x86/fpu: Make kernel_fpu_disable/enable() static
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kernel / fpu / core.c
1 /*
2  *  Copyright (C) 1994 Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *  General FPU state handling cleanups
6  *      Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 #include <asm/fpu-internal.h>
9
10 static DEFINE_PER_CPU(bool, in_kernel_fpu);
11
12 static void kernel_fpu_disable(void)
13 {
14         WARN_ON(this_cpu_read(in_kernel_fpu));
15         this_cpu_write(in_kernel_fpu, true);
16 }
17
18 static void kernel_fpu_enable(void)
19 {
20         this_cpu_write(in_kernel_fpu, false);
21 }
22
23 /*
24  * Were we in an interrupt that interrupted kernel mode?
25  *
26  * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
27  * pair does nothing at all: the thread must not have fpu (so
28  * that we don't try to save the FPU state), and TS must
29  * be set (so that the clts/stts pair does nothing that is
30  * visible in the interrupted kernel thread).
31  *
32  * Except for the eagerfpu case when we return true; in the likely case
33  * the thread has FPU but we are not going to set/clear TS.
34  */
35 static bool interrupted_kernel_fpu_idle(void)
36 {
37         if (this_cpu_read(in_kernel_fpu))
38                 return false;
39
40         if (use_eager_fpu())
41                 return true;
42
43         return !__thread_has_fpu(current) &&
44                 (read_cr0() & X86_CR0_TS);
45 }
46
47 /*
48  * Were we in user mode (or vm86 mode) when we were
49  * interrupted?
50  *
51  * Doing kernel_fpu_begin/end() is ok if we are running
52  * in an interrupt context from user mode - we'll just
53  * save the FPU state as required.
54  */
55 static bool interrupted_user_mode(void)
56 {
57         struct pt_regs *regs = get_irq_regs();
58         return regs && user_mode(regs);
59 }
60
61 /*
62  * Can we use the FPU in kernel mode with the
63  * whole "kernel_fpu_begin/end()" sequence?
64  *
65  * It's always ok in process context (ie "not interrupt")
66  * but it is sometimes ok even from an irq.
67  */
68 bool irq_fpu_usable(void)
69 {
70         return !in_interrupt() ||
71                 interrupted_user_mode() ||
72                 interrupted_kernel_fpu_idle();
73 }
74 EXPORT_SYMBOL(irq_fpu_usable);
75
76 void __kernel_fpu_begin(void)
77 {
78         struct task_struct *me = current;
79
80         this_cpu_write(in_kernel_fpu, true);
81
82         if (__thread_has_fpu(me)) {
83                 __save_init_fpu(me);
84         } else {
85                 this_cpu_write(fpu_owner_task, NULL);
86                 if (!use_eager_fpu())
87                         clts();
88         }
89 }
90 EXPORT_SYMBOL(__kernel_fpu_begin);
91
92 void __kernel_fpu_end(void)
93 {
94         struct task_struct *me = current;
95
96         if (__thread_has_fpu(me)) {
97                 if (WARN_ON(restore_fpu_checking(me)))
98                         fpu_reset_state(me);
99         } else if (!use_eager_fpu()) {
100                 stts();
101         }
102
103         this_cpu_write(in_kernel_fpu, false);
104 }
105 EXPORT_SYMBOL(__kernel_fpu_end);
106
107 /*
108  * Save the FPU state (initialize it if necessary):
109  *
110  * This only ever gets called for the current task.
