x86/fpu: Uninline fpstate_free() and move it next to the allocation function
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kernel / fpu / core.c
1 /*
2  *  Copyright (C) 1994 Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *  General FPU state handling cleanups
6  *      Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 #include <asm/fpu-internal.h>
9
10 static DEFINE_PER_CPU(bool, in_kernel_fpu);
11
12 void kernel_fpu_disable(void)
13 {
14         WARN_ON(this_cpu_read(in_kernel_fpu));
15         this_cpu_write(in_kernel_fpu, true);
16 }
17
18 void kernel_fpu_enable(void)
19 {
20         this_cpu_write(in_kernel_fpu, false);
21 }
22
23 /*
24  * Were we in an interrupt that interrupted kernel mode?
25  *
26  * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
27  * pair does nothing at all: the thread must not have fpu (so
28  * that we don't try to save the FPU state), and TS must
29  * be set (so that the clts/stts pair does nothing that is
30  * visible in the interrupted kernel thread).
31  *
32  * Except for the eagerfpu case when we return true; in the likely case
33  * the thread has FPU but we are not going to set/clear TS.
34  */
35 static inline bool interrupted_kernel_fpu_idle(void)
36 {
37         if (this_cpu_read(in_kernel_fpu))
38                 return false;
39
40         if (use_eager_fpu())
41                 return true;
42
43         return !__thread_has_fpu(current) &&
44                 (read_cr0() & X86_CR0_TS);
45 }
46
47 /*
48  * Were we in user mode (or vm86 mode) when we were
49  * interrupted?
50  *
51  * Doing kernel_fpu_begin/end() is ok if we are running
52  * in an interrupt context from user mode - we'll just
53  * save the FPU state as required.
54  */
55 static inline bool interrupted_user_mode(void)
56 {
57         struct pt_regs *regs = get_irq_regs();
58         return regs && user_mode(regs);
59 }
60
61 /*
62  * Can we use the FPU in kernel mode with the
63  * whole "kernel_fpu_begin/end()" sequence?
64  *
65  * It's always ok in process context (ie "not interrupt")
66  * but it is sometimes ok even from an irq.
67  */
68 bool irq_fpu_usable(void)
69 {
70         return !in_interrupt() ||
71                 interrupted_user_mode() ||
72                 interrupted_kernel_fpu_idle();
73 }
74 EXPORT_SYMBOL(irq_fpu_usable);
75
76 void __kernel_fpu_begin(void)
77 {
78         struct task_struct *me = current;
79
80         this_cpu_write(in_kernel_fpu, true);
81
82         if (__thread_has_fpu(me)) {
83                 __save_init_fpu(me);
84         } else {
85                 this_cpu_write(fpu_owner_task, NULL);
86                 if (!use_eager_fpu())
87                         clts();
88         }
89 }
90 EXPORT_SYMBOL(__kernel_fpu_begin);
91
92 void __kernel_fpu_end(void)
93 {
94         struct task_struct *me = current;
95
96         if (__thread_has_fpu(me)) {
97                 if (WARN_ON(restore_fpu_checking(me)))
98                         fpu_reset_state(me);
99         } else if (!use_eager_fpu()) {
100                 stts();
101         }
102
103         this_cpu_write(in_kernel_fpu, false);
104 }
105 EXPORT_SYMBOL(__kernel_fpu_end);
106
107 /*
108  * Save the FPU state (initialize it if necessary):
109  *
110  * This only ever gets called for the current task.
