5a5ff94fef652fecc9bedfd56e46fefbb4d5352b
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / cpuid.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/user.h>
20 #include <asm/xsave.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25
26 void kvm_update_cpuid(struct kvm_vcpu *vcpu)
27 {
28         struct kvm_cpuid_entry2 *best;
29         struct kvm_lapic *apic = vcpu->arch.apic;
30
31         best = kvm_find_cpuid_entry(vcpu, 1, 0);
32         if (!best)
33                 return;
34
35         /* Update OSXSAVE bit */
36         if (cpu_has_xsave && best->function == 0x1) {
37                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
38                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
39                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
40         }
41
42         if (apic) {
43                 if (best->ecx & bit(X86_FEATURE_TSC_DEADLINE_TIMER))
44                         apic->lapic_timer.timer_mode_mask = 3 << 17;
45                 else
46                         apic->lapic_timer.timer_mode_mask = 1 << 17;
47         }
48
49         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
50         if (!best)
51                 vcpu->arch.guest_supported_xcr0 = 0;
52         else
53                 vcpu->arch.guest_supported_xcr0 =
54                         (best->eax | ((u64)best->edx << 32)) &
55                         host_xcr0 & KVM_SUPPORTED_XCR0;
56
57         kvm_pmu_cpuid_update(vcpu);
58 }
59
60 static int is_efer_nx(void)
61 {
62         unsigned long long efer = 0;
63
64         rdmsrl_safe(MSR_EFER, &efer);
65         return efer & EFER_NX;
66 }
67
68 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
69 {
70         int i;
71         struct kvm_cpuid_entry2 *e, *entry;
72
73         entry = NULL;
74         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
75                 e = &vcpu->arch.cpuid_entries[i];
76                 if (e->function == 0x80000001) {
77                         entry = e;
78                         break;
79                 }
80         }
81         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
82                 entry->edx &= ~(1 << 20);
83                 printk(KERN_INFO "kvm: guest NX capability removed\n");
84         }
85 }
86
87 /* when an old userspace process fills a new kernel module */
88 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
89                              struct kvm_cpuid *cpuid,
90                              struct kvm_cpuid_entry __user *entries)
91 {
92         int r, i;
93         struct kvm_cpuid_entry *cpuid_entries;
94
95         r = -E2BIG;
96         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
97                 goto out;
98         r = -ENOMEM;
99         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
100         if (!cpuid_entries)
101                 goto out;
102         r = -EFAULT;
103         if (copy_from_user(cpuid_entries, entries,
104                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
105                 goto out_free;
106         for (i = 0; i < cpuid->nent; i++) {
107                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
108                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
109                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
110                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
111                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
112                 vcpu->arch.cpuid_entries[i].index = 0;
113                 vcpu->arch.cpuid_entries[i].flags = 0;
114                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
115                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
116                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
117         }
118         vcpu->arch.cpuid_nent = cpuid->nent;
119         cpuid_fix_nx_cap(vcpu);
120         r = 0;
121         kvm_apic_set_version(vcpu);
122         kvm_x86_ops->cpuid_update(vcpu);
123         kvm_update_cpuid(vcpu);
124
125 out_free:
126         vfree(cpuid_entries);
127 out:
128         return r;
129 }
130
131 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
132                               struct kvm_cpuid2 *cpuid,
133                               struct kvm_cpuid_entry2 __user *entries)
134 {
135         int r;
136
137         r = -E2BIG;
138         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
139                 goto out;
140         r = -EFAULT;
141         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
142                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
143                 goto out;
144         vcpu->arch.cpuid_nent = cpuid->nent;
145         kvm_apic_set_version(vcpu);
146         kvm_x86_ops->cpuid_update(vcpu);
147         kvm_update_cpuid(vcpu);
148         return 0;
149
150 out:
151         return r;
152 }
153
154 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
155                               struct kvm_cpuid2 *cpuid,
156                               struct kvm_cpuid_entry2 __user *entries)
157 {
158         int r;
159
160         r = -E2BIG;
161         if (cpuid->nent < vcpu->arch.cpuid_nent)
162                 goto out;
163         r = -EFAULT;
164         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
165                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
166                 goto out;
167         return 0;
168
169 out:
170         cpuid->nent = vcpu->arch.cpuid_nent;
171         return r;
172 }
173
174 static void cpuid_mask(u32 *word, int wordnum)
175 {
176         *word &= boot_cpu_data.x86_capability[wordnum];
177 }
178
179 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
180                            u32 index)
181 {
182         entry->function = function;
183         entry->index = index;
184         cpuid_count(entry->function, entry->index,
185                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
186         entry->flags = 0;
187 }
188
189 static bool supported_xcr0_bit(unsigned bit)
190 {
191         u64 mask = ((u64)1 << bit);
192
193         return mask & KVM_SUPPORTED_XCR0 & host_xcr0;
194 }
195
196 #define F(x) bit(X86_FEATURE_##x)
197
198 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
199                          u32 index, int *nent, int maxnent)
200 {
201         int r;
202         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
203 #ifdef CONFIG_X86_64
204         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
205                                 ? F(GBPAGES) : 0;
206         unsigned f_lm = F(LM);
207 #else
208         unsigned f_gbpages = 0;
209         unsigned f_lm = 0;
210 #endif
211         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
212         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
213
214         /* cpuid 1.edx */
215         const u32 kvm_supported_word0_x86_features =
216                 F(FPU) | F(VME) | F(DE) | F(PSE) |
217                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
218                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
219                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
220                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
221                 0 /* Reserved, DS, ACPI */ | F(MMX) |
222                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
223                 0 /* HTT, TM, Reserved, PBE */;
224         /* cpuid 0x80000001.edx */
225         const u32 kvm_supported_word1_x86_features =
226                 F(FPU) | F(VME) | F(DE) | F(PSE) |
227                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
228                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
229                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
230                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
231                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
232                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
233                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
234         /* cpuid 1.ecx */
235         const u32 kvm_supported_word4_x86_features =
236                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
237                 0 /* DS-CPL, VMX, SMX, EST */ |
238                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
239                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
240                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
241                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
242                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
243                 F(F16C) | F(RDRAND);
244         /* cpuid 0x80000001.ecx */
245         const u32 kvm_supported_word6_x86_features =
246                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
247                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
248                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
249                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
250
251         /* cpuid 0xC0000001.edx */
252         const u32 kvm_supported_word5_x86_features =
253                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
254                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
255                 F(PMM) | F(PMM_EN);
256
257         /* cpuid 7.0.ebx */
258         const u32 kvm_supported_word9_x86_features =
259                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
260                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM);
261
262         /* all calls to cpuid_count() should be made on the same cpu */
263         get_cpu();
264
265         r = -E2BIG;
266
267         if (*nent >= maxnent)
268                 goto out;
269
270         do_cpuid_1_ent(entry, function, index);
271         ++*nent;
272
273         switch (function) {
274         case 0:
275                 entry->eax = min(entry->eax, (u32)0xd);
276                 break;
277         case 1:
278                 entry->edx &= kvm_supported_word0_x86_features;
279                 cpuid_mask(&entry->edx, 0);
280                 entry->ecx &= kvm_supported_word4_x86_features;
281                 cpuid_mask(&entry->ecx, 4);
282                 /* we support x2apic emulation even if host does not support
283                  * it since we emulate x2apic in software */
284                 entry->ecx |= F(X2APIC);
285                 break;
286         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
287          * may return different values. This forces us to get_cpu() before
288          * issuing the first command, and also to emulate this annoying behavior
289          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
290         case 2: {
291                 int t, times = entry->eax & 0xff;
292
293                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
294                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
295                 for (t = 1; t < times; ++t) {
296                         if (*nent >= maxnent)
297                                 goto out;
298
299                         do_cpuid_1_ent(&entry[t], function, 0);
300                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
301                         ++*nent;
302                 }
303                 break;
304         }
305         /* function 4 has additional index. */
306         case 4: {
307                 int i, cache_type;
308
309                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
310                 /* read more entries until cache_type is zero */
311                 for (i = 1; ; ++i) {
312                         if (*nent >= maxnent)
313                                 goto out;
314
315                         cache_type = entry[i - 1].eax & 0x1f;
316                         if (!cache_type)
317                                 break;
318                         do_cpuid_1_ent(&entry[i], function, i);
319                         entry[i].flags |=
320                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
321                         ++*nent;
322                 }
323                 break;
324         }
325         case 7: {
326                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
327                 /* Mask ebx against host capability word 9 */
328                 if (index == 0) {
329                         entry->ebx &= kvm_supported_word9_x86_features;
330                         cpuid_mask(&entry->ebx, 9);
331                         // TSC_ADJUST is emulated
332                         entry->ebx |= F(TSC_ADJUST);
333                 } else
334                         entry->ebx = 0;
335                 entry->eax = 0;
336                 entry->ecx = 0;
337                 entry->edx = 0;
338                 break;
339         }
340         case 9:
341                 break;
342         case 0xa: { /* Architectural Performance Monitoring */
343                 struct x86_pmu_capability cap;
344                 union cpuid10_eax eax;
345                 union cpuid10_edx edx;
346
347                 perf_get_x86_pmu_capability(&cap);
348
349                 /*
350                  * Only support guest architectural pmu on a host
351                  * with architectural pmu.
352                  */
353                 if (!cap.version)
354                         memset(&cap, 0, sizeof(cap));
355
356                 eax.split.version_id = min(cap.version, 2);
357                 eax.split.num_counters = cap.num_counters_gp;
358                 eax.split.bit_width = cap.bit_width_gp;
359                 eax.split.mask_length = cap.events_mask_len;
360
361                 edx.split.num_counters_fixed = cap.num_counters_fixed;
362                 edx.split.bit_width_fixed = cap.bit_width_fixed;
363                 edx.split.reserved = 0;
364
365                 entry->eax = eax.full;
366                 entry->ebx = cap.events_mask;
367                 entry->ecx = 0;
368                 entry->edx = edx.full;
369                 break;
370         }
371         /* function 0xb has additional index. */
372         case 0xb: {
373                 int i, level_type;
374
375                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
376                 /* read more entries until level_type is zero */
377                 for (i = 1; ; ++i) {
378                         if (*nent >= maxnent)
379                                 goto out;
380
381                         level_type = entry[i - 1].ecx & 0xff00;
382                         if (!level_type)
383                                 break;
384                         do_cpuid_1_ent(&entry[i], function, i);
385                         entry[i].flags |=
386                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
387                         ++*nent;
388                 }
389                 break;
390         }
391         case 0xd: {
392                 int idx, i;
393
394                 entry->eax &= host_xcr0 & KVM_SUPPORTED_XCR0;
395                 entry->edx &= (host_xcr0 & KVM_SUPPORTED_XCR0) >> 32;
396                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
397                 for (idx = 1, i = 1; idx < 64; ++idx) {
398                         if (*nent >= maxnent)
399                                 goto out;
400
401                         do_cpuid_1_ent(&entry[i], function, idx);
402                         if (entry[i].eax == 0 || !supported_xcr0_bit(idx))
403                                 continue;
404                         entry[i].flags |=
405                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
406                         ++*nent;
407                         ++i;
408                 }
409                 break;
410         }
411         case KVM_CPUID_SIGNATURE: {
412                 static const char signature[12] = "KVMKVMKVM\0\0";
413                 const u32 *sigptr = (const u32 *)signature;
414                 entry->eax = KVM_CPUID_FEATURES;
415                 entry->ebx = sigptr[0];
416                 entry->ecx = sigptr[1];
417                 entry->edx = sigptr[2];
418                 break;
419         }
420         case KVM_CPUID_FEATURES:
421                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
422                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
423                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
424                              (1 << KVM_FEATURE_ASYNC_PF) |
425                              (1 << KVM_FEATURE_PV_EOI) |
426                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
427                              (1 << KVM_FEATURE_PV_UNHALT);
428
429                 if (sched_info_on())
430                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
431
432                 entry->ebx = 0;
433                 entry->ecx = 0;
434                 entry->edx = 0;
435                 break;
436         case 0x80000000:
437                 entry->eax = min(entry->eax, 0x8000001a);
438                 break;
439         case 0x80000001:
440                 entry->edx &= kvm_supported_word1_x86_features;
441                 cpuid_mask(&entry->edx, 1);
442                 entry->ecx &= kvm_supported_word6_x86_features;
443                 cpuid_mask(&entry->ecx, 6);
444                 break;
445         case 0x80000008: {
446                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
447                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
448                 unsigned phys_as = entry->eax & 0xff;
449
450                 if (!g_phys_as)
451                         g_phys_as = phys_as;
452                 entry->eax = g_phys_as | (virt_as << 8);
453                 entry->ebx = entry->edx = 0;
454                 break;
455         }
456         case 0x80000019:
457                 entry->ecx = entry->edx = 0;
458                 break;
459         case 0x8000001a:
460                 break;
461         case 0x8000001d:
462                 break;
463         /*Add support for Centaur's CPUID instruction*/
464         case 0xC0000000:
465                 /*Just support up to 0xC0000004 now*/
466                 entry->eax = min(entry->eax, 0xC0000004);
467                 break;
468         case 0xC0000001:
469                 entry->edx &= kvm_supported_word5_x86_features;
470                 cpuid_mask(&entry->edx, 5);
471                 break;
472         case 3: /* Processor serial number */
473         case 5: /* MONITOR/MWAIT */
474         case 6: /* Thermal management */
475         case 0x80000007: /* Advanced power management */
476         case 0xC0000002:
477         case 0xC0000003:
478         case 0xC0000004:
479         default:
480                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
481                 break;
482         }
483
484         kvm_x86_ops->set_supported_cpuid(function, entry);
485
486         r = 0;
487
488 out:
489         put_cpu();
490
491         return r;
492 }
493
494 #undef F
495
496 struct kvm_cpuid_param {
497         u32 func;
498         u32 idx;
499         bool has_leaf_count;
500         bool (*qualifier)(const struct kvm_cpuid_param *param);
501 };
502
503 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
504 {
505         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
506 }
507
508 int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
509                                       struct kvm_cpuid_entry2 __user *entries)
510 {
511         struct kvm_cpuid_entry2 *cpuid_entries;
512         int limit, nent = 0, r = -E2BIG, i;
513         u32 func;
514         static const struct kvm_cpuid_param param[] = {
515                 { .func = 0, .has_leaf_count = true },
516                 { .func = 0x80000000, .has_leaf_count = true },
517                 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
518                 { .func = KVM_CPUID_SIGNATURE },
519                 { .func = KVM_CPUID_FEATURES },
520         };
521
522         if (cpuid->nent < 1)
523                 goto out;
524         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
525                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
526         r = -ENOMEM;
527         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
528         if (!cpuid_entries)
529                 goto out;
530
531         r = 0;
532         for (i = 0; i < ARRAY_SIZE(param); i++) {
533                 const struct kvm_cpuid_param *ent = &param[i];
534
535                 if (ent->qualifier && !ent->qualifier(ent))
536                         continue;
537
538                 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
539                                 &nent, cpuid->nent);
540
541                 if (r)
542                         goto out_free;
543
544                 if (!ent->has_leaf_count)
545                         continue;
546
547                 limit = cpuid_entries[nent - 1].eax;
548                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
549                         r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
550                                      &nent, cpuid->nent);
551
552                 if (r)
553                         goto out_free;
554         }
555
556         r = -EFAULT;
557         if (copy_to_user(entries, cpuid_entries,
558                          nent * sizeof(struct kvm_cpuid_entry2)))
559                 goto out_free;
560         cpuid->nent = nent;
561         r = 0;
562
563 out_free:
564         vfree(cpuid_entries);
565 out:
566         return r;
567 }
568
569 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
570 {
571         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
572         int j, nent = vcpu->arch.cpuid_nent;
573
574         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
575         /* when no next entry is found, the current entry[i] is reselected */
576         for (j = i + 1; ; j = (j + 1) % nent) {
577                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
578                 if (ej->function == e->function) {
579                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
580                         return j;
581                 }
582         }
583         return 0; /* silence gcc, even though control never reaches here */
584 }
585
586 /* find an entry with matching function, matching index (if needed), and that
587  * should be read next (if it's stateful) */
588 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
589         u32 function, u32 index)
590 {
591         if (e->function != function)
592                 return 0;
593         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
594                 return 0;
595         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
596             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
597                 return 0;
598         return 1;
599 }
600
601 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
602                                               u32 function, u32 index)
603 {
604         int i;
605         struct kvm_cpuid_entry2 *best = NULL;
606
607         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
608                 struct kvm_cpuid_entry2 *e;
609
610                 e = &vcpu->arch.cpuid_entries[i];
611                 if (is_matching_cpuid_entry(e, function, index)) {
612                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
613                                 move_to_next_stateful_cpuid_entry(vcpu, i);
614                         best = e;
615                         break;
616                 }
617         }
618         return best;
619 }
620 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
621
622 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
623 {
624         struct kvm_cpuid_entry2 *best;
625
626         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
627         if (!best || best->eax < 0x80000008)
628                 goto not_found;
629         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
630         if (best)
631                 return best->eax & 0xff;
632 not_found:
633         return 36;
634 }
635
636 /*
637  * If no match is found, check whether we exceed the vCPU's limit
638  * and return the content of the highest valid _standard_ leaf instead.
639  * This is to satisfy the CPUID specification.
640  */
641 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
642                                                   u32 function, u32 index)
643 {
644         struct kvm_cpuid_entry2 *maxlevel;
645
646         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
647         if (!maxlevel || maxlevel->eax >= function)
648                 return NULL;
649         if (function & 0x80000000) {
650                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
651                 if (!maxlevel)
652                         return NULL;
653         }
654         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
655 }
656
657 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
658 {
659         u32 function = *eax, index = *ecx;
660         struct kvm_cpuid_entry2 *best;
661
662         best = kvm_find_cpuid_entry(vcpu, function, index);
663
664         if (!best)
665                 best = check_cpuid_limit(vcpu, function, index);
666
667         if (best) {
668                 *eax = best->eax;
669                 *ebx = best->ebx;
670                 *ecx = best->ecx;
671                 *edx = best->edx;
672         } else
673                 *eax = *ebx = *ecx = *edx = 0;
674 }
675 EXPORT_SYMBOL_GPL(kvm_cpuid);
676
677 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
678 {
679         u32 function, eax, ebx, ecx, edx;
680
681         function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
682         ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
683         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
684         kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
685         kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
686         kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
687         kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
688         kvm_x86_ops->skip_emulated_instruction(vcpu);
689         trace_kvm_cpuid(function, eax, ebx, ecx, edx);
690 }
691 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);