Disintegrate asm/system.h for Sparc
[firefly-linux-kernel-4.4.55.git] / arch / sparc / mm / init_64.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
29
30 #include <asm/head.h>
31 #include <asm/page.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
36 #include <asm/io.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/dma.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
45 #include <asm/tsb.h>
46 #include <asm/hypervisor.h>
47 #include <asm/prom.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
50 #include <asm/irq.h>
51
52 #include "init_64.h"
53
54 unsigned long kern_linear_pte_xor[2] __read_mostly;
55
56 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
57  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
58  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
59  */
60 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
61
62 #ifndef CONFIG_DEBUG_PAGEALLOC
63 /* A special kernel TSB for 4MB and 256MB linear mappings.
64  * Space is allocated for this right after the trap table
65  * in arch/sparc64/kernel/head.S
66  */
67 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
68 #endif
69
70 #define MAX_BANKS       32
71
72 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
73 static int pavail_ents __devinitdata;
74
75 static int cmp_p64(const void *a, const void *b)
76 {
77         const struct linux_prom64_registers *x = a, *y = b;
78
79         if (x->phys_addr > y->phys_addr)
80                 return 1;
81         if (x->phys_addr < y->phys_addr)
82                 return -1;
83         return 0;
84 }
85
86 static void __init read_obp_memory(const char *property,
87                                    struct linux_prom64_registers *regs,
88                                    int *num_ents)
89 {
90         phandle node = prom_finddevice("/memory");
91         int prop_size = prom_getproplen(node, property);
92         int ents, ret, i;
93
94         ents = prop_size / sizeof(struct linux_prom64_registers);
95         if (ents > MAX_BANKS) {
96                 prom_printf("The machine has more %s property entries than "
97                             "this kernel can support (%d).\n",
98                             property, MAX_BANKS);
99                 prom_halt();
100         }
101
102         ret = prom_getproperty(node, property, (char *) regs, prop_size);
103         if (ret == -1) {
104                 prom_printf("Couldn't get %s property from /memory.\n");
105                 prom_halt();
106         }
107
108         /* Sanitize what we got from the firmware, by page aligning
109          * everything.
110          */
111         for (i = 0; i < ents; i++) {
112                 unsigned long base, size;
113
114                 base = regs[i].phys_addr;
115                 size = regs[i].reg_size;
116
117                 size &= PAGE_MASK;
118                 if (base & ~PAGE_MASK) {
119                         unsigned long new_base = PAGE_ALIGN(base);
120
121                         size -= new_base - base;
122                         if ((long) size < 0L)
123                                 size = 0UL;
124                         base = new_base;
125                 }
126                 if (size == 0UL) {
127                         /* If it is empty, simply get rid of it.
128                          * This simplifies the logic of the other
129                          * functions that process these arrays.
130                          */
131                         memmove(&regs[i], &regs[i + 1],
132                                 (ents - i - 1) * sizeof(regs[0]));
133                         i--;
134                         ents--;
135                         continue;
136                 }
137                 regs[i].phys_addr = base;
138                 regs[i].reg_size = size;
139         }
140
141         *num_ents = ents;
142
143         sort(regs, ents, sizeof(struct linux_prom64_registers),
144              cmp_p64, NULL);
145 }
146
147 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
148                                         sizeof(unsigned long)];
149 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
150
151 /* Kernel physical address base and size in bytes.  */
152 unsigned long kern_base __read_mostly;
153 unsigned long kern_size __read_mostly;
154
155 /* Initial ramdisk setup */
156 extern unsigned long sparc_ramdisk_image64;
157 extern unsigned int sparc_ramdisk_image;
158 extern unsigned int sparc_ramdisk_size;
159
160 struct page *mem_map_zero __read_mostly;
161 EXPORT_SYMBOL(mem_map_zero);
162
163 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
164
165 unsigned long sparc64_kern_pri_context __read_mostly;
166 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
167 unsigned long sparc64_kern_sec_context __read_mostly;
168
169 int num_kernel_image_mappings;
170
171 #ifdef CONFIG_DEBUG_DCFLUSH
172 atomic_t dcpage_flushes = ATOMIC_INIT(0);
173 #ifdef CONFIG_SMP
174 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
175 #endif
176 #endif
177
178 inline void flush_dcache_page_impl(struct page *page)
179 {
180         BUG_ON(tlb_type == hypervisor);
181 #ifdef CONFIG_DEBUG_DCFLUSH
182         atomic_inc(&dcpage_flushes);
183 #endif
184
185 #ifdef DCACHE_ALIASING_POSSIBLE
186         __flush_dcache_page(page_address(page),
187                             ((tlb_type == spitfire) &&
188                              page_mapping(page) != NULL));
189 #else
190         if (page_mapping(page) != NULL &&
191             tlb_type == spitfire)
192                 __flush_icache_page(__pa(page_address(page)));
193 #endif
194 }
195
196 #define PG_dcache_dirty         PG_arch_1
197 #define PG_dcache_cpu_shift     32UL
198 #define PG_dcache_cpu_mask      \
199         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
200
201 #define dcache_dirty_cpu(page) \
202         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
203
204 static inline void set_dcache_dirty(struct page *page, int this_cpu)
205 {
206         unsigned long mask = this_cpu;
207         unsigned long non_cpu_bits;
208
209         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
210         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
211
212         __asm__ __volatile__("1:\n\t"
213                              "ldx       [%2], %%g7\n\t"
214                              "and       %%g7, %1, %%g1\n\t"
215                              "or        %%g1, %0, %%g1\n\t"
216                              "casx      [%2], %%g7, %%g1\n\t"
217                              "cmp       %%g7, %%g1\n\t"
218                              "bne,pn    %%xcc, 1b\n\t"
219                              " nop"
220                              : /* no outputs */
221                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
222                              : "g1", "g7");
223 }
224
225 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
226 {
227         unsigned long mask = (1UL << PG_dcache_dirty);
228
229         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
230                              "1:\n\t"
231                              "ldx       [%2], %%g7\n\t"
232                              "srlx      %%g7, %4, %%g1\n\t"
233                              "and       %%g1, %3, %%g1\n\t"
234                              "cmp       %%g1, %0\n\t"
235                              "bne,pn    %%icc, 2f\n\t"
236                              " andn     %%g7, %1, %%g1\n\t"
237                              "casx      [%2], %%g7, %%g1\n\t"
238                              "cmp       %%g7, %%g1\n\t"
239                              "bne,pn    %%xcc, 1b\n\t"
240                              " nop\n"
241                              "2:"
242                              : /* no outputs */
243                              : "r" (cpu), "r" (mask), "r" (&page->flags),
244                                "i" (PG_dcache_cpu_mask),
245                                "i" (PG_dcache_cpu_shift)
246                              : "g1", "g7");
247 }
248
249 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
250 {
251         unsigned long tsb_addr = (unsigned long) ent;
252
253         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
254                 tsb_addr = __pa(tsb_addr);
255
256         __tsb_insert(tsb_addr, tag, pte);
257 }
258
259 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
260 unsigned long _PAGE_SZBITS __read_mostly;
261
262 static void flush_dcache(unsigned long pfn)
263 {
264         struct page *page;
265
266         page = pfn_to_page(pfn);
267         if (page) {
268                 unsigned long pg_flags;
269
270                 pg_flags = page->flags;
271                 if (pg_flags & (1UL << PG_dcache_dirty)) {
272                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
273                                    PG_dcache_cpu_mask);
274                         int this_cpu = get_cpu();
275
276                         /* This is just to optimize away some function calls
277                          * in the SMP case.
278                          */
279                         if (cpu == this_cpu)
280                                 flush_dcache_page_impl(page);
281                         else
282                                 smp_flush_dcache_page_impl(page, cpu);
283
284                         clear_dcache_dirty_cpu(page, cpu);
285
286                         put_cpu();
287                 }
288         }
289 }
290
291 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
292 {
293         struct mm_struct *mm;
294         struct tsb *tsb;
295         unsigned long tag, flags;
296         unsigned long tsb_index, tsb_hash_shift;
297         pte_t pte = *ptep;
298
299         if (tlb_type != hypervisor) {
300                 unsigned long pfn = pte_pfn(pte);
301
302                 if (pfn_valid(pfn))
303                         flush_dcache(pfn);
304         }
305
306         mm = vma->vm_mm;
307
308         tsb_index = MM_TSB_BASE;
309         tsb_hash_shift = PAGE_SHIFT;
310
311         spin_lock_irqsave(&mm->context.lock, flags);
312
313 #ifdef CONFIG_HUGETLB_PAGE
314         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
315                 if ((tlb_type == hypervisor &&
316                      (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
317                     (tlb_type != hypervisor &&
318                      (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
319                         tsb_index = MM_TSB_HUGE;
320                         tsb_hash_shift = HPAGE_SHIFT;
321                 }
322         }
323 #endif
324
325         tsb = mm->context.tsb_block[tsb_index].tsb;
326         tsb += ((address >> tsb_hash_shift) &
327                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
328         tag = (address >> 22UL);
329         tsb_insert(tsb, tag, pte_val(pte));
330
331         spin_unlock_irqrestore(&mm->context.lock, flags);
332 }
333
334 void flush_dcache_page(struct page *page)
335 {
336         struct address_space *mapping;
337         int this_cpu;
338
339         if (tlb_type == hypervisor)
340                 return;
341
342         /* Do not bother with the expensive D-cache flush if it
343          * is merely the zero page.  The 'bigcore' testcase in GDB
344          * causes this case to run millions of times.