111  */
112 void fpu__save(struct task_struct *tsk)
113 {
114         WARN_ON(tsk != current);
115
116         preempt_disable();
117         if (__thread_has_fpu(tsk)) {
118                 if (use_eager_fpu()) {
119                         __save_fpu(tsk);
120                 } else {
121                         __save_init_fpu(tsk);
122                         __thread_fpu_end(tsk);
123                 }
124         }
125         preempt_enable();
126 }
127 EXPORT_SYMBOL_GPL(fpu__save);
128
129 void fpstate_init(struct fpu *fpu)
130 {
131         if (!cpu_has_fpu) {
132                 finit_soft_fpu(&fpu->state->soft);
133                 return;
134         }
135
136         memset(fpu->state, 0, xstate_size);
137
138         if (cpu_has_fxsr) {
139                 fx_finit(&fpu->state->fxsave);
140         } else {
141                 struct i387_fsave_struct *fp = &fpu->state->fsave;
142                 fp->cwd = 0xffff037fu;
143                 fp->swd = 0xffff0000u;
144                 fp->twd = 0xffffffffu;
145                 fp->fos = 0xffff0000u;
146         }
147 }
148 EXPORT_SYMBOL_GPL(fpstate_init);
149
150 /*
151  * FPU state allocation:
152  */
153 struct kmem_cache *task_xstate_cachep;
154 EXPORT_SYMBOL_GPL(task_xstate_cachep);
155
156 void fpstate_cache_init(void)
157 {
158         task_xstate_cachep =
159                 kmem_cache_create("task_xstate", xstate_size,
160                                   __alignof__(union thread_xstate),
161                                   SLAB_PANIC | SLAB_NOTRACK, NULL);
162         setup_xstate_comp();
163 }
164
165 int fpstate_alloc(struct fpu *fpu)
166 {
167         if (fpu->state)
168                 return 0;
169
170         fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
171         if (!fpu->state)
172                 return -ENOMEM;
173
174         /* The CPU requires the FPU state to be aligned to 16 byte boundaries: */
175         WARN_ON((unsigned long)fpu->state & 15);
176
177         return 0;
178 }
179 EXPORT_SYMBOL_GPL(fpstate_alloc);
180
181 void fpstate_free(struct fpu *fpu)
182 {
183         if (fpu->state) {
184                 kmem_cache_free(task_xstate_cachep, fpu->state);
185                 fpu->state = NULL;
186         }
187 }
188 EXPORT_SYMBOL_GPL(fpstate_free);
189
190 int fpu__copy(struct task_struct *dst, struct task_struct *src)
191 {
192         dst->thread.fpu.counter = 0;
193         dst->thread.fpu.has_fpu = 0;
194         dst->thread.fpu.state = NULL;
195
196         task_disable_lazy_fpu_restore(dst);
197
198         if (tsk_used_math(src)) {
199                 int err = fpstate_alloc(&dst->thread.fpu);
200
201                 if (err)
202                         return err;
203                 fpu_copy(dst, src);
204         }
205         return 0;
206 }
207
208 /*
209  * Allocate the backing store for the current task's FPU registers
210  * and initialize the registers themselves as well.
211  *
212  * Can fail.
213  */
214 int fpstate_alloc_init(struct task_struct *curr)
215 {
216         int ret;
217
218         if (WARN_ON_ONCE(curr != current))
219                 return -EINVAL;
220         if (WARN_ON_ONCE(curr->flags & PF_USED_MATH))
221                 return -EINVAL;
222
223         /*
224          * Memory allocation at the first usage of the FPU and other state.
225          */
226         ret = fpstate_alloc(&curr->thread.fpu);
227         if (ret)
228                 return ret;
229
230         fpstate_init(&curr->thread.fpu);
231
232         /* Safe to do for the current task: */
233         curr->flags |= PF_USED_MATH;
234
235         return 0;
236 }
237 EXPORT_SYMBOL_GPL(fpstate_alloc_init);
238
239 /*
240  * The _current_ task is using the FPU for the first time
241  * so initialize it and set the mxcsr to its default
242  * value at reset if we support XMM instructions and then
243  * remember the current task has used the FPU.
244  */
245 static int fpu__unlazy_stopped(struct task_struct *child)
246 {
247         int ret;
248
249         if (WARN_ON_ONCE(child == current))
250                 return -EINVAL;
251
252         if (child->flags & PF_USED_MATH) {
253                 task_disable_lazy_fpu_restore(child);
254                 return 0;
255         }
256
257         /*
258          * Memory allocation at the first usage of the FPU and other state.
259          */
260         ret = fpstate_alloc(&child->thread.fpu);
261         if (ret)
262                 return ret;
263
264         fpstate_init(&child->thread.fpu);
265
266         /* Safe to do for stopped child tasks: */
267         child->flags |= PF_USED_MATH;
268
269         return 0;
270 }
271
272 /*
273  * 'fpu__restore()' saves the current math information in the
274  * old math state array, and gets the new ones from the current task
275  *
276  * Careful.. There are problems with IBM-designed IRQ13 behaviour.
277  * Don't touch unless you *really* know how it works.
278  *
279  * Must be called with kernel preemption disabled (eg with local
280  * local interrupts as in the case of do_device_not_available).
281  */
282 void fpu__restore(void)
283 {
284         struct task_struct *tsk = current;
285
286         if (!tsk_used_math(tsk)) {
287                 local_irq_enable();
288                 /*
289                  * does a slab alloc which can sleep
290                  */
291                 if (fpstate_alloc_init(tsk)) {
292                         /*
293                          * ran out of memory!
294                          */
295                         do_group_exit(SIGKILL);
296                         return;
297                 }
298                 local_irq_disable();
299         }
300
301         /* Avoid __kernel_fpu_begin() right after __thread_fpu_begin() */
302         kernel_fpu_disable();
303         __thread_fpu_begin(tsk);
304         if (unlikely(restore_fpu_checking(tsk))) {
305                 fpu_reset_state(tsk);
306                 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
307         } else {
308                 tsk->thread.fpu.counter++;
309         }
310         kernel_fpu_enable();
311 }
312 EXPORT_SYMBOL_GPL(fpu__restore);
313
314 void fpu__flush_thread(struct task_struct *tsk)
315 {
316         if (!use_eager_fpu()) {
317                 /* FPU state will be reallocated lazily at the first use. */
318                 drop_fpu(tsk);
319                 fpstate_free(&tsk->thread.fpu);
320         } else {
321                 if (!tsk_used_math(tsk)) {
322                         /* kthread execs. TODO: cleanup this horror. */
323                 if (WARN_ON(fpstate_alloc_init(tsk)))
324                                 force_sig(SIGKILL, tsk);
325                         user_fpu_begin();
326                 }
327                 restore_init_xstate();
328         }
329 }
330
331 /*
332  * The xstateregs_active() routine is the same as the fpregs_active() routine,
333  * as the "regset->n" for the xstate regset will be updated based on the feature
334  * capabilites supported by the xsave.
335  */
336 int fpregs_active(struct task_struct *target, const struct user_regset *regset)
337 {
338         return tsk_used_math(target) ? regset->n : 0;
339 }
340
341 int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
342 {
343         return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
344 }
345
346 int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
347                 unsigned int pos, unsigned int count,
348                 void *kbuf, void __user *ubuf)
349 {
350         int ret;
351
352         if (!cpu_has_fxsr)
353                 return -ENODEV;
354
355         ret = fpu__unlazy_stopped(target);
356         if (ret)
357                 return ret;
358
359         sanitize_i387_state(target);
360
361         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
362                                    &target->thread.fpu.state->fxsave, 0, -1);
363 }
364
365 int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
366                 unsigned int pos, unsigned int count,
367                 const void *kbuf, const void __user *ubuf)
368 {
369         int ret;
370
371         if (!cpu_has_fxsr)
372                 return -ENODEV;
373
374         ret = fpu__unlazy_stopped(target);
375         if (ret)
376                 return ret;
377
378         sanitize_i387_state(target);
379
380         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
381                                  &target->thread.fpu.state->fxsave, 0, -1);
382
383         /*
384          * mxcsr reserved bits must be masked to zero for security reasons.
385          */
386         target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
387
388         /*
389          * update the header bits in the xsave header, indicating the
390          * presence of FP and SSE state.
391          */
392         if (cpu_has_xsave)
393                 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
394
395         return ret;
396 }
397
398 int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
399                 unsigned int pos, unsigned int count,
400                 void *kbuf, void __user *ubuf)
401 {
402         struct xsave_struct *xsave;
403         int ret;
404
405         if (!cpu_has_xsave)
406                 return -ENODEV;
407
408         ret = fpu__unlazy_stopped(target);
409         if (ret)
410                 return ret;
411
412         xsave = &target->thread.fpu.state->xsave;
413
414         /*
415          * Copy the 48bytes defined by the software first into the xstate
416          * memory layout in the thread struct, so that we can copy the entire
417          * xstateregs to the user using one user_regset_copyout().
418          */
419         memcpy(&xsave->i387.sw_reserved,
420                 xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
421         /*
422          * Copy the xstate memory layout.
423          */
424         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
425         return ret;
426 }
427
428 int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
429                   unsigned int pos, unsigned int count,
430                   const void *kbuf, const void __user *ubuf)
431 {
432         struct xsave_struct *xsave;
433         int ret;
434
435         if (!cpu_has_xsave)
436                 return -ENODEV;
437
438         ret = fpu__unlazy_stopped(target);
439         if (ret)
440                 return ret;
441
442         xsave = &target->thread.fpu.state->xsave;
443
444         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
445         /*
446          * mxcsr reserved bits must be masked to zero for security reasons.
447          */
448         xsave->i387.mxcsr &= mxcsr_feature_mask;
449         xsave->xsave_hdr.xstate_bv &= pcntxt_mask;
450         /*
451          * These bits must be zero.
452          */
453         memset(&xsave->xsave_hdr.reserved, 0, 48);
454         return ret;
455 }
456
457 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
458
459 /*
460  * FPU tag word conversions.
461  */
462
463 static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
464 {
465         unsigned int tmp; /* to avoid 16 bit prefixes in the code */
466
467         /* Transform each pair of bits into 01 (valid) or 00 (empty) */
468         tmp = ~twd;
469         tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
470         /* and move the valid bits to the lower byte. */
471         tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
472         tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
473         tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
474
475         return tmp;
476 }
477
478 #define FPREG_ADDR(f, n)        ((void *)&(f)->st_space + (n) * 16)
479 #define FP_EXP_TAG_VALID        0
480 #define FP_EXP_TAG_ZERO         1
481 #define FP_EXP_TAG_SPECIAL      2
482 #define FP_EXP_TAG_EMPTY        3
483
484 static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
485 {
486         struct _fpxreg *st;
487         u32 tos = (fxsave->swd >> 11) & 7;
488         u32 twd = (unsigned long) fxsave->twd;
489         u32 tag;
490         u32 ret = 0xffff0000u;
491         int i;
492
493         for (i = 0; i < 8; i++, twd >>= 1) {
494                 if (twd & 0x1) {
495                         st = FPREG_ADDR(fxsave, (i - tos) & 7);
496
497                         switch (st->exponent & 0x7fff) {
498                         case 0x7fff:
499                                 tag = FP_EXP_TAG_SPECIAL;
500                                 break;
501                         case 0x0000:
502                                 if (!st->significand[0] &&
503                                     !st->significand[1] &&
504                                     !st->significand[2] &&
505                                     !st->significand[3])
506                                         tag = FP_EXP_TAG_ZERO;
507                                 else
508                                         tag = FP_EXP_TAG_SPECIAL;
509                                 break;
510                         default:
511                                 if (st->significand[3] & 0x8000)
512                                         tag = FP_EXP_TAG_VALID;
513                                 else
514                                         tag = FP_EXP_TAG_SPECIAL;
515                                 break;
516                         }
517                 } else {
518                         tag = FP_EXP_TAG_EMPTY;
519                 }
520                 ret |= tag << (2 * i);
521         }
522         return ret;
523 }
524
525 /*
526  * FXSR floating point environment conversions.
527  */
528
529 void
530 convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
531 {
532         struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
533         struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
534         struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
535         int i;
536
537         env->cwd = fxsave->cwd | 0xffff0000u;
538         env->swd = fxsave->swd | 0xffff0000u;
539         env->twd = twd_fxsr_to_i387(fxsave);
540
541 #ifdef CONFIG_X86_64
542         env->fip = fxsave->rip;
543         env->foo = fxsave->rdp;
544         /*
545          * should be actually ds/cs at fpu exception time, but
546          * that information is not available in 64bit mode.