111  */
112 void fpu__save(struct task_struct *tsk)
113 {
114         WARN_ON(tsk != current);
115
116         preempt_disable();
117         if (__thread_has_fpu(tsk)) {
118                 if (use_eager_fpu()) {
119                         __save_fpu(tsk);
120                 } else {
121                         __save_init_fpu(tsk);
122                         __thread_fpu_end(tsk);
123                 }
124         }
125         preempt_enable();
126 }
127 EXPORT_SYMBOL_GPL(fpu__save);
128
129 void fpstate_init(struct fpu *fpu)
130 {
131         if (!cpu_has_fpu) {
132                 finit_soft_fpu(&fpu->state->soft);
133                 return;
134         }
135
136         memset(fpu->state, 0, xstate_size);
137
138         if (cpu_has_fxsr) {
139                 fx_finit(&fpu->state->fxsave);
140         } else {
141                 struct i387_fsave_struct *fp = &fpu->state->fsave;
142                 fp->cwd = 0xffff037fu;
143                 fp->swd = 0xffff0000u;
144                 fp->twd = 0xffffffffu;
145                 fp->fos = 0xffff0000u;
146         }
147 }
148 EXPORT_SYMBOL_GPL(fpstate_init);
149
150 /*
151  * FPU state allocation:
152  */
153 static struct kmem_cache *task_xstate_cachep;
154
155 void fpstate_cache_init(void)
156 {
157         task_xstate_cachep =
158                 kmem_cache_create("task_xstate", xstate_size,
159                                   __alignof__(union thread_xstate),
160                                   SLAB_PANIC | SLAB_NOTRACK, NULL);
161         setup_xstate_comp();
162 }
163
164 int fpstate_alloc(struct fpu *fpu)
165 {
166         if (fpu->state)
167                 return 0;
168
169         fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
170         if (!fpu->state)
171                 return -ENOMEM;
172
173         /* The CPU requires the FPU state to be aligned to 16 byte boundaries: */
174         WARN_ON((unsigned long)fpu->state & 15);
175
176         return 0;
177 }
178 EXPORT_SYMBOL_GPL(fpstate_alloc);
179
180 void fpstate_free(struct fpu *fpu)
181 {
182         if (fpu->state) {
183                 kmem_cache_free(task_xstate_cachep, fpu->state);
184                 fpu->state = NULL;
185         }
186 }
187 EXPORT_SYMBOL_GPL(fpstate_free);
188
189 int fpu__copy(struct task_struct *dst, struct task_struct *src)
190 {
191         dst->thread.fpu.counter = 0;
192         dst->thread.fpu.has_fpu = 0;
193         dst->thread.fpu.state = NULL;
194
195         task_disable_lazy_fpu_restore(dst);
196
197         if (tsk_used_math(src)) {
198                 int err = fpstate_alloc(&dst->thread.fpu);
199
200                 if (err)
201                         return err;
202                 fpu_copy(dst, src);
203         }
204         return 0;
205 }
206
207 /*
208  * Allocate the backing store for the current task's FPU registers
209  * and initialize the registers themselves as well.
210  *
211  * Can fail.
212  */
213 int fpstate_alloc_init(struct task_struct *curr)
214 {
215         int ret;
216
217         if (WARN_ON_ONCE(curr != current))
218                 return -EINVAL;
219         if (WARN_ON_ONCE(curr->flags & PF_USED_MATH))
220                 return -EINVAL;
221
222         /*
223          * Memory allocation at the first usage of the FPU and other state.
224          */
225         ret = fpstate_alloc(&curr->thread.fpu);
226         if (ret)
227                 return ret;
228
229         fpstate_init(&curr->thread.fpu);
230
231         /* Safe to do for the current task: */
232         curr->flags |= PF_USED_MATH;
233
234         return 0;
235 }
236 EXPORT_SYMBOL_GPL(fpstate_alloc_init);
237
238 /*
239  * The _current_ task is using the FPU for the first time
240  * so initialize it and set the mxcsr to its default
241  * value at reset if we support XMM instructions and then
242  * remember the current task has used the FPU.
243  */
244 static int fpu__unlazy_stopped(struct task_struct *child)
245 {
246         int ret;
247
248         if (WARN_ON_ONCE(child == current))
249                 return -EINVAL;
250
251         if (child->flags & PF_USED_MATH) {
252                 task_disable_lazy_fpu_restore(child);
253                 return 0;
254         }
255
256         /*
257          * Memory allocation at the first usage of the FPU and other state.
258          */
259         ret = fpstate_alloc(&child->thread.fpu);
260         if (ret)
261                 return ret;
262
263         fpstate_init(&child->thread.fpu);
264
265         /* Safe to do for stopped child tasks: */
266         child->flags |= PF_USED_MATH;
267
268         return 0;
269 }
270
271 /*
272  * 'fpu__restore()' saves the current math information in the
273  * old math state array, and gets the new ones from the current task
274  *
275  * Careful.. There are problems with IBM-designed IRQ13 behaviour.
276  * Don't touch unless you *really* know how it works.
277  *
278  * Must be called with kernel preemption disabled (eg with local
279  * local interrupts as in the case of do_device_not_available).
280  */
281 void fpu__restore(void)
282 {
283         struct task_struct *tsk = current;
284
285         if (!tsk_used_math(tsk)) {
286                 local_irq_enable();
287                 /*
288                  * does a slab alloc which can sleep
289                  */
290                 if (fpstate_alloc_init(tsk)) {
291                         /*
292                          * ran out of memory!
293                          */
294                         do_group_exit(SIGKILL);
295                         return;
296                 }
297                 local_irq_disable();
298         }
299
300         /* Avoid __kernel_fpu_begin() right after __thread_fpu_begin() */
301         kernel_fpu_disable();
302         __thread_fpu_begin(tsk);
303         if (unlikely(restore_fpu_checking(tsk))) {
304                 fpu_reset_state(tsk);
305                 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
306         } else {
307                 tsk->thread.fpu.counter++;
308         }
309         kernel_fpu_enable();
310 }
311 EXPORT_SYMBOL_GPL(fpu__restore);
312
313 void fpu__flush_thread(struct task_struct *tsk)
314 {
315         if (!use_eager_fpu()) {
316                 /* FPU state will be reallocated lazily at the first use. */
317                 drop_fpu(tsk);
318                 fpstate_free(&tsk->thread.fpu);
319         } else {
320                 if (!tsk_used_math(tsk)) {
321                         /* kthread execs. TODO: cleanup this horror. */
322                 if (WARN_ON(fpstate_alloc_init(tsk)))
323                                 force_sig(SIGKILL, tsk);
324                         user_fpu_begin();
325                 }
326                 restore_init_xstate();
327         }
328 }
329
330 /*
331  * The xstateregs_active() routine is the same as the fpregs_active() routine,
332  * as the "regset->n" for the xstate regset will be updated based on the feature
333  * capabilites supported by the xsave.
334  */
335 int fpregs_active(struct task_struct *target, const struct user_regset *regset)
336 {
337         return tsk_used_math(target) ? regset->n : 0;
338 }
339
340 int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
341 {
342         return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
343 }
344
345 int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
346                 unsigned int pos, unsigned int count,
347                 void *kbuf, void __user *ubuf)
348 {
349         int ret;
350
351         if (!cpu_has_fxsr)
352                 return -ENODEV;
353
354         ret = fpu__unlazy_stopped(target);
355         if (ret)
356                 return ret;
357
358         sanitize_i387_state(target);
359
360         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
361                                    &target->thread.fpu.state->fxsave, 0, -1);
362 }
363
364 int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
365                 unsigned int pos, unsigned int count,
366                 const void *kbuf, const void __user *ubuf)
367 {
368         int ret;
369
370         if (!cpu_has_fxsr)
371                 return -ENODEV;
372
373         ret = fpu__unlazy_stopped(target);
374         if (ret)
375                 return ret;
376
377         sanitize_i387_state(target);
378
379         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
380                                  &target->thread.fpu.state->fxsave, 0, -1);
381
382         /*
383          * mxcsr reserved bits must be masked to zero for security reasons.
384          */
385         target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
386
387         /*
388          * update the header bits in the xsave header, indicating the
389          * presence of FP and SSE state.
390          */
391         if (cpu_has_xsave)
392                 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
393
394         return ret;
395 }
396
397 int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
398                 unsigned int pos, unsigned int count,
399                 void *kbuf, void __user *ubuf)
400 {
401         struct xsave_struct *xsave;
402         int ret;
403
404         if (!cpu_has_xsave)
405                 return -ENODEV;
406
407         ret = fpu__unlazy_stopped(target);
408         if (ret)
409                 return ret;
410
411         xsave = &target->thread.fpu.state->xsave;
412
413         /*
414          * Copy the 48bytes defined by the software first into the xstate
415          * memory layout in the thread struct, so that we can copy the entire
416          * xstateregs to the user using one user_regset_copyout().
