Merge remote-tracking branch 'pci/pci/gavin-window-alignment' into next
[firefly-linux-kernel-4.4.55.git] / arch / powerpc / mm / hash_utils_64.c
1 /*
2  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3  *   {mikejc|engebret}@us.ibm.com
4  *
5  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6  *
7  * SMP scalability work:
8  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9  * 
10  *    Module name: htab.c
11  *
12  *    Description:
13  *      PowerPC Hashed Page Table functions
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  */
20
21 #undef DEBUG
22 #undef DEBUG_LOW
23
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36
37 #include <asm/processor.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu.h>
40 #include <asm/mmu_context.h>
41 #include <asm/page.h>
42 #include <asm/types.h>
43 #include <asm/uaccess.h>
44 #include <asm/machdep.h>
45 #include <asm/prom.h>
46 #include <asm/tlbflush.h>
47 #include <asm/io.h>
48 #include <asm/eeh.h>
49 #include <asm/tlb.h>
50 #include <asm/cacheflush.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
53 #include <asm/spu.h>
54 #include <asm/udbg.h>
55 #include <asm/code-patching.h>
56 #include <asm/fadump.h>
57 #include <asm/firmware.h>
58
59 #ifdef DEBUG
60 #define DBG(fmt...) udbg_printf(fmt)
61 #else
62 #define DBG(fmt...)
63 #endif
64
65 #ifdef DEBUG_LOW
66 #define DBG_LOW(fmt...) udbg_printf(fmt)
67 #else
68 #define DBG_LOW(fmt...)
69 #endif
70
71 #define KB (1024)
72 #define MB (1024*KB)
73 #define GB (1024L*MB)
74
75 /*
76  * Note:  pte   --> Linux PTE
77  *        HPTE  --> PowerPC Hashed Page Table Entry
78  *
79  * Execution context:
80  *   htab_initialize is called with the MMU off (of course), but
81  *   the kernel has been copied down to zero so it can directly
82  *   reference global data.  At this point it is very difficult
83  *   to print debug info.
84  *
85  */
86
87 #ifdef CONFIG_U3_DART
88 extern unsigned long dart_tablebase;
89 #endif /* CONFIG_U3_DART */
90
91 static unsigned long _SDR1;
92 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
93
94 struct hash_pte *htab_address;
95 unsigned long htab_size_bytes;
96 unsigned long htab_hash_mask;
97 EXPORT_SYMBOL_GPL(htab_hash_mask);
98 int mmu_linear_psize = MMU_PAGE_4K;
99 int mmu_virtual_psize = MMU_PAGE_4K;
100 int mmu_vmalloc_psize = MMU_PAGE_4K;
101 #ifdef CONFIG_SPARSEMEM_VMEMMAP
102 int mmu_vmemmap_psize = MMU_PAGE_4K;
103 #endif
104 int mmu_io_psize = MMU_PAGE_4K;
105 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
106 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
107 u16 mmu_slb_size = 64;
108 EXPORT_SYMBOL_GPL(mmu_slb_size);
109 #ifdef CONFIG_PPC_64K_PAGES
110 int mmu_ci_restrictions;
111 #endif
112 #ifdef CONFIG_DEBUG_PAGEALLOC
113 static u8 *linear_map_hash_slots;
114 static unsigned long linear_map_hash_count;
115 static DEFINE_SPINLOCK(linear_map_hash_lock);
116 #endif /* CONFIG_DEBUG_PAGEALLOC */
117
118 /* There are definitions of page sizes arrays to be used when none
119  * is provided by the firmware.
120  */
121
122 /* Pre-POWER4 CPUs (4k pages only)
123  */
124 static struct mmu_psize_def mmu_psize_defaults_old[] = {
125         [MMU_PAGE_4K] = {
126                 .shift  = 12,
127                 .sllp   = 0,
128                 .penc   = 0,
129                 .avpnm  = 0,
130                 .tlbiel = 0,
131         },
132 };
133
134 /* POWER4, GPUL, POWER5
135  *
136  * Support for 16Mb large pages
137  */
138 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
139         [MMU_PAGE_4K] = {
140                 .shift  = 12,
141                 .sllp   = 0,
142                 .penc   = 0,
143                 .avpnm  = 0,
144                 .tlbiel = 1,
145         },
146         [MMU_PAGE_16M] = {
147                 .shift  = 24,
148                 .sllp   = SLB_VSID_L,
149                 .penc   = 0,
150                 .avpnm  = 0x1UL,
151                 .tlbiel = 0,
152         },
153 };
154
155 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
156 {
157         unsigned long rflags = pteflags & 0x1fa;
158
159         /* _PAGE_EXEC -> NOEXEC */
160         if ((pteflags & _PAGE_EXEC) == 0)
161                 rflags |= HPTE_R_N;
162
163         /* PP bits. PAGE_USER is already PP bit 0x2, so we only
164          * need to add in 0x1 if it's a read-only user page
165          */
166         if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
167                                          (pteflags & _PAGE_DIRTY)))
168                 rflags |= 1;
169
170         /* Always add C */
171         return rflags | HPTE_R_C;
172 }
173
174 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
175                       unsigned long pstart, unsigned long prot,
176                       int psize, int ssize)
177 {
178         unsigned long vaddr, paddr;
179         unsigned int step, shift;
180         int ret = 0;
181
182         shift = mmu_psize_defs[psize].shift;
183         step = 1 << shift;
184
185         prot = htab_convert_pte_flags(prot);
186
187         DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
188             vstart, vend, pstart, prot, psize, ssize);
189
190         for (vaddr = vstart, paddr = pstart; vaddr < vend;
191              vaddr += step, paddr += step) {
192                 unsigned long hash, hpteg;
193                 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
194                 unsigned long va = hpt_va(vaddr, vsid, ssize);
195                 unsigned long tprot = prot;
196
197                 /* Make kernel text executable */
198                 if (overlaps_kernel_text(vaddr, vaddr + step))
199                         tprot &= ~HPTE_R_N;
200
201                 hash = hpt_hash(va, shift, ssize);
202                 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
203
204                 BUG_ON(!ppc_md.hpte_insert);
205                 ret = ppc_md.hpte_insert(hpteg, va, paddr, tprot,
206                                          HPTE_V_BOLTED, psize, ssize);
207
208                 if (ret < 0)
209                         break;
210 #ifdef CONFIG_DEBUG_PAGEALLOC
211                 if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
212                         linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
213 #endif /* CONFIG_DEBUG_PAGEALLOC */
214         }
215         return ret < 0 ? ret : 0;
216 }
217
218 #ifdef CONFIG_MEMORY_HOTPLUG
219 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
220                       int psize, int ssize)
221 {
222         unsigned long vaddr;
223         unsigned int step, shift;
224
225         shift = mmu_psize_defs[psize].shift;
226         step = 1 << shift;
227
228         if (!ppc_md.hpte_removebolted) {
229                 printk(KERN_WARNING "Platform doesn't implement "
230                                 "hpte_removebolted\n");
231                 return -EINVAL;
232         }
233
234         for (vaddr = vstart; vaddr < vend; vaddr += step)
235                 ppc_md.hpte_removebolted(vaddr, psize, ssize);
236
237         return 0;
238 }
239 #endif /* CONFIG_MEMORY_HOTPLUG */
240
241 static int __init htab_dt_scan_seg_sizes(unsigned long node,
242                                          const char *uname, int depth,
243                                          void *data)
244 {
245         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
246         u32 *prop;
247         unsigned long size = 0;
248
249         /* We are scanning "cpu" nodes only */
250         if (type == NULL || strcmp(type, "cpu") != 0)
251                 return 0;
252
253         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
254                                           &size);
255         if (prop == NULL)
256                 return 0;
257         for (; size >= 4; size -= 4, ++prop) {
258                 if (prop[0] == 40) {
259                         DBG("1T segment support detected\n");
260                         cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
261                         return 1;
262                 }
263         }
264         cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
265         return 0;
266 }
267
268 static void __init htab_init_seg_sizes(void)
269 {
270         of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
271 }
272
273 static int __init htab_dt_scan_page_sizes(unsigned long node,
274                                           const char *uname, int depth,
275                                           void *data)
276 {
277         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
278         u32 *prop;
279         unsigned long size = 0;
280
281         /* We are scanning "cpu" nodes only */
282         if (type == NULL || strcmp(type, "cpu") != 0)
283                 return 0;
284
285         prop = (u32 *)of_get_flat_dt_prop(node,
286                                           "ibm,segment-page-sizes", &size);
287         if (prop != NULL) {
288                 DBG("Page sizes from device-tree:\n");
289                 size /= 4;
290                 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
291                 while(size > 0) {
292                         unsigned int shift = prop[0];
293                         unsigned int slbenc = prop[1];
294                         unsigned int lpnum = prop[2];
295                         unsigned int lpenc = 0;
296                         struct mmu_psize_def *def;
297                         int idx = -1;
298
299                         size -= 3; prop += 3;
300                         while(size > 0 && lpnum) {
301                                 if (prop[0] == shift)
302                                         lpenc = prop[1];
303                                 prop += 2; size -= 2;
304                                 lpnum--;
305                         }
306                         switch(shift) {
307                         case 0xc:
308                                 idx = MMU_PAGE_4K;
309                                 break;
310                         case 0x10:
311                                 idx = MMU_PAGE_64K;
312                                 break;
313                         case 0x14:
314                                 idx = MMU_PAGE_1M;
315                                 break;
316                         case 0x18:
317                                 idx = MMU_PAGE_16M;
318                                 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
319                                 break;
320                         case 0x22:
321                                 idx = MMU_PAGE_16G;
322                                 break;
323                         }
324                         if (idx < 0)
325                                 continue;
326                         def = &mmu_psize_defs[idx];
327                         def->shift = shift;
328                         if (shift <= 23)
329                                 def->avpnm = 0;
330                         else
331                                 def->avpnm = (1 << (shift - 23)) - 1;
332                         def->sllp = slbenc;
333                         def->penc = lpenc;
334                         /* We don't know for sure what's up with tlbiel, so
335                          * for now we only set it for 4K and 64K pages
336                          */
337                         if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
338                                 def->tlbiel = 1;
339                         else
340                                 def->tlbiel = 0;
341
342                         DBG(" %d: shift=%02x, sllp=%04lx, avpnm=%08lx, "
343                             "tlbiel=%d, penc=%d\n",
344                             idx, shift, def->sllp, def->avpnm, def->tlbiel,
345                             def->penc);
346                 }
347                 return 1;
348         }
349         return 0;
350 }
351
352 #ifdef CONFIG_HUGETLB_PAGE
353 /* Scan for 16G memory blocks that have been set aside for huge pages
354  * and reserve those blocks for 16G huge pages.
355  */
356 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
357                                         const char *uname, int depth,
358                                         void *data) {
359         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
360         unsigned long *addr_prop;
361         u32 *page_count_prop;
362         unsigned int expected_pages;
363         long unsigned int phys_addr;
364         long unsigned int block_size;
365
366         /* We are scanning "memory" nodes only */
367         if (type == NULL || strcmp(type, "memory") != 0)
368                 return 0;
369
370         /* This property is the log base 2 of the number of virtual pages that
371          * will represent this memory block. */
372         page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
373         if (page_count_prop == NULL)
374                 return 0;
375         expected_pages = (1 << page_count_prop[0]);
376         addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
377         if (addr_prop == NULL)
378                 return 0;
379         phys_addr = addr_prop[0];
380         block_size = addr_prop[1];
381         if (block_size != (16 * GB))
382                 return 0;
383         printk(KERN_INFO "Huge page(16GB) memory: "
384                         "addr = 0x%lX size = 0x%lX pages = %d\n",
385                         phys_addr, block_size, expected_pages);
386         if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
387                 memblock_reserve(phys_addr, block_size * expected_pages);
388                 add_gpage(phys_addr, block_size, expected_pages);
389         }
390         return 0;
391 }
392 #endif /* CONFIG_HUGETLB_PAGE */
393
394 static void __init htab_init_page_sizes(void)
395 {
396         int rc;
397
398         /* Default to 4K pages only */
399         memcpy(mmu_psize_defs, mmu_psize_defaults_old,
400                sizeof(mmu_psize_defaults_old));
401
402         /*
403          * Try to find the available page sizes in the device-tree
404          */
405         rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
406         if (rc != 0)  /* Found */
407                 goto found;
408
409         /*
410          * Not in the device-tree, let's fallback on known size
411          * list for 16M capable GP & GR
412          */
413         if (mmu_has_feature(MMU_FTR_16M_PAGE))
414                 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
415                        sizeof(mmu_psize_defaults_gp));
416  found:
417 #ifndef CONFIG_DEBUG_PAGEALLOC
418         /*
419          * Pick a size for the linear mapping. Currently, we only support
420          * 16M, 1M and 4K which is the default
421          */
422         if (mmu_psize_defs[MMU_PAGE_16M].shift)
423                 mmu_linear_psize = MMU_PAGE_16M;
424         else if (mmu_psize_defs[MMU_PAGE_1M].shift)
425                 mmu_linear_psize = MMU_PAGE_1M;
426 #endif /* CONFIG_DEBUG_PAGEALLOC */
427
428 #ifdef CONFIG_PPC_64K_PAGES
429         /*
430          * Pick a size for the ordinary pages. Default is 4K, we support
431          * 64K for user mappings and vmalloc if supported by the processor.
432          * We only use 64k for ioremap if the processor
433          * (and firmware) support cache-inhibited large pages.
434          * If not, we use 4k and set mmu_ci_restrictions so that
435          * hash_page knows to switch processes that use cache-inhibited
436          * mappings to 4k pages.
437          */
438         if (mmu_psize_defs[MMU_PAGE_64K].shift) {
439                 mmu_virtual_psize = MMU_PAGE_64K;
440                 mmu_vmalloc_psize = MMU_PAGE_64K;
441                 if (mmu_linear_psize == MMU_PAGE_4K)
442                         mmu_linear_psize = MMU_PAGE_64K;
443                 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
444                         /*
445                          * Don't use 64k pages for ioremap on pSeries, since
446                          * that would stop us accessing the HEA ethernet.
447                          */
448                         if (!machine_is(pseries))
449                                 mmu_io_psize = MMU_PAGE_64K;
450                 } else
451                         mmu_ci_restrictions = 1;
452         }
453 #endif /* CONFIG_PPC_64K_PAGES */
454
455 #ifdef CONFIG_SPARSEMEM_VMEMMAP
456         /* We try to use 16M pages for vmemmap if that is supported
457          * and we have at least 1G of RAM at boot
458          */
459         if (mmu_psize_defs[MMU_PAGE_16M].shift &&
460             memblock_phys_mem_size() >= 0x40000000)
461                 mmu_vmemmap_psize = MMU_PAGE_16M;
462         else if (mmu_psize_defs[MMU_PAGE_64K].shift)
463                 mmu_vmemmap_psize = MMU_PAGE_64K;
464         else
465                 mmu_vmemmap_psize = MMU_PAGE_4K;
466 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
467
468         printk(KERN_DEBUG "Page orders: linear mapping = %d, "
469                "virtual = %d, io = %d"
470 #ifdef CONFIG_SPARSEMEM_VMEMMAP
471                ", vmemmap = %d"
472 #endif
473                "\n",
474                mmu_psize_defs[mmu_linear_psize].shift,
475                mmu_psize_defs[mmu_virtual_psize].shift,
476                mmu_psize_defs[mmu_io_psize].shift
477 #ifdef CONFIG_SPARSEMEM_VMEMMAP
478                ,mmu_psize_defs[mmu_vmemmap_psize].shift
479 #endif
480                );
481
482 #ifdef CONFIG_HUGETLB_PAGE
483         /* Reserve 16G huge page memory sections for huge pages */
484         of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
