[POWERPC] spufs: bind_context sets SPU_STATE_RUNNABLE
[firefly-linux-kernel-4.4.55.git] / arch / powerpc / platforms / cell / spufs / sched.c
1 /* sched.c - SPU scheduler.
2  *
3  * Copyright (C) IBM 2005
4  * Author: Mark Nutter <mnutter@us.ibm.com>
5  *
6  * 2006-03-31   NUMA domains added.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #undef DEBUG
24
25 #include <linux/module.h>
26 #include <linux/errno.h>
27 #include <linux/sched.h>
28 #include <linux/kernel.h>
29 #include <linux/mm.h>
30 #include <linux/completion.h>
31 #include <linux/vmalloc.h>
32 #include <linux/smp.h>
33 #include <linux/smp_lock.h>
34 #include <linux/stddef.h>
35 #include <linux/unistd.h>
36 #include <linux/numa.h>
37 #include <linux/mutex.h>
38 #include <linux/notifier.h>
39
40 #include <asm/io.h>
41 #include <asm/mmu_context.h>
42 #include <asm/spu.h>
43 #include <asm/spu_csa.h>
44 #include <asm/spu_priv1.h>
45 #include "spufs.h"
46
47 #define SPU_MIN_TIMESLICE       (100 * HZ / 1000)
48
49 #define SPU_BITMAP_SIZE (((MAX_PRIO+BITS_PER_LONG)/BITS_PER_LONG)+1)
50 struct spu_prio_array {
51         unsigned long bitmap[SPU_BITMAP_SIZE];
52         wait_queue_head_t waitq[MAX_PRIO];
53         struct list_head active_list[MAX_NUMNODES];
54         struct mutex active_mutex[MAX_NUMNODES];
55 };
56
57 static struct spu_prio_array *spu_prio;
58
59 static inline int node_allowed(int node)
60 {
61         cpumask_t mask;
62
63         if (!nr_cpus_node(node))
64                 return 0;
65         mask = node_to_cpumask(node);
66         if (!cpus_intersects(mask, current->cpus_allowed))
67                 return 0;
68         return 1;
69 }
70
71 static inline void mm_needs_global_tlbie(struct mm_struct *mm)
72 {
73         int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1;
74
75         /* Global TLBIE broadcast required with SPEs. */
76         __cpus_setall(&mm->cpu_vm_mask, nr);
77 }
78
79 static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);
80
81 static void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
82 {
83         blocking_notifier_call_chain(&spu_switch_notifier,
84                             ctx ? ctx->object_id : 0, spu);
85 }
86
87 int spu_switch_event_register(struct notifier_block * n)
88 {
89         return blocking_notifier_chain_register(&spu_switch_notifier, n);
90 }
91
92 int spu_switch_event_unregister(struct notifier_block * n)
93 {
94         return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
95 }
96
97
98 static inline void bind_context(struct spu *spu, struct spu_context *ctx)
99 {
100         pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
101                  spu->number, spu->node);
102         spu->ctx = ctx;
103         spu->flags = 0;
104         ctx->spu = spu;
105         ctx->ops = &spu_hw_ops;
106         spu->pid = current->pid;
107         spu->prio = current->prio;
108         spu->mm = ctx->owner;
109         mm_needs_global_tlbie(spu->mm);
110         spu->ibox_callback = spufs_ibox_callback;
111         spu->wbox_callback = spufs_wbox_callback;
112         spu->stop_callback = spufs_stop_callback;
113         spu->mfc_callback = spufs_mfc_callback;
114         spu->dma_callback = spufs_dma_callback;
115         mb();
116         spu_unmap_mappings(ctx);
117         spu_restore(&ctx->csa, spu);
118         spu->timestamp = jiffies;
119         spu_cpu_affinity_set(spu, raw_smp_processor_id());
120         spu_switch_notify(spu, ctx);
121
122         ctx->state = SPU_STATE_RUNNABLE;
123 }
124
125 static inline void unbind_context(struct spu *spu, struct spu_context *ctx)
126 {
127         pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
128                  spu->pid, spu->number, spu->node);
129         spu_switch_notify(spu, NULL);
130         spu_unmap_mappings(ctx);