345          */
346         if (page == ZERO_PAGE(0))
347                 return;
348
349         this_cpu = get_cpu();
350
351         mapping = page_mapping(page);
352         if (mapping && !mapping_mapped(mapping)) {
353                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
354                 if (dirty) {
355                         int dirty_cpu = dcache_dirty_cpu(page);
356
357                         if (dirty_cpu == this_cpu)
358                                 goto out;
359                         smp_flush_dcache_page_impl(page, dirty_cpu);
360                 }
361                 set_dcache_dirty(page, this_cpu);
362         } else {
363                 /* We could delay the flush for the !page_mapping
364                  * case too.  But that case is for exec env/arg
365                  * pages and those are %99 certainly going to get
366                  * faulted into the tlb (and thus flushed) anyways.
367                  */
368                 flush_dcache_page_impl(page);
369         }
370
371 out:
372         put_cpu();
373 }
374 EXPORT_SYMBOL(flush_dcache_page);
375
376 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
377 {
378         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
379         if (tlb_type == spitfire) {
380                 unsigned long kaddr;
381
382                 /* This code only runs on Spitfire cpus so this is
383                  * why we can assume _PAGE_PADDR_4U.
384                  */
385                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
386                         unsigned long paddr, mask = _PAGE_PADDR_4U;
387
388                         if (kaddr >= PAGE_OFFSET)
389                                 paddr = kaddr & mask;
390                         else {
391                                 pgd_t *pgdp = pgd_offset_k(kaddr);
392                                 pud_t *pudp = pud_offset(pgdp, kaddr);
393                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
394                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
395
396                                 paddr = pte_val(*ptep) & mask;
397                         }
398                         __flush_icache_page(paddr);
399                 }
400         }
401 }
402 EXPORT_SYMBOL(flush_icache_range);
403
404 void mmu_info(struct seq_file *m)
405 {
406         if (tlb_type == cheetah)
407                 seq_printf(m, "MMU Type\t: Cheetah\n");
408         else if (tlb_type == cheetah_plus)
409                 seq_printf(m, "MMU Type\t: Cheetah+\n");
410         else if (tlb_type == spitfire)
411                 seq_printf(m, "MMU Type\t: Spitfire\n");
412         else if (tlb_type == hypervisor)
413                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
414         else
415                 seq_printf(m, "MMU Type\t: ???\n");
416
417 #ifdef CONFIG_DEBUG_DCFLUSH
418         seq_printf(m, "DCPageFlushes\t: %d\n",
419                    atomic_read(&dcpage_flushes));
420 #ifdef CONFIG_SMP
421         seq_printf(m, "DCPageFlushesXC\t: %d\n",
422                    atomic_read(&dcpage_flushes_xcall));
423 #endif /* CONFIG_SMP */
424 #endif /* CONFIG_DEBUG_DCFLUSH */
425 }
426
427 struct linux_prom_translation prom_trans[512] __read_mostly;
428 unsigned int prom_trans_ents __read_mostly;
429
430 unsigned long kern_locked_tte_data;
431
432 /* The obp translations are saved based on 8k pagesize, since obp can
433  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
434  * HI_OBP_ADDRESS range are handled in ktlb.S.
435  */
436 static inline int in_obp_range(unsigned long vaddr)
437 {
438         return (vaddr >= LOW_OBP_ADDRESS &&
439                 vaddr < HI_OBP_ADDRESS);
440 }
441
442 static int cmp_ptrans(const void *a, const void *b)
443 {
444         const struct linux_prom_translation *x = a, *y = b;
445
446         if (x->virt > y->virt)
447                 return 1;
448         if (x->virt < y->virt)
449                 return -1;
450         return 0;
451 }
452
453 /* Read OBP translations property into 'prom_trans[]'.  */
454 static void __init read_obp_translations(void)
455 {
456         int n, node, ents, first, last, i;
457
458         node = prom_finddevice("/virtual-memory");
459         n = prom_getproplen(node, "translations");
460         if (unlikely(n == 0 || n == -1)) {
461                 prom_printf("prom_mappings: Couldn't get size.\n");
462                 prom_halt();
463         }
464         if (unlikely(n > sizeof(prom_trans))) {
465                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
466                 prom_halt();
467         }
468
469         if ((n = prom_getproperty(node, "translations",
470                                   (char *)&prom_trans[0],
471                                   sizeof(prom_trans))) == -1) {
472                 prom_printf("prom_mappings: Couldn't get property.\n");
473                 prom_halt();
474         }
475
476         n = n / sizeof(struct linux_prom_translation);
477
478         ents = n;
479
480         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
481              cmp_ptrans, NULL);
482
483         /* Now kick out all the non-OBP entries.  */
484         for (i = 0; i < ents; i++) {
485                 if (in_obp_range(prom_trans[i].virt))
486                         break;
487         }
488         first = i;
489         for (; i < ents; i++) {
490                 if (!in_obp_range(prom_trans[i].virt))
491                         break;
492         }
493         last = i;
494
495         for (i = 0; i < (last - first); i++) {
496                 struct linux_prom_translation *src = &prom_trans[i + first];
497                 struct linux_prom_translation *dest = &prom_trans[i];
498
499                 *dest = *src;
500         }
501         for (; i < ents; i++) {
502                 struct linux_prom_translation *dest = &prom_trans[i];
503                 dest->virt = dest->size = dest->data = 0x0UL;
504         }
505
506         prom_trans_ents = last - first;
507
508         if (tlb_type == spitfire) {
509                 /* Clear diag TTE bits. */
510                 for (i = 0; i < prom_trans_ents; i++)
511                         prom_trans[i].data &= ~0x0003fe0000000000UL;
512         }
513
514         /* Force execute bit on.  */
515         for (i = 0; i < prom_trans_ents; i++)
516                 prom_trans[i].data |= (tlb_type == hypervisor ?
517                                        _PAGE_EXEC_4V : _PAGE_EXEC_4U);
518 }
519
520 static void __init hypervisor_tlb_lock(unsigned long vaddr,
521                                        unsigned long pte,
522                                        unsigned long mmu)
523 {
524         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
525
526         if (ret != 0) {
527                 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
528                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
529                 prom_halt();
530         }
531 }
532
533 static unsigned long kern_large_tte(unsigned long paddr);
534
535 static void __init remap_kernel(void)
536 {
537         unsigned long phys_page, tte_vaddr, tte_data;
538         int i, tlb_ent = sparc64_highest_locked_tlbent();
539
540         tte_vaddr = (unsigned long) KERNBASE;
541         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
542         tte_data = kern_large_tte(phys_page);
543
544         kern_locked_tte_data = tte_data;
545
546         /* Now lock us into the TLBs via Hypervisor or OBP. */
547         if (tlb_type == hypervisor) {
548                 for (i = 0; i < num_kernel_image_mappings; i++) {
549                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
550                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
551                         tte_vaddr += 0x400000;
552                         tte_data += 0x400000;
553                 }
554         } else {
555                 for (i = 0; i < num_kernel_image_mappings; i++) {
556                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
557                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
558                         tte_vaddr += 0x400000;
559                         tte_data += 0x400000;
560                 }
561                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
562         }
563         if (tlb_type == cheetah_plus) {
564                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
565                                             CTX_CHEETAH_PLUS_NUC);
566                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
567                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
568         }
569 }
570
571
572 static void __init inherit_prom_mappings(void)
573 {
574         /* Now fixup OBP's idea about where we really are mapped. */
575         printk("Remapping the kernel... ");
576         remap_kernel();
577         printk("done.\n");
578 }
579
580 void prom_world(int enter)
581 {
582         if (!enter)
583                 set_fs((mm_segment_t) { get_thread_current_ds() });
584
585         __asm__ __volatile__("flushw");
586 }
587
588 void __flush_dcache_range(unsigned long start, unsigned long end)
589 {
590         unsigned long va;
591
592         if (tlb_type == spitfire) {
593                 int n = 0;
594
595                 for (va = start; va < end; va += 32) {
596                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
597                         if (++n >= 512)
598                                 break;
599                 }
600         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
601                 start = __pa(start);
602                 end = __pa(end);
603                 for (va = start; va < end; va += 32)
604                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
605                                              "membar #Sync"
606                                              : /* no outputs */
607                                              : "r" (va),
608                                                "i" (ASI_DCACHE_INVALIDATE));
609         }
610 }
611 EXPORT_SYMBOL(__flush_dcache_range);
612
613 /* get_new_mmu_context() uses "cache + 1".  */
614 DEFINE_SPINLOCK(ctx_alloc_lock);
615 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
616 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
617 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
618 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
619
620 /* Caller does TLB context flushing on local CPU if necessary.
621  * The caller also ensures that CTX_VALID(mm->context) is false.
622  *
623  * We must be careful about boundary cases so that we never
624  * let the user have CTX 0 (nucleus) or we ever use a CTX
625  * version of zero (and thus NO_CONTEXT would not be caught
626  * by version mis-match tests in mmu_context.h).
627  *
628  * Always invoked with interrupts disabled.
629  */
630 void get_new_mmu_context(struct mm_struct *mm)
631 {
632         unsigned long ctx, new_ctx;
633         unsigned long orig_pgsz_bits;
634         unsigned long flags;
635         int new_version;
636
637         spin_lock_irqsave(&ctx_alloc_lock, flags);
638         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
639         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
640         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
641         new_version = 0;
642         if (new_ctx >= (1 << CTX_NR_BITS)) {
643                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
644                 if (new_ctx >= ctx) {
645                         int i;
646                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
647                                 CTX_FIRST_VERSION;
648                         if (new_ctx == 1)
649                                 new_ctx = CTX_FIRST_VERSION;
650
651                         /* Don't call memset, for 16 entries that's just
652                          * plain silly...
653                          */
654                         mmu_context_bmap[0] = 3;
655                         mmu_context_bmap[1] = 0;
656                         mmu_context_bmap[2] = 0;
657                         mmu_context_bmap[3] = 0;
658                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
659                                 mmu_context_bmap[i + 0] = 0;
660                                 mmu_context_bmap[i + 1] = 0;
661                                 mmu_context_bmap[i + 2] = 0;
662                                 mmu_context_bmap[i + 3] = 0;
663                         }
664                         new_version = 1;
665                         goto out;
666                 }
667         }
668         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
669         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
670 out:
671         tlb_context_cache = new_ctx;
672         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
673         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
674
675         if (unlikely(new_version))
676                 smp_new_mmu_context_version();
677 }
678
679 static int numa_enabled = 1;
680 static int numa_debug;
681
682 static int __init early_numa(char *p)
683 {
684         if (!p)
685                 return 0;
686
687         if (strstr(p, "off"))
688                 numa_enabled = 0;
689
690         if (strstr(p, "debug"))
691                 numa_debug = 1;
692
693         return 0;
694 }
695 early_param("numa", early_numa);
696
697 #define numadbg(f, a...) \
698 do {    if (numa_debug) \
699                 printk(KERN_INFO f, ## a); \
700 } while (0)
701
702 static void __init find_ramdisk(unsigned long phys_base)
703 {
704 #ifdef CONFIG_BLK_DEV_INITRD
705         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
706                 unsigned long ramdisk_image;
707
708                 /* Older versions of the bootloader only supported a
709                  * 32-bit physical address for the ramdisk image
710                  * location, stored at sparc_ramdisk_image.  Newer
711                  * SILO versions set sparc_ramdisk_image to zero and
712                  * provide a full 64-bit physical address at
713                  * sparc_ramdisk_image64.
714                  */
715                 ramdisk_image = sparc_ramdisk_image;
716                 if (!ramdisk_image)
717                         ramdisk_image = sparc_ramdisk_image64;
718
719                 /* Another bootloader quirk.  The bootloader normalizes
720                  * the physical address to KERNBASE, so we have to
721                  * factor that back out and add in the lowest valid
722                  * physical page address to get the true physical address.
723                  */
724                 ramdisk_image -= KERNBASE;
725                 ramdisk_image += phys_base;
726
727                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
728                         ramdisk_image, sparc_ramdisk_size);
729
730                 initrd_start = ramdisk_image;
731                 initrd_end = ramdisk_image + sparc_ramdisk_size;
732
733                 memblock_reserve(initrd_start, sparc_ramdisk_size);
734
735                 initrd_start += PAGE_OFFSET;
736                 initrd_end += PAGE_OFFSET;
737         }
738 #endif
739 }
740
741 struct node_mem_mask {
742         unsigned long mask;
743         unsigned long val;
744         unsigned long bootmem_paddr;
745 };
746 static struct node_mem_mask node_masks[MAX_NUMNODES];
747 static int num_node_masks;
748
749 int numa_cpu_lookup_table[NR_CPUS];
750 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
751
752 #ifdef CONFIG_NEED_MULTIPLE_NODES
753
754 struct mdesc_mblock {
755         u64     base;
756         u64     size;
757         u64     offset; /* RA-to-PA */
758 };
759 static struct mdesc_mblock *mblocks;
760 static int num_mblocks;
761
762 static unsigned long ra_to_pa(unsigned long addr)
763 {
764         int i;
765
766         for (i = 0; i < num_mblocks; i++) {
767                 struct mdesc_mblock *m = &mblocks[i];
768
769                 if (addr >= m->base &&
770                     addr < (m->base + m->size)) {
771                         addr += m->offset;
772                         break;
773                 }
774         }
775         return addr;
776 }
777
778 static int find_node(unsigned long addr)
779 {
780         int i;
781
782         addr = ra_to_pa(addr);
783         for (i = 0; i < num_node_masks; i++) {
784                 struct node_mem_mask *p = &node_masks[i];
785
786                 if ((addr & p->mask) == p->val)
787                         return i;
788         }
789         return -1;
790 }
791
792 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
793 {
794         *nid = find_node(start);
795         start += PAGE_SIZE;
796         while (start < end) {
797                 int n = find_node(start);
798
799                 if (n != *nid)
800                         break;
801                 start += PAGE_SIZE;
802         }
803
804         if (start > end)
805                 start = end;
806
807         return start;
808 }
809 #else
810 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
811 {
812         *nid = 0;
813         return end;
814 }
815 #endif
816
817 /* This must be invoked after performing all of the necessary
818  * memblock_set_node() calls for 'nid'.  We need to be able to get
819  * correct data from get_pfn_range_for_nid().
820  */
821 static void __init allocate_node_data(int nid)
822 {
823         unsigned long paddr, num_pages, start_pfn, end_pfn;
824         struct pglist_data *p;
825
826 #ifdef CONFIG_NEED_MULTIPLE_NODES
827         paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
828         if (!paddr) {
829                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
830                 prom_halt();
831         }
832         NODE_DATA(nid) = __va(paddr);
833         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
834
835         NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
836 #endif
837
838         p = NODE_DATA(nid);
839
840         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
841         p->node_start_pfn = start_pfn;
842         p->node_spanned_pages = end_pfn - start_pfn;
843
844         if (p->node_spanned_pages) {
845                 num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
846
847                 paddr = memblock_alloc_try_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid);
848                 if (!paddr) {
849                         prom_printf("Cannot allocate bootmap for nid[%d]\n",
850                                   nid);
851                         prom_halt();
852                 }
853                 node_masks[nid].bootmem_paddr = paddr;
854         }
855 }
856
857 static void init_node_masks_nonnuma(void)
858 {
859         int i;
860
861         numadbg("Initializing tables for non-numa.\n");
862
863         node_masks[0].mask = node_masks[0].val = 0;
864         num_node_masks = 1;
865
866         for (i = 0; i < NR_CPUS; i++)
867                 numa_cpu_lookup_table[i] = 0;
868
869         cpumask_setall(&numa_cpumask_lookup_table[0]);
870 }
871
872 #ifdef CONFIG_NEED_MULTIPLE_NODES
873 struct pglist_data *node_data[MAX_NUMNODES];
874
875 EXPORT_SYMBOL(numa_cpu_lookup_table);
876 EXPORT_SYMBOL(numa_cpumask_lookup_table);
877 EXPORT_SYMBOL(node_data);
878
879 struct mdesc_mlgroup {
880         u64     node;
881         u64     latency;
882         u64     match;
883         u64     mask;
884 };
885 static struct mdesc_mlgroup *mlgroups;
886 static int num_mlgroups;
887
888 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
889                                    u32 cfg_handle)
890 {
891         u64 arc;
892
893         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
894                 u64 target = mdesc_arc_target(md, arc);
895                 const u64 *val;
896
897                 val = mdesc_get_property(md, target,
898                                          "cfg-handle", NULL);
899                 if (val && *val == cfg_handle)
900                         return 0;
901         }
902         return -ENODEV;
903 }
904
905 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
906                                     u32 cfg_handle)
907 {
908         u64 arc, candidate, best_latency = ~(u64)0;
909
910         candidate = MDESC_NODE_NULL;
911         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
912                 u64 target = mdesc_arc_target(md, arc);
913                 const char *name = mdesc_node_name(md, target);
914                 const u64 *val;
915
916                 if (strcmp(name, "pio-latency-group"))
917                         continue;
918
919                 val = mdesc_get_property(md, target, "latency", NULL);
920                 if (!val)
921                         continue;
922
923                 if (*val < best_latency) {
924                         candidate = target;
925                         best_latency = *val;
926                 }
927         }
928
929         if (candidate == MDESC_NODE_NULL)
930                 return -ENODEV;
931
932         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
933 }
934
935 int of_node_to_nid(struct device_node *dp)
936 {
937         const struct linux_prom64_registers *regs;
938         struct mdesc_handle *md;
939         u32 cfg_handle;
940         int count, nid;
941         u64 grp;
942
943         /* This is the right thing to do on currently supported
944          * SUN4U NUMA platforms as well, as the PCI controller does
945          * not sit behind any particular memory controller.
946          */
947         if (!mlgroups)
948                 return -1;
949
950         regs = of_get_property(dp, "reg", NULL);
951         if (!regs)
952                 return -1;
953
954         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
955
956         md = mdesc_grab();
957
958         count = 0;
959         nid = -1;
960         mdesc_for_each_node_by_name(md, grp, "group") {
961                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
962                         nid = count;
963                         break;
964                 }
965                 count++;
966         }
967
968         mdesc_release(md);
969
970         return nid;
971 }
972
973 static void __init add_node_ranges(void)
974 {
975         struct memblock_region *reg;
976
977         for_each_memblock(memory, reg) {
978                 unsigned long size = reg->size;
979                 unsigned long start, end;
980
981                 start = reg->base;
982                 end = start + size;
983                 while (start < end) {
984                         unsigned long this_end;
985                         int nid;
986
987                         this_end = memblock_nid_range(start, end, &nid);
988
989                         numadbg("Setting memblock NUMA node nid[%d] "
990                                 "start[%lx] end[%lx]\n",
991                                 nid, start, this_end);
992
993                         memblock_set_node(start, this_end - start, nid);
994                         start = this_end;
995                 }
996         }
997 }
998
999 static int __init grab_mlgroups(struct mdesc_handle *md)
1000 {
1001         unsigned long paddr;
1002         int count = 0;
1003         u64 node;
1004
1005         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1006                 count++;
1007         if (!count)
1008                 return -ENOENT;
1009
1010         paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1011                           SMP_CACHE_BYTES);
1012         if (!paddr)
1013                 return -ENOMEM;
1014
1015         mlgroups = __va(paddr);
1016         num_mlgroups = count;
1017
1018         count = 0;
1019         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1020                 struct mdesc_mlgroup *m = &mlgroups[count++];
1021                 const u64 *val;
1022
1023                 m->node = node;
1024
1025                 val = mdesc_get_property(md, node, "latency", NULL);
1026                 m->latency = *val;
1027                 val = mdesc_get_property(md, node, "address-match", NULL);
1028                 m->match = *val;
1029                 val = mdesc_get_property(md, node, "address-mask", NULL);
1030                 m->mask = *val;
1031
1032                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1033                         "match[%llx] mask[%llx]\n",
1034                         count - 1, m->node, m->latency, m->match, m->mask);
1035         }
1036
1037         return 0;
1038 }
1039
1040 static int __init grab_mblocks(struct mdesc_handle *md)
1041 {
1042         unsigned long paddr;
1043         int count = 0;
1044         u64 node;
1045
1046         mdesc_for_each_node_by_name(md, node, "mblock")
1047                 count++;
1048         if (!count)
1049                 return -ENOENT;
1050
1051         paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1052                           SMP_CACHE_BYTES);
1053         if (!paddr)
1054                 return -ENOMEM;
1055
1056         mblocks = __va(paddr);
1057         num_mblocks = count;
1058
1059         count = 0;
1060         mdesc_for_each_node_by_name(md, node, "mblock") {
1061                 struct mdesc_mblock *m = &mblocks[count++];
1062                 const u64 *val;
1063
1064                 val = mdesc_get_property(md, node, "base", NULL);
1065                 m->base = *val;
1066                 val = mdesc_get_property(md, node, "size", NULL);
1067                 m->size = *val;
1068                 val = mdesc_get_property(md, node,
1069                                          "address-congruence-offset", NULL);
1070                 m->offset = *val;
1071
1072                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1073                         count - 1, m->base, m->size, m->offset);
1074         }
1075
1076         return 0;
1077 }
1078
1079 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1080                                                u64 grp, cpumask_t *mask)
1081 {
1082         u64 arc;
1083
1084         cpumask_clear(mask);
1085
1086         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1087                 u64 target = mdesc_arc_target(md, arc);
1088                 const char *name = mdesc_node_name(md, target);
1089                 const u64 *id;
1090
1091                 if (strcmp(name, "cpu"))
1092                         continue;
1093                 id = mdesc_get_property(md, target, "id", NULL);
1094                 if (*id < nr_cpu_ids)
1095                         cpumask_set_cpu(*id, mask);
1096         }
1097 }
1098
1099 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1100 {
1101         int i;
1102
1103         for (i = 0; i < num_mlgroups; i++) {
1104                 struct mdesc_mlgroup *m = &mlgroups[i];
1105                 if (m->node == node)
1106                         return m;
1107         }
1108         return NULL;
1109 }
1110
1111 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1112                                       int index)
1113 {
1114         struct mdesc_mlgroup *candidate = NULL;
1115         u64 arc, best_latency = ~(u64)0;
1116         struct node_mem_mask *n;
1117
1118         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1119                 u64 target = mdesc_arc_target(md, arc);
1120                 struct mdesc_mlgroup *m = find_mlgroup(target);
1121                 if (!m)
1122                         continue;
1123                 if (m->latency < best_latency) {
1124                         candidate = m;
1125                         best_latency = m->latency;
1126                 }
1127         }
1128         if (!candidate)
1129                 return -ENOENT;
1130
1131         if (num_node_masks != index) {
1132                 printk(KERN_ERR "Inconsistent NUMA state, "
1133                        "index[%d] != num_node_masks[%d]\n",
1134                        index, num_node_masks);
1135                 return -EINVAL;
1136         }
1137
1138         n = &node_masks[num_node_masks++];
1139
1140         n->mask = candidate->mask;
1141         n->val = candidate->match;
1142
1143         numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1144                 index, n->mask, n->val, candidate->latency);
1145
1146         return 0;
1147 }
1148
1149 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1150                                          int index)
1151 {
1152         cpumask_t mask;
1153         int cpu;
1154
1155         numa_parse_mdesc_group_cpus(md, grp, &mask);
1156
1157         for_each_cpu(cpu, &mask)
1158                 numa_cpu_lookup_table[cpu] = index;
1159         cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1160
1161         if (numa_debug) {
1162                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1163                 for_each_cpu(cpu, &mask)
1164                         printk("%d ", cpu);
1165                 printk("]\n");
1166         }
1167
1168         return numa_attach_mlgroup(md, grp, index);
1169 }
1170
1171 static int __init numa_parse_mdesc(void)
1172 {
1173         struct mdesc_handle *md = mdesc_grab();
1174         int i, err, count;
1175         u64 node;
1176
1177         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1178         if (node == MDESC_NODE_NULL) {
1179                 mdesc_release(md);
1180                 return -ENOENT;
1181         }
1182
1183         err = grab_mblocks(md);
1184         if (err < 0)
1185                 goto out;
1186
1187         err = grab_mlgroups(md);
1188         if (err < 0)
1189                 goto out;
1190
1191         count = 0;
1192         mdesc_for_each_node_by_name(md, node, "group") {
1193                 err = numa_parse_mdesc_group(md, node, count);
1194                 if (err < 0)
1195                         break;
1196                 count++;
1197         }
1198
1199         add_node_ranges();
1200
1201         for (i = 0; i < num_node_masks; i++) {
1202                 allocate_node_data(i);
1203                 node_set_online(i);
1204         }
1205
1206         err = 0;
1207 out:
1208         mdesc_release(md);
1209         return err;
1210 }
1211
1212 static int __init numa_parse_jbus(void)
1213 {
1214         unsigned long cpu, index;
1215
1216         /* NUMA node id is encoded in bits 36 and higher, and there is
1217          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1218          */
1219         index = 0;
1220         for_each_present_cpu(cpu) {
1221                 numa_cpu_lookup_table[cpu] = index;
1222                 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1223                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1224                 node_masks[index].val = cpu << 36UL;
1225
1226                 index++;
1227         }
1228         num_node_masks = index;
1229
1230         add_node_ranges();
1231
1232         for (index = 0; index < num_node_masks; index++) {
1233                 allocate_node_data(index);
1234                 node_set_online(index);
1235         }
1236
1237         return 0;
1238 }
1239
1240 static int __init numa_parse_sun4u(void)
1241 {
1242         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1243                 unsigned long ver;
1244
