
384 static void prime_debug_regs(struct debug_reg *debug)
385 {
386         /*
387          * We could have inherited MSR_DE from userspace, since
388          * it doesn't get cleared on exception entry.  Make sure
389          * MSR_DE is clear before we enable any debug events.
390          */
391         mtmsr(mfmsr() & ~MSR_DE);
392
393         mtspr(SPRN_IAC1, debug->iac1);
394         mtspr(SPRN_IAC2, debug->iac2);
395 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
396         mtspr(SPRN_IAC3, debug->iac3);
397         mtspr(SPRN_IAC4, debug->iac4);
398 #endif
399         mtspr(SPRN_DAC1, debug->dac1);
400         mtspr(SPRN_DAC2, debug->dac2);
401 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
402         mtspr(SPRN_DVC1, debug->dvc1);
403         mtspr(SPRN_DVC2, debug->dvc2);
404 #endif
405         mtspr(SPRN_DBCR0, debug->dbcr0);
406         mtspr(SPRN_DBCR1, debug->dbcr1);
407 #ifdef CONFIG_BOOKE
408         mtspr(SPRN_DBCR2, debug->dbcr2);
409 #endif
410 }
411 /*
412  * Unless neither the old or new thread are making use of the
413  * debug registers, set the debug registers from the values
414  * stored in the new thread.
415  */
416 void switch_booke_debug_regs(struct debug_reg *new_debug)
417 {
418         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
419                 || (new_debug->dbcr0 & DBCR0_IDM))
420                         prime_debug_regs(new_debug);
421 }
422 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
423 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
424 #ifndef CONFIG_HAVE_HW_BREAKPOINT
425 static void set_debug_reg_defaults(struct thread_struct *thread)
426 {
427         thread->hw_brk.address = 0;
428         thread->hw_brk.type = 0;
429         set_breakpoint(&thread->hw_brk);
430 }
431 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
432 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
433
434 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
435 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
436 {
437         mtspr(SPRN_DAC1, dabr);
438 #ifdef CONFIG_PPC_47x
439         isync();
440 #endif
441         return 0;
442 }
443 #elif defined(CONFIG_PPC_BOOK3S)
444 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
445 {
446         mtspr(SPRN_DABR, dabr);
447         if (cpu_has_feature(CPU_FTR_DABRX))
448                 mtspr(SPRN_DABRX, dabrx);
449         return 0;
450 }
451 #else
452 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
453 {
454         return -EINVAL;
455 }
456 #endif
457
458 static inline int set_dabr(struct arch_hw_breakpoint *brk)
459 {
460         unsigned long dabr, dabrx;
461
462         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
463         dabrx = ((brk->type >> 3) & 0x7);
464
465         if (ppc_md.set_dabr)
466                 return ppc_md.set_dabr(dabr, dabrx);
467
468         return __set_dabr(dabr, dabrx);
469 }
470
471 static inline int set_dawr(struct arch_hw_breakpoint *brk)
472 {
473         unsigned long dawr, dawrx, mrd;
474
475         dawr = brk->address;
476
477         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
478                                    << (63 - 58); //* read/write bits */
479         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
480                                    << (63 - 59); //* translate */
481         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
482                                    >> 3; //* PRIM bits */
483         /* dawr length is stored in field MDR bits 48:53.  Matches range in
484            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
485            0b111111=64DW.
486            brk->len is in bytes.
487            This aligns up to double word size, shifts and does the bias.
488         */
489         mrd = ((brk->len + 7) >> 3) - 1;
490         dawrx |= (mrd & 0x3f) << (63 - 53);
491
492         if (ppc_md.set_dawr)
493                 return ppc_md.set_dawr(dawr, dawrx);
494         mtspr(SPRN_DAWR, dawr);
495         mtspr(SPRN_DAWRX, dawrx);
496         return 0;
497 }
498
499 int set_breakpoint(struct arch_hw_breakpoint *brk)
500 {
501         __get_cpu_var(current_brk) = *brk;
502
503         if (cpu_has_feature(CPU_FTR_DAWR))
504                 return set_dawr(brk);
505
506         return set_dabr(brk);
507 }
508
509 #ifdef CONFIG_PPC64
510 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
511 #endif
512
513 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
514                               struct arch_hw_breakpoint *b)
515 {
516         if (a->address != b->address)
517                 return false;
518         if (a->type != b->type)
519                 return false;
520         if (a->len != b->len)
521                 return false;
522         return true;
523 }
524
525 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
526 static void tm_reclaim_thread(struct thread_struct *thr,
527                               struct thread_info *ti, uint8_t cause)
528 {
529         unsigned long msr_diff = 0;
530
531         /*
532          * If FP/VSX registers have been already saved to the
533          * thread_struct, move them to the transact_fp array.
534          * We clear the TIF_RESTORE_TM bit since after the reclaim
535          * the thread will no longer be transactional.
536          */
537         if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
538                 msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
539                 if (msr_diff & MSR_FP)
540                         memcpy(&thr->transact_fp, &thr->fp_state,
541                                sizeof(struct thread_fp_state));
542                 if (msr_diff & MSR_VEC)
543                         memcpy(&thr->transact_vr, &thr->vr_state,
544                                sizeof(struct thread_vr_state));
545                 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
546                 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
547         }
548
549         tm_reclaim(thr, thr->regs->msr, cause);
550
551         /* Having done the reclaim, we now have the checkpointed
552          * FP/VSX values in the registers.  These might be valid
553          * even if we have previously called enable_kernel_fp() or
554          * flush_fp_to_thread(), so update thr->regs->msr to
555          * indicate their current validity.
556          */
557         thr->regs->msr |= msr_diff;
558 }
559
560 void tm_reclaim_current(uint8_t cause)
561 {
562         tm_enable();
563         tm_reclaim_thread(&current->thread, current_thread_info(), cause);
564 }
565
566 static inline void tm_reclaim_task(struct task_struct *tsk)
567 {
568         /* We have to work out if we're switching from/to a task that's in the
569          * middle of a transaction.
570          *
571          * In switching we need to maintain a 2nd register state as
572          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
573          * checkpointed (tbegin) state in ckpt_regs and saves the transactional
574          * (current) FPRs into oldtask->thread.transact_fpr[].
575          *
576          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
577          */
578         struct thread_struct *thr = &tsk->thread;
579
580         if (!thr->regs)
581                 return;
582
583         if (!MSR_TM_ACTIVE(thr->regs->msr))
584                 goto out_and_saveregs;
585
586         /* Stash the original thread MSR, as giveup_fpu et al will
587          * modify it.  We hold onto it to see whether the task used
588          * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
589          * tm_orig_msr is already set.
590          */
591         if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
592                 thr->tm_orig_msr = thr->regs->msr;
593
594         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
595                  "ccr=%lx, msr=%lx, trap=%lx)\n",
596                  tsk->pid, thr->regs->nip,
597                  thr->regs->ccr, thr->regs->msr,
598                  thr->regs->trap);
599
600         tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
601
602         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
603                  tsk->pid);
604
605 out_and_saveregs:
606         /* Always save the regs here, even if a transaction's not active.
607          * This context-switches a thread's TM info SPRs.  We do it here to
608          * be consistent with the restore path (in recheckpoint) which
609          * cannot happen later in _switch().
610          */
611         tm_save_sprs(thr);
612 }
613
614 extern void __tm_recheckpoint(struct thread_struct *thread,
615                               unsigned long orig_msr);
616
617 void tm_recheckpoint(struct thread_struct *thread,
618                      unsigned long orig_msr)
619 {
620         unsigned long flags;
621
622         /* We really can't be interrupted here as the TEXASR registers can't
623          * change and later in the trecheckpoint code, we have a userspace R1.
624          * So let's hard disable over this region.
625          */
626         local_irq_save(flags);
627         hard_irq_disable();
628
629         /* The TM SPRs are restored here, so that TEXASR.FS can be set
630          * before the trecheckpoint and no explosion occurs.
631          */
632         tm_restore_sprs(thread);
633
634         __tm_recheckpoint(thread, orig_msr);
635
636         local_irq_restore(flags);
637 }
638
639 static inline void tm_recheckpoint_new_task(struct task_struct *new)
640 {
641         unsigned long msr;
642
643         if (!cpu_has_feature(CPU_FTR_TM))
644                 return;
645
646         /* Recheckpoint the registers of the thread we're about to switch to.
647          *
648          * If the task was using FP, we non-lazily reload both the original and
649          * the speculative FP register states.  This is because the kernel
650          * doesn't see if/when a TM rollback occurs, so if we take an FP
651          * unavoidable later, we are unable to determine which set of FP regs
652          * need to be restored.
653          */
654         if (!new->thread.regs)
655                 return;
656
657         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
658                 tm_restore_sprs(&new->thread);
659                 return;
660         }
661         msr = new->thread.tm_orig_msr;
662         /* Recheckpoint to restore original checkpointed register state. */
663         TM_DEBUG("*** tm_recheckpoint of pid %d "
664                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
665                  new->pid, new->thread.regs->msr, msr);
666
667         /* This loads the checkpointed FP/VEC state, if used */
668         tm_recheckpoint(&new->thread, msr);
669
670         /* This loads the speculative FP/VEC state, if used */
671         if (msr & MSR_FP) {
672                 do_load_up_transact_fpu(&new->thread);
673                 new->thread.regs->msr |=
674                         (MSR_FP | new->thread.fpexc_mode);
675         }
676 #ifdef CONFIG_ALTIVEC
677         if (msr & MSR_VEC) {
678                 do_load_up_transact_altivec(&new->thread);
679                 new->thread.regs->msr |= MSR_VEC;
680         }
681 #endif
682         /* We may as well turn on VSX too since all the state is restored now */
683         if (msr & MSR_VSX)
684                 new->thread.regs->msr |= MSR_VSX;
685
686         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
687                  "(kernel msr 0x%lx)\n",
688                  new->pid, mfmsr());
689 }
690
691 static inline void __switch_to_tm(struct task_struct *prev)
692 {
693         if (cpu_has_feature(CPU_FTR_TM)) {
694                 tm_enable();
695                 tm_reclaim_task(prev);
696         }
697 }
698
699 /*
700  * This is called if we are on the way out to userspace and the
701  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
702  * FP and/or vector state and does so if necessary.
703  * If userspace is inside a transaction (whether active or
704  * suspended) and FP/VMX/VSX instructions have ever been enabled
705  * inside that transaction, then we have to keep them enabled
706  * and keep the FP/VMX/VSX state loaded while ever the transaction
707  * continues.  The reason is that if we didn't, and subsequently
708  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
709  * we don't know whether it's the same transaction, and thus we
710  * don't know which of the checkpointed state and the transactional
711  * state to use.
712  */
713 void restore_tm_state(struct pt_regs *regs)
714 {
715         unsigned long msr_diff;
716
717         clear_thread_flag(TIF_RESTORE_TM);
718         if (!MSR_TM_ACTIVE(regs->msr))
719                 return;
720
721         msr_diff = current->thread.tm_orig_msr & ~regs->msr;
722         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
723         if (msr_diff & MSR_FP) {
724                 fp_enable();
725                 load_fp_state(&current->thread.fp_state);
726                 regs->msr |= current->thread.fpexc_mode;
727         }
728         if (msr_diff & MSR_VEC) {
729                 vec_enable();
730                 load_vr_state(&current->thread.vr_state);
731         }
732         regs->msr |= msr_diff;
733 }
734
735 #else
736 #define tm_recheckpoint_new_task(new)
737 #define __switch_to_tm(prev)
738 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
739
740 struct task_struct *__switch_to(struct task_struct *prev,
741         struct task_struct *new)
742 {
743         struct thread_struct *new_thread, *old_thread;
744         struct task_struct *last;
745 #ifdef CONFIG_PPC_BOOK3S_64
746         struct ppc64_tlb_batch *batch;
747 #endif
748
749         WARN_ON(!irqs_disabled());
750
751         /* Back up the TAR across context switches.
752          * Note that the TAR is not available for use in the kernel.  (To
753          * provide this, the TAR should be backed up/restored on exception
754          * entry/exit instead, and be in pt_regs.  FIXME, this should be in
755          * pt_regs anyway (for debug).)
756          * Save the TAR here before we do treclaim/trecheckpoint as these
757          * will change the TAR.
758          */
759         save_tar(&prev->thread);
760
761         __switch_to_tm(prev);
762
763 #ifdef CONFIG_SMP
764         /* avoid complexity of lazy save/restore of fpu
765          * by just saving it every time we switch out if
766          * this task used the fpu during the last quantum.
767          *
768          * If it tries to use the fpu again, it'll trap and
769          * reload its fp regs.  So we don't have to do a restore
770          * every switch, just a save.
771          *  -- Cort
772          */
773         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
774                 giveup_fpu(prev);
775 #ifdef CONFIG_ALTIVEC
776         /*
777          * If the previous thread used altivec in the last quantum
778          * (thus changing altivec regs) then save them.
779          * We used to check the VRSAVE register but not all apps
780          * set it, so we don't rely on it now (and in fact we need
781          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
782          *
783          * On SMP we always save/restore altivec regs just to avoid the
784          * complexity of changing processors.
785          *  -- Cort
786          */
787         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
788                 giveup_altivec(prev);
789 #endif /* CONFIG_ALTIVEC */
790 #ifdef CONFIG_VSX
791         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
792                 /* VMX and FPU registers are already save here */
793                 __giveup_vsx(prev);
794 #endif /* CONFIG_VSX */
795 #ifdef CONFIG_SPE
796         /*
797          * If the previous thread used spe in the last quantum
798          * (thus changing spe regs) then save them.
799          *
800          * On SMP we always save/restore spe regs just to avoid the
801          * complexity of changing processors.
802          */
803         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
804                 giveup_spe(prev);
805 #endif /* CONFIG_SPE */
806
807 #else  /* CONFIG_SMP */
808 #ifdef CONFIG_ALTIVEC
809         /* Avoid the trap.  On smp this this never happens since
810          * we don't set last_task_used_altivec -- Cort
811          */
812         if (new->thread.regs && last_task_used_altivec == new)
813                 new->thread.regs->msr |= MSR_VEC;
814 #endif /* CONFIG_ALTIVEC */
815 #ifdef CONFIG_VSX
816         if (new->thread.regs && last_task_used_vsx == new)
817                 new->thread.regs->msr |= MSR_VSX;
818 #endif /* CONFIG_VSX */
819 #ifdef CONFIG_SPE
820         /* Avoid the trap.  On smp this this never happens since
821          * we don't set last_task_used_spe
822          */
823         if (new->thread.regs && last_task_used_spe == new)
824                 new->thread.regs->msr |= MSR_SPE;
825 #endif /* CONFIG_SPE */
826
827 #endif /* CONFIG_SMP */
828
829 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
830         switch_booke_debug_regs(&new->thread.debug);
831 #else
832 /*
833  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
834  * schedule DABR
835  */
836 #ifndef CONFIG_HAVE_HW_BREAKPOINT
837         if (unlikely(!hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
838                 set_breakpoint(&new->thread.hw_brk);
839 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
840 #endif
841
842
843         new_thread = &new->thread;
844         old_thread = &current->thread;
845
846 #ifdef CONFIG_PPC64
847         /*
848          * Collect processor utilization data per process
849          */
850         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
851                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
852                 long unsigned start_tb, current_tb;
853                 start_tb = old_thread->start_tb;
854                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
855                 old_thread->accum_tb += (current_tb - start_tb);
856                 new_thread->start_tb = current_tb;
857         }
858 #endif /* CONFIG_PPC64 */
859
860 #ifdef CONFIG_PPC_BOOK3S_64
861         batch = &__get_cpu_var(ppc64_tlb_batch);
862         if (batch->active) {
863                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
864                 if (batch->index)
865                         __flush_tlb_pending(batch);
866                 batch->active = 0;
867         }
868 #endif /* CONFIG_PPC_BOOK3S_64 */
869
870         /*
871          * We can't take a PMU exception inside _switch() since there is a
872          * window where the kernel stack SLB and the kernel stack are out
873          * of sync. Hard disable here.
874          */
875         hard_irq_disable();
876
877         tm_recheckpoint_new_task(new);
878
879         last = _switch(old_thread, new_thread);
880
881 #ifdef CONFIG_PPC_BOOK3S_64
882         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
883                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
884                 batch = &__get_cpu_var(ppc64_tlb_batch);
885                 batch->active = 1;
886         }
887 #endif /* CONFIG_PPC_BOOK3S_64 */
888
889         return last;
890 }
891
892 static int instructions_to_print = 16;
893
894 static void show_instructions(struct pt_regs *regs)
895 {
896         int i;
897         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
898                         sizeof(int));
899
900         printk("Instruction dump:");
901
902         for (i = 0; i < instructions_to_print; i++) {
903                 int instr;
904
905                 if (!(i % 8))
906                         printk("\n");
907
908 #if !defined(CONFIG_BOOKE)
909                 /* If executing with the IMMU off, adjust pc rather
910                  * than print XXXXXXXX.
911                  */
912                 if (!(regs->msr & MSR_IR))
913                         pc = (unsigned long)phys_to_virt(pc);
914 #endif
915
916                 /* We use __get_user here *only* to avoid an OOPS on a
917                  * bad address because the pc *should* only be a
918                  * kernel address.
919                  */
920                 if (!__kernel_text_address(pc) ||
921                      __get_user(instr, (unsigned int __user *)pc)) {
922                         printk(KERN_CONT "XXXXXXXX ");
923                 } else {
924                         if (regs->nip == pc)
925                                 printk(KERN_CONT "<%08x> ", instr);
926                         else
927                                 printk(KERN_CONT "%08x ", instr);
928                 }
929
930                 pc += sizeof(int);
931         }
932
933         printk("\n");
934 }
935
936 static struct regbit {
937         unsigned long bit;
938         const char *name;
939 } msr_bits[] = {
940 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
941         {MSR_SF,        "SF"},
942         {MSR_HV,        "HV"},
943 #endif
944         {MSR_VEC,       "VEC"},
945         {MSR_VSX,       "VSX"},
946 #ifdef CONFIG_BOOKE
947         {MSR_CE,        "CE"},
948 #endif
949         {MSR_EE,        "EE"},
950         {MSR_PR,        "PR"},
951         {MSR_FP,        "FP"},
952         {MSR_ME,        "ME"},
953 #ifdef CONFIG_BOOKE
954         {MSR_DE,        "DE"},
955 #else
956         {MSR_SE,        "SE"},
957         {MSR_BE,        "BE"},
958 #endif
959         {MSR_IR,        "IR"},
960         {MSR_DR,        "DR"},
961         {MSR_PMM,       "PMM"},
962 #ifndef CONFIG_BOOKE
963         {MSR_RI,        "RI"},
964         {MSR_LE,        "LE"},
965 #endif
966         {0,             NULL}
967 };
968
969 static void printbits(unsigned long val, struct regbit *bits)
970 {
971         const char *sep = "";
972
973         printk("<");
974         for (; bits->bit; ++bits)
975                 if (val & bits->bit) {
976                         printk("%s%s", sep, bits->name);
977                         sep = ",";
978                 }
979         printk(">");
980 }
981
982 #ifdef CONFIG_PPC64
983 #define REG             "%016lx"
984 #define REGS_PER_LINE   4
985 #define LAST_VOLATILE   13
986 #else
987 #define REG             "%08lx"
988 #define REGS_PER_LINE   8
989 #define LAST_VOLATILE   12
990 #endif
991
992 void show_regs(struct pt_regs * regs)
993 {
994         int i, trap;
995
996         show_regs_print_info(KERN_DEFAULT);
997
998         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
999                regs->nip, regs->link, regs->ctr);
1000         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1001                regs, regs->trap, print_tainted(), init_utsname()->release);
1002         printk("MSR: "REG" ", regs->msr);
1003         printbits(regs->msr, msr_bits);
1004         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1005         trap = TRAP(regs);
1006         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1007                 printk("CFAR: "REG" ", regs->orig_gpr3);
1008         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1009 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1010                 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1011 #else
1012                 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1013 #endif
1014 #ifdef CONFIG_PPC64
1015         printk("SOFTE: %ld ", regs->softe);
1016 #endif
1017 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1018         if (MSR_TM_ACTIVE(regs->msr))
1019                 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1020 #endif
1021
1022         for (i = 0;  i < 32;  i++) {
1023                 if ((i % REGS_PER_LINE) == 0)
1024                         printk("\nGPR%02d: ", i);
1025                 printk(REG " ", regs->gpr[i]);
1026                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1027                         break;
1028         }
1029         printk("\n");
1030 #ifdef CONFIG_KALLSYMS
1031         /*
1032          * Lookup NIP late so we have the best change of getting the
1033          * above info out without failing
1034          */
1035         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1036         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1037 #endif
1038         show_stack(current, (unsigned long *) regs->gpr[1]);
1039         if (!user_mode(regs))
1040                 show_instructions(regs);
1041 }
1042
1043 void exit_thread(void)
1044 {
1045         discard_lazy_cpu_state();
1046 }
1047
1048 void flush_thread(void)
1049 {
1050         discard_lazy_cpu_state();
1051
1052 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1053         flush_ptrace_hw_breakpoint(current);
1054 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1055         set_debug_reg_defaults(&current->thread);
1056 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1057 }
1058
1059 void
1060 release_thread(struct task_struct *t)
1061 {
1062 }
1063
1064 /*
1065  * this gets called so that we can store coprocessor state into memory and
1066  * copy the current task into the new thread.
1067  */
1068 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1069 {
1070         flush_fp_to_thread(src);
1071         flush_altivec_to_thread(src);
1072         flush_vsx_to_thread(src);
1073         flush_spe_to_thread(src);
1074         /*
1075          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1076          * flush but it removes the checkpointed state from the current CPU and
1077          * transitions the CPU out of TM mode.  Hence we need to call
1078          * tm_recheckpoint_new_task() (on the same task) to restore the
1079          * checkpointed state back and the TM mode.
1080          */
1081         __switch_to_tm(src);
1082         tm_recheckpoint_new_task(src);
1083
1084         *dst = *src;
1085
1086         clear_task_ebb(dst);
1087
1088         return 0;
1089 }
1090
1091 /*
1092  * Copy a thread..
1093  */
1094 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
1095
1096 int copy_thread(unsigned long clone_flags, unsigned long usp,
1097                 unsigned long arg, struct task_struct *p)
1098 {
1099         struct pt_regs *childregs, *kregs;
1100         extern void ret_from_fork(void);
1101         extern void ret_from_kernel_thread(void);
1102         void (*f)(void);
1103         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1104
1105         /* Copy registers */
1106         sp -= sizeof(struct pt_regs);
1107         childregs = (struct pt_regs *) sp;
1108         if (unlikely(p->flags & PF_KTHREAD)) {
1109                 struct thread_info *ti = (void *)task_stack_page(p);
1110                 memset(childregs, 0, sizeof(struct pt_regs));
1111                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1112                 /* function */
1113                 if (usp)
1114                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1115 #ifdef CONFIG_PPC64
1116                 clear_tsk_thread_flag(p, TIF_32BIT);
1117                 childregs->softe = 1;
1118 #endif
1119                 childregs->gpr[15] = arg;
1120                 p->thread.regs = NULL;  /* no user register state */
1121                 ti->flags |= _TIF_RESTOREALL;
1122                 f = ret_from_kernel_thread;
1123         } else {
1124                 struct pt_regs *regs = current_pt_regs();
1125                 CHECK_FULL_REGS(regs);
1126                 *childregs = *regs;
1127                 if (usp)
1128                         childregs->gpr[1] = usp;
1129                 p->thread.regs = childregs;
1130                 childregs->gpr[3] = 0;  /* Result from fork() */
1131                 if (clone_flags & CLONE_SETTLS) {
1132 #ifdef CONFIG_PPC64
1133                         if (!is_32bit_task())
1134                                 childregs->gpr[13] = childregs->gpr[6];
1135                         else
1136 #endif
1137                                 childregs->gpr[2] = childregs->gpr[6];
1138                 }
1139
1140                 f = ret_from_fork;
1141         }
1142         sp -= STACK_FRAME_OVERHEAD;
1143
1144         /*
1145          * The way this works is that at some point in the future
1146          * some task will call _switch to switch to the new task.
1147          * That will pop off the stack frame created below and start
1148          * the new task running at ret_from_fork.  The new task will
1149          * do some house keeping and then return from the fork or clone
1150          * system call, using the stack frame created above.
1151          */
1152         ((unsigned long *)sp)[0] = 0;
1153         sp -= sizeof(struct pt_regs);
1154         kregs = (struct pt_regs *) sp;
1155         sp -= STACK_FRAME_OVERHEAD;
1156         p->thread.ksp = sp;
1157 #ifdef CONFIG_PPC32
1158         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1159                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1160 #endif
1161 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1162         p->thread.ptrace_bps[0] = NULL;
1163 #endif
1164
1165         p->thread.fp_save_area = NULL;
1166 #ifdef CONFIG_ALTIVEC
1167         p->thread.vr_save_area = NULL;
1168 #endif
1169
1170 #ifdef CONFIG_PPC_STD_MMU_64
1171         if (mmu_has_feature(MMU_FTR_SLB)) {
1172                 unsigned long sp_vsid;
1173                 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1174
1175                 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1176                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1177                                 << SLB_VSID_SHIFT_1T;
1178                 else
1179                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1180                                 << SLB_VSID_SHIFT;
1181                 sp_vsid |= SLB_VSID_KERNEL | llp;
1182                 p->thread.ksp_vsid = sp_vsid;
1183         }
1184 #endif /* CONFIG_PPC_STD_MMU_64 */
1185 #ifdef CONFIG_PPC64 
1186         if (cpu_has_feature(CPU_FTR_DSCR)) {
1187                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1188                 p->thread.dscr = current->thread.dscr;
1189         }
1190         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1191                 p->thread.ppr = INIT_PPR;
1192 #endif
1193         kregs->nip = ppc_function_entry(f);
1194         return 0;
1195 }
1196
1197 /*
1198  * Set up a thread for executing a new program
1199  */
1200 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1201 {
1202 #ifdef CONFIG_PPC64
1203         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1204 #endif
1205
1206         /*
1207          * If we exec out of a kernel thread then thread.regs will not be
1208          * set.  Do it now.
1209          */
1210         if (!current->thread.regs) {
1211                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1212                 current->thread.regs = regs - 1;
1213         }
1214
1215         memset(regs->gpr, 0, sizeof(regs->gpr));
1216         regs->ctr = 0;
1217         regs->link = 0;
1218         regs->xer = 0;
1219         regs->ccr = 0;
1220         regs->gpr[1] = sp;
1221
1222         /*
1223          * We have just cleared all the nonvolatile GPRs, so make
1224          * FULL_REGS(regs) return true.  This is necessary to allow
1225          * ptrace to examine the thread immediately after exec.
1226          */
1227         regs->trap &= ~1UL;
1228
1229 #ifdef CONFIG_PPC32
1230         regs->mq = 0;
1231         regs->nip = start;
1232         regs->msr = MSR_USER;
1233 #else
1234         if (!is_32bit_task()) {
1235                 unsigned long entry;
1236
1237                 if (is_elf2_task()) {
1238                         /* Look ma, no function descriptors! */
1239                         entry = start;
1240
1241                         /*
1242                          * Ulrich says:
1243                          *   The latest iteration of the ABI requires that when
1244                          *   calling a function (at its global entry point),
1245                          *   the caller must ensure r12 holds the entry point
1246                          *   address (so that the function can quickly
1247                          *   establish addressability).
1248                          */
1249                         regs->gpr[12] = start;
1250                         /* Make sure that's restored on entry to userspace. */
1251                         set_thread_flag(TIF_RESTOREALL);
1252                 } else {
1253                         unsigned long toc;
1254
1255                         /* start is a relocated pointer to the function
1256                          * descriptor for the elf _start routine.  The first
1257                          * entry in the function descriptor is the entry
1258                          * address of _start and the second entry is the TOC
1259                          * value we need to use.
1260                          */
1261                         __get_user(entry, (unsigned long __user *)start);
1262                         __get_user(toc, (unsigned long __user *)start+1);
1263
1264                         /* Check whether the e_entry function descriptor entries
1265                          * need to be relocated before we can use them.
1266                          */
1267                         if (load_addr != 0) {
1268                                 entry += load_addr;
1269                                 toc   += load_addr;
1270                         }
1271                         regs->gpr[2] = toc;
1272                 }
1273                 regs->nip = entry;
1274                 regs->msr = MSR_USER64;
1275         } else {
1276                 regs->nip = start;
1277                 regs->gpr[2] = 0;
1278                 regs->msr = MSR_USER32;
1279         }
1280 #endif
1281         discard_lazy_cpu_state();
1282 #ifdef CONFIG_VSX
1283         current->thread.used_vsr = 0;
1284 #endif
1285         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1286         current->thread.fp_save_area = NULL;
1287 #ifdef CONFIG_ALTIVEC
1288         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1289         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1290         current->thread.vr_save_area = NULL;
1291         current->thread.vrsave = 0;
1292         current->thread.used_vr = 0;
1293 #endif /* CONFIG_ALTIVEC */
1294 #ifdef CONFIG_SPE
1295         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1296         current->thread.acc = 0;
1297         current->thread.spefscr = 0;
1298         current->thread.used_spe = 0;
1299 #endif /* CONFIG_SPE */
1300 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1301         if (cpu_has_feature(CPU_FTR_TM))
1302                 regs->msr |= MSR_TM;
1303         current->thread.tm_tfhar = 0;
1304         current->thread.tm_texasr = 0;
1305         current->thread.tm_tfiar = 0;
1306 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1307 }
1308
1309 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1310                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1311
1312 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1313 {
1314         struct pt_regs *regs = tsk->thread.regs;
1315
1316         /* This is a bit hairy.  If we are an SPE enabled  processor
1317          * (have embedded fp) we store the IEEE exception enable flags in
1318          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1319          * mode (asyn, precise, disabled) for 'Classic' FP. */
1320         if (val & PR_FP_EXC_SW_ENABLE) {
1321 #ifdef CONFIG_SPE
1322                 if (cpu_has_feature(CPU_FTR_SPE)) {
1323                         /*
1324                          * When the sticky exception bits are set
1325                          * directly by userspace, it must call prctl
1326                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1327                          * in the existing prctl settings) or
1328                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1329                          * the bits being set).  <fenv.h> functions
1330                          * saving and restoring the whole
1331                          * floating-point environment need to do so
1332                          * anyway to restore the prctl settings from
1333                          * the saved environment.
1334                          */
1335                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1336                         tsk->thread.fpexc_mode = val &
1337                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1338                         return 0;
1339                 } else {
1340                         return -EINVAL;
1341                 }
1342 #else
1343                 return -EINVAL;
1344 #endif
1345         }
1346
1347         /* on a CONFIG_SPE this does not hurt us.  The bits that
1348          * __pack_fe01 use do not overlap with bits used for
1349          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1350          * on CONFIG_SPE implementations are reserved so writing to
1351          * them does not change anything */
1352         if (val > PR_FP_EXC_PRECISE)
1353                 return -EINVAL;
1354         tsk->thread.fpexc_mode = __pack_fe01(val);
1355         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1356                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1357                         | tsk->thread.fpexc_mode;
1358         return 0;
1359 }
1360
1361 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1362 {
1363         unsigned int val;
1364
1365         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1366 #ifdef CONFIG_SPE
1367                 if (cpu_has_feature(CPU_FTR_SPE)) {
1368                         /*
1369                          * When the sticky exception bits are set
1370                          * directly by userspace, it must call prctl
1371                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1372                          * in the existing prctl settings) or
1373                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1374                          * the bits being set).  <fenv.h> functions
1375                          * saving and restoring the whole
1376                          * floating-point environment need to do so
1377                          * anyway to restore the prctl settings from
1378                          * the saved environment.
1379                          */
1380                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1381                         val = tsk->thread.fpexc_mode;
1382                 } else
1383                         return -EINVAL;
1384 #else
1385                 return -EINVAL;
1386 #endif
1387         else
1388                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1389         return put_user(val, (unsigned int __user *) adr);
1390 }
1391
1392 int set_endian(struct task_struct *tsk, unsigned int val)
1393 {
1394         struct pt_regs *regs = tsk->thread.regs;
1395
1396         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1397             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1398                 return -EINVAL;
1399
1400         if (regs == NULL)
1401                 return -EINVAL;
1402
1403         if (val == PR_ENDIAN_BIG)
1404                 regs->msr &= ~MSR_LE;
1405         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1406                 regs->msr |= MSR_LE;
1407         else
1408                 return -EINVAL;
1409
1410         return 0;
1411 }
1412
1413 int get_endian(struct task_struct *tsk, unsigned long adr)
1414 {
1415         struct pt_regs *regs = tsk->thread.regs;
1416         unsigned int val;
1417
1418         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1419             !cpu_has_feature(CPU_FTR_REAL_LE))
1420                 return -EINVAL;
1421
1422         if (regs == NULL)
1423                 return -EINVAL;
1424
1425         if (regs->msr & MSR_LE) {
1426                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1427                         val = PR_ENDIAN_LITTLE;
1428                 else
1429                         val = PR_ENDIAN_PPC_LITTLE;
1430         } else
1431                 val = PR_ENDIAN_BIG;
1432
1433         return put_user(val, (unsigned int __user *)adr);
1434 }
1435
1436 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1437 {
1438         tsk->thread.align_ctl = val;
1439         return 0;
1440 }
1441
1442 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1443 {
1444         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1445 }
1446
1447 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1448                                   unsigned long nbytes)
1449 {
1450         unsigned long stack_page;
1451         unsigned long cpu = task_cpu(p);
1452
1453         /*
1454          * Avoid crashing if the stack has overflowed and corrupted
1455          * task_cpu(p), which is in the thread_info struct.
1456          */
1457         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1458                 stack_page = (unsigned long) hardirq_ctx[cpu];
1459                 if (sp >= stack_page + sizeof(struct thread_struct)
1460                     && sp <= stack_page + THREAD_SIZE - nbytes)
1461                         return 1;
1462
1463                 stack_page = (unsigned long) softirq_ctx[cpu];
1464                 if (sp >= stack_page + sizeof(struct thread_struct)
1465                     && sp <= stack_page + THREAD_SIZE - nbytes)
1466                         return 1;
1467         }
1468         return 0;
1469 }
1470
1471 int validate_sp(unsigned long sp, struct task_struct *p,
1472                        unsigned long nbytes)
1473 {
1474         unsigned long stack_page = (unsigned long)task_stack_page(p);
1475
1476         if (sp >= stack_page + sizeof(struct thread_struct)
1477             && sp <= stack_page + THREAD_SIZE - nbytes)
1478                 return 1;
1479
1480         return valid_irq_stack(sp, p, nbytes);
1481 }
1482
1483 EXPORT_SYMBOL(validate_sp);
1484
1485 unsigned long get_wchan(struct task_struct *p)
1486 {
1487         unsigned long ip, sp;
1488         int count = 0;
1489
1490         if (!p || p == current || p->state == TASK_RUNNING)
1491                 return 0;
1492
1493         sp = p->thread.ksp;
1494         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1495                 return 0;
1496
1497         do {
1498                 sp = *(unsigned long *)sp;
1499                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1500                         return 0;
1501                 if (count > 0) {
1502                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1503                         if (!in_sched_functions(ip))
1504                                 return ip;
1505                 }
1506         } while (count++ < 16);
1507         return 0;
1508 }
1509
1510 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1511
1512 void show_stack(struct task_struct *tsk, unsigned long *stack)
1513 {
1514         unsigned long sp, ip, lr, newsp;
1515         int count = 0;
1516         int firstframe = 1;
1517 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1518         int curr_frame = current->curr_ret_stack;
1519         extern void return_to_handler(void);
1520         unsigned long rth = (unsigned long)return_to_handler;
1521         unsigned long mrth = -1;
1522 #ifdef CONFIG_PPC64
1523         extern void mod_return_to_handler(void);
1524         rth = *(unsigned long *)rth;
1525         mrth = (unsigned long)mod_return_to_handler;
1526         mrth = *(unsigned long *)mrth;
1527 #endif
1528 #endif
1529
1530         sp = (unsigned long) stack;
1531         if (tsk == NULL)
1532                 tsk = current;
1533         if (sp == 0) {
1534                 if (tsk == current)
1535                         asm("mr %0,1" : "=r" (sp));
1536                 else
1537                         sp = tsk->thread.ksp;
1538         }
1539
1540         lr = 0;
1541         printk("Call Trace:\n");
1542         do {
1543                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1544                         return;
1545
1546                 stack = (unsigned long *) sp;
1547                 newsp = stack[0];
1548                 ip = stack[STACK_FRAME_LR_SAVE];
1549                 if (!firstframe || ip != lr) {
1550                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1551 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1552                         if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1553                                 printk(" (%pS)",
1554                                        (void *)current->ret_stack[curr_frame].ret);
1555                                 curr_frame--;
1556                         }
1557 #endif
1558                         if (firstframe)
1559                                 printk(" (unreliable)");
1560                         printk("\n");
1561                 }
1562                 firstframe = 0;
1563
1564                 /*
1565                  * See if this is an exception frame.
1566                  * We look for the "regshere" marker in the current frame.
1567                  */
1568                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1569                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1570                         struct pt_regs *regs = (struct pt_regs *)
1571                                 (sp + STACK_FRAME_OVERHEAD);
1572                         lr = regs->link;
1573                         printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1574                                regs->trap, (void *)regs->nip, (void *)lr);
1575                         firstframe = 1;
1576                 }
1577
1578                 sp = newsp;
1579         } while (count++ < kstack_depth_to_print);
1580 }
1581
1582 #ifdef CONFIG_PPC64
1583 /* Called with hard IRQs off */
1584 void notrace __ppc64_runlatch_on(void)
1585 {
1586         struct thread_info *ti = current_thread_info();
1587         unsigned long ctrl;
1588
1589         ctrl = mfspr(SPRN_CTRLF);
1590         ctrl |= CTRL_RUNLATCH;
1591         mtspr(SPRN_CTRLT, ctrl);
1592
1593         ti->local_flags |= _TLF_RUNLATCH;
1594 }
1595
1596 /* Called with hard IRQs off */
1597 void notrace __ppc64_runlatch_off(void)
1598 {
1599         struct thread_info *ti = current_thread_info();
1600         unsigned long ctrl;
1601
1602         ti->local_flags &= ~_TLF_RUNLATCH;
1603
1604         ctrl = mfspr(SPRN_CTRLF);
1605         ctrl &= ~CTRL_RUNLATCH;
1606         mtspr(SPRN_CTRLT, ctrl);
1607 }
1608 #endif /* CONFIG_PPC64 */
1609
1610 unsigned long arch_align_stack(unsigned long sp)
1611 {
1612         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1613                 sp -= get_random_int() & ~PAGE_MASK;
1614         return sp & ~0xf;
1615 }
1616
1617 static inline unsigned long brk_rnd(void)
1618 {
1619         unsigned long rnd = 0;
1620
1621         /* 8MB for 32bit, 1GB for 64bit */
1622         if (is_32bit_task())
1623                 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1624         else
1625                 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1626
1627         return rnd << PAGE_SHIFT;
1628 }
1629
1630 unsigned long arch_randomize_brk(struct mm_struct *mm)
1631 {
1632         unsigned long base = mm->brk;
1633         unsigned long ret;
1634
1635 #ifdef CONFIG_PPC_STD_MMU_64
1636         /*
1637          * If we are using 1TB segments and we are allowed to randomise
1638          * the heap, we can put it above 1TB so it is backed by a 1TB
1639          * segment. Otherwise the heap will be in the bottom 1TB
1640          * which always uses 256MB segments and this may result in a
1641          * performance penalty.
1642          */
1643         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1644                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1645 #endif
1646
1647         ret = PAGE_ALIGN(base + brk_rnd());
1648
1649         if (ret < mm->brk)
1650                 return mm->brk;
1651
1652         return ret;
1653 }
1654
1655 unsigned long randomize_et_dyn(unsigned long base)
1656 {
1657         unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1658
1659         if (ret < base)
1660                 return base;
1661
1662         return ret;
1663 }