485 #endif /* CONFIG_HUGETLB_PAGE */
486 }
487
488 static int __init htab_dt_scan_pftsize(unsigned long node,
489                                        const char *uname, int depth,
490                                        void *data)
491 {
492         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
493         u32 *prop;
494
495         /* We are scanning "cpu" nodes only */
496         if (type == NULL || strcmp(type, "cpu") != 0)
497                 return 0;
498
499         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
500         if (prop != NULL) {
501                 /* pft_size[0] is the NUMA CEC cookie */
502                 ppc64_pft_size = prop[1];
503                 return 1;
504         }
505         return 0;
506 }
507
508 static unsigned long __init htab_get_table_size(void)
509 {
510         unsigned long mem_size, rnd_mem_size, pteg_count, psize;
511
512         /* If hash size isn't already provided by the platform, we try to
513          * retrieve it from the device-tree. If it's not there neither, we
514          * calculate it now based on the total RAM size
515          */
516         if (ppc64_pft_size == 0)
517                 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
518         if (ppc64_pft_size)
519                 return 1UL << ppc64_pft_size;
520
521         /* round mem_size up to next power of 2 */
522         mem_size = memblock_phys_mem_size();
523         rnd_mem_size = 1UL << __ilog2(mem_size);
524         if (rnd_mem_size < mem_size)
525                 rnd_mem_size <<= 1;
526
527         /* # pages / 2 */
528         psize = mmu_psize_defs[mmu_virtual_psize].shift;
529         pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
530
531         return pteg_count << 7;
532 }
533
534 #ifdef CONFIG_MEMORY_HOTPLUG
535 int create_section_mapping(unsigned long start, unsigned long end)
536 {
537         return htab_bolt_mapping(start, end, __pa(start),
538                                  pgprot_val(PAGE_KERNEL), mmu_linear_psize,
539                                  mmu_kernel_ssize);
540 }
541
542 int remove_section_mapping(unsigned long start, unsigned long end)
543 {
544         return htab_remove_mapping(start, end, mmu_linear_psize,
545                         mmu_kernel_ssize);
546 }
547 #endif /* CONFIG_MEMORY_HOTPLUG */
548
549 #define FUNCTION_TEXT(A)        ((*(unsigned long *)(A)))
550
551 static void __init htab_finish_init(void)
552 {
553         extern unsigned int *htab_call_hpte_insert1;
554         extern unsigned int *htab_call_hpte_insert2;
555         extern unsigned int *htab_call_hpte_remove;
556         extern unsigned int *htab_call_hpte_updatepp;
557
558 #ifdef CONFIG_PPC_HAS_HASH_64K
559         extern unsigned int *ht64_call_hpte_insert1;
560         extern unsigned int *ht64_call_hpte_insert2;
561         extern unsigned int *ht64_call_hpte_remove;
562         extern unsigned int *ht64_call_hpte_updatepp;
563
564         patch_branch(ht64_call_hpte_insert1,
565                 FUNCTION_TEXT(ppc_md.hpte_insert),
566                 BRANCH_SET_LINK);
567         patch_branch(ht64_call_hpte_insert2,
568                 FUNCTION_TEXT(ppc_md.hpte_insert),
569                 BRANCH_SET_LINK);
570         patch_branch(ht64_call_hpte_remove,
571                 FUNCTION_TEXT(ppc_md.hpte_remove),
572                 BRANCH_SET_LINK);
573         patch_branch(ht64_call_hpte_updatepp,
574                 FUNCTION_TEXT(ppc_md.hpte_updatepp),
575                 BRANCH_SET_LINK);
576
577 #endif /* CONFIG_PPC_HAS_HASH_64K */
578
579         patch_branch(htab_call_hpte_insert1,
580                 FUNCTION_TEXT(ppc_md.hpte_insert),
581                 BRANCH_SET_LINK);
582         patch_branch(htab_call_hpte_insert2,
583                 FUNCTION_TEXT(ppc_md.hpte_insert),
584                 BRANCH_SET_LINK);
585         patch_branch(htab_call_hpte_remove,
586                 FUNCTION_TEXT(ppc_md.hpte_remove),
587                 BRANCH_SET_LINK);
588         patch_branch(htab_call_hpte_updatepp,
589                 FUNCTION_TEXT(ppc_md.hpte_updatepp),
590                 BRANCH_SET_LINK);
591 }
592
593 static void __init htab_initialize(void)
594 {
595         unsigned long table;
596         unsigned long pteg_count;
597         unsigned long prot;
598         unsigned long base = 0, size = 0, limit;
599         struct memblock_region *reg;
600
601         DBG(" -> htab_initialize()\n");
602
603         /* Initialize segment sizes */
604         htab_init_seg_sizes();
605
606         /* Initialize page sizes */
607         htab_init_page_sizes();
608
609         if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
610                 mmu_kernel_ssize = MMU_SEGSIZE_1T;
611                 mmu_highuser_ssize = MMU_SEGSIZE_1T;
612                 printk(KERN_INFO "Using 1TB segments\n");
613         }
614
615         /*
616          * Calculate the required size of the htab.  We want the number of
617          * PTEGs to equal one half the number of real pages.
618          */ 
619         htab_size_bytes = htab_get_table_size();
620         pteg_count = htab_size_bytes >> 7;
621
622         htab_hash_mask = pteg_count - 1;
623
624         if (firmware_has_feature(FW_FEATURE_LPAR)) {
625                 /* Using a hypervisor which owns the htab */
626                 htab_address = NULL;
627                 _SDR1 = 0; 
628 #ifdef CONFIG_FA_DUMP
629                 /*
630                  * If firmware assisted dump is active firmware preserves
631                  * the contents of htab along with entire partition memory.
632                  * Clear the htab if firmware assisted dump is active so
633                  * that we dont end up using old mappings.
634                  */
635                 if (is_fadump_active() && ppc_md.hpte_clear_all)
636                         ppc_md.hpte_clear_all();
637 #endif
638         } else {
639                 /* Find storage for the HPT.  Must be contiguous in
640                  * the absolute address space. On cell we want it to be
641                  * in the first 2 Gig so we can use it for IOMMU hacks.
642                  */
643                 if (machine_is(cell))
644                         limit = 0x80000000;
645                 else
646                         limit = MEMBLOCK_ALLOC_ANYWHERE;
647
648                 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
649
650                 DBG("Hash table allocated at %lx, size: %lx\n", table,
651                     htab_size_bytes);
652
653                 htab_address = __va(table);
654
655                 /* htab absolute addr + encoded htabsize */
656                 _SDR1 = table + __ilog2(pteg_count) - 11;
657
658                 /* Initialize the HPT with no entries */
659                 memset((void *)table, 0, htab_size_bytes);
660
661                 /* Set SDR1 */
662                 mtspr(SPRN_SDR1, _SDR1);
663         }
664
665         prot = pgprot_val(PAGE_KERNEL);
666
667 #ifdef CONFIG_DEBUG_PAGEALLOC
668         linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
669         linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
670                                                     1, ppc64_rma_size));
671         memset(linear_map_hash_slots, 0, linear_map_hash_count);
672 #endif /* CONFIG_DEBUG_PAGEALLOC */
673
674         /* On U3 based machines, we need to reserve the DART area and
675          * _NOT_ map it to avoid cache paradoxes as it's remapped non
676          * cacheable later on
677          */
678
679         /* create bolted the linear mapping in the hash table */
680         for_each_memblock(memory, reg) {
681                 base = (unsigned long)__va(reg->base);
682                 size = reg->size;
683
684                 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
685                     base, size, prot);
686
687 #ifdef CONFIG_U3_DART
688                 /* Do not map the DART space. Fortunately, it will be aligned
689                  * in such a way that it will not cross two memblock regions and
690                  * will fit within a single 16Mb page.
691                  * The DART space is assumed to be a full 16Mb region even if
692                  * we only use 2Mb of that space. We will use more of it later
693                  * for AGP GART. We have to use a full 16Mb large page.
694                  */
695                 DBG("DART base: %lx\n", dart_tablebase);
696
697                 if (dart_tablebase != 0 && dart_tablebase >= base
698                     && dart_tablebase < (base + size)) {
699                         unsigned long dart_table_end = dart_tablebase + 16 * MB;
700                         if (base != dart_tablebase)
701                                 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
702                                                         __pa(base), prot,
703                                                         mmu_linear_psize,
704                                                         mmu_kernel_ssize));
705                         if ((base + size) > dart_table_end)
706                                 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
707                                                         base + size,
708                                                         __pa(dart_table_end),
709                                                          prot,
710                                                          mmu_linear_psize,
711                                                          mmu_kernel_ssize));
712                         continue;
713                 }
714 #endif /* CONFIG_U3_DART */
715                 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
716                                 prot, mmu_linear_psize, mmu_kernel_ssize));
717         }
718         memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
719
720         /*
721          * If we have a memory_limit and we've allocated TCEs then we need to
722          * explicitly map the TCE area at the top of RAM. We also cope with the
723          * case that the TCEs start below memory_limit.
724          * tce_alloc_start/end are 16MB aligned so the mapping should work
725          * for either 4K or 16MB pages.
726          */
727         if (tce_alloc_start) {
728                 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
729                 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
730
731                 if (base + size >= tce_alloc_start)
732                         tce_alloc_start = base + size + 1;
733
734                 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
735                                          __pa(tce_alloc_start), prot,
736                                          mmu_linear_psize, mmu_kernel_ssize));
737         }
738
739         htab_finish_init();
740
741         DBG(" <- htab_initialize()\n");
742 }
743 #undef KB
744 #undef MB
745
746 void __init early_init_mmu(void)
747 {
748         /* Setup initial STAB address in the PACA */
749         get_paca()->stab_real = __pa((u64)&initial_stab);
750         get_paca()->stab_addr = (u64)&initial_stab;
751
752         /* Initialize the MMU Hash table and create the linear mapping
753          * of memory. Has to be done before stab/slb initialization as
754          * this is currently where the page size encoding is obtained
755          */
756         htab_initialize();
757
758         /* Initialize stab / SLB management */
759         if (mmu_has_feature(MMU_FTR_SLB))
760                 slb_initialize();
761 }
762
763 #ifdef CONFIG_SMP
764 void __cpuinit early_init_mmu_secondary(void)
765 {
766         /* Initialize hash table for that CPU */
767         if (!firmware_has_feature(FW_FEATURE_LPAR))
768                 mtspr(SPRN_SDR1, _SDR1);
769
770         /* Initialize STAB/SLB. We use a virtual address as it works
771          * in real mode on pSeries.
772          */
773         if (mmu_has_feature(MMU_FTR_SLB))
774                 slb_initialize();
775         else
776                 stab_initialize(get_paca()->stab_addr);
777 }
778 #endif /* CONFIG_SMP */
779
780 /*
781  * Called by asm hashtable.S for doing lazy icache flush
782  */
783 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
784 {
785         struct page *page;
786
787         if (!pfn_valid(pte_pfn(pte)))
788                 return pp;
789
790         page = pte_page(pte);
791
792         /* page is dirty */
793         if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
794                 if (trap == 0x400) {
795                         flush_dcache_icache_page(page);
796                         set_bit(PG_arch_1, &page->flags);
797                 } else
798                         pp |= HPTE_R_N;
799         }
800         return pp;
801 }
802
803 #ifdef CONFIG_PPC_MM_SLICES
804 unsigned int get_paca_psize(unsigned long addr)
805 {
806         unsigned long index, slices;
807
808         if (addr < SLICE_LOW_TOP) {
809                 slices = get_paca()->context.low_slices_psize;
810                 index = GET_LOW_SLICE_INDEX(addr);
811         } else {
812                 slices = get_paca()->context.high_slices_psize;
813                 index = GET_HIGH_SLICE_INDEX(addr);
814         }
815         return (slices >> (index * 4)) & 0xF;
816 }
817
818 #else
819 unsigned int get_paca_psize(unsigned long addr)
820 {
821         return get_paca()->context.user_psize;
822 }
823 #endif
824
825 /*
826  * Demote a segment to using 4k pages.
827  * For now this makes the whole process use 4k pages.
828  */
829 #ifdef CONFIG_PPC_64K_PAGES
830 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
831 {
832         if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
833                 return;
834         slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
835 #ifdef CONFIG_SPU_BASE
836         spu_flush_all_slbs(mm);
837 #endif
838         if (get_paca_psize(addr) != MMU_PAGE_4K) {
839                 get_paca()->context = mm->context;
840                 slb_flush_and_rebolt();
841         }
842 }
843 #endif /* CONFIG_PPC_64K_PAGES */
844
845 #ifdef CONFIG_PPC_SUBPAGE_PROT
846 /*
847  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
848  * Userspace sets the subpage permissions using the subpage_prot system call.
849  *
850  * Result is 0: full permissions, _PAGE_RW: read-only,
851  * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
852  */
853 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
854 {
855         struct subpage_prot_table *spt = &mm->context.spt;
856         u32 spp = 0;
857         u32 **sbpm, *sbpp;
858
859         if (ea >= spt->maxaddr)
860                 return 0;
861         if (ea < 0x100000000) {
862                 /* addresses below 4GB use spt->low_prot */
863                 sbpm = spt->low_prot;
864         } else {
865                 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
866                 if (!sbpm)
867                         return 0;
868         }
869         sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
870         if (!sbpp)
871                 return 0;
872         spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
873
874         /* extract 2-bit bitfield for this 4k subpage */
875         spp >>= 30 - 2 * ((ea >> 12) & 0xf);
876
877         /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
878         spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
879         return spp;
880 }
881
882 #else /* CONFIG_PPC_SUBPAGE_PROT */
883 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
884 {
885         return 0;
886 }
887 #endif
888
889 void hash_failure_debug(unsigned long ea, unsigned long access,
890                         unsigned long vsid, unsigned long trap,
891                         int ssize, int psize, unsigned long pte)
892 {
893         if (!printk_ratelimit())
894                 return;
895         pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
896                 ea, access, current->comm);
897         pr_info("    trap=0x%lx vsid=0x%lx ssize=%d psize=%d pte=0x%lx\n",
898                 trap, vsid, ssize, psize, pte);
899 }
900
901 /* Result code is:
902  *  0 - handled
903  *  1 - normal page fault
904  * -1 - critical hash insertion error
905  * -2 - access not permitted by subpage protection mechanism
906  */
907 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
908 {
909         pgd_t *pgdir;
910         unsigned long vsid;
911         struct mm_struct *mm;
912         pte_t *ptep;
913         unsigned hugeshift;
914         const struct cpumask *tmp;
915         int rc, user_region = 0, local = 0;
916         int psize, ssize;
917
918         DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
919                 ea, access, trap);
920
921         if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
922                 DBG_LOW(" out of pgtable range !\n");
923                 return 1;
924         }
925
926         /* Get region & vsid */
927         switch (REGION_ID(ea)) {
928         case USER_REGION_ID:
929                 user_region = 1;
930                 mm = current->mm;
931                 if (! mm) {
932                         DBG_LOW(" user region with no mm !\n");
933                         return 1;
934                 }
935                 psize = get_slice_psize(mm, ea);
936                 ssize = user_segment_size(ea);
937                 vsid = get_vsid(mm->context.id, ea, ssize);
938                 break;
939         case VMALLOC_REGION_ID:
940                 mm = &init_mm;
941                 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
942                 if (ea < VMALLOC_END)
943                         psize = mmu_vmalloc_psize;
944                 else
945                         psize = mmu_io_psize;
946                 ssize = mmu_kernel_ssize;
947                 break;
948         default:
949                 /* Not a valid range
950                  * Send the problem up to do_page_fault 
951                  */
952                 return 1;
953         }
954         DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
955
956         /* Get pgdir */
957         pgdir = mm->pgd;
958         if (pgdir == NULL)
959                 return 1;
960
961         /* Check CPU locality */
962         tmp = cpumask_of(smp_processor_id());
963         if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
964                 local = 1;
965
966 #ifndef CONFIG_PPC_64K_PAGES
967         /* If we use 4K pages and our psize is not 4K, then we might
968          * be hitting a special driver mapping, and need to align the
969          * address before we fetch the PTE.
970          *
971          * It could also be a hugepage mapping, in which case this is
972          * not necessary, but it's not harmful, either.
973          */
974         if (psize != MMU_PAGE_4K)
975                 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
976 #endif /* CONFIG_PPC_64K_PAGES */
977
978         /* Get PTE and page size from page tables */
979         ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
980         if (ptep == NULL || !pte_present(*ptep)) {
981                 DBG_LOW(" no PTE !\n");
982                 return 1;
983         }
984
985         /* Add _PAGE_PRESENT to the required access perm */
986         access |= _PAGE_PRESENT;
987
988         /* Pre-check access permissions (will be re-checked atomically
989          * in __hash_page_XX but this pre-check is a fast path
990          */
991         if (access & ~pte_val(*ptep)) {
992                 DBG_LOW(" no access !\n");
993                 return 1;
994         }
995
996 #ifdef CONFIG_HUGETLB_PAGE
997         if (hugeshift)
998                 return __hash_page_huge(ea, access, vsid, ptep, trap, local,
999                                         ssize, hugeshift, psize);
1000 #endif /* CONFIG_HUGETLB_PAGE */
1001
1002 #ifndef CONFIG_PPC_64K_PAGES
1003         DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1004 #else
1005         DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1006                 pte_val(*(ptep + PTRS_PER_PTE)));
1007 #endif
1008         /* Do actual hashing */
1009 #ifdef CONFIG_PPC_64K_PAGES
1010         /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1011         if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1012                 demote_segment_4k(mm, ea);
1013                 psize = MMU_PAGE_4K;
1014         }
1015
1016         /* If this PTE is non-cacheable and we have restrictions on
1017          * using non cacheable large pages, then we switch to 4k
1018          */
1019         if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1020             (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1021                 if (user_region) {
1022                         demote_segment_4k(mm, ea);
1023                         psize = MMU_PAGE_4K;
1024                 } else if (ea < VMALLOC_END) {
1025                         /*
1026                          * some driver did a non-cacheable mapping
1027                          * in vmalloc space, so switch vmalloc
1028                          * to 4k pages
1029                          */
1030                         printk(KERN_ALERT "Reducing vmalloc segment "
1031                                "to 4kB pages because of "
1032                                "non-cacheable mapping\n");
1033                         psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1034 #ifdef CONFIG_SPU_BASE
1035                         spu_flush_all_slbs(mm);
1036 #endif
1037                 }
1038         }
1039         if (user_region) {
1040                 if (psize != get_paca_psize(ea)) {
1041                         get_paca()->context = mm->context;
1042                         slb_flush_and_rebolt();
1043                 }
1044         } else if (get_paca()->vmalloc_sllp !=
1045                    mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1046                 get_paca()->vmalloc_sllp =
1047                         mmu_psize_defs[mmu_vmalloc_psize].sllp;
1048                 slb_vmalloc_update();
1049         }
1050 #endif /* CONFIG_PPC_64K_PAGES */
1051
1052 #ifdef CONFIG_PPC_HAS_HASH_64K
1053         if (psize == MMU_PAGE_64K)
1054                 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1055         else
1056 #endif /* CONFIG_PPC_HAS_HASH_64K */
1057         {
1058                 int spp = subpage_protection(mm, ea);
1059                 if (access & spp)
1060                         rc = -2;
1061                 else
1062                         rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1063                                             local, ssize, spp);
1064         }
1065
1066         /* Dump some info in case of hash insertion failure, they should
1067          * never happen so it is really useful to know if/when they do
1068          */
1069         if (rc == -1)
1070                 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1071                                    pte_val(*ptep));
1072 #ifndef CONFIG_PPC_64K_PAGES
1073         DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1074 #else
1075         DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1076                 pte_val(*(ptep + PTRS_PER_PTE)));
1077 #endif
1078         DBG_LOW(" -> rc=%d\n", rc);
1079         return rc;
1080 }
1081 EXPORT_SYMBOL_GPL(hash_page);
1082
1083 void hash_preload(struct mm_struct *mm, unsigned long ea,
1084                   unsigned long access, unsigned long trap)
1085 {
1086         unsigned long vsid;
1087         pgd_t *pgdir;
1088         pte_t *ptep;
1089         unsigned long flags;
1090         int rc, ssize, local = 0;
1091
1092         BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1093
1094 #ifdef CONFIG_PPC_MM_SLICES
1095         /* We only prefault standard pages for now */
1096         if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1097                 return;
1098 #endif
1099
1100         DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1101                 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1102
1103         /* Get Linux PTE if available */
1104         pgdir = mm->pgd;
1105         if (pgdir == NULL)
1106                 return;
1107         ptep = find_linux_pte(pgdir, ea);
1108         if (!ptep)
1109                 return;
1110
1111 #ifdef CONFIG_PPC_64K_PAGES
1112         /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1113          * a 64K kernel), then we don't preload, hash_page() will take
1114          * care of it once we actually try to access the page.
1115          * That way we don't have to duplicate all of the logic for segment
1116          * page size demotion here
1117          */
1118         if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1119                 return;
1120 #endif /* CONFIG_PPC_64K_PAGES */
1121
1122         /* Get VSID */
1123         ssize = user_segment_size(ea);
1124         vsid = get_vsid(mm->context.id, ea, ssize);
1125
1126         /* Hash doesn't like irqs */
1127         local_irq_save(flags);
1128
1129         /* Is that local to this CPU ? */
1130         if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1131                 local = 1;
1132
1133         /* Hash it in */
1134 #ifdef CONFIG_PPC_HAS_HASH_64K
1135         if (mm->context.user_psize == MMU_PAGE_64K)
1136                 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1137         else
1138 #endif /* CONFIG_PPC_HAS_HASH_64K */
1139                 rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1140                                     subpage_protection(mm, ea));
1141
1142         /* Dump some info in case of hash insertion failure, they should
1143          * never happen so it is really useful to know if/when they do
1144          */
1145         if (rc == -1)
1146                 hash_failure_debug(ea, access, vsid, trap, ssize,
1147                                    mm->context.user_psize, pte_val(*ptep));
1148
1149         local_irq_restore(flags);
1150 }
1151
1152 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1153  *          do not forget to update the assembly call site !
1154  */
1155 void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize,
1156                      int local)
1157 {
1158         unsigned long hash, index, shift, hidx, slot;
1159
1160         DBG_LOW("flush_hash_page(va=%016lx)\n", va);
1161         pte_iterate_hashed_subpages(pte, psize, va, index, shift) {
1162                 hash = hpt_hash(va, shift, ssize);
1163                 hidx = __rpte_to_hidx(pte, index);
1164                 if (hidx & _PTEIDX_SECONDARY)
1165                         hash = ~hash;
1166                 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1167                 slot += hidx & _PTEIDX_GROUP_IX;
1168                 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1169                 ppc_md.hpte_invalidate(slot, va, psize, ssize, local);
1170         } pte_iterate_hashed_end();
1171 }
1172
1173 void flush_hash_range(unsigned long number, int local)
1174 {
1175         if (ppc_md.flush_hash_range)
1176                 ppc_md.flush_hash_range(number, local);
1177         else {
1178                 int i;
1179                 struct ppc64_tlb_batch *batch =
1180                         &__get_cpu_var(ppc64_tlb_batch);
1181
1182                 for (i = 0; i < number; i++)
1183                         flush_hash_page(batch->vaddr[i], batch->pte[i],
1184                                         batch->psize, batch->ssize, local);
1185         }
1186 }
1187
1188 /*
1189  * low_hash_fault is called when we the low level hash code failed
1190  * to instert a PTE due to an hypervisor error
1191  */
1192 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1193 {
1194         if (user_mode(regs)) {
1195 #ifdef CONFIG_PPC_SUBPAGE_PROT
1196                 if (rc == -2)
1197                         _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1198                 else
1199 #endif
1200                         _exception(SIGBUS, regs, BUS_ADRERR, address);
1201         } else
1202                 bad_page_fault(regs, address, SIGBUS);
1203 }
1204
1205 #ifdef CONFIG_DEBUG_PAGEALLOC
1206 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1207 {
1208         unsigned long hash, hpteg;
1209         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1210         unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1211         unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1212         int ret;
1213
1214         hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1215         hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
1216
1217         ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr),
1218                                  mode, HPTE_V_BOLTED,
1219                                  mmu_linear_psize, mmu_kernel_ssize);
1220         BUG_ON (ret < 0);
1221         spin_lock(&linear_map_hash_lock);
1222         BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1223         linear_map_hash_slots[lmi] = ret | 0x80;
1224         spin_unlock(&linear_map_hash_lock);
1225 }
1226
1227 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1228 {
1229         unsigned long hash, hidx, slot;
1230         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1231         unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1232
1233         hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1234         spin_lock(&linear_map_hash_lock);
1235         BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1236         hidx = linear_map_hash_slots[lmi] & 0x7f;
1237         linear_map_hash_slots[lmi] = 0;
1238         spin_unlock(&linear_map_hash_lock);
1239         if (hidx & _PTEIDX_SECONDARY)
1240                 hash = ~hash;
1241         slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1242         slot += hidx & _PTEIDX_GROUP_IX;
1243         ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0);
1244 }
1245
1246 void kernel_map_pages(struct page *page, int numpages, int enable)
1247 {
1248         unsigned long flags, vaddr, lmi;
1249         int i;
1250
1251         local_irq_save(flags);
1252         for (i = 0; i < numpages; i++, page++) {
1253                 vaddr = (unsigned long)page_address(page);
1254                 lmi = __pa(vaddr) >> PAGE_SHIFT;
1255                 if (lmi >= linear_map_hash_count)
1256                         continue;
1257                 if (enable)
1258                         kernel_map_linear_page(vaddr, lmi);
1259                 else
1260                         kernel_unmap_linear_page(vaddr, lmi);
1261         }
1262         local_irq_restore(flags);
1263 }
1264 #endif /* CONFIG_DEBUG_PAGEALLOC */
1265
1266 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1267                                 phys_addr_t first_memblock_size)
1268 {
1269         /* We don't currently support the first MEMBLOCK not mapping 0
1270          * physical on those processors
1271          */
1272         BUG_ON(first_memblock_base != 0);
1273
1274         /* On LPAR systems, the first entry is our RMA region,
1275          * non-LPAR 64-bit hash MMU systems don't have a limitation
1276          * on real mode access, but using the first entry works well
1277          * enough. We also clamp it to 1G to avoid some funky things
1278          * such as RTAS bugs etc...
1279          */
1280         ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1281
1282         /* Finally limit subsequent allocations */
1283         memblock_set_current_limit(ppc64_rma_size);
1284 }