1245                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1246                 if ((ver >> 32UL) == __JALAPENO_ID ||
1247                     (ver >> 32UL) == __SERRANO_ID)
1248                         return numa_parse_jbus();
1249         }
1250         return -1;
1251 }
1252
1253 static int __init bootmem_init_numa(void)
1254 {
1255         int err = -1;
1256
1257         numadbg("bootmem_init_numa()\n");
1258
1259         if (numa_enabled) {
1260                 if (tlb_type == hypervisor)
1261                         err = numa_parse_mdesc();
1262                 else
1263                         err = numa_parse_sun4u();
1264         }
1265         return err;
1266 }
1267
1268 #else
1269
1270 static int bootmem_init_numa(void)
1271 {
1272         return -1;
1273 }
1274
1275 #endif
1276
1277 static void __init bootmem_init_nonnuma(void)
1278 {
1279         unsigned long top_of_ram = memblock_end_of_DRAM();
1280         unsigned long total_ram = memblock_phys_mem_size();
1281
1282         numadbg("bootmem_init_nonnuma()\n");
1283
1284         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1285                top_of_ram, total_ram);
1286         printk(KERN_INFO "Memory hole size: %ldMB\n",
1287                (top_of_ram - total_ram) >> 20);
1288
1289         init_node_masks_nonnuma();
1290         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
1291         allocate_node_data(0);
1292         node_set_online(0);
1293 }
1294
1295 static void __init reserve_range_in_node(int nid, unsigned long start,
1296                                          unsigned long end)
1297 {
1298         numadbg("    reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1299                 nid, start, end);
1300         while (start < end) {
1301                 unsigned long this_end;
1302                 int n;
1303
1304                 this_end = memblock_nid_range(start, end, &n);
1305                 if (n == nid) {
1306                         numadbg("      MATCH reserving range [%lx:%lx]\n",
1307                                 start, this_end);
1308                         reserve_bootmem_node(NODE_DATA(nid), start,
1309                                              (this_end - start), BOOTMEM_DEFAULT);
1310                 } else
1311                         numadbg("      NO MATCH, advancing start to %lx\n",
1312                                 this_end);
1313
1314                 start = this_end;
1315         }
1316 }
1317
1318 static void __init trim_reserved_in_node(int nid)
1319 {
1320         struct memblock_region *reg;
1321
1322         numadbg("  trim_reserved_in_node(%d)\n", nid);
1323
1324         for_each_memblock(reserved, reg)
1325                 reserve_range_in_node(nid, reg->base, reg->base + reg->size);
1326 }
1327
1328 static void __init bootmem_init_one_node(int nid)
1329 {
1330         struct pglist_data *p;
1331
1332         numadbg("bootmem_init_one_node(%d)\n", nid);
1333
1334         p = NODE_DATA(nid);
1335
1336         if (p->node_spanned_pages) {
1337                 unsigned long paddr = node_masks[nid].bootmem_paddr;
1338                 unsigned long end_pfn;
1339
1340                 end_pfn = p->node_start_pfn + p->node_spanned_pages;
1341
1342                 numadbg("  init_bootmem_node(%d, %lx, %lx, %lx)\n",
1343                         nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1344
1345                 init_bootmem_node(p, paddr >> PAGE_SHIFT,
1346                                   p->node_start_pfn, end_pfn);
1347
1348                 numadbg("  free_bootmem_with_active_regions(%d, %lx)\n",
1349                         nid, end_pfn);
1350                 free_bootmem_with_active_regions(nid, end_pfn);
1351
1352                 trim_reserved_in_node(nid);
1353
1354                 numadbg("  sparse_memory_present_with_active_regions(%d)\n",
1355                         nid);
1356                 sparse_memory_present_with_active_regions(nid);
1357         }
1358 }
1359
1360 static unsigned long __init bootmem_init(unsigned long phys_base)
1361 {
1362         unsigned long end_pfn;
1363         int nid;
1364
1365         end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1366         max_pfn = max_low_pfn = end_pfn;
1367         min_low_pfn = (phys_base >> PAGE_SHIFT);
1368
1369         if (bootmem_init_numa() < 0)
1370                 bootmem_init_nonnuma();
1371
1372         /* XXX cpu notifier XXX */
1373
1374         for_each_online_node(nid)
1375                 bootmem_init_one_node(nid);
1376
1377         sparse_init();
1378
1379         return end_pfn;
1380 }
1381
1382 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1383 static int pall_ents __initdata;
1384
1385 #ifdef CONFIG_DEBUG_PAGEALLOC
1386 static unsigned long __ref kernel_map_range(unsigned long pstart,
1387                                             unsigned long pend, pgprot_t prot)
1388 {
1389         unsigned long vstart = PAGE_OFFSET + pstart;
1390         unsigned long vend = PAGE_OFFSET + pend;
1391         unsigned long alloc_bytes = 0UL;
1392
1393         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1394                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1395                             vstart, vend);
1396                 prom_halt();
1397         }
1398
1399         while (vstart < vend) {
1400                 unsigned long this_end, paddr = __pa(vstart);
1401                 pgd_t *pgd = pgd_offset_k(vstart);
1402                 pud_t *pud;
1403                 pmd_t *pmd;
1404                 pte_t *pte;
1405
1406                 pud = pud_offset(pgd, vstart);
1407                 if (pud_none(*pud)) {
1408                         pmd_t *new;
1409
1410                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1411                         alloc_bytes += PAGE_SIZE;
1412                         pud_populate(&init_mm, pud, new);
1413                 }
1414
1415                 pmd = pmd_offset(pud, vstart);
1416                 if (!pmd_present(*pmd)) {
1417                         pte_t *new;
1418
1419                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1420                         alloc_bytes += PAGE_SIZE;
1421                         pmd_populate_kernel(&init_mm, pmd, new);
1422                 }
1423
1424                 pte = pte_offset_kernel(pmd, vstart);
1425                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1426                 if (this_end > vend)
1427                         this_end = vend;
1428
1429                 while (vstart < this_end) {
1430                         pte_val(*pte) = (paddr | pgprot_val(prot));
1431
1432                         vstart += PAGE_SIZE;
1433                         paddr += PAGE_SIZE;
1434                         pte++;
1435                 }
1436         }
1437
1438         return alloc_bytes;
1439 }
1440
1441 extern unsigned int kvmap_linear_patch[1];
1442 #endif /* CONFIG_DEBUG_PAGEALLOC */
1443
1444 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1445 {
1446         const unsigned long shift_256MB = 28;
1447         const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1448         const unsigned long size_256MB = (1UL << shift_256MB);
1449
1450         while (start < end) {
1451                 long remains;
1452
1453                 remains = end - start;
1454                 if (remains < size_256MB)
1455                         break;
1456
1457                 if (start & mask_256MB) {
1458                         start = (start + size_256MB) & ~mask_256MB;
1459                         continue;
1460                 }
1461
1462                 while (remains >= size_256MB) {
1463                         unsigned long index = start >> shift_256MB;
1464
1465                         __set_bit(index, kpte_linear_bitmap);
1466
1467                         start += size_256MB;
1468                         remains -= size_256MB;
1469                 }
1470         }
1471 }
1472
1473 static void __init init_kpte_bitmap(void)
1474 {
1475         unsigned long i;
1476
1477         for (i = 0; i < pall_ents; i++) {
1478                 unsigned long phys_start, phys_end;
1479
1480                 phys_start = pall[i].phys_addr;
1481                 phys_end = phys_start + pall[i].reg_size;
1482
1483                 mark_kpte_bitmap(phys_start, phys_end);
1484         }
1485 }
1486
1487 static void __init kernel_physical_mapping_init(void)
1488 {
1489 #ifdef CONFIG_DEBUG_PAGEALLOC
1490         unsigned long i, mem_alloced = 0UL;
1491
1492         for (i = 0; i < pall_ents; i++) {
1493                 unsigned long phys_start, phys_end;
1494
1495                 phys_start = pall[i].phys_addr;
1496                 phys_end = phys_start + pall[i].reg_size;
1497
1498                 mem_alloced += kernel_map_range(phys_start, phys_end,
1499                                                 PAGE_KERNEL);
1500         }
1501
1502         printk("Allocated %ld bytes for kernel page tables.\n",
1503                mem_alloced);
1504
1505         kvmap_linear_patch[0] = 0x01000000; /* nop */
1506         flushi(&kvmap_linear_patch[0]);
1507
1508         __flush_tlb_all();
1509 #endif
1510 }
1511
1512 #ifdef CONFIG_DEBUG_PAGEALLOC
1513 void kernel_map_pages(struct page *page, int numpages, int enable)
1514 {
1515         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1516         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1517
1518         kernel_map_range(phys_start, phys_end,
1519                          (enable ? PAGE_KERNEL : __pgprot(0)));
1520
1521         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1522                                PAGE_OFFSET + phys_end);
1523
1524         /* we should perform an IPI and flush all tlbs,
1525          * but that can deadlock->flush only current cpu.
