sparc: time: Replace update_persistent_clock() with CONFIG_RTC_SYSTOHC
[firefly-linux-kernel-4.4.55.git] / arch / sparc / kernel / time_32.c
1 /* linux/arch/sparc/kernel/time.c
2  *
3  * Copyright (C) 1995 David S. Miller (davem@davemloft.net)
4  * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
5  *
6  * Chris Davis (cdavis@cois.on.ca) 03/27/1998
7  * Added support for the intersil on the sun4/4200
8  *
9  * Gleb Raiko (rajko@mech.math.msu.su) 08/18/1998
10  * Support for MicroSPARC-IIep, PCI CPU.
11  *
12  * This file handles the Sparc specific time handling details.
13  *
14  * 1997-09-10   Updated NTP code according to technical memorandum Jan '96
15  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
16  */
17 #include <linux/errno.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/param.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/time.h>
26 #include <linux/rtc/m48t59.h>
27 #include <linux/timex.h>
28 #include <linux/clocksource.h>
29 #include <linux/clockchips.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/ioport.h>
33 #include <linux/profile.h>
34 #include <linux/of.h>
35 #include <linux/of_device.h>
36 #include <linux/platform_device.h>
37
38 #include <asm/mc146818rtc.h>
39 #include <asm/oplib.h>
40 #include <asm/timex.h>
41 #include <asm/timer.h>
42 #include <asm/irq.h>
43 #include <asm/io.h>
44 #include <asm/idprom.h>
45 #include <asm/page.h>
46 #include <asm/pcic.h>
47 #include <asm/irq_regs.h>
48 #include <asm/setup.h>
49
50 #include "kernel.h"
51 #include "irq.h"
52
53 static __cacheline_aligned_in_smp DEFINE_SEQLOCK(timer_cs_lock);
54 static __volatile__ u64 timer_cs_internal_counter = 0;
55 static char timer_cs_enabled = 0;
56
57 static struct clock_event_device timer_ce;
58 static char timer_ce_enabled = 0;
59
60 #ifdef CONFIG_SMP
61 DEFINE_PER_CPU(struct clock_event_device, sparc32_clockevent);
62 #endif
63
64 DEFINE_SPINLOCK(rtc_lock);
65 EXPORT_SYMBOL(rtc_lock);
66
67 unsigned long profile_pc(struct pt_regs *regs)
68 {
69         extern char __copy_user_begin[], __copy_user_end[];
70         extern char __bzero_begin[], __bzero_end[];
71
72         unsigned long pc = regs->pc;
73
74         if (in_lock_functions(pc) ||
75             (pc >= (unsigned long) __copy_user_begin &&
76              pc < (unsigned long) __copy_user_end) ||
77             (pc >= (unsigned long) __bzero_begin &&
78              pc < (unsigned long) __bzero_end))
79                 pc = regs->u_regs[UREG_RETPC];
80         return pc;
81 }
82
83 EXPORT_SYMBOL(profile_pc);
84
85 volatile u32 __iomem *master_l10_counter;
86
87 irqreturn_t notrace timer_interrupt(int dummy, void *dev_id)
88 {
89         if (timer_cs_enabled) {
90                 write_seqlock(&timer_cs_lock);
91                 timer_cs_internal_counter++;
92                 sparc_config.clear_clock_irq();
93                 write_sequnlock(&timer_cs_lock);
94         } else {
95                 sparc_config.clear_clock_irq();
96         }
97
98         if (timer_ce_enabled)
99                 timer_ce.event_handler(&timer_ce);
100
101         return IRQ_HANDLED;
102 }
103
104 static void timer_ce_set_mode(enum clock_event_mode mode,
105                               struct clock_event_device *evt)
106 {
107         switch (mode) {
108                 case CLOCK_EVT_MODE_PERIODIC:
109                 case CLOCK_EVT_MODE_RESUME:
110                         timer_ce_enabled = 1;
111                         break;
112                 case CLOCK_EVT_MODE_SHUTDOWN:
113                         timer_ce_enabled = 0;
114                         break;
115                 default:
116                         break;
117         }
118         smp_mb();
119 }
120
121 static __init void setup_timer_ce(void)
122 {
123         struct clock_event_device *ce = &timer_ce;
124
125         BUG_ON(smp_processor_id() != boot_cpu_id);
126
127         ce->name     = "timer_ce";
128         ce->rating   = 100;
129         ce->features = CLOCK_EVT_FEAT_PERIODIC;
130         ce->set_mode = timer_ce_set_mode;
131         ce->cpumask  = cpu_possible_mask;
132         ce->shift    = 32;
133         ce->mult     = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
134                               ce->shift);
135         clockevents_register_device(ce);
136 }
137
138 static unsigned int sbus_cycles_offset(void)
139 {
140         u32 val, offset;
141
142         val = sbus_readl(master_l10_counter);
143         offset = (val >> TIMER_VALUE_SHIFT) & TIMER_VALUE_MASK;
144
145         /* Limit hit? */
146         if (val & TIMER_LIMIT_BIT)
147                 offset += sparc_config.cs_period;
148
149         return offset;
150 }
151
152 static cycle_t timer_cs_read(struct clocksource *cs)
153 {
154         unsigned int seq, offset;
155         u64 cycles;
156
157         do {
158                 seq = read_seqbegin(&timer_cs_lock);
159
160                 cycles = timer_cs_internal_counter;
161                 offset = sparc_config.get_cycles_offset();
162         } while (read_seqretry(&timer_cs_lock, seq));
163
164         /* Count absolute cycles */
165         cycles *= sparc_config.cs_period;
166         cycles += offset;
167
168         return cycles;
169 }
170
171 static struct clocksource timer_cs = {
172         .name   = "timer_cs",
173         .rating = 100,
174         .read   = timer_cs_read,
175         .mask   = CLOCKSOURCE_MASK(64),
176         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
177 };
178
179 static __init int setup_timer_cs(void)
180 {
181         timer_cs_enabled = 1;
182         return clocksource_register_hz(&timer_cs, sparc_config.clock_rate);
183 }
184
185 #ifdef CONFIG_SMP
186 static void percpu_ce_setup(enum clock_event_mode mode,
187                         struct clock_event_device *evt)
188 {
189         int cpu = cpumask_first(evt->cpumask);
190
191         switch (mode) {
192                 case CLOCK_EVT_MODE_PERIODIC:
193                         sparc_config.load_profile_irq(cpu,
194                                                       SBUS_CLOCK_RATE / HZ);
195                         break;
196                 case CLOCK_EVT_MODE_ONESHOT:
197                 case CLOCK_EVT_MODE_SHUTDOWN:
198                 case CLOCK_EVT_MODE_UNUSED:
199                         sparc_config.load_profile_irq(cpu, 0);
200                         break;
201                 default:
202                         break;
203         }
204 }
205
206 static int percpu_ce_set_next_event(unsigned long delta,
207                                     struct clock_event_device *evt)
208 {
209         int cpu = cpumask_first(evt->cpumask);
210         unsigned int next = (unsigned int)delta;
211
212         sparc_config.load_profile_irq(cpu, next);
213         return 0;
214 }
215
216 void register_percpu_ce(int cpu)
217 {
218         struct clock_event_device *ce = &per_cpu(sparc32_clockevent, cpu);
219         unsigned int features = CLOCK_EVT_FEAT_PERIODIC;
220
221         if (sparc_config.features & FEAT_L14_ONESHOT)
222                 features |= CLOCK_EVT_FEAT_ONESHOT;
223
224         ce->name           = "percpu_ce";
225         ce->rating         = 200;
226         ce->features       = features;
227         ce->set_mode       = percpu_ce_setup;
228         ce->set_next_event = percpu_ce_set_next_event;
229         ce->cpumask        = cpumask_of(cpu);
230         ce->shift          = 32;
231         ce->mult           = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
232                                     ce->shift);
233         ce->max_delta_ns   = clockevent_delta2ns(sparc_config.clock_rate, ce);
234         ce->min_delta_ns   = clockevent_delta2ns(100, ce);
235
236         clockevents_register_device(ce);
