Merge tag 'v3.13' into stable-3.14
[firefly-linux-kernel-4.4.55.git] / arch / powerpc / sysdev / mpic_timer.c
1 /*
2  * MPIC timer driver
3  *
4  * Copyright 2013 Freescale Semiconductor, Inc.
5  * Author: Dongsheng Wang <Dongsheng.Wang@freescale.com>
6  *         Li Yang <leoli@freescale.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the
10  * Free Software Foundation; either version 2 of the License, or (at your
11  * option) any later version.
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/of_address.h>
23 #include <linux/of_device.h>
24 #include <linux/of_irq.h>
25 #include <linux/syscore_ops.h>
26 #include <sysdev/fsl_soc.h>
27 #include <asm/io.h>
28
29 #include <asm/mpic_timer.h>
30
31 #define FSL_GLOBAL_TIMER                0x1
32
33 /* Clock Ratio
34  * Divide by 64 0x00000300
35  * Divide by 32 0x00000200
36  * Divide by 16 0x00000100
37  * Divide by  8 0x00000000 (Hardware default div)
38  */
39 #define MPIC_TIMER_TCR_CLKDIV           0x00000300
40
41 #define MPIC_TIMER_TCR_ROVR_OFFSET      24
42
43 #define TIMER_STOP                      0x80000000
44 #define TIMERS_PER_GROUP                4
45 #define MAX_TICKS                       (~0U >> 1)
46 #define MAX_TICKS_CASCADE               (~0U)
47 #define TIMER_OFFSET(num)               (1 << (TIMERS_PER_GROUP - 1 - num))
48
49 /* tv_usec should be less than ONE_SECOND, otherwise use tv_sec */
50 #define ONE_SECOND                      1000000
51
52 struct timer_regs {
53         u32     gtccr;
54         u32     res0[3];
55         u32     gtbcr;
56         u32     res1[3];
57         u32     gtvpr;
58         u32     res2[3];
59         u32     gtdr;
60         u32     res3[3];
61 };
62
63 struct cascade_priv {
64         u32 tcr_value;                  /* TCR register: CASC & ROVR value */
65         unsigned int cascade_map;       /* cascade map */
66         unsigned int timer_num;         /* cascade control timer */
67 };
68
69 struct timer_group_priv {
70         struct timer_regs __iomem       *regs;
71         struct mpic_timer               timer[TIMERS_PER_GROUP];
72         struct list_head                node;
73         unsigned int                    timerfreq;
74         unsigned int                    idle;
75         unsigned int                    flags;
76         spinlock_t                      lock;
77         void __iomem                    *group_tcr;
78 };
79
80 static struct cascade_priv cascade_timer[] = {
81         /* cascade timer 0 and 1 */
82         {0x1, 0xc, 0x1},
83         /* cascade timer 1 and 2 */
84         {0x2, 0x6, 0x2},
85         /* cascade timer 2 and 3 */
86         {0x4, 0x3, 0x3}
87 };
88
89 static LIST_HEAD(timer_group_list);
90
91 static void convert_ticks_to_time(struct timer_group_priv *priv,
92                 const u64 ticks, struct timeval *time)
93 {
94         u64 tmp_sec;
95
96         time->tv_sec = (__kernel_time_t)div_u64(ticks, priv->timerfreq);
97         tmp_sec = (u64)time->tv_sec * (u64)priv->timerfreq;
98
99         time->tv_usec = (__kernel_suseconds_t)
100                 div_u64((ticks - tmp_sec) * 1000000, priv->timerfreq);
101
102         return;
103 }
104
105 /* the time set by the user is converted to "ticks" */
106 static int convert_time_to_ticks(struct timer_group_priv *priv,
107                 const struct timeval *time, u64 *ticks)
108 {
109         u64 max_value;          /* prevent u64 overflow */
110         u64 tmp = 0;
111
112         u64 tmp_sec;
113         u64 tmp_ms;
114         u64 tmp_us;
115
116         max_value = div_u64(ULLONG_MAX, priv->timerfreq);
117
118         if (time->tv_sec > max_value ||
119                         (time->tv_sec == max_value && time->tv_usec > 0))
120                 return -EINVAL;
121
122         tmp_sec = (u64)time->tv_sec * (u64)priv->timerfreq;
123         tmp += tmp_sec;
124
125         tmp_ms = time->tv_usec / 1000;
126         tmp_ms = div_u64((u64)tmp_ms * (u64)priv->timerfreq, 1000);