417          */
418         memcpy(&xsave->i387.sw_reserved,
419                 xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
420         /*
421          * Copy the xstate memory layout.
422          */
423         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
424         return ret;
425 }
426
427 int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
428                   unsigned int pos, unsigned int count,
429                   const void *kbuf, const void __user *ubuf)
430 {
431         struct xsave_struct *xsave;
432         int ret;
433
434         if (!cpu_has_xsave)
435                 return -ENODEV;
436
437         ret = fpu__unlazy_stopped(target);
438         if (ret)
439                 return ret;
440
441         xsave = &target->thread.fpu.state->xsave;
442
443         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
444         /*
445          * mxcsr reserved bits must be masked to zero for security reasons.
446          */
447         xsave->i387.mxcsr &= mxcsr_feature_mask;
448         xsave->xsave_hdr.xstate_bv &= pcntxt_mask;
449         /*
450          * These bits must be zero.
451          */
452         memset(&xsave->xsave_hdr.reserved, 0, 48);
453         return ret;
454 }
455
456 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
457
458 /*
459  * FPU tag word conversions.
460  */
461
462 static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
463 {
464         unsigned int tmp; /* to avoid 16 bit prefixes in the code */
465
466         /* Transform each pair of bits into 01 (valid) or 00 (empty) */
467         tmp = ~twd;
468         tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
469         /* and move the valid bits to the lower byte. */
470         tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
471         tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
472         tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
473
474         return tmp;
475 }
476
477 #define FPREG_ADDR(f, n)        ((void *)&(f)->st_space + (n) * 16)
478 #define FP_EXP_TAG_VALID        0
479 #define FP_EXP_TAG_ZERO         1
480 #define FP_EXP_TAG_SPECIAL      2
481 #define FP_EXP_TAG_EMPTY        3
482
483 static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
484 {
485         struct _fpxreg *st;
486         u32 tos = (fxsave->swd >> 11) & 7;
487         u32 twd = (unsigned long) fxsave->twd;
488         u32 tag;
489         u32 ret = 0xffff0000u;
490         int i;
491
492         for (i = 0; i < 8; i++, twd >>= 1) {
493                 if (twd & 0x1) {
494                         st = FPREG_ADDR(fxsave, (i - tos) & 7);
495
496                         switch (st->exponent & 0x7fff) {
497                         case 0x7fff:
498                                 tag = FP_EXP_TAG_SPECIAL;
499                                 break;
500                         case 0x0000:
501                                 if (!st->significand[0] &&
502                                     !st->significand[1] &&
503                                     !st->significand[2] &&
504                                     !st->significand[3])
505                                         tag = FP_EXP_TAG_ZERO;
506                                 else
507                                         tag = FP_EXP_TAG_SPECIAL;
508                                 break;
509                         default:
510                                 if (st->significand[3] & 0x8000)
511                                         tag = FP_EXP_TAG_VALID;
512                                 else
513                                         tag = FP_EXP_TAG_SPECIAL;
514                                 break;
515                         }
516                 } else {
517                         tag = FP_EXP_TAG_EMPTY;
518                 }
519                 ret |= tag << (2 * i);
520         }
521         return ret;
522 }
523
524 /*
525  * FXSR floating point environment conversions.
526  */
527
528 void
529 convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
530 {
531         struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
532         struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
533         struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
534         int i;
535
536         env->cwd = fxsave->cwd | 0xffff0000u;
537         env->swd = fxsave->swd | 0xffff0000u;
538         env->twd = twd_fxsr_to_i387(fxsave);
539
540 #ifdef CONFIG_X86_64
541         env->fip = fxsave->rip;
542         env->foo = fxsave->rdp;
543         /*
544          * should be actually ds/cs at fpu exception time, but
545          * that information is not available in 64bit mode.
