kexec: load and relocate purgatory at kernel load time
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kernel / machine_kexec_64.c
1 /*
2  * handle transition of Linux booting another kernel
3  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8
9 #define pr_fmt(fmt)     "kexec: " fmt
10
11 #include <linux/mm.h>
12 #include <linux/kexec.h>
13 #include <linux/string.h>
14 #include <linux/gfp.h>
15 #include <linux/reboot.h>
16 #include <linux/numa.h>
17 #include <linux/ftrace.h>
18 #include <linux/io.h>
19 #include <linux/suspend.h>
20
21 #include <asm/init.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/debugreg.h>
26
27 static struct kexec_file_ops *kexec_file_loaders[] = {
28                 NULL,
29 };
30
31 static void free_transition_pgtable(struct kimage *image)
32 {
33         free_page((unsigned long)image->arch.pud);
34         free_page((unsigned long)image->arch.pmd);
35         free_page((unsigned long)image->arch.pte);
36 }
37
38 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
39 {
40         pud_t *pud;
41         pmd_t *pmd;
42         pte_t *pte;
43         unsigned long vaddr, paddr;
44         int result = -ENOMEM;
45
46         vaddr = (unsigned long)relocate_kernel;
47         paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
48         pgd += pgd_index(vaddr);
49         if (!pgd_present(*pgd)) {
50                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
51                 if (!pud)
52                         goto err;
53                 image->arch.pud = pud;
54                 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
55         }
56         pud = pud_offset(pgd, vaddr);
57         if (!pud_present(*pud)) {
58                 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
59                 if (!pmd)
60                         goto err;
61                 image->arch.pmd = pmd;
62                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
63         }
64         pmd = pmd_offset(pud, vaddr);
65         if (!pmd_present(*pmd)) {
66                 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
67                 if (!pte)
68                         goto err;
69                 image->arch.pte = pte;
70                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
71         }
72         pte = pte_offset_kernel(pmd, vaddr);
73         set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
74         return 0;
75 err:
76         free_transition_pgtable(image);
77         return result;
78 }
79
80 static void *alloc_pgt_page(void *data)
81 {
82         struct kimage *image = (struct kimage *)data;
83         struct page *page;
84         void *p = NULL;
85
86         page = kimage_alloc_control_pages(image, 0);
87         if (page) {
88                 p = page_address(page);
89                 clear_page(p);
90         }
91
92         return p;
93 }
94
95 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
96 {
97         struct x86_mapping_info info = {
98                 .alloc_pgt_page = alloc_pgt_page,
99                 .context        = image,
100                 .pmd_flag       = __PAGE_KERNEL_LARGE_EXEC,
101         };
102         unsigned long mstart, mend;
103         pgd_t *level4p;
104         int result;
105         int i;
106
107         level4p = (pgd_t *)__va(start_pgtable);
108         clear_page(level4p);
109         for (i = 0; i < nr_pfn_mapped; i++) {
110                 mstart = pfn_mapped[i].start << PAGE_SHIFT;
111                 mend   = pfn_mapped[i].end << PAGE_SHIFT;
112
113                 result = kernel_ident_mapping_init(&info,
114                                                  level4p, mstart, mend);
115                 if (result)
116                         return result;
117         }
118
119         /*
120          * segments's mem ranges could be outside 0 ~ max_pfn,
121          * for example when jump back to original kernel from kexeced kernel.
122          * or first kernel is booted with user mem map, and second kernel
123          * could be loaded out of that range.
124          */
125         for (i = 0; i < image->nr_segments; i++) {
126                 mstart = image->segment[i].mem;
127                 mend   = mstart + image->segment[i].memsz;
128
129                 result = kernel_ident_mapping_init(&info,
130                                                  level4p, mstart, mend);
131
132                 if (result)
133                         return result;
134         }
135
136         return init_transition_pgtable(image, level4p);
137 }
138
139 static void set_idt(void *newidt, u16 limit)
140 {
141         struct desc_ptr curidt;
142
143         /* x86-64 supports unaliged loads & stores */
144         curidt.size    = limit;
145         curidt.address = (unsigned long)newidt;
146
147         __asm__ __volatile__ (
148                 "lidtq %0\n"
149                 : : "m" (curidt)
150                 );
151 };
152
153
154 static void set_gdt(void *newgdt, u16 limit)
155 {
156         struct desc_ptr curgdt;
157
158         /* x86-64 supports unaligned loads & stores */
159         curgdt.size    = limit;
160         curgdt.address = (unsigned long)newgdt;
161
162         __asm__ __volatile__ (
163                 "lgdtq %0\n"
164                 : : "m" (curgdt)
165                 );
166 };
167
168 static void load_segments(void)
169 {
170         __asm__ __volatile__ (
171                 "\tmovl %0,%%ds\n"
172                 "\tmovl %0,%%es\n"
173                 "\tmovl %0,%%ss\n"
174                 "\tmovl %0,%%fs\n"
175                 "\tmovl %0,%%gs\n"
176                 : : "a" (__KERNEL_DS) : "memory"
177                 );
178 }
179
180 int machine_kexec_prepare(struct kimage *image)
181 {
182         unsigned long start_pgtable;
183         int result;
184
185         /* Calculate the offsets */
186         start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
187
188         /* Setup the identity mapped 64bit page table */
189         result = init_pgtable(image, start_pgtable);
190         if (result)
191                 return result;
192
193         return 0;
194 }
195
196 void machine_kexec_cleanup(struct kimage *image)
197 {
198         free_transition_pgtable(image);
199 }
200
201 /*
202  * Do not allocate memory (or fail in any way) in machine_kexec().
203  * We are past the point of no return, committed to rebooting now.
204  */
205 void machine_kexec(struct kimage *image)
206 {
207         unsigned long page_list[PAGES_NR];
208         void *control_page;
209         int save_ftrace_enabled;
210
211 #ifdef CONFIG_KEXEC_JUMP
212         if (image->preserve_context)
213                 save_processor_state();
214 #endif
215
216         save_ftrace_enabled = __ftrace_enabled_save();
217
218         /* Interrupts aren't acceptable while we reboot */
219         local_irq_disable();
220         hw_breakpoint_disable();
221
222         if (image->preserve_context) {
223 #ifdef CONFIG_X86_IO_APIC
224                 /*
225                  * We need to put APICs in legacy mode so that we can
226                  * get timer interrupts in second kernel. kexec/kdump
227                  * paths already have calls to disable_IO_APIC() in
228                  * one form or other. kexec jump path also need
229                  * one.
230                  */
231                 disable_IO_APIC();
232 #endif
233         }
234
235         control_page = page_address(image->control_code_page) + PAGE_SIZE;
236         memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
237
238         page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
239         page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
240         page_list[PA_TABLE_PAGE] =
241           (unsigned long)__pa(page_address(image->control_code_page));
242
243         if (image->type == KEXEC_TYPE_DEFAULT)
244                 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
245                                                 << PAGE_SHIFT);
246
247         /*
248          * The segment registers are funny things, they have both a
249          * visible and an invisible part.  Whenever the visible part is
250          * set to a specific selector, the invisible part is loaded
251          * with from a table in memory.  At no other time is the
252          * descriptor table in memory accessed.
253          *
254          * I take advantage of this here by force loading the
255          * segments, before I zap the gdt with an invalid value.
256          */
257         load_segments();
258         /*
259          * The gdt & idt are now invalid.
260          * If you want to load them you must set up your own idt & gdt.
261          */
262         set_gdt(phys_to_virt(0), 0);
263         set_idt(phys_to_virt(0), 0);
264
265         /* now call it */
266         image->start = relocate_kernel((unsigned long)image->head,
267                                        (unsigned long)page_list,
268                                        image->start,
269                                        image->preserve_context);
270
271 #ifdef CONFIG_KEXEC_JUMP
272         if (image->preserve_context)
273                 restore_processor_state();
274 #endif
275
276         __ftrace_enabled_restore(save_ftrace_enabled);
277 }
278
279 void arch_crash_save_vmcoreinfo(void)
280 {
281         VMCOREINFO_SYMBOL(phys_base);
282         VMCOREINFO_SYMBOL(init_level4_pgt);
283
284 #ifdef CONFIG_NUMA
285         VMCOREINFO_SYMBOL(node_data);
286         VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
287 #endif
288         vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
289                               (unsigned long)&_text - __START_KERNEL);
290 }
291
292 /* arch-dependent functionality related to kexec file-based syscall */
293
294 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
295                                   unsigned long buf_len)
296 {
297         int i, ret = -ENOEXEC;
298         struct kexec_file_ops *fops;
299
300         for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
301                 fops = kexec_file_loaders[i];
302                 if (!fops || !fops->probe)
303                         continue;
304
305                 ret = fops->probe(buf, buf_len);
306                 if (!ret) {
307                         image->fops = fops;
308                         return ret;
309                 }
310         }
311
312         return ret;
313 }
314
315 void *arch_kexec_kernel_image_load(struct kimage *image)
316 {
317         if (!image->fops || !image->fops->load)
318                 return ERR_PTR(-ENOEXEC);
319
320         return image->fops->load(image, image->kernel_buf,
321                                  image->kernel_buf_len, image->initrd_buf,
322                                  image->initrd_buf_len, image->cmdline_buf,
323                                  image->cmdline_buf_len);
324 }
325
326 int arch_kimage_file_post_load_cleanup(struct kimage *image)
327 {
328         if (!image->fops || !image->fops->cleanup)
329                 return 0;
330
331         return image->fops->cleanup(image);
332 }
333
334 /*
335  * Apply purgatory relocations.
336  *
337  * ehdr: Pointer to elf headers
338  * sechdrs: Pointer to section headers.
339  * relsec: section index of SHT_RELA section.
340  *
341  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
342  */
343 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
344                                      Elf64_Shdr *sechdrs, unsigned int relsec)
345 {
346         unsigned int i;
347         Elf64_Rela *rel;
348         Elf64_Sym *sym;
349         void *location;
350         Elf64_Shdr *section, *symtabsec;
351         unsigned long address, sec_base, value;
352         const char *strtab, *name, *shstrtab;
353
354         /*
355          * ->sh_offset has been modified to keep the pointer to section
356          * contents in memory
357          */
358         rel = (void *)sechdrs[relsec].sh_offset;
359
360         /* Section to which relocations apply */
361         section = &sechdrs[sechdrs[relsec].sh_info];
362
363         pr_debug("Applying relocate section %u to %u\n", relsec,
364                  sechdrs[relsec].sh_info);
365
366         /* Associated symbol table */
367         symtabsec = &sechdrs[sechdrs[relsec].sh_link];
368
369         /* String table */
370         if (symtabsec->sh_link >= ehdr->e_shnum) {
371                 /* Invalid strtab section number */
372                 pr_err("Invalid string table section index %d\n",
373                        symtabsec->sh_link);
374                 return -ENOEXEC;
375         }
376
377         strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
378
379         /* section header string table */
380         shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
381
382         for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
383
384                 /*
385                  * rel[i].r_offset contains byte offset from beginning
386                  * of section to the storage unit affected.
387                  *
388                  * This is location to update (->sh_offset). This is temporary
389                  * buffer where section is currently loaded. This will finally
390                  * be loaded to a different address later, pointed to by
391                  * ->sh_addr. kexec takes care of moving it
392                  *  (kexec_load_segment()).
393                  */
394                 location = (void *)(section->sh_offset + rel[i].r_offset);
395
396                 /* Final address of the location */
397                 address = section->sh_addr + rel[i].r_offset;
398
399                 /*
400                  * rel[i].r_info contains information about symbol table index
401                  * w.r.t which relocation must be made and type of relocation
402                  * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
403                  * these respectively.
404                  */
405                 sym = (Elf64_Sym *)symtabsec->sh_offset +
406                                 ELF64_R_SYM(rel[i].r_info);
407
408                 if (sym->st_name)
409                         name = strtab + sym->st_name;
410                 else
411                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
412
413                 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
414                          name, sym->st_info, sym->st_shndx, sym->st_value,
415                          sym->st_size);
416
417                 if (sym->st_shndx == SHN_UNDEF) {
418                         pr_err("Undefined symbol: %s\n", name);
419                         return -ENOEXEC;
420                 }
421
422                 if (sym->st_shndx == SHN_COMMON) {
423                         pr_err("symbol '%s' in common section\n", name);
424                         return -ENOEXEC;
425                 }
426
427                 if (sym->st_shndx == SHN_ABS)
428                         sec_base = 0;
429                 else if (sym->st_shndx >= ehdr->e_shnum) {
430                         pr_err("Invalid section %d for symbol %s\n",
431                                sym->st_shndx, name);
432                         return -ENOEXEC;
433                 } else
434                         sec_base = sechdrs[sym->st_shndx].sh_addr;
435
436                 value = sym->st_value;
437                 value += sec_base;
438                 value += rel[i].r_addend;
439
440                 switch (ELF64_R_TYPE(rel[i].r_info)) {
441                 case R_X86_64_NONE:
442                         break;
443                 case R_X86_64_64:
444                         *(u64 *)location = value;
445                         break;
446                 case R_X86_64_32:
447                         *(u32 *)location = value;
448                         if (value != *(u32 *)location)
449                                 goto overflow;
450                         break;
451                 case R_X86_64_32S:
452                         *(s32 *)location = value;
453                         if ((s64)value != *(s32 *)location)
454                                 goto overflow;
455                         break;
456                 case R_X86_64_PC32:
457                         value -= (u64)address;
458                         *(u32 *)location = value;
459                         break;
460                 default:
461                         pr_err("Unknown rela relocation: %llu\n",
462                                ELF64_R_TYPE(rel[i].r_info));
463                         return -ENOEXEC;
464                 }
465         }
466         return 0;
467
468 overflow:
469         pr_err("Overflow in relocation type %d value 0x%lx\n",
470                (int)ELF64_R_TYPE(rel[i].r_info), value);
471         return -ENOEXEC;
472 }