237 }
238 #endif
239
240 static unsigned char mostek_read_byte(struct device *dev, u32 ofs)
241 {
242         struct platform_device *pdev = to_platform_device(dev);
243         struct m48t59_plat_data *pdata = pdev->dev.platform_data;
244
245         return readb(pdata->ioaddr + ofs);
246 }
247
248 static void mostek_write_byte(struct device *dev, u32 ofs, u8 val)
249 {
250         struct platform_device *pdev = to_platform_device(dev);
251         struct m48t59_plat_data *pdata = pdev->dev.platform_data;
252
253         writeb(val, pdata->ioaddr + ofs);
254 }
255
256 static struct m48t59_plat_data m48t59_data = {
257         .read_byte = mostek_read_byte,
258         .write_byte = mostek_write_byte,
259 };
260
261 /* resource is set at runtime */
262 static struct platform_device m48t59_rtc = {
263         .name           = "rtc-m48t59",
264         .id             = 0,
265         .num_resources  = 1,
266         .dev    = {
267                 .platform_data = &m48t59_data,
268         },
269 };
270
271 static int clock_probe(struct platform_device *op)
272 {
273         struct device_node *dp = op->dev.of_node;
274         const char *model = of_get_property(dp, "model", NULL);
275
276         if (!model)
277                 return -ENODEV;
278
279         /* Only the primary RTC has an address property */
280         if (!of_find_property(dp, "address", NULL))
281                 return -ENODEV;
282
283         m48t59_rtc.resource = &op->resource[0];
284         if (!strcmp(model, "mk48t02")) {
285                 /* Map the clock register io area read-only */
286                 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
287                                                 2048, "rtc-m48t59");
288                 m48t59_data.type = M48T59RTC_TYPE_M48T02;
289         } else if (!strcmp(model, "mk48t08")) {
290                 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
291                                                 8192, "rtc-m48t59");
292                 m48t59_data.type = M48T59RTC_TYPE_M48T08;
293         } else
294                 return -ENODEV;
295
296         if (platform_device_register(&m48t59_rtc) < 0)
297                 printk(KERN_ERR "Registering RTC device failed\n");
298
299         return 0;
300 }
301
302 static struct of_device_id clock_match[] = {
303         {
304                 .name = "eeprom",
305         },
306         {},
307 };
308
309 static struct platform_driver clock_driver = {
310         .probe          = clock_probe,
311         .driver = {
312                 .name = "rtc",
313                 .of_match_table = clock_match,
314         },
315 };
316
317
318 /* Probe for the mostek real time clock chip. */
319 static int __init clock_init(void)
320 {
321         return platform_driver_register(&clock_driver);
322 }
323 /* Must be after subsys_initcall() so that busses are probed.  Must
324  * be before device_initcall() because things like the RTC driver
325  * need to see the clock registers.
326  */
327 fs_initcall(clock_init);
328
329 static void __init sparc32_late_time_init(void)
330 {
331         if (sparc_config.features & FEAT_L10_CLOCKEVENT)
332                 setup_timer_ce();
333         if (sparc_config.features & FEAT_L10_CLOCKSOURCE)
334                 setup_timer_cs();
335 #ifdef CONFIG_SMP
336         register_percpu_ce(smp_processor_id());
337 #endif
338 }
339
340 static void __init sbus_time_init(void)
341 {
342         sparc_config.get_cycles_offset = sbus_cycles_offset;
343         sparc_config.init_timers();
344 }
345
346 void __init time_init(void)
347 {
348         sparc_config.features = 0;
349         late_time_init = sparc32_late_time_init;
350
351         if (pcic_present())
352                 pci_time_init();
353         else
354                 sbus_time_init();
355 }
356