127         tmp += tmp_ms;
128
129         tmp_us = time->tv_usec % 1000;
130         tmp_us = div_u64((u64)tmp_us * (u64)priv->timerfreq, 1000000);
131         tmp += tmp_us;
132
133         *ticks = tmp;
134
135         return 0;
136 }
137
138 /* detect whether there is a cascade timer available */
139 static struct mpic_timer *detect_idle_cascade_timer(
140                                         struct timer_group_priv *priv)
141 {
142         struct cascade_priv *casc_priv;
143         unsigned int map;
144         unsigned int array_size = ARRAY_SIZE(cascade_timer);
145         unsigned int num;
146         unsigned int i;
147         unsigned long flags;
148
149         casc_priv = cascade_timer;
150         for (i = 0; i < array_size; i++) {
151                 spin_lock_irqsave(&priv->lock, flags);
152                 map = casc_priv->cascade_map & priv->idle;
153                 if (map == casc_priv->cascade_map) {
154                         num = casc_priv->timer_num;
155                         priv->timer[num].cascade_handle = casc_priv;
156
157                         /* set timer busy */
158                         priv->idle &= ~casc_priv->cascade_map;
159                         spin_unlock_irqrestore(&priv->lock, flags);
160                         return &priv->timer[num];
161                 }
162                 spin_unlock_irqrestore(&priv->lock, flags);
163                 casc_priv++;
164         }
165
166         return NULL;
167 }
168
169 static int set_cascade_timer(struct timer_group_priv *priv, u64 ticks,
170                 unsigned int num)
171 {
172         struct cascade_priv *casc_priv;
173         u32 tcr;
174         u32 tmp_ticks;
175         u32 rem_ticks;
176
177         /* set group tcr reg for cascade */
178         casc_priv = priv->timer[num].cascade_handle;
179         if (!casc_priv)
180                 return -EINVAL;
181
182         tcr = casc_priv->tcr_value |
183                 (casc_priv->tcr_value << MPIC_TIMER_TCR_ROVR_OFFSET);
184         setbits32(priv->group_tcr, tcr);
185
186         tmp_ticks = div_u64_rem(ticks, MAX_TICKS_CASCADE, &rem_ticks);
187
188         out_be32(&priv->regs[num].gtccr, 0);
189         out_be32(&priv->regs[num].gtbcr, tmp_ticks | TIMER_STOP);
190
191         out_be32(&priv->regs[num - 1].gtccr, 0);
192         out_be32(&priv->regs[num - 1].gtbcr, rem_ticks);
193
194         return 0;
195 }
196
197 static struct mpic_timer *get_cascade_timer(struct timer_group_priv *priv,
198                                         u64 ticks)
199 {
200         struct mpic_timer *allocated_timer;
201
202         /* Two cascade timers: Support the maximum time */
203         const u64 max_ticks = (u64)MAX_TICKS * (u64)MAX_TICKS_CASCADE;
204         int ret;
205
206         if (ticks > max_ticks)
207                 return NULL;
208
209         /* detect idle timer */
210         allocated_timer = detect_idle_cascade_timer(priv);
211         if (!allocated_timer)
212                 return NULL;
213
214         /* set ticks to timer */
215         ret = set_cascade_timer(priv, ticks, allocated_timer->num);
216         if (ret < 0)
217                 return NULL;
218
219         return allocated_timer;
220 }
221
222 static struct mpic_timer *get_timer(const struct timeval *time)
223 {
224         struct timer_group_priv *priv;
225         struct mpic_timer *timer;
226
227         u64 ticks;
228         unsigned int num;
229         unsigned int i;
230         unsigned long flags;
231         int ret;
232
233         list_for_each_entry(priv, &timer_group_list, node) {
234                 ret = convert_time_to_ticks(priv, time, &ticks);
235                 if (ret < 0)
236                         return NULL;
237
238                 if (ticks > MAX_TICKS) {
239                         if (!(priv->flags & FSL_GLOBAL_TIMER))
240                                 return NULL;
241
242                         timer = get_cascade_timer(priv, ticks);
243                         if (!timer)
244                                 continue;
245
246                         return timer;
247                 }
248
249                 for (i = 0; i < TIMERS_PER_GROUP; i++) {
250                         /* one timer: Reverse allocation */
251                         num = TIMERS_PER_GROUP - 1 - i;
252                         spin_lock_irqsave(&priv->lock, flags);
253                         if (priv->idle & (1 << i)) {
254                                 /* set timer busy */
255                                 priv->idle &= ~(1 << i);
256                                 /* set ticks & stop timer */
257                                 out_be32(&priv->regs[num].gtbcr,
258                                         ticks | TIMER_STOP);
259                                 out_be32(&priv->regs[num].gtccr, 0);
260                                 priv->timer[num].cascade_handle = NULL;
261                                 spin_unlock_irqrestore(&priv->lock, flags);
262                                 return &priv->timer[num];
263                         }
264                         spin_unlock_irqrestore(&priv->lock, flags);
265                 }
266         }
267
268         return NULL;
269 }
270
271 /**
272  * mpic_start_timer - start hardware timer
273  * @handle: the timer to be started.
274  *
275  * It will do ->fn(->dev) callback from the hardware interrupt at
276  * the ->timeval point in the future.
277  */
278 void mpic_start_timer(struct mpic_timer *handle)
279 {
280         struct timer_group_priv *priv = container_of(handle,
281                         struct timer_group_priv, timer[handle->num]);
282
283         clrbits32(&priv->regs[handle->num].gtbcr, TIMER_STOP);
284 }
285 EXPORT_SYMBOL(mpic_start_timer);
286
287 /**
288  * mpic_stop_timer - stop hardware timer
289  * @handle: the timer to be stoped
290  *
291  * The timer periodically generates an interrupt. Unless user stops the timer.
292  */
293 void mpic_stop_timer(struct mpic_timer *handle)
294 {
295         struct timer_group_priv *priv = container_of(handle,
296                         struct timer_group_priv, timer[handle->num]);
297         struct cascade_priv *casc_priv;
298
299         setbits32(&priv->regs[handle->num].gtbcr, TIMER_STOP);
300
301         casc_priv = priv->timer[handle->num].cascade_handle;
302         if (casc_priv) {
303                 out_be32(&priv->regs[handle->num].gtccr, 0);
304                 out_be32(&priv->regs[handle->num - 1].gtccr, 0);
305         } else {
306                 out_be32(&priv->regs[handle->num].gtccr, 0);
307         }
308 }
309 EXPORT_SYMBOL(mpic_stop_timer);
310
311 /**
312  * mpic_get_remain_time - get timer time
313  * @handle: the timer to be selected.
314  * @time: time for timer
315  *
316  * Query timer remaining time.
317  */
318 void mpic_get_remain_time(struct mpic_timer *handle, struct timeval *time)
319 {
320         struct timer_group_priv *priv = container_of(handle,
321                         struct timer_group_priv, timer[handle->num]);
322         struct cascade_priv *casc_priv;
323
324         u64 ticks;
325         u32 tmp_ticks;
326
327         casc_priv = priv->timer[handle->num].cascade_handle;
328         if (casc_priv) {
329                 tmp_ticks = in_be32(&priv->regs[handle->num].gtccr);
330                 ticks = ((u64)tmp_ticks & UINT_MAX) * (u64)MAX_TICKS_CASCADE;
331                 tmp_ticks = in_be32(&priv->regs[handle->num - 1].gtccr);
332                 ticks += tmp_ticks;
333         } else {
334                 ticks = in_be32(&priv->regs[handle->num].gtccr);
335         }
336
337         convert_ticks_to_time(priv, ticks, time);
338 }
339 EXPORT_SYMBOL(mpic_get_remain_time);
340
341 /**
342  * mpic_free_timer - free hardware timer
343  * @handle: the timer to be removed.
344  *
345  * Free the timer.
346  *
347  * Note: can not be used in interrupt context.
348  */
349 void mpic_free_timer(struct mpic_timer *handle)
350 {
351         struct timer_group_priv *priv = container_of(handle,
352                         struct timer_group_priv, timer[handle->num]);
353
354         struct cascade_priv *casc_priv;
355         unsigned long flags;
356
357         mpic_stop_timer(handle);
358
359         casc_priv = priv->timer[handle->num].cascade_handle;
360
361         free_irq(priv->timer[handle->num].irq, priv->timer[handle->num].dev);
362
363         spin_lock_irqsave(&priv->lock, flags);
364         if (casc_priv) {
365                 u32 tcr;
366                 tcr = casc_priv->tcr_value | (casc_priv->tcr_value <<
367                                         MPIC_TIMER_TCR_ROVR_OFFSET);
368                 clrbits32(priv->group_tcr, tcr);
369                 priv->idle |= casc_priv->cascade_map;
370                 priv->timer[handle->num].cascade_handle = NULL;
371         } else {
372                 priv->idle |= TIMER_OFFSET(handle->num);
373         }
374         spin_unlock_irqrestore(&priv->lock, flags);
375 }
376 EXPORT_SYMBOL(mpic_free_timer);
377
378 /**
379  * mpic_request_timer - get a hardware timer
380  * @fn: interrupt handler function
381  * @dev: callback function of the data
382  * @time: time for timer
383  *
384  * This executes the "request_irq", returning NULL
385  * else "handle" on success.
386  */
387 struct mpic_timer *mpic_request_timer(irq_handler_t fn, void *dev,
388                                         const struct timeval *time)
389 {
390         struct mpic_timer *allocated_timer;
391         int ret;
392
393         if (list_empty(&timer_group_list))
394                 return NULL;
395
396         if (!(time->tv_sec + time->tv_usec) ||
397                         time->tv_sec < 0 || time->tv_usec < 0)
398                 return NULL;
399
400         if (time->tv_usec > ONE_SECOND)
401                 return NULL;
402
403         allocated_timer = get_timer(time);
404         if (!allocated_timer)
405                 return NULL;
406
407         ret = request_irq(allocated_timer->irq, fn,
408                         IRQF_TRIGGER_LOW, "global-timer", dev);
409         if (ret) {
410                 mpic_free_timer(allocated_timer);
411                 return NULL;
412         }
413
414         allocated_timer->dev = dev;
415
416         return allocated_timer;
417 }
418 EXPORT_SYMBOL(mpic_request_timer);
419
420 static int timer_group_get_freq(struct device_node *np,
421                         struct timer_group_priv *priv)
422 {
423         u32 div;
424
425         if (priv->flags & FSL_GLOBAL_TIMER) {
426                 struct device_node *dn;
427
428                 dn = of_find_compatible_node(NULL, NULL, "fsl,mpic");
429                 if (dn) {
430                         of_property_read_u32(dn, "clock-frequency",
431                                         &priv->timerfreq);
432                         of_node_put(dn);
433                 }
434         }
435
436         if (priv->timerfreq <= 0)
437                 return -EINVAL;
438
439         if (priv->flags & FSL_GLOBAL_TIMER) {
440                 div = (1 << (MPIC_TIMER_TCR_CLKDIV >> 8)) * 8;
441                 priv->timerfreq /= div;
442         }
443
444         return 0;
445 }
446
447 static int timer_group_get_irq(struct device_node *np,
448                 struct timer_group_priv *priv)
449 {
450         const u32 all_timer[] = { 0, TIMERS_PER_GROUP };
451         const u32 *p;
452         u32 offset;
453         u32 count;
454
455         unsigned int i;
456         unsigned int j;
457         unsigned int irq_index = 0;
458         unsigned int irq;
459         int len;
460
461         p = of_get_property(np, "fsl,available-ranges", &len);
462         if (p && len % (2 * sizeof(u32)) != 0) {
463                 pr_err("%s: malformed available-ranges property.\n",
464                                 np->full_name);
465                 return -EINVAL;
466         }
467
468         if (!p) {
469                 p = all_timer;
470                 len = sizeof(all_timer);
471         }
472
473         len /= 2 * sizeof(u32);
474
475         for (i = 0; i < len; i++) {
476                 offset = p[i * 2];
477                 count = p[i * 2 + 1];
478                 for (j = 0; j < count; j++) {
479                         irq = irq_of_parse_and_map(np, irq_index);
480                         if (!irq) {
481                                 pr_err("%s: irq parse and map failed.\n",
482                                                 np->full_name);
483                                 return -EINVAL;
484                         }
485
486                         /* Set timer idle */
487                         priv->idle |= TIMER_OFFSET((offset + j));
488                         priv->timer[offset + j].irq = irq;
489                         priv->timer[offset + j].num = offset + j;
490                         irq_index++;
491                 }
492         }
493
494         return 0;
495 }
496
497 static void timer_group_init(struct device_node *np)
498 {
499         struct timer_group_priv *priv;
500         unsigned int i = 0;
501         int ret;
502
503         priv = kzalloc(sizeof(struct timer_group_priv), GFP_KERNEL);
504         if (!priv) {
505                 pr_err("%s: cannot allocate memory for group.\n",
506                                 np->full_name);
507                 return;
508         }
509
510         if (of_device_is_compatible(np, "fsl,mpic-global-timer"))
511                 priv->flags |= FSL_GLOBAL_TIMER;
512
513         priv->regs = of_iomap(np, i++);
514         if (!priv->regs) {
515                 pr_err("%s: cannot ioremap timer register address.\n",
516                                 np->full_name);
517                 goto out;
518         }
519
520         if (priv->flags & FSL_GLOBAL_TIMER) {
521                 priv->group_tcr = of_iomap(np, i++);
522                 if (!priv->group_tcr) {
523                         pr_err("%s: cannot ioremap tcr address.\n",
524                                         np->full_name);
525                         goto out;
526                 }
527         }
528
529         ret = timer_group_get_freq(np, priv);
530         if (ret < 0) {
531                 pr_err("%s: cannot get timer frequency.\n", np->full_name);
532                 goto out;
533         }
534
535         ret = timer_group_get_irq(np, priv);
536         if (ret < 0) {
537                 pr_err("%s: cannot get timer irqs.\n", np->full_name);
538                 goto out;
539         }
540
541         spin_lock_init(&priv->lock);
542
543         /* Init FSL timer hardware */
544         if (priv->flags & FSL_GLOBAL_TIMER)
545                 setbits32(priv->group_tcr, MPIC_TIMER_TCR_CLKDIV);
546
547         list_add_tail(&priv->node, &timer_group_list);
548
549         return;
550
551 out:
552         if (priv->regs)
553                 iounmap(priv->regs);
554
555         if (priv->group_tcr)
556                 iounmap(priv->group_tcr);
557
558         kfree(priv);
559 }
560
561 static void mpic_timer_resume(void)
562 {
563         struct timer_group_priv *priv;
564
565         list_for_each_entry(priv, &timer_group_list, node) {
566                 /* Init FSL timer hardware */
567                 if (priv->flags & FSL_GLOBAL_TIMER)
568                         setbits32(priv->group_tcr, MPIC_TIMER_TCR_CLKDIV);
569         }
570 }
571
572 static const struct of_device_id mpic_timer_ids[] = {
573         { .compatible = "fsl,mpic-global-timer", },
574         {},
575 };
576
577 static struct syscore_ops mpic_timer_syscore_ops = {
578         .resume = mpic_timer_resume,
579 };
580
581 static int __init mpic_timer_init(void)
582 {
583         struct device_node *np = NULL;
584
585         for_each_matching_node(np, mpic_timer_ids)
586                 timer_group_init(np);
587
588         register_syscore_ops(&mpic_timer_syscore_ops);
589
590         if (list_empty(&timer_group_list))
591                 return -ENODEV;
592
593         return 0;
594 }
595 subsys_initcall(mpic_timer_init);