131         spu_save(&ctx->csa, spu);
132         spu->timestamp = jiffies;
133         ctx->state = SPU_STATE_SAVED;
134         spu->ibox_callback = NULL;
135         spu->wbox_callback = NULL;
136         spu->stop_callback = NULL;
137         spu->mfc_callback = NULL;
138         spu->dma_callback = NULL;
139         spu->mm = NULL;
140         spu->pid = 0;
141         spu->prio = MAX_PRIO;
142         ctx->ops = &spu_backing_ops;
143         ctx->spu = NULL;
144         spu->flags = 0;
145         spu->ctx = NULL;
146 }
147
148 static inline void spu_add_wq(wait_queue_head_t * wq, wait_queue_t * wait,
149                               int prio)
150 {
151         prepare_to_wait_exclusive(wq, wait, TASK_INTERRUPTIBLE);
152         set_bit(prio, spu_prio->bitmap);
153 }
154
155 static inline void spu_del_wq(wait_queue_head_t * wq, wait_queue_t * wait,
156                               int prio)
157 {
158         u64 flags;
159
160         __set_current_state(TASK_RUNNING);
161
162         spin_lock_irqsave(&wq->lock, flags);
163
164         remove_wait_queue_locked(wq, wait);
165         if (list_empty(&wq->task_list))
166                 clear_bit(prio, spu_prio->bitmap);
167
168         spin_unlock_irqrestore(&wq->lock, flags);
169 }
170
171 static void spu_prio_wait(struct spu_context *ctx, u64 flags)
172 {
173         int prio = current->prio;
174         wait_queue_head_t *wq = &spu_prio->waitq[prio];
175         DEFINE_WAIT(wait);
176
177         if (ctx->spu)
178                 return;
179
180         spu_add_wq(wq, &wait, prio);
181
182         if (!signal_pending(current)) {
183                 up_write(&ctx->state_sema);
184                 pr_debug("%s: pid=%d prio=%d\n", __FUNCTION__,
185                          current->pid, current->prio);
186                 schedule();
187                 down_write(&ctx->state_sema);
188         }
189
190         spu_del_wq(wq, &wait, prio);
191 }
192
193 static void spu_prio_wakeup(void)
194 {
195         int best = sched_find_first_bit(spu_prio->bitmap);
196         if (best < MAX_PRIO) {
197                 wait_queue_head_t *wq = &spu_prio->waitq[best];
198                 wake_up_interruptible_nr(wq, 1);
199         }
200 }
201
202 static int get_active_spu(struct spu *spu)
203 {
204         int node = spu->node;
205         struct spu *tmp;
206         int rc = 0;
207
208         mutex_lock(&spu_prio->active_mutex[node]);
209         list_for_each_entry(tmp, &spu_prio->active_list[node], list) {
210                 if (tmp == spu) {
211                         list_del_init(&spu->list);
212                         rc = 1;
213                         break;
214                 }
215         }
216         mutex_unlock(&spu_prio->active_mutex[node]);
217         return rc;
218 }
219
220 static void put_active_spu(struct spu *spu)
221 {
222         int node = spu->node;
223
224         mutex_lock(&spu_prio->active_mutex[node]);
225         list_add_tail(&spu->list, &spu_prio->active_list[node]);
226         mutex_unlock(&spu_prio->active_mutex[node]);
227 }
228
229 static struct spu *spu_get_idle(struct spu_context *ctx, u64 flags)
230 {
231         struct spu *spu = NULL;
232         int node = cpu_to_node(raw_smp_processor_id());
233         int n;
234
235         for (n = 0; n < MAX_NUMNODES; n++, node++) {
236                 node = (node < MAX_NUMNODES) ? node : 0;
237                 if (!node_allowed(node))
238                         continue;
239                 spu = spu_alloc_node(node);
240                 if (spu)
241                         break;
242         }
243         return spu;
244 }
245
246 static inline struct spu *spu_get(struct spu_context *ctx, u64 flags)
247 {
248         /* Future: spu_get_idle() if possible,
249          * otherwise try to preempt an active
250          * context.
251          */
252         return spu_get_idle(ctx, flags);
253 }
254
255 /* The three externally callable interfaces
256  * for the scheduler begin here.
257  *
258  *      spu_activate    - bind a context to SPU, waiting as needed.
259  *      spu_deactivate  - unbind a context from its SPU.
260  *      spu_yield       - yield an SPU if others are waiting.
261  */
262
263 int spu_activate(struct spu_context *ctx, u64 flags)
264 {
265         struct spu *spu;
266         int ret = 0;
267
268         for (;;) {
269                 if (ctx->spu)
270                         return 0;
271                 spu = spu_get(ctx, flags);
272                 if (spu != NULL) {
273                         if (ctx->spu != NULL) {
274                                 spu_free(spu);
275                                 spu_prio_wakeup();
276                                 break;
277                         }
278                         bind_context(spu, ctx);
279                         put_active_spu(spu);
280                         break;
281                 }
282                 spu_prio_wait(ctx, flags);
283                 if (signal_pending(current)) {
284                         ret = -ERESTARTSYS;
285                         spu_prio_wakeup();
286                         break;
287                 }
288         }
289         return ret;
290 }
291
292 void spu_deactivate(struct spu_context *ctx)
293 {
294         struct spu *spu;
295         int needs_idle;
296
297         spu = ctx->spu;
298         if (!spu)
299                 return;
300         needs_idle = get_active_spu(spu);
301         unbind_context(spu, ctx);
302         if (needs_idle) {
303                 spu_free(spu);
304                 spu_prio_wakeup();
305         }
306 }
307
308 void spu_yield(struct spu_context *ctx)
309 {
310         struct spu *spu;
311         int need_yield = 0;
312
313         if (down_write_trylock(&ctx->state_sema)) {
314                 if ((spu = ctx->spu) != NULL) {
315                         int best = sched_find_first_bit(spu_prio->bitmap);
316                         if (best < MAX_PRIO) {
317                                 pr_debug("%s: yielding SPU %d NODE %d\n",
318                                          __FUNCTION__, spu->number, spu->node);
319                                 spu_deactivate(ctx);
320                                 need_yield = 1;
321                         } else {
322                                 spu->prio = MAX_PRIO;
323                         }
324                 }
325                 up_write(&ctx->state_sema);
326         }
327         if (unlikely(need_yield))
328                 yield();
329 }
330
331 int __init spu_sched_init(void)
332 {
333         int i;
334
335         spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
336         if (!spu_prio) {
337                 printk(KERN_WARNING "%s: Unable to allocate priority queue.\n",
338                        __FUNCTION__);
339                 return 1;
340         }
341         for (i = 0; i < MAX_PRIO; i++) {
342                 init_waitqueue_head(&spu_prio->waitq[i]);
343                 __clear_bit(i, spu_prio->bitmap);
344         }
345         __set_bit(MAX_PRIO, spu_prio->bitmap);
346         for (i = 0; i < MAX_NUMNODES; i++) {
347                 mutex_init(&spu_prio->active_mutex[i]);
348                 INIT_LIST_HEAD(&spu_prio->active_list[i]);
349         }
350         return 0;
351 }
352
353 void __exit spu_sched_exit(void)
354 {
355         struct spu *spu, *tmp;
356         int node;
357
358         for (node = 0; node < MAX_NUMNODES; node++) {
359                 mutex_lock(&spu_prio->active_mutex[node]);
360                 list_for_each_entry_safe(spu, tmp, &spu_prio->active_list[node],
361                                          list) {
362                         list_del_init(&spu->list);
363                         spu_free(spu);
364                 }
365                 mutex_unlock(&spu_prio->active_mutex[node]);
366         }
367         kfree(spu_prio);
368 }