547          */
548         env->fcs = task_pt_regs(tsk)->cs;
549         if (tsk == current) {
550                 savesegment(ds, env->fos);
551         } else {
552                 env->fos = tsk->thread.ds;
553         }
554         env->fos |= 0xffff0000;
555 #else
556         env->fip = fxsave->fip;
557         env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
558         env->foo = fxsave->foo;
559         env->fos = fxsave->fos;
560 #endif
561
562         for (i = 0; i < 8; ++i)
563                 memcpy(&to[i], &from[i], sizeof(to[0]));
564 }
565
566 void convert_to_fxsr(struct task_struct *tsk,
567                      const struct user_i387_ia32_struct *env)
568
569 {
570         struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
571         struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
572         struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
573         int i;
574
575         fxsave->cwd = env->cwd;
576         fxsave->swd = env->swd;
577         fxsave->twd = twd_i387_to_fxsr(env->twd);
578         fxsave->fop = (u16) ((u32) env->fcs >> 16);
579 #ifdef CONFIG_X86_64
580         fxsave->rip = env->fip;
581         fxsave->rdp = env->foo;
582         /* cs and ds ignored */
583 #else
584         fxsave->fip = env->fip;
585         fxsave->fcs = (env->fcs & 0xffff);
586         fxsave->foo = env->foo;
587         fxsave->fos = env->fos;
588 #endif
589
590         for (i = 0; i < 8; ++i)
591                 memcpy(&to[i], &from[i], sizeof(from[0]));
592 }
593
594 int fpregs_get(struct task_struct *target, const struct user_regset *regset,
595                unsigned int pos, unsigned int count,
596                void *kbuf, void __user *ubuf)
597 {
598         struct user_i387_ia32_struct env;
599         int ret;
600
601         ret = fpu__unlazy_stopped(target);
602         if (ret)
603                 return ret;
604
605         if (!static_cpu_has(X86_FEATURE_FPU))
606                 return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
607
608         if (!cpu_has_fxsr)
609                 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
610                                            &target->thread.fpu.state->fsave, 0,
611                                            -1);
612
613         sanitize_i387_state(target);
614
615         if (kbuf && pos == 0 && count == sizeof(env)) {
616                 convert_from_fxsr(kbuf, target);
617                 return 0;
618         }
619
620         convert_from_fxsr(&env, target);
621
622         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
623 }
624
625 int fpregs_set(struct task_struct *target, const struct user_regset *regset,
626                unsigned int pos, unsigned int count,
627                const void *kbuf, const void __user *ubuf)
628 {
629         struct user_i387_ia32_struct env;
630         int ret;
631
632         ret = fpu__unlazy_stopped(target);
633         if (ret)
634                 return ret;
635
636         sanitize_i387_state(target);
637
638         if (!static_cpu_has(X86_FEATURE_FPU))
639                 return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
640
641         if (!cpu_has_fxsr)
642                 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
643                                           &target->thread.fpu.state->fsave, 0,
644                                           -1);
645
646         if (pos > 0 || count < sizeof(env))
647                 convert_from_fxsr(&env, target);
648
649         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
650         if (!ret)
651                 convert_to_fxsr(target, &env);
652
653         /*
654          * update the header bit in the xsave header, indicating the
655          * presence of FP.
656          */
657         if (cpu_has_xsave)
658                 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
659         return ret;
660 }
661
662 /*
663  * FPU state for core dumps.
664  * This is only used for a.out dumps now.
665  * It is declared generically using elf_fpregset_t (which is
666  * struct user_i387_struct) but is in fact only used for 32-bit
667  * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
668  */
669 int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
670 {
671         struct task_struct *tsk = current;
672         int fpvalid;
673
674         fpvalid = !!used_math();
675         if (fpvalid)
676                 fpvalid = !fpregs_get(tsk, NULL,
677                                       0, sizeof(struct user_i387_ia32_struct),
678                                       fpu, NULL);
679
680         return fpvalid;
681 }
682 EXPORT_SYMBOL(dump_fpu);
683
684 #endif  /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */