2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/export.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
45 #include <asm/processor.h>
48 #include <asm/machdep.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
54 #include <asm/debug.h>
56 #include <asm/firmware.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
61 /* Transactional Memory debug */
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
65 #define TM_DEBUG(x...) do { } while(0)
68 extern unsigned long _get_SP(void);
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
79 * Make sure the floating-point register state in the
80 * the thread_struct is up to date for task tsk.
82 void flush_fp_to_thread(struct task_struct *tsk)
84 if (tsk->thread.regs) {
86 * We need to disable preemption here because if we didn't,
87 * another process could get scheduled after the regs->msr
88 * test but before we have finished saving the FP registers
89 * to the thread_struct. That process could take over the
90 * FPU, and then when we get scheduled again we would store
91 * bogus values for the remaining FP registers.
94 if (tsk->thread.regs->msr & MSR_FP) {
97 * This should only ever be called for current or
98 * for a stopped child process. Since we save away
99 * the FP register state on context switch on SMP,
100 * there is something wrong if a stopped child appears
101 * to still have its FP state in the CPU registers.
103 BUG_ON(tsk != current);
110 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
113 void enable_kernel_fp(void)
115 WARN_ON(preemptible());
118 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
121 giveup_fpu(NULL); /* just enables FP for kernel */
123 giveup_fpu(last_task_used_math);
124 #endif /* CONFIG_SMP */
126 EXPORT_SYMBOL(enable_kernel_fp);
128 #ifdef CONFIG_ALTIVEC
129 void enable_kernel_altivec(void)
131 WARN_ON(preemptible());
134 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
135 giveup_altivec(current);
137 giveup_altivec_notask();
139 giveup_altivec(last_task_used_altivec);
140 #endif /* CONFIG_SMP */
142 EXPORT_SYMBOL(enable_kernel_altivec);
145 * Make sure the VMX/Altivec register state in the
146 * the thread_struct is up to date for task tsk.
148 void flush_altivec_to_thread(struct task_struct *tsk)
150 if (tsk->thread.regs) {
152 if (tsk->thread.regs->msr & MSR_VEC) {
154 BUG_ON(tsk != current);
161 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
162 #endif /* CONFIG_ALTIVEC */
166 /* not currently used, but some crazy RAID module might want to later */
167 void enable_kernel_vsx(void)
169 WARN_ON(preemptible());
172 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
175 giveup_vsx(NULL); /* just enable vsx for kernel - force */
177 giveup_vsx(last_task_used_vsx);
178 #endif /* CONFIG_SMP */
180 EXPORT_SYMBOL(enable_kernel_vsx);
183 void giveup_vsx(struct task_struct *tsk)
190 void flush_vsx_to_thread(struct task_struct *tsk)
192 if (tsk->thread.regs) {
194 if (tsk->thread.regs->msr & MSR_VSX) {
196 BUG_ON(tsk != current);
203 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
204 #endif /* CONFIG_VSX */
208 void enable_kernel_spe(void)
210 WARN_ON(preemptible());
213 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
216 giveup_spe(NULL); /* just enable SPE for kernel - force */
218 giveup_spe(last_task_used_spe);
219 #endif /* __SMP __ */
221 EXPORT_SYMBOL(enable_kernel_spe);
223 void flush_spe_to_thread(struct task_struct *tsk)
225 if (tsk->thread.regs) {
227 if (tsk->thread.regs->msr & MSR_SPE) {
229 BUG_ON(tsk != current);
231 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
237 #endif /* CONFIG_SPE */
241 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
242 * and the current task has some state, discard it.
244 void discard_lazy_cpu_state(void)
247 if (last_task_used_math == current)
248 last_task_used_math = NULL;
249 #ifdef CONFIG_ALTIVEC
250 if (last_task_used_altivec == current)
251 last_task_used_altivec = NULL;
252 #endif /* CONFIG_ALTIVEC */
254 if (last_task_used_vsx == current)
255 last_task_used_vsx = NULL;
256 #endif /* CONFIG_VSX */
258 if (last_task_used_spe == current)
259 last_task_used_spe = NULL;
263 #endif /* CONFIG_SMP */
265 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
266 void do_send_trap(struct pt_regs *regs, unsigned long address,
267 unsigned long error_code, int signal_code, int breakpt)
271 current->thread.trap_nr = signal_code;
272 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
273 11, SIGSEGV) == NOTIFY_STOP)
276 /* Deliver the signal to userspace */
277 info.si_signo = SIGTRAP;
278 info.si_errno = breakpt; /* breakpoint or watchpoint id */
279 info.si_code = signal_code;
280 info.si_addr = (void __user *)address;
281 force_sig_info(SIGTRAP, &info, current);
283 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
284 void do_break (struct pt_regs *regs, unsigned long address,
285 unsigned long error_code)
289 current->thread.trap_nr = TRAP_HWBKPT;
290 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
291 11, SIGSEGV) == NOTIFY_STOP)
294 if (debugger_break_match(regs))
297 /* Clear the breakpoint */
298 hw_breakpoint_disable();
300 /* Deliver the signal to userspace */
301 info.si_signo = SIGTRAP;
303 info.si_code = TRAP_HWBKPT;
304 info.si_addr = (void __user *)address;
305 force_sig_info(SIGTRAP, &info, current);
307 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
309 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
311 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
313 * Set the debug registers back to their default "safe" values.
315 static void set_debug_reg_defaults(struct thread_struct *thread)
317 thread->debug.iac1 = thread->debug.iac2 = 0;
318 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
319 thread->debug.iac3 = thread->debug.iac4 = 0;
321 thread->debug.dac1 = thread->debug.dac2 = 0;
322 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
323 thread->debug.dvc1 = thread->debug.dvc2 = 0;
325 thread->debug.dbcr0 = 0;
328 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
330 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
331 DBCR1_IAC3US | DBCR1_IAC4US;
333 * Force Data Address Compare User/Supervisor bits to be User-only
334 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
336 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
338 thread->debug.dbcr1 = 0;
342 static void prime_debug_regs(struct debug_reg *debug)
345 * We could have inherited MSR_DE from userspace, since
346 * it doesn't get cleared on exception entry. Make sure
347 * MSR_DE is clear before we enable any debug events.
349 mtmsr(mfmsr() & ~MSR_DE);
351 mtspr(SPRN_IAC1, debug->iac1);
352 mtspr(SPRN_IAC2, debug->iac2);
353 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
354 mtspr(SPRN_IAC3, debug->iac3);
355 mtspr(SPRN_IAC4, debug->iac4);
357 mtspr(SPRN_DAC1, debug->dac1);
358 mtspr(SPRN_DAC2, debug->dac2);
359 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
360 mtspr(SPRN_DVC1, debug->dvc1);
361 mtspr(SPRN_DVC2, debug->dvc2);
363 mtspr(SPRN_DBCR0, debug->dbcr0);
364 mtspr(SPRN_DBCR1, debug->dbcr1);
366 mtspr(SPRN_DBCR2, debug->dbcr2);
370 * Unless neither the old or new thread are making use of the
371 * debug registers, set the debug registers from the values
372 * stored in the new thread.
374 void switch_booke_debug_regs(struct debug_reg *new_debug)
376 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
377 || (new_debug->dbcr0 & DBCR0_IDM))
378 prime_debug_regs(new_debug);
380 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
381 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
382 #ifndef CONFIG_HAVE_HW_BREAKPOINT
383 static void set_debug_reg_defaults(struct thread_struct *thread)
385 thread->hw_brk.address = 0;
386 thread->hw_brk.type = 0;
387 set_breakpoint(&thread->hw_brk);
389 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
390 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
392 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
393 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
395 mtspr(SPRN_DAC1, dabr);
396 #ifdef CONFIG_PPC_47x
401 #elif defined(CONFIG_PPC_BOOK3S)
402 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
404 mtspr(SPRN_DABR, dabr);
405 if (cpu_has_feature(CPU_FTR_DABRX))
406 mtspr(SPRN_DABRX, dabrx);
410 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
416 static inline int set_dabr(struct arch_hw_breakpoint *brk)
418 unsigned long dabr, dabrx;
420 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
421 dabrx = ((brk->type >> 3) & 0x7);
424 return ppc_md.set_dabr(dabr, dabrx);
426 return __set_dabr(dabr, dabrx);
429 static inline int set_dawr(struct arch_hw_breakpoint *brk)
431 unsigned long dawr, dawrx, mrd;
435 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
436 << (63 - 58); //* read/write bits */
437 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
438 << (63 - 59); //* translate */
439 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
440 >> 3; //* PRIM bits */
441 /* dawr length is stored in field MDR bits 48:53. Matches range in
442 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
444 brk->len is in bytes.
445 This aligns up to double word size, shifts and does the bias.
447 mrd = ((brk->len + 7) >> 3) - 1;
448 dawrx |= (mrd & 0x3f) << (63 - 53);
451 return ppc_md.set_dawr(dawr, dawrx);
452 mtspr(SPRN_DAWR, dawr);
453 mtspr(SPRN_DAWRX, dawrx);
457 int set_breakpoint(struct arch_hw_breakpoint *brk)
459 __get_cpu_var(current_brk) = *brk;
461 if (cpu_has_feature(CPU_FTR_DAWR))
462 return set_dawr(brk);
464 return set_dabr(brk);
468 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
471 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
472 struct arch_hw_breakpoint *b)
474 if (a->address != b->address)
476 if (a->type != b->type)
478 if (a->len != b->len)
482 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
483 static inline void tm_reclaim_task(struct task_struct *tsk)
485 /* We have to work out if we're switching from/to a task that's in the
486 * middle of a transaction.
488 * In switching we need to maintain a 2nd register state as
489 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
490 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
491 * (current) FPRs into oldtask->thread.transact_fpr[].
493 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
495 struct thread_struct *thr = &tsk->thread;
500 if (!MSR_TM_ACTIVE(thr->regs->msr))
501 goto out_and_saveregs;
503 /* Stash the original thread MSR, as giveup_fpu et al will
504 * modify it. We hold onto it to see whether the task used
507 thr->tm_orig_msr = thr->regs->msr;
509 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
510 "ccr=%lx, msr=%lx, trap=%lx)\n",
511 tsk->pid, thr->regs->nip,
512 thr->regs->ccr, thr->regs->msr,
515 tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);
517 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
521 /* Always save the regs here, even if a transaction's not active.
522 * This context-switches a thread's TM info SPRs. We do it here to
523 * be consistent with the restore path (in recheckpoint) which
524 * cannot happen later in _switch().
529 static inline void tm_recheckpoint_new_task(struct task_struct *new)
533 if (!cpu_has_feature(CPU_FTR_TM))
536 /* Recheckpoint the registers of the thread we're about to switch to.
538 * If the task was using FP, we non-lazily reload both the original and
539 * the speculative FP register states. This is because the kernel
540 * doesn't see if/when a TM rollback occurs, so if we take an FP
541 * unavoidable later, we are unable to determine which set of FP regs
542 * need to be restored.
544 if (!new->thread.regs)
547 /* The TM SPRs are restored here, so that TEXASR.FS can be set
548 * before the trecheckpoint and no explosion occurs.
550 tm_restore_sprs(&new->thread);
552 if (!MSR_TM_ACTIVE(new->thread.regs->msr))
554 msr = new->thread.tm_orig_msr;
555 /* Recheckpoint to restore original checkpointed register state. */
556 TM_DEBUG("*** tm_recheckpoint of pid %d "
557 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
558 new->pid, new->thread.regs->msr, msr);
560 /* This loads the checkpointed FP/VEC state, if used */
561 tm_recheckpoint(&new->thread, msr);
563 /* This loads the speculative FP/VEC state, if used */
565 do_load_up_transact_fpu(&new->thread);
566 new->thread.regs->msr |=
567 (MSR_FP | new->thread.fpexc_mode);
569 #ifdef CONFIG_ALTIVEC
571 do_load_up_transact_altivec(&new->thread);
572 new->thread.regs->msr |= MSR_VEC;
575 /* We may as well turn on VSX too since all the state is restored now */
577 new->thread.regs->msr |= MSR_VSX;
579 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
580 "(kernel msr 0x%lx)\n",
584 static inline void __switch_to_tm(struct task_struct *prev)
586 if (cpu_has_feature(CPU_FTR_TM)) {
588 tm_reclaim_task(prev);
592 #define tm_recheckpoint_new_task(new)
593 #define __switch_to_tm(prev)
594 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
596 struct task_struct *__switch_to(struct task_struct *prev,
597 struct task_struct *new)
599 struct thread_struct *new_thread, *old_thread;
600 struct task_struct *last;
601 #ifdef CONFIG_PPC_BOOK3S_64
602 struct ppc64_tlb_batch *batch;
605 WARN_ON(!irqs_disabled());
607 /* Back up the TAR across context switches.
608 * Note that the TAR is not available for use in the kernel. (To
609 * provide this, the TAR should be backed up/restored on exception
610 * entry/exit instead, and be in pt_regs. FIXME, this should be in
611 * pt_regs anyway (for debug).)
612 * Save the TAR here before we do treclaim/trecheckpoint as these
613 * will change the TAR.
615 save_tar(&prev->thread);
617 __switch_to_tm(prev);
620 /* avoid complexity of lazy save/restore of fpu
621 * by just saving it every time we switch out if
622 * this task used the fpu during the last quantum.
624 * If it tries to use the fpu again, it'll trap and
625 * reload its fp regs. So we don't have to do a restore
626 * every switch, just a save.
629 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
631 #ifdef CONFIG_ALTIVEC
633 * If the previous thread used altivec in the last quantum
634 * (thus changing altivec regs) then save them.
635 * We used to check the VRSAVE register but not all apps
636 * set it, so we don't rely on it now (and in fact we need
637 * to save & restore VSCR even if VRSAVE == 0). -- paulus
639 * On SMP we always save/restore altivec regs just to avoid the
640 * complexity of changing processors.
643 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
644 giveup_altivec(prev);
645 #endif /* CONFIG_ALTIVEC */
647 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
648 /* VMX and FPU registers are already save here */
650 #endif /* CONFIG_VSX */
653 * If the previous thread used spe in the last quantum
654 * (thus changing spe regs) then save them.
656 * On SMP we always save/restore spe regs just to avoid the
657 * complexity of changing processors.
659 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
661 #endif /* CONFIG_SPE */
663 #else /* CONFIG_SMP */
664 #ifdef CONFIG_ALTIVEC
665 /* Avoid the trap. On smp this this never happens since
666 * we don't set last_task_used_altivec -- Cort
668 if (new->thread.regs && last_task_used_altivec == new)
669 new->thread.regs->msr |= MSR_VEC;
670 #endif /* CONFIG_ALTIVEC */
672 if (new->thread.regs && last_task_used_vsx == new)
673 new->thread.regs->msr |= MSR_VSX;
674 #endif /* CONFIG_VSX */
676 /* Avoid the trap. On smp this this never happens since
677 * we don't set last_task_used_spe
679 if (new->thread.regs && last_task_used_spe == new)
680 new->thread.regs->msr |= MSR_SPE;
681 #endif /* CONFIG_SPE */
683 #endif /* CONFIG_SMP */
685 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
686 switch_booke_debug_regs(&new->thread.debug);
689 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
692 #ifndef CONFIG_HAVE_HW_BREAKPOINT
693 if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
694 set_breakpoint(&new->thread.hw_brk);
695 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
699 new_thread = &new->thread;
700 old_thread = ¤t->thread;
704 * Collect processor utilization data per process
706 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
707 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
708 long unsigned start_tb, current_tb;
709 start_tb = old_thread->start_tb;
710 cu->current_tb = current_tb = mfspr(SPRN_PURR);
711 old_thread->accum_tb += (current_tb - start_tb);
712 new_thread->start_tb = current_tb;
714 #endif /* CONFIG_PPC64 */
716 #ifdef CONFIG_PPC_BOOK3S_64
717 batch = &__get_cpu_var(ppc64_tlb_batch);
719 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
721 __flush_tlb_pending(batch);
724 #endif /* CONFIG_PPC_BOOK3S_64 */
727 * We can't take a PMU exception inside _switch() since there is a
728 * window where the kernel stack SLB and the kernel stack are out
729 * of sync. Hard disable here.
733 tm_recheckpoint_new_task(new);
735 last = _switch(old_thread, new_thread);
737 #ifdef CONFIG_PPC_BOOK3S_64
738 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
739 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
740 batch = &__get_cpu_var(ppc64_tlb_batch);
743 #endif /* CONFIG_PPC_BOOK3S_64 */
748 static int instructions_to_print = 16;
750 static void show_instructions(struct pt_regs *regs)
753 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
756 printk("Instruction dump:");
758 for (i = 0; i < instructions_to_print; i++) {
764 #if !defined(CONFIG_BOOKE)
765 /* If executing with the IMMU off, adjust pc rather
766 * than print XXXXXXXX.
768 if (!(regs->msr & MSR_IR))
769 pc = (unsigned long)phys_to_virt(pc);
772 /* We use __get_user here *only* to avoid an OOPS on a
773 * bad address because the pc *should* only be a
776 if (!__kernel_text_address(pc) ||
777 __get_user(instr, (unsigned int __user *)pc)) {
778 printk(KERN_CONT "XXXXXXXX ");
781 printk(KERN_CONT "<%08x> ", instr);
783 printk(KERN_CONT "%08x ", instr);
792 static struct regbit {
796 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
825 static void printbits(unsigned long val, struct regbit *bits)
827 const char *sep = "";
830 for (; bits->bit; ++bits)
831 if (val & bits->bit) {
832 printk("%s%s", sep, bits->name);
840 #define REGS_PER_LINE 4
841 #define LAST_VOLATILE 13
844 #define REGS_PER_LINE 8
845 #define LAST_VOLATILE 12
848 void show_regs(struct pt_regs * regs)
852 show_regs_print_info(KERN_DEFAULT);
854 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
855 regs->nip, regs->link, regs->ctr);
856 printk("REGS: %p TRAP: %04lx %s (%s)\n",
857 regs, regs->trap, print_tainted(), init_utsname()->release);
858 printk("MSR: "REG" ", regs->msr);
859 printbits(regs->msr, msr_bits);
860 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
862 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
863 printk("CFAR: "REG" ", regs->orig_gpr3);
864 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
865 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
866 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
868 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
871 printk("SOFTE: %ld ", regs->softe);
873 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
874 if (MSR_TM_ACTIVE(regs->msr))
875 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
878 for (i = 0; i < 32; i++) {
879 if ((i % REGS_PER_LINE) == 0)
880 printk("\nGPR%02d: ", i);
881 printk(REG " ", regs->gpr[i]);
882 if (i == LAST_VOLATILE && !FULL_REGS(regs))
886 #ifdef CONFIG_KALLSYMS
888 * Lookup NIP late so we have the best change of getting the
889 * above info out without failing
891 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
892 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
894 show_stack(current, (unsigned long *) regs->gpr[1]);
895 if (!user_mode(regs))
896 show_instructions(regs);
899 void exit_thread(void)
901 discard_lazy_cpu_state();
904 void flush_thread(void)
906 discard_lazy_cpu_state();
908 #ifdef CONFIG_HAVE_HW_BREAKPOINT
909 flush_ptrace_hw_breakpoint(current);
910 #else /* CONFIG_HAVE_HW_BREAKPOINT */
911 set_debug_reg_defaults(¤t->thread);
912 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
916 release_thread(struct task_struct *t)
921 * this gets called so that we can store coprocessor state into memory and
922 * copy the current task into the new thread.
924 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
926 flush_fp_to_thread(src);
927 flush_altivec_to_thread(src);
928 flush_vsx_to_thread(src);
929 flush_spe_to_thread(src);
941 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
943 int copy_thread(unsigned long clone_flags, unsigned long usp,
944 unsigned long arg, struct task_struct *p)
946 struct pt_regs *childregs, *kregs;
947 extern void ret_from_fork(void);
948 extern void ret_from_kernel_thread(void);
950 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
953 sp -= sizeof(struct pt_regs);
954 childregs = (struct pt_regs *) sp;
955 if (unlikely(p->flags & PF_KTHREAD)) {
956 struct thread_info *ti = (void *)task_stack_page(p);
957 memset(childregs, 0, sizeof(struct pt_regs));
958 childregs->gpr[1] = sp + sizeof(struct pt_regs);
959 childregs->gpr[14] = usp; /* function */
961 clear_tsk_thread_flag(p, TIF_32BIT);
962 childregs->softe = 1;
964 childregs->gpr[15] = arg;
965 p->thread.regs = NULL; /* no user register state */
966 ti->flags |= _TIF_RESTOREALL;
967 f = ret_from_kernel_thread;
969 struct pt_regs *regs = current_pt_regs();
970 CHECK_FULL_REGS(regs);
973 childregs->gpr[1] = usp;
974 p->thread.regs = childregs;
975 childregs->gpr[3] = 0; /* Result from fork() */
976 if (clone_flags & CLONE_SETTLS) {
978 if (!is_32bit_task())
979 childregs->gpr[13] = childregs->gpr[6];
982 childregs->gpr[2] = childregs->gpr[6];
987 sp -= STACK_FRAME_OVERHEAD;
990 * The way this works is that at some point in the future
991 * some task will call _switch to switch to the new task.
992 * That will pop off the stack frame created below and start
993 * the new task running at ret_from_fork. The new task will
994 * do some house keeping and then return from the fork or clone
995 * system call, using the stack frame created above.
997 ((unsigned long *)sp)[0] = 0;
998 sp -= sizeof(struct pt_regs);
999 kregs = (struct pt_regs *) sp;
1000 sp -= STACK_FRAME_OVERHEAD;
1003 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1004 _ALIGN_UP(sizeof(struct thread_info), 16);
1006 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1007 p->thread.ptrace_bps[0] = NULL;
1010 p->thread.fp_save_area = NULL;
1011 #ifdef CONFIG_ALTIVEC
1012 p->thread.vr_save_area = NULL;
1015 #ifdef CONFIG_PPC_STD_MMU_64
1016 if (mmu_has_feature(MMU_FTR_SLB)) {
1017 unsigned long sp_vsid;
1018 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1020 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1021 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1022 << SLB_VSID_SHIFT_1T;
1024 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1026 sp_vsid |= SLB_VSID_KERNEL | llp;
1027 p->thread.ksp_vsid = sp_vsid;
1029 #endif /* CONFIG_PPC_STD_MMU_64 */
1031 if (cpu_has_feature(CPU_FTR_DSCR)) {
1032 p->thread.dscr_inherit = current->thread.dscr_inherit;
1033 p->thread.dscr = current->thread.dscr;
1035 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1036 p->thread.ppr = INIT_PPR;
1039 * The PPC64 ABI makes use of a TOC to contain function
1040 * pointers. The function (ret_from_except) is actually a pointer
1041 * to the TOC entry. The first entry is a pointer to the actual
1045 kregs->nip = *((unsigned long *)f);
1047 kregs->nip = (unsigned long)f;
1053 * Set up a thread for executing a new program
1055 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1058 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1062 * If we exec out of a kernel thread then thread.regs will not be
1065 if (!current->thread.regs) {
1066 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1067 current->thread.regs = regs - 1;
1070 memset(regs->gpr, 0, sizeof(regs->gpr));
1078 * We have just cleared all the nonvolatile GPRs, so make
1079 * FULL_REGS(regs) return true. This is necessary to allow
1080 * ptrace to examine the thread immediately after exec.
1087 regs->msr = MSR_USER;
1089 if (!is_32bit_task()) {
1090 unsigned long entry;
1092 if (is_elf2_task()) {
1093 /* Look ma, no function descriptors! */
1098 * The latest iteration of the ABI requires that when
1099 * calling a function (at its global entry point),
1100 * the caller must ensure r12 holds the entry point
1101 * address (so that the function can quickly
1102 * establish addressability).
1104 regs->gpr[12] = start;
1105 /* Make sure that's restored on entry to userspace. */
1106 set_thread_flag(TIF_RESTOREALL);
1110 /* start is a relocated pointer to the function
1111 * descriptor for the elf _start routine. The first
1112 * entry in the function descriptor is the entry
1113 * address of _start and the second entry is the TOC
1114 * value we need to use.
1116 __get_user(entry, (unsigned long __user *)start);
1117 __get_user(toc, (unsigned long __user *)start+1);
1119 /* Check whether the e_entry function descriptor entries
1120 * need to be relocated before we can use them.
1122 if (load_addr != 0) {
1129 regs->msr = MSR_USER64;
1133 regs->msr = MSR_USER32;
1136 discard_lazy_cpu_state();
1138 current->thread.used_vsr = 0;
1140 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state));
1141 current->thread.fp_save_area = NULL;
1142 #ifdef CONFIG_ALTIVEC
1143 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state));
1144 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1145 current->thread.vr_save_area = NULL;
1146 current->thread.vrsave = 0;
1147 current->thread.used_vr = 0;
1148 #endif /* CONFIG_ALTIVEC */
1150 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1151 current->thread.acc = 0;
1152 current->thread.spefscr = 0;
1153 current->thread.used_spe = 0;
1154 #endif /* CONFIG_SPE */
1155 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1156 if (cpu_has_feature(CPU_FTR_TM))
1157 regs->msr |= MSR_TM;
1158 current->thread.tm_tfhar = 0;
1159 current->thread.tm_texasr = 0;
1160 current->thread.tm_tfiar = 0;
1161 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1164 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1165 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1167 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1169 struct pt_regs *regs = tsk->thread.regs;
1171 /* This is a bit hairy. If we are an SPE enabled processor
1172 * (have embedded fp) we store the IEEE exception enable flags in
1173 * fpexc_mode. fpexc_mode is also used for setting FP exception
1174 * mode (asyn, precise, disabled) for 'Classic' FP. */
1175 if (val & PR_FP_EXC_SW_ENABLE) {
1177 if (cpu_has_feature(CPU_FTR_SPE)) {
1178 tsk->thread.fpexc_mode = val &
1179 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1189 /* on a CONFIG_SPE this does not hurt us. The bits that
1190 * __pack_fe01 use do not overlap with bits used for
1191 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1192 * on CONFIG_SPE implementations are reserved so writing to
1193 * them does not change anything */
1194 if (val > PR_FP_EXC_PRECISE)
1196 tsk->thread.fpexc_mode = __pack_fe01(val);
1197 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1198 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1199 | tsk->thread.fpexc_mode;
1203 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1207 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1209 if (cpu_has_feature(CPU_FTR_SPE))
1210 val = tsk->thread.fpexc_mode;
1217 val = __unpack_fe01(tsk->thread.fpexc_mode);
1218 return put_user(val, (unsigned int __user *) adr);
1221 int set_endian(struct task_struct *tsk, unsigned int val)
1223 struct pt_regs *regs = tsk->thread.regs;
1225 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1226 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1232 if (val == PR_ENDIAN_BIG)
1233 regs->msr &= ~MSR_LE;
1234 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1235 regs->msr |= MSR_LE;
1242 int get_endian(struct task_struct *tsk, unsigned long adr)
1244 struct pt_regs *regs = tsk->thread.regs;
1247 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1248 !cpu_has_feature(CPU_FTR_REAL_LE))
1254 if (regs->msr & MSR_LE) {
1255 if (cpu_has_feature(CPU_FTR_REAL_LE))
1256 val = PR_ENDIAN_LITTLE;
1258 val = PR_ENDIAN_PPC_LITTLE;
1260 val = PR_ENDIAN_BIG;
1262 return put_user(val, (unsigned int __user *)adr);
1265 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1267 tsk->thread.align_ctl = val;
1271 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1273 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1276 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1277 unsigned long nbytes)
1279 unsigned long stack_page;
1280 unsigned long cpu = task_cpu(p);
1283 * Avoid crashing if the stack has overflowed and corrupted
1284 * task_cpu(p), which is in the thread_info struct.
1286 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1287 stack_page = (unsigned long) hardirq_ctx[cpu];
1288 if (sp >= stack_page + sizeof(struct thread_struct)
1289 && sp <= stack_page + THREAD_SIZE - nbytes)
1292 stack_page = (unsigned long) softirq_ctx[cpu];
1293 if (sp >= stack_page + sizeof(struct thread_struct)
1294 && sp <= stack_page + THREAD_SIZE - nbytes)
1300 int validate_sp(unsigned long sp, struct task_struct *p,
1301 unsigned long nbytes)
1303 unsigned long stack_page = (unsigned long)task_stack_page(p);
1305 if (sp >= stack_page + sizeof(struct thread_struct)
1306 && sp <= stack_page + THREAD_SIZE - nbytes)
1309 return valid_irq_stack(sp, p, nbytes);
1312 EXPORT_SYMBOL(validate_sp);
1314 unsigned long get_wchan(struct task_struct *p)
1316 unsigned long ip, sp;
1319 if (!p || p == current || p->state == TASK_RUNNING)
1323 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1327 sp = *(unsigned long *)sp;
1328 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1331 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1332 if (!in_sched_functions(ip))
1335 } while (count++ < 16);
1339 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1341 void show_stack(struct task_struct *tsk, unsigned long *stack)
1343 unsigned long sp, ip, lr, newsp;
1346 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1347 int curr_frame = current->curr_ret_stack;
1348 extern void return_to_handler(void);
1349 unsigned long rth = (unsigned long)return_to_handler;
1350 unsigned long mrth = -1;
1352 extern void mod_return_to_handler(void);
1353 rth = *(unsigned long *)rth;
1354 mrth = (unsigned long)mod_return_to_handler;
1355 mrth = *(unsigned long *)mrth;
1359 sp = (unsigned long) stack;
1364 asm("mr %0,1" : "=r" (sp));
1366 sp = tsk->thread.ksp;
1370 printk("Call Trace:\n");
1372 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1375 stack = (unsigned long *) sp;
1377 ip = stack[STACK_FRAME_LR_SAVE];
1378 if (!firstframe || ip != lr) {
1379 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1380 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1381 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1383 (void *)current->ret_stack[curr_frame].ret);
1388 printk(" (unreliable)");
1394 * See if this is an exception frame.
1395 * We look for the "regshere" marker in the current frame.
1397 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1398 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1399 struct pt_regs *regs = (struct pt_regs *)
1400 (sp + STACK_FRAME_OVERHEAD);
1402 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1403 regs->trap, (void *)regs->nip, (void *)lr);
1408 } while (count++ < kstack_depth_to_print);
1412 /* Called with hard IRQs off */
1413 void notrace __ppc64_runlatch_on(void)
1415 struct thread_info *ti = current_thread_info();
1418 ctrl = mfspr(SPRN_CTRLF);
1419 ctrl |= CTRL_RUNLATCH;
1420 mtspr(SPRN_CTRLT, ctrl);
1422 ti->local_flags |= _TLF_RUNLATCH;
1425 /* Called with hard IRQs off */
1426 void notrace __ppc64_runlatch_off(void)
1428 struct thread_info *ti = current_thread_info();
1431 ti->local_flags &= ~_TLF_RUNLATCH;
1433 ctrl = mfspr(SPRN_CTRLF);
1434 ctrl &= ~CTRL_RUNLATCH;
1435 mtspr(SPRN_CTRLT, ctrl);
1437 #endif /* CONFIG_PPC64 */
1439 unsigned long arch_align_stack(unsigned long sp)
1441 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1442 sp -= get_random_int() & ~PAGE_MASK;
1446 static inline unsigned long brk_rnd(void)
1448 unsigned long rnd = 0;
1450 /* 8MB for 32bit, 1GB for 64bit */
1451 if (is_32bit_task())
1452 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1454 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1456 return rnd << PAGE_SHIFT;
1459 unsigned long arch_randomize_brk(struct mm_struct *mm)
1461 unsigned long base = mm->brk;
1464 #ifdef CONFIG_PPC_STD_MMU_64
1466 * If we are using 1TB segments and we are allowed to randomise
1467 * the heap, we can put it above 1TB so it is backed by a 1TB
1468 * segment. Otherwise the heap will be in the bottom 1TB
1469 * which always uses 256MB segments and this may result in a
1470 * performance penalty.
1472 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1473 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1476 ret = PAGE_ALIGN(base + brk_rnd());
1484 unsigned long randomize_et_dyn(unsigned long base)
1486 unsigned long ret = PAGE_ALIGN(base + brk_rnd());