1526          */
1527         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1528                                  PAGE_OFFSET + phys_end);
1529 }
1530 #endif
1531
1532 unsigned long __init find_ecache_flush_span(unsigned long size)
1533 {
1534         int i;
1535
1536         for (i = 0; i < pavail_ents; i++) {
1537                 if (pavail[i].reg_size >= size)
1538                         return pavail[i].phys_addr;
1539         }
1540
1541         return ~0UL;
1542 }
1543
1544 static void __init tsb_phys_patch(void)
1545 {
1546         struct tsb_ldquad_phys_patch_entry *pquad;
1547         struct tsb_phys_patch_entry *p;
1548
1549         pquad = &__tsb_ldquad_phys_patch;
1550         while (pquad < &__tsb_ldquad_phys_patch_end) {
1551                 unsigned long addr = pquad->addr;
1552
1553                 if (tlb_type == hypervisor)
1554                         *(unsigned int *) addr = pquad->sun4v_insn;
1555                 else
1556                         *(unsigned int *) addr = pquad->sun4u_insn;
1557                 wmb();
1558                 __asm__ __volatile__("flush     %0"
1559                                      : /* no outputs */
1560                                      : "r" (addr));
1561
1562                 pquad++;
1563         }
1564
1565         p = &__tsb_phys_patch;
1566         while (p < &__tsb_phys_patch_end) {
1567                 unsigned long addr = p->addr;
1568
1569                 *(unsigned int *) addr = p->insn;
1570                 wmb();
1571                 __asm__ __volatile__("flush     %0"
1572                                      : /* no outputs */
1573                                      : "r" (addr));
1574
1575                 p++;
1576         }
1577 }
1578
1579 /* Don't mark as init, we give this to the Hypervisor.  */
1580 #ifndef CONFIG_DEBUG_PAGEALLOC
1581 #define NUM_KTSB_DESCR  2
1582 #else
1583 #define NUM_KTSB_DESCR  1
1584 #endif
1585 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1586 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1587
1588 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1589 {
1590         pa >>= KTSB_PHYS_SHIFT;
1591
1592         while (start < end) {
1593                 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1594
1595                 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1596                 __asm__ __volatile__("flush     %0" : : "r" (ia));
1597
1598                 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1599                 __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
1600
1601                 start++;
1602         }
1603 }
1604
1605 static void ktsb_phys_patch(void)
1606 {
1607         extern unsigned int __swapper_tsb_phys_patch;
1608         extern unsigned int __swapper_tsb_phys_patch_end;
1609         unsigned long ktsb_pa;
1610
1611         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1612         patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1613                             &__swapper_tsb_phys_patch_end, ktsb_pa);
1614 #ifndef CONFIG_DEBUG_PAGEALLOC
1615         {
1616         extern unsigned int __swapper_4m_tsb_phys_patch;
1617         extern unsigned int __swapper_4m_tsb_phys_patch_end;
1618         ktsb_pa = (kern_base +
1619                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1620         patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1621                             &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1622         }
1623 #endif
1624 }
1625
1626 static void __init sun4v_ktsb_init(void)
1627 {
1628         unsigned long ktsb_pa;
1629
1630         /* First KTSB for PAGE_SIZE mappings.  */
1631         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1632
1633         switch (PAGE_SIZE) {
1634         case 8 * 1024:
1635         default:
1636                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1637                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1638                 break;
1639
1640         case 64 * 1024:
1641                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1642                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1643                 break;
1644
1645         case 512 * 1024:
1646                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1647                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1648                 break;
1649
1650         case 4 * 1024 * 1024:
1651                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1652                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1653                 break;
1654         }
1655
1656         ktsb_descr[0].assoc = 1;
1657         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1658         ktsb_descr[0].ctx_idx = 0;
1659         ktsb_descr[0].tsb_base = ktsb_pa;
1660         ktsb_descr[0].resv = 0;
1661
1662 #ifndef CONFIG_DEBUG_PAGEALLOC
1663         /* Second KTSB for 4MB/256MB mappings.  */
1664         ktsb_pa = (kern_base +
1665                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1666
1667         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1668         ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1669                                    HV_PGSZ_MASK_256MB);
1670         ktsb_descr[1].assoc = 1;
1671         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1672         ktsb_descr[1].ctx_idx = 0;
1673         ktsb_descr[1].tsb_base = ktsb_pa;
1674         ktsb_descr[1].resv = 0;
1675 #endif
1676 }
1677
1678 void __cpuinit sun4v_ktsb_register(void)
1679 {
1680         unsigned long pa, ret;
1681
1682         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1683
1684         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1685         if (ret != 0) {
1686                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1687                             "errors with %lx\n", pa, ret);
1688                 prom_halt();
1689         }
1690 }
1691
1692 /* paging_init() sets up the page tables */
1693
1694 static unsigned long last_valid_pfn;
1695 pgd_t swapper_pg_dir[2048];
1696
1697 static void sun4u_pgprot_init(void);
1698 static void sun4v_pgprot_init(void);
1699
1700 void __init paging_init(void)
1701 {
1702         unsigned long end_pfn, shift, phys_base;
1703         unsigned long real_end, i;
1704
1705         /* These build time checkes make sure that the dcache_dirty_cpu()
1706          * page->flags usage will work.
1707          *
1708          * When a page gets marked as dcache-dirty, we store the
1709          * cpu number starting at bit 32 in the page->flags.  Also,
1710          * functions like clear_dcache_dirty_cpu use the cpu mask
1711          * in 13-bit signed-immediate instruction fields.
1712          */
1713
1714         /*
1715          * Page flags must not reach into upper 32 bits that are used
1716          * for the cpu number
1717          */
1718         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1719
1720         /*
1721          * The bit fields placed in the high range must not reach below
1722          * the 32 bit boundary. Otherwise we cannot place the cpu field
1723          * at the 32 bit boundary.
1724          */
1725         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1726                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1727
1728         BUILD_BUG_ON(NR_CPUS > 4096);
1729
1730         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1731         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1732
1733         /* Invalidate both kernel TSBs.  */
1734         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1735 #ifndef CONFIG_DEBUG_PAGEALLOC
1736         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1737 #endif
1738
1739         if (tlb_type == hypervisor)
1740                 sun4v_pgprot_init();
1741         else
1742                 sun4u_pgprot_init();
1743
1744         if (tlb_type == cheetah_plus ||
1745             tlb_type == hypervisor) {
1746                 tsb_phys_patch();
1747                 ktsb_phys_patch();
1748         }
1749
1750         if (tlb_type == hypervisor) {
1751                 sun4v_patch_tlb_handlers();
1752                 sun4v_ktsb_init();
1753         }
1754
1755         /* Find available physical memory...
1756          *
1757          * Read it twice in order to work around a bug in openfirmware.
1758          * The call to grab this table itself can cause openfirmware to
1759          * allocate memory, which in turn can take away some space from
1760          * the list of available memory.  Reading it twice makes sure
1761          * we really do get the final value.
1762          */
1763         read_obp_translations();
1764         read_obp_memory("reg", &pall[0], &pall_ents);
1765         read_obp_memory("available", &pavail[0], &pavail_ents);
1766         read_obp_memory("available", &pavail[0], &pavail_ents);
1767
1768         phys_base = 0xffffffffffffffffUL;
1769         for (i = 0; i < pavail_ents; i++) {
1770                 phys_base = min(phys_base, pavail[i].phys_addr);
1771                 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1772         }
1773
1774         memblock_reserve(kern_base, kern_size);
1775
1776         find_ramdisk(phys_base);
1777
1778         memblock_enforce_memory_limit(cmdline_memory_size);
1779
1780         memblock_allow_resize();
1781         memblock_dump_all();
1782
1783         set_bit(0, mmu_context_bmap);
1784
1785         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1786
1787         real_end = (unsigned long)_end;
1788         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1789         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1790                num_kernel_image_mappings);
1791
1792         /* Set kernel pgd to upper alias so physical page computations
1793          * work.
1794          */
1795         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1796         
1797         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1798
1799         /* Now can init the kernel/bad page tables. */
1800         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1801                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1802         
1803         inherit_prom_mappings();
1804         
1805         init_kpte_bitmap();
1806
1807         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1808         setup_tba();
1809
1810         __flush_tlb_all();
1811
1812         if (tlb_type == hypervisor)
1813                 sun4v_ktsb_register();
1814
1815         prom_build_devicetree();
1816         of_populate_present_mask();
1817 #ifndef CONFIG_SMP
1818         of_fill_in_cpu_data();
1819 #endif
1820
1821         if (tlb_type == hypervisor) {
1822                 sun4v_mdesc_init();
1823                 mdesc_populate_present_mask(cpu_all_mask);
1824 #ifndef CONFIG_SMP
1825                 mdesc_fill_in_cpu_data(cpu_all_mask);
1826 #endif
1827         }
1828
1829         /* Once the OF device tree and MDESC have been setup, we know
1830          * the list of possible cpus.  Therefore we can allocate the
1831          * IRQ stacks.
1832          */
1833         for_each_possible_cpu(i) {
1834                 /* XXX Use node local allocations... XXX */
1835                 softirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1836                 hardirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1837         }
1838
1839         /* Setup bootmem... */
1840         last_valid_pfn = end_pfn = bootmem_init(phys_base);
1841
1842 #ifndef CONFIG_NEED_MULTIPLE_NODES
1843         max_mapnr = last_valid_pfn;
1844 #endif
1845         kernel_physical_mapping_init();
1846
1847         {
1848                 unsigned long max_zone_pfns[MAX_NR_ZONES];
1849
1850                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1851
1852                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1853
1854                 free_area_init_nodes(max_zone_pfns);
1855         }
1856
1857         printk("Booting Linux...\n");
1858 }
1859
1860 int __devinit page_in_phys_avail(unsigned long paddr)
1861 {
1862         int i;
1863
1864         paddr &= PAGE_MASK;
1865
1866         for (i = 0; i < pavail_ents; i++) {
1867                 unsigned long start, end;
1868
1869                 start = pavail[i].phys_addr;
1870                 end = start + pavail[i].reg_size;
1871
1872                 if (paddr >= start && paddr < end)
1873                         return 1;
1874         }
1875         if (paddr >= kern_base && paddr < (kern_base + kern_size))
1876                 return 1;
1877 #ifdef CONFIG_BLK_DEV_INITRD
1878         if (paddr >= __pa(initrd_start) &&
1879             paddr < __pa(PAGE_ALIGN(initrd_end)))
1880                 return 1;
1881 #endif
1882
1883         return 0;
1884 }
1885
1886 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1887 static int pavail_rescan_ents __initdata;
1888
1889 /* Certain OBP calls, such as fetching "available" properties, can
1890  * claim physical memory.  So, along with initializing the valid
1891  * address bitmap, what we do here is refetch the physical available
1892  * memory list again, and make sure it provides at least as much
1893  * memory as 'pavail' does.
1894  */
1895 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1896 {
1897         int i;
1898
1899         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1900
1901         for (i = 0; i < pavail_ents; i++) {
1902                 unsigned long old_start, old_end;
1903
1904                 old_start = pavail[i].phys_addr;
1905                 old_end = old_start + pavail[i].reg_size;
1906                 while (old_start < old_end) {
1907                         int n;
1908
1909                         for (n = 0; n < pavail_rescan_ents; n++) {
1910                                 unsigned long new_start, new_end;
1911
1912                                 new_start = pavail_rescan[n].phys_addr;
1913                                 new_end = new_start +
1914                                         pavail_rescan[n].reg_size;
1915
1916                                 if (new_start <= old_start &&
1917                                     new_end >= (old_start + PAGE_SIZE)) {
1918                                         set_bit(old_start >> 22, bitmap);
1919                                         goto do_next_page;
1920                                 }
1921                         }
1922
1923                         prom_printf("mem_init: Lost memory in pavail\n");
1924                         prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1925                                     pavail[i].phys_addr,
1926                                     pavail[i].reg_size);
1927                         prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1928                                     pavail_rescan[i].phys_addr,
1929                                     pavail_rescan[i].reg_size);
1930                         prom_printf("mem_init: Cannot continue, aborting.\n");
1931                         prom_halt();
1932
1933                 do_next_page:
1934                         old_start += PAGE_SIZE;
1935                 }
1936         }
1937 }
1938
1939 static void __init patch_tlb_miss_handler_bitmap(void)
1940 {
1941         extern unsigned int valid_addr_bitmap_insn[];
1942         extern unsigned int valid_addr_bitmap_patch[];
1943
1944         valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1945         mb();
1946         valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1947         flushi(&valid_addr_bitmap_insn[0]);
1948 }
1949
1950 void __init mem_init(void)
1951 {
1952         unsigned long codepages, datapages, initpages;
1953         unsigned long addr, last;
1954
1955         addr = PAGE_OFFSET + kern_base;
1956         last = PAGE_ALIGN(kern_size) + addr;
1957         while (addr < last) {
1958                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1959                 addr += PAGE_SIZE;
1960         }
1961
1962         setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1963         patch_tlb_miss_handler_bitmap();
1964
1965         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1966
1967 #ifdef CONFIG_NEED_MULTIPLE_NODES
1968         {
1969                 int i;
1970                 for_each_online_node(i) {
1971                         if (NODE_DATA(i)->node_spanned_pages != 0) {
1972                                 totalram_pages +=
1973                                         free_all_bootmem_node(NODE_DATA(i));
1974                         }
1975                 }
1976         }
1977 #else
1978         totalram_pages = free_all_bootmem();
1979 #endif
1980
1981         /* We subtract one to account for the mem_map_zero page
1982          * allocated below.
1983          */
1984         totalram_pages -= 1;
1985         num_physpages = totalram_pages;
1986
1987         /*
1988          * Set up the zero page, mark it reserved, so that page count
1989          * is not manipulated when freeing the page from user ptes.
1990          */
1991         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1992         if (mem_map_zero == NULL) {
1993                 prom_printf("paging_init: Cannot alloc zero page.\n");
1994                 prom_halt();
1995         }
1996         SetPageReserved(mem_map_zero);
1997
1998         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1999         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
2000         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
2001         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
2002         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
2003         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
2004
2005         printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
2006                nr_free_pages() << (PAGE_SHIFT-10),
2007                codepages << (PAGE_SHIFT-10),
2008                datapages << (PAGE_SHIFT-10), 
2009                initpages << (PAGE_SHIFT-10), 
2010                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
2011
2012         if (tlb_type == cheetah || tlb_type == cheetah_plus)
2013                 cheetah_ecache_flush_init();
2014 }
2015
2016 void free_initmem(void)
2017 {
2018         unsigned long addr, initend;
2019         int do_free = 1;
2020
2021         /* If the physical memory maps were trimmed by kernel command
2022          * line options, don't even try freeing this initmem stuff up.
2023          * The kernel image could have been in the trimmed out region
2024          * and if so the freeing below will free invalid page structs.
2025          */
2026         if (cmdline_memory_size)
2027                 do_free = 0;
2028
2029         /*
2030          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2031          */
2032         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2033         initend = (unsigned long)(__init_end) & PAGE_MASK;
2034         for (; addr < initend; addr += PAGE_SIZE) {
2035                 unsigned long page;
2036                 struct page *p;
2037
2038                 page = (addr +
2039                         ((unsigned long) __va(kern_base)) -
2040                         ((unsigned long) KERNBASE));
2041                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2042
2043                 if (do_free) {
2044                         p = virt_to_page(page);
2045
2046                         ClearPageReserved(p);
2047                         init_page_count(p);
2048                         __free_page(p);
2049                         num_physpages++;
2050                         totalram_pages++;
2051                 }
2052         }
2053 }
2054
2055 #ifdef CONFIG_BLK_DEV_INITRD
2056 void free_initrd_mem(unsigned long start, unsigned long end)
2057 {
2058         if (start < end)
2059                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2060         for (; start < end; start += PAGE_SIZE) {
2061                 struct page *p = virt_to_page(start);
2062
2063                 ClearPageReserved(p);
2064                 init_page_count(p);
2065                 __free_page(p);
2066                 num_physpages++;
2067                 totalram_pages++;
2068         }
2069 }
2070 #endif
2071
2072 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2073 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2074 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2075 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2076 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2077 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2078
2079 pgprot_t PAGE_KERNEL __read_mostly;
2080 EXPORT_SYMBOL(PAGE_KERNEL);
2081
2082 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2083 pgprot_t PAGE_COPY __read_mostly;
2084
2085 pgprot_t PAGE_SHARED __read_mostly;
2086 EXPORT_SYMBOL(PAGE_SHARED);
2087
2088 unsigned long pg_iobits __read_mostly;
2089
2090 unsigned long _PAGE_IE __read_mostly;
2091 EXPORT_SYMBOL(_PAGE_IE);
2092
2093 unsigned long _PAGE_E __read_mostly;
2094 EXPORT_SYMBOL(_PAGE_E);
2095
2096 unsigned long _PAGE_CACHE __read_mostly;
2097 EXPORT_SYMBOL(_PAGE_CACHE);
2098
2099 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2100 unsigned long vmemmap_table[VMEMMAP_SIZE];
2101
2102 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2103 {
2104         unsigned long vstart = (unsigned long) start;
2105         unsigned long vend = (unsigned long) (start + nr);
2106         unsigned long phys_start = (vstart - VMEMMAP_BASE);
2107         unsigned long phys_end = (vend - VMEMMAP_BASE);
2108         unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2109         unsigned long end = VMEMMAP_ALIGN(phys_end);
2110         unsigned long pte_base;
2111
2112         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2113                     _PAGE_CP_4U | _PAGE_CV_4U |
2114                     _PAGE_P_4U | _PAGE_W_4U);
2115         if (tlb_type == hypervisor)
2116                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2117                             _PAGE_CP_4V | _PAGE_CV_4V |
2118                             _PAGE_P_4V | _PAGE_W_4V);
2119
2120         for (; addr < end; addr += VMEMMAP_CHUNK) {
2121                 unsigned long *vmem_pp =
2122                         vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2123                 void *block;
2124
2125                 if (!(*vmem_pp & _PAGE_VALID)) {
2126                         block = vmemmap_alloc_block(1UL << 22, node);
2127                         if (!block)
2128                                 return -ENOMEM;
2129
2130                         *vmem_pp = pte_base | __pa(block);
2131
2132                         printk(KERN_INFO "[%p-%p] page_structs=%lu "
2133                                "node=%d entry=%lu/%lu\n", start, block, nr,
2134                                node,
2135                                addr >> VMEMMAP_CHUNK_SHIFT,
2136                                VMEMMAP_SIZE);
2137                 }
2138         }
2139         return 0;
2140 }
2141 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2142
2143 static void prot_init_common(unsigned long page_none,
2144                              unsigned long page_shared,
2145                              unsigned long page_copy,
2146                              unsigned long page_readonly,
2147                              unsigned long page_exec_bit)
2148 {
2149         PAGE_COPY = __pgprot(page_copy);
2150         PAGE_SHARED = __pgprot(page_shared);
2151
2152         protection_map[0x0] = __pgprot(page_none);
2153         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2154         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2155         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2156         protection_map[0x4] = __pgprot(page_readonly);
2157         protection_map[0x5] = __pgprot(page_readonly);
2158         protection_map[0x6] = __pgprot(page_copy);
2159         protection_map[0x7] = __pgprot(page_copy);
2160         protection_map[0x8] = __pgprot(page_none);
2161         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2162         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2163         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2164         protection_map[0xc] = __pgprot(page_readonly);
2165         protection_map[0xd] = __pgprot(page_readonly);
2166         protection_map[0xe] = __pgprot(page_shared);
2167         protection_map[0xf] = __pgprot(page_shared);
2168 }
2169
2170 static void __init sun4u_pgprot_init(void)
2171 {
2172         unsigned long page_none, page_shared, page_copy, page_readonly;
2173         unsigned long page_exec_bit;
2174
2175         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2176                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2177                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2178                                 _PAGE_EXEC_4U);
2179         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2180                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2181                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2182                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2183
2184         _PAGE_IE = _PAGE_IE_4U;
2185         _PAGE_E = _PAGE_E_4U;
2186         _PAGE_CACHE = _PAGE_CACHE_4U;
2187
2188         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2189                      __ACCESS_BITS_4U | _PAGE_E_4U);
2190
2191 #ifdef CONFIG_DEBUG_PAGEALLOC
2192         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2193                 0xfffff80000000000UL;
2194 #else
2195         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2196                 0xfffff80000000000UL;
2197 #endif
2198         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2199                                    _PAGE_P_4U | _PAGE_W_4U);
2200
2201         /* XXX Should use 256MB on Panther. XXX */
2202         kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2203
2204         _PAGE_SZBITS = _PAGE_SZBITS_4U;
2205         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2206                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2207                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2208
2209
2210         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2211         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2212                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2213         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2214                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2215         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2216                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2217
2218         page_exec_bit = _PAGE_EXEC_4U;
2219
2220         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2221                          page_exec_bit);
2222 }
2223
2224 static void __init sun4v_pgprot_init(void)
2225 {
2226         unsigned long page_none, page_shared, page_copy, page_readonly;
2227         unsigned long page_exec_bit;
2228
2229         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2230                                 _PAGE_CACHE_4V | _PAGE_P_4V |
2231                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2232                                 _PAGE_EXEC_4V);
2233         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2234
2235         _PAGE_IE = _PAGE_IE_4V;
2236         _PAGE_E = _PAGE_E_4V;
2237         _PAGE_CACHE = _PAGE_CACHE_4V;
2238
2239 #ifdef CONFIG_DEBUG_PAGEALLOC
2240         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2241                 0xfffff80000000000UL;
2242 #else
2243         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2244                 0xfffff80000000000UL;
2245 #endif
2246         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2247                                    _PAGE_P_4V | _PAGE_W_4V);
2248
2249 #ifdef CONFIG_DEBUG_PAGEALLOC
2250         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2251                 0xfffff80000000000UL;
2252 #else
2253         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2254                 0xfffff80000000000UL;
2255 #endif
2256         kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2257                                    _PAGE_P_4V | _PAGE_W_4V);
2258
2259         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2260                      __ACCESS_BITS_4V | _PAGE_E_4V);
2261
2262         _PAGE_SZBITS = _PAGE_SZBITS_4V;
2263         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2264                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2265                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2266                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2267
2268         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2269         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2270                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2271         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2272                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2273         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2274                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2275
2276         page_exec_bit = _PAGE_EXEC_4V;
2277
2278         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2279                          page_exec_bit);
2280 }
2281
2282 unsigned long pte_sz_bits(unsigned long sz)
2283 {
2284         if (tlb_type == hypervisor) {
2285                 switch (sz) {
2286                 case 8 * 1024:
2287                 default:
2288                         return _PAGE_SZ8K_4V;
2289                 case 64 * 1024:
2290                         return _PAGE_SZ64K_4V;
2291                 case 512 * 1024:
2292                         return _PAGE_SZ512K_4V;
2293                 case 4 * 1024 * 1024:
2294                         return _PAGE_SZ4MB_4V;
2295                 }
2296         } else {
2297                 switch (sz) {
2298                 case 8 * 1024:
2299                 default:
2300                         return _PAGE_SZ8K_4U;
2301                 case 64 * 1024:
2302                         return _PAGE_SZ64K_4U;
2303                 case 512 * 1024:
2304                         return _PAGE_SZ512K_4U;
2305                 case 4 * 1024 * 1024:
2306                         return _PAGE_SZ4MB_4U;
2307                 }
2308         }
2309 }
2310
2311 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2312 {
2313         pte_t pte;
2314
2315         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2316         pte_val(pte) |= (((unsigned long)space) << 32);
2317         pte_val(pte) |= pte_sz_bits(page_size);
2318
2319         return pte;
2320 }
2321
2322 static unsigned long kern_large_tte(unsigned long paddr)
2323 {
2324         unsigned long val;
2325
2326         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2327                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2328                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2329         if (tlb_type == hypervisor)
2330                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2331                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2332                        _PAGE_EXEC_4V | _PAGE_W_4V);
2333
2334         return val | paddr;
2335 }
2336
2337 /* If not locked, zap it. */
2338 void __flush_tlb_all(void)
2339 {
2340         unsigned long pstate;
2341         int i;
2342
2343         __asm__ __volatile__("flushw\n\t"
2344                              "rdpr      %%pstate, %0\n\t"
2345                              "wrpr      %0, %1, %%pstate"
2346                              : "=r" (pstate)
2347                              : "i" (PSTATE_IE));
2348         if (tlb_type == hypervisor) {
2349                 sun4v_mmu_demap_all();
2350         } else if (tlb_type == spitfire) {
2351                 for (i = 0; i < 64; i++) {
2352                         /* Spitfire Errata #32 workaround */
2353                         /* NOTE: Always runs on spitfire, so no
2354                          *       cheetah+ page size encodings.
2355                          */
2356                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2357                                              "flush     %%g6"
2358                                              : /* No outputs */
2359                                              : "r" (0),
2360                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2361
2362                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2363                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2364                                                      "membar #Sync"
2365                                                      : /* no outputs */
2366                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2367                                 spitfire_put_dtlb_data(i, 0x0UL);
2368                         }
2369
2370                         /* Spitfire Errata #32 workaround */
2371                         /* NOTE: Always runs on spitfire, so no
2372                          *       cheetah+ page size encodings.
2373                          */
2374                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2375                                              "flush     %%g6"
2376                                              : /* No outputs */
2377                                              : "r" (0),
2378                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2379
2380                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2381                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2382                                                      "membar #Sync"
2383                                                      : /* no outputs */
2384                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2385                                 spitfire_put_itlb_data(i, 0x0UL);
2386                         }
2387                 }
2388         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2389                 cheetah_flush_dtlb_all();
2390                 cheetah_flush_itlb_all();
2391         }
2392         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2393                              : : "r" (pstate));
2394 }