546          */
547         env->fcs = task_pt_regs(tsk)->cs;
548         if (tsk == current) {
549                 savesegment(ds, env->fos);
550         } else {
551                 env->fos = tsk->thread.ds;
552         }
553         env->fos |= 0xffff0000;
554 #else
555         env->fip = fxsave->fip;
556         env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
557         env->foo = fxsave->foo;
558         env->fos = fxsave->fos;
559 #endif
560
561         for (i = 0; i < 8; ++i)
562                 memcpy(&to[i], &from[i], sizeof(to[0]));
563 }
564
565 void convert_to_fxsr(struct task_struct *tsk,
566                      const struct user_i387_ia32_struct *env)
567
568 {
569         struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
570         struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
571         struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
572         int i;
573
574         fxsave->cwd = env->cwd;
575         fxsave->swd = env->swd;
576         fxsave->twd = twd_i387_to_fxsr(env->twd);
577         fxsave->fop = (u16) ((u32) env->fcs >> 16);
578 #ifdef CONFIG_X86_64
579         fxsave->rip = env->fip;
580         fxsave->rdp = env->foo;
581         /* cs and ds ignored */
582 #else
583         fxsave->fip = env->fip;
584         fxsave->fcs = (env->fcs & 0xffff);
585         fxsave->foo = env->foo;
586         fxsave->fos = env->fos;
587 #endif
588
589         for (i = 0; i < 8; ++i)
590                 memcpy(&to[i], &from[i], sizeof(from[0]));
591 }
592
593 int fpregs_get(struct task_struct *target, const struct user_regset *regset,
594                unsigned int pos, unsigned int count,
595                void *kbuf, void __user *ubuf)
596 {
597         struct user_i387_ia32_struct env;
598         int ret;
599
600         ret = fpu__unlazy_stopped(target);
601         if (ret)
602                 return ret;
603
604         if (!static_cpu_has(X86_FEATURE_FPU))
605                 return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
606
607         if (!cpu_has_fxsr)
608                 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
609                                            &target->thread.fpu.state->fsave, 0,
610                                            -1);
611
612         sanitize_i387_state(target);
613
614         if (kbuf && pos == 0 && count == sizeof(env)) {
615                 convert_from_fxsr(kbuf, target);
616                 return 0;
617         }
618
619         convert_from_fxsr(&env, target);
620
621         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
622 }
623
624 int fpregs_set(struct task_struct *target, const struct user_regset *regset,
625                unsigned int pos, unsigned int count,
626                const void *kbuf, const void __user *ubuf)
627 {
628         struct user_i387_ia32_struct env;
629         int ret;
630
631         ret = fpu__unlazy_stopped(target);
632         if (ret)
633                 return ret;
634
635         sanitize_i387_state(target);
636
637         if (!static_cpu_has(X86_FEATURE_FPU))
638                 return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
639
640         if (!cpu_has_fxsr)
641                 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
642                                           &target->thread.fpu.state->fsave, 0,
643                                           -1);
644
645         if (pos > 0 || count < sizeof(env))
646                 convert_from_fxsr(&env, target);
647
648         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
649         if (!ret)
650                 convert_to_fxsr(target, &env);
651
652         /*
653          * update the header bit in the xsave header, indicating the
654          * presence of FP.
655          */
656         if (cpu_has_xsave)
657                 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
658         return ret;
659 }
660
661 /*
662  * FPU state for core dumps.
663  * This is only used for a.out dumps now.
664  * It is declared generically using elf_fpregset_t (which is
665  * struct user_i387_struct) but is in fact only used for 32-bit
666  * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
667  */
668 int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
669 {
670         struct task_struct *tsk = current;
671         int fpvalid;
672
673         fpvalid = !!used_math();
674         if (fpvalid)
675                 fpvalid = !fpregs_get(tsk, NULL,
676                                       0, sizeof(struct user_i387_ia32_struct),
677                                       fpu, NULL);
678
679         return fpvalid;
680 }
681 EXPORT_SYMBOL(dump_fpu);
682
683 #endif  /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */