x86/fpu: Move math_state_restore() to fpu/core.c
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kernel / fpu / core.c
1 /*
2  *  Copyright (C) 1994 Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *  General FPU state handling cleanups
6  *      Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 #include <asm/fpu-internal.h>
9
10 static DEFINE_PER_CPU(bool, in_kernel_fpu);
11
12 void kernel_fpu_disable(void)
13 {
14         WARN_ON(this_cpu_read(in_kernel_fpu));
15         this_cpu_write(in_kernel_fpu, true);
16 }
17
18 void kernel_fpu_enable(void)
19 {
20         this_cpu_write(in_kernel_fpu, false);
21 }
22
23 /*
24  * Were we in an interrupt that interrupted kernel mode?
25  *
26  * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
27  * pair does nothing at all: the thread must not have fpu (so
28  * that we don't try to save the FPU state), and TS must
29  * be set (so that the clts/stts pair does nothing that is
30  * visible in the interrupted kernel thread).
31  *
32  * Except for the eagerfpu case when we return true; in the likely case
33  * the thread has FPU but we are not going to set/clear TS.
34  */
35 static inline bool interrupted_kernel_fpu_idle(void)
36 {
37         if (this_cpu_read(in_kernel_fpu))
38                 return false;
39
40         if (use_eager_fpu())
41                 return true;
42
43         return !__thread_has_fpu(current) &&
44                 (read_cr0() & X86_CR0_TS);
45 }
46
47 /*
48  * Were we in user mode (or vm86 mode) when we were
49  * interrupted?
50  *
51  * Doing kernel_fpu_begin/end() is ok if we are running
52  * in an interrupt context from user mode - we'll just
53  * save the FPU state as required.
54  */
55 static inline bool interrupted_user_mode(void)
56 {
57         struct pt_regs *regs = get_irq_regs();
58         return regs && user_mode(regs);
59 }
60
61 /*
62  * Can we use the FPU in kernel mode with the
63  * whole "kernel_fpu_begin/end()" sequence?
64  *
65  * It's always ok in process context (ie "not interrupt")
66  * but it is sometimes ok even from an irq.
67  */
68 bool irq_fpu_usable(void)
69 {
70         return !in_interrupt() ||
71                 interrupted_user_mode() ||
72                 interrupted_kernel_fpu_idle();
73 }
74 EXPORT_SYMBOL(irq_fpu_usable);
75
76 void __kernel_fpu_begin(void)
77 {
78         struct task_struct *me = current;
79
80         this_cpu_write(in_kernel_fpu, true);
81
82         if (__thread_has_fpu(me)) {
83                 __save_init_fpu(me);
84         } else {
85                 this_cpu_write(fpu_owner_task, NULL);
86                 if (!use_eager_fpu())
87                         clts();
88         }
89 }
90 EXPORT_SYMBOL(__kernel_fpu_begin);
91
92 void __kernel_fpu_end(void)
93 {
94         struct task_struct *me = current;
95
96         if (__thread_has_fpu(me)) {
97                 if (WARN_ON(restore_fpu_checking(me)))
98                         fpu_reset_state(me);
99         } else if (!use_eager_fpu()) {
100                 stts();
101         }
102
103         this_cpu_write(in_kernel_fpu, false);
104 }
105 EXPORT_SYMBOL(__kernel_fpu_end);
106
107 /*
108  * Save the FPU state (initialize it if necessary):
109  *
110  * This only ever gets called for the current task.
111  */
112 void fpu__save(struct task_struct *tsk)
113 {
114         WARN_ON(tsk != current);
115
116         preempt_disable();
117         if (__thread_has_fpu(tsk)) {
118                 if (use_eager_fpu()) {
119                         __save_fpu(tsk);
120                 } else {
121                         __save_init_fpu(tsk);
122                         __thread_fpu_end(tsk);
123                 }
124         }
125         preempt_enable();
126 }
127 EXPORT_SYMBOL_GPL(fpu__save);
128
129 void fpstate_init(struct fpu *fpu)
130 {
131         if (!cpu_has_fpu) {
132                 finit_soft_fpu(&fpu->state->soft);
133                 return;
134         }
135
136         memset(fpu->state, 0, xstate_size);
137
138         if (cpu_has_fxsr) {
139                 fx_finit(&fpu->state->fxsave);
140         } else {
141                 struct i387_fsave_struct *fp = &fpu->state->fsave;
142                 fp->cwd = 0xffff037fu;
143                 fp->swd = 0xffff0000u;
144                 fp->twd = 0xffffffffu;
145                 fp->fos = 0xffff0000u;
146         }
147 }
148 EXPORT_SYMBOL_GPL(fpstate_init);
149
150 int fpstate_alloc(struct fpu *fpu)
151 {
152         if (fpu->state)
153                 return 0;
154
155         fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
156         if (!fpu->state)
157                 return -ENOMEM;
158
159         /* The CPU requires the FPU state to be aligned to 16 byte boundaries: */
160         WARN_ON((unsigned long)fpu->state & 15);
161
162         return 0;
163 }
164 EXPORT_SYMBOL_GPL(fpstate_alloc);
165
166 /*
167  * Allocate the backing store for the current task's FPU registers
168  * and initialize the registers themselves as well.
169  *
170  * Can fail.
171  */
172 int fpstate_alloc_init(struct task_struct *curr)
173 {
174         int ret;
175
176         if (WARN_ON_ONCE(curr != current))
177                 return -EINVAL;
178         if (WARN_ON_ONCE(curr->flags & PF_USED_MATH))
179                 return -EINVAL;
180
181         /*
182          * Memory allocation at the first usage of the FPU and other state.
183          */
184         ret = fpstate_alloc(&curr->thread.fpu);
185         if (ret)
186                 return ret;
187
188         fpstate_init(&curr->thread.fpu);
189
190         /* Safe to do for the current task: */
191         curr->flags |= PF_USED_MATH;
192
193         return 0;
194 }
195 EXPORT_SYMBOL_GPL(fpstate_alloc_init);
196
197 /*
198  * The _current_ task is using the FPU for the first time
199  * so initialize it and set the mxcsr to its default
200  * value at reset if we support XMM instructions and then
201  * remember the current task has used the FPU.
202  */
203 static int fpu__unlazy_stopped(struct task_struct *child)
204 {
205         int ret;
206
207         if (WARN_ON_ONCE(child == current))
208                 return -EINVAL;
209
210         if (child->flags & PF_USED_MATH) {
211                 task_disable_lazy_fpu_restore(child);
212                 return 0;
213         }
214
215         /*
216          * Memory allocation at the first usage of the FPU and other state.
217          */
218         ret = fpstate_alloc(&child->thread.fpu);
219         if (ret)
220                 return ret;
221
222         fpstate_init(&child->thread.fpu);
223
224         /* Safe to do for stopped child tasks: */
225         child->flags |= PF_USED_MATH;
226
227         return 0;
228 }
229
230 /*
231  * 'math_state_restore()' saves the current math information in the
232  * old math state array, and gets the new ones from the current task
233  *
234  * Careful.. There are problems with IBM-designed IRQ13 behaviour.
235  * Don't touch unless you *really* know how it works.
236  *
237  * Must be called with kernel preemption disabled (eg with local
238  * local interrupts as in the case of do_device_not_available).
239  */
240 void math_state_restore(void)
241 {
242         struct task_struct *tsk = current;
243
244         if (!tsk_used_math(tsk)) {
245                 local_irq_enable();
246                 /*
247                  * does a slab alloc which can sleep
248                  */
249                 if (fpstate_alloc_init(tsk)) {
250                         /*
251                          * ran out of memory!
252                          */
253                         do_group_exit(SIGKILL);
254                         return;
255                 }
256                 local_irq_disable();
257         }
258
259         /* Avoid __kernel_fpu_begin() right after __thread_fpu_begin() */
260         kernel_fpu_disable();
261         __thread_fpu_begin(tsk);
262         if (unlikely(restore_fpu_checking(tsk))) {
263                 fpu_reset_state(tsk);
264                 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
265         } else {
266                 tsk->thread.fpu.counter++;
267         }
268         kernel_fpu_enable();
269 }
270 EXPORT_SYMBOL_GPL(math_state_restore);
271
272 void fpu__flush_thread(struct task_struct *tsk)
273 {
274         if (!use_eager_fpu()) {
275                 /* FPU state will be reallocated lazily at the first use. */
276                 drop_fpu(tsk);
277                 fpstate_free(&tsk->thread.fpu);
278         } else {
279                 if (!tsk_used_math(tsk)) {
280                         /* kthread execs. TODO: cleanup this horror. */
281                 if (WARN_ON(fpstate_alloc_init(tsk)))
282                                 force_sig(SIGKILL, tsk);
283                         user_fpu_begin();
284                 }
285                 restore_init_xstate();
286         }
287 }
288
289 /*
290  * The xstateregs_active() routine is the same as the fpregs_active() routine,
291  * as the "regset->n" for the xstate regset will be updated based on the feature
292  * capabilites supported by the xsave.
293  */
294 int fpregs_active(struct task_struct *target, const struct user_regset *regset)
295 {
296         return tsk_used_math(target) ? regset->n : 0;
297 }
298
299 int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
300 {
301         return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
302 }
303
304 int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
305                 unsigned int pos, unsigned int count,
306                 void *kbuf, void __user *ubuf)
307 {
308         int ret;
309
310         if (!cpu_has_fxsr)
311                 return -ENODEV;
312
313         ret = fpu__unlazy_stopped(target);
314         if (ret)
315                 return ret;
316
317         sanitize_i387_state(target);
318
319         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
320                                    &target->thread.fpu.state->fxsave, 0, -1);
321 }
322
323 int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
324                 unsigned int pos, unsigned int count,
325                 const void *kbuf, const void __user *ubuf)
326 {
327         int ret;
328
329         if (!cpu_has_fxsr)
330                 return -ENODEV;
331
332         ret = fpu__unlazy_stopped(target);
333         if (ret)
334                 return ret;
335
336         sanitize_i387_state(target);
337
338         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
339                                  &target->thread.fpu.state->fxsave, 0, -1);
340
341         /*
342          * mxcsr reserved bits must be masked to zero for security reasons.
343          */
344         target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
345
346         /*
347          * update the header bits in the xsave header, indicating the
348          * presence of FP and SSE state.
349          */
350         if (cpu_has_xsave)
351                 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
352
353         return ret;
354 }
355
356 int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
357                 unsigned int pos, unsigned int count,
358                 void *kbuf, void __user *ubuf)
359 {
360         struct xsave_struct *xsave;
361         int ret;
362
363         if (!cpu_has_xsave)
364                 return -ENODEV;
365
366         ret = fpu__unlazy_stopped(target);
367         if (ret)
368                 return ret;
369
370         xsave = &target->thread.fpu.state->xsave;
371
372         /*
373          * Copy the 48bytes defined by the software first into the xstate
374          * memory layout in the thread struct, so that we can copy the entire
375          * xstateregs to the user using one user_regset_copyout().
376          */
377         memcpy(&xsave->i387.sw_reserved,
378                 xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
379         /*
380          * Copy the xstate memory layout.
381          */
382         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
383         return ret;
384 }
385
386 int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
387                   unsigned int pos, unsigned int count,
388                   const void *kbuf, const void __user *ubuf)
389 {
390         struct xsave_struct *xsave;
391         int ret;
392
393         if (!cpu_has_xsave)
394                 return -ENODEV;
395
396         ret = fpu__unlazy_stopped(target);
397         if (ret)
398                 return ret;
399
400         xsave = &target->thread.fpu.state->xsave;
401
402         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
403         /*
404          * mxcsr reserved bits must be masked to zero for security reasons.
405          */
406         xsave->i387.mxcsr &= mxcsr_feature_mask;
407         xsave->xsave_hdr.xstate_bv &= pcntxt_mask;
408         /*
409          * These bits must be zero.
410          */
411         memset(&xsave->xsave_hdr.reserved, 0, 48);
412         return ret;
413 }
414
415 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
416
417 /*
418  * FPU tag word conversions.
419  */
420
421 static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
422 {
423         unsigned int tmp; /* to avoid 16 bit prefixes in the code */
424
425         /* Transform each pair of bits into 01 (valid) or 00 (empty) */
426         tmp = ~twd;
427         tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
428         /* and move the valid bits to the lower byte. */
429         tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
430         tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
431         tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
432
433         return tmp;
434 }
435
436 #define FPREG_ADDR(f, n)        ((void *)&(f)->st_space + (n) * 16)
437 #define FP_EXP_TAG_VALID        0
438 #define FP_EXP_TAG_ZERO         1
439 #define FP_EXP_TAG_SPECIAL      2
440 #define FP_EXP_TAG_EMPTY        3
441
442 static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
443 {
444         struct _fpxreg *st;
445         u32 tos = (fxsave->swd >> 11) & 7;
446         u32 twd = (unsigned long) fxsave->twd;
447         u32 tag;
448         u32 ret = 0xffff0000u;
449         int i;
450
451         for (i = 0; i < 8; i++, twd >>= 1) {
452                 if (twd & 0x1) {
453                         st = FPREG_ADDR(fxsave, (i - tos) & 7);
454
455                         switch (st->exponent & 0x7fff) {
456                         case 0x7fff:
457                                 tag = FP_EXP_TAG_SPECIAL;
458                                 break;
459                         case 0x0000:
460                                 if (!st->significand[0] &&
461                                     !st->significand[1] &&
462                                     !st->significand[2] &&
463                                     !st->significand[3])
464                                         tag = FP_EXP_TAG_ZERO;
465                                 else
466                                         tag = FP_EXP_TAG_SPECIAL;
467                                 break;
468                         default:
469                                 if (st->significand[3] & 0x8000)
470                                         tag = FP_EXP_TAG_VALID;
471                                 else
472                                         tag = FP_EXP_TAG_SPECIAL;
473                                 break;
474                         }
475                 } else {
476                         tag = FP_EXP_TAG_EMPTY;
477                 }
478                 ret |= tag << (2 * i);
479         }
480         return ret;
481 }
482
483 /*
484  * FXSR floating point environment conversions.
485  */
486
487 void
488 convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
489 {
490         struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
491         struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
492         struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
493         int i;
494
495         env->cwd = fxsave->cwd | 0xffff0000u;
496         env->swd = fxsave->swd | 0xffff0000u;
497         env->twd = twd_fxsr_to_i387(fxsave);
498
499 #ifdef CONFIG_X86_64
500         env->fip = fxsave->rip;
501         env->foo = fxsave->rdp;
502         /*
503          * should be actually ds/cs at fpu exception time, but
504          * that information is not available in 64bit mode.
505          */
506         env->fcs = task_pt_regs(tsk)->cs;
507         if (tsk == current) {
508                 savesegment(ds, env->fos);
509         } else {
510                 env->fos = tsk->thread.ds;
511         }
512         env->fos |= 0xffff0000;
513 #else
514         env->fip = fxsave->fip;
515         env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
516         env->foo = fxsave->foo;
517         env->fos = fxsave->fos;
518 #endif
519
520         for (i = 0; i < 8; ++i)
521                 memcpy(&to[i], &from[i], sizeof(to[0]));
522 }
523
524 void convert_to_fxsr(struct task_struct *tsk,
525                      const struct user_i387_ia32_struct *env)
526
527 {
528         struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
529         struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
530         struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
531         int i;
532
533         fxsave->cwd = env->cwd;
534         fxsave->swd = env->swd;
535         fxsave->twd = twd_i387_to_fxsr(env->twd);
536         fxsave->fop = (u16) ((u32) env->fcs >> 16);
537 #ifdef CONFIG_X86_64
538         fxsave->rip = env->fip;
539         fxsave->rdp = env->foo;
540         /* cs and ds ignored */
541 #else
542         fxsave->fip = env->fip;
543         fxsave->fcs = (env->fcs & 0xffff);
544         fxsave->foo = env->foo;
545         fxsave->fos = env->fos;
546 #endif
547
548         for (i = 0; i < 8; ++i)
549                 memcpy(&to[i], &from[i], sizeof(from[0]));
550 }
551
552 int fpregs_get(struct task_struct *target, const struct user_regset *regset,
553                unsigned int pos, unsigned int count,
554                void *kbuf, void __user *ubuf)
555 {
556         struct user_i387_ia32_struct env;
557         int ret;
558
559         ret = fpu__unlazy_stopped(target);
560         if (ret)
561                 return ret;
562
563         if (!static_cpu_has(X86_FEATURE_FPU))
564                 return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
565
566         if (!cpu_has_fxsr)
567                 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
568                                            &target->thread.fpu.state->fsave, 0,
569                                            -1);
570
571         sanitize_i387_state(target);
572
573         if (kbuf && pos == 0 && count == sizeof(env)) {
574                 convert_from_fxsr(kbuf, target);
575                 return 0;
576         }
577
578         convert_from_fxsr(&env, target);
579
580         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
581 }
582
583 int fpregs_set(struct task_struct *target, const struct user_regset *regset,
584                unsigned int pos, unsigned int count,
585                const void *kbuf, const void __user *ubuf)
586 {
587         struct user_i387_ia32_struct env;
588         int ret;
589
590         ret = fpu__unlazy_stopped(target);
591         if (ret)
592                 return ret;
593
594         sanitize_i387_state(target);
595
596         if (!static_cpu_has(X86_FEATURE_FPU))
597                 return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
598
599         if (!cpu_has_fxsr)
600                 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
601                                           &target->thread.fpu.state->fsave, 0,
602                                           -1);
603
604         if (pos > 0 || count < sizeof(env))
605                 convert_from_fxsr(&env, target);
606
607         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
608         if (!ret)
609                 convert_to_fxsr(target, &env);
610
611         /*
612          * update the header bit in the xsave header, indicating the
613          * presence of FP.
614          */
615         if (cpu_has_xsave)
616                 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
617         return ret;
618 }
619
620 /*
621  * FPU state for core dumps.
622  * This is only used for a.out dumps now.
623  * It is declared generically using elf_fpregset_t (which is
624  * struct user_i387_struct) but is in fact only used for 32-bit
625  * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
626  */
627 int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
628 {
629         struct task_struct *tsk = current;
630         int fpvalid;
631
632         fpvalid = !!used_math();
633         if (fpvalid)
634                 fpvalid = !fpregs_get(tsk, NULL,
635                                       0, sizeof(struct user_i387_ia32_struct),
636                                       fpu, NULL);
637
638         return fpvalid;
639 }
640 EXPORT_SYMBOL(dump_fpu);
641
642 #endif  /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */