2 * 8253/8254 interval timer emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 * Sheng Yang <sheng.yang@intel.com>
30 * Based on QEMU and Xen.
33 #define pr_fmt(fmt) "pit: " fmt
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
44 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
46 #define mod_64(x, y) ((x) % (y))
49 #define RW_STATE_LSB 1
50 #define RW_STATE_MSB 2
51 #define RW_STATE_WORD0 3
52 #define RW_STATE_WORD1 4
54 /* Compute with 96 bit intermediate result: (a*b)/c */
55 static u64 muldiv64(u64 a, u32 b, u32 c)
66 rl = (u64)u.l.low * (u64)b;
67 rh = (u64)u.l.high * (u64)b;
69 res.l.high = div64_u64(rh, c);
70 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
74 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
76 struct kvm_kpit_channel_state *c =
77 &kvm->arch.vpit->pit_state.channels[channel];
79 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
85 /* XXX: just disable/enable counting */
91 /* Restart counting on rising edge. */
93 c->count_load_time = ktime_get();
100 static int pit_get_gate(struct kvm *kvm, int channel)
102 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
104 return kvm->arch.vpit->pit_state.channels[channel].gate;
107 static s64 __kpit_elapsed(struct kvm *kvm)
111 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
117 * The Counter does not stop when it reaches zero. In
118 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
119 * the highest count, either FFFF hex for binary counting
120 * or 9999 for BCD counting, and continues counting.
121 * Modes 2 and 3 are periodic; the Counter reloads
122 * itself with the initial count and continues counting
125 remaining = hrtimer_get_remaining(&ps->timer);
126 elapsed = ps->period - ktime_to_ns(remaining);
131 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
135 return __kpit_elapsed(kvm);
137 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
140 static int pit_get_count(struct kvm *kvm, int channel)
142 struct kvm_kpit_channel_state *c =
143 &kvm->arch.vpit->pit_state.channels[channel];
147 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
149 t = kpit_elapsed(kvm, c, channel);
150 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
157 counter = (c->count - d) & 0xffff;
160 /* XXX: may be incorrect for odd counts */
161 counter = c->count - (mod_64((2 * d), c->count));
164 counter = c->count - mod_64(d, c->count);
170 static int pit_get_out(struct kvm *kvm, int channel)
172 struct kvm_kpit_channel_state *c =
173 &kvm->arch.vpit->pit_state.channels[channel];
177 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
179 t = kpit_elapsed(kvm, c, channel);
180 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
185 out = (d >= c->count);
188 out = (d < c->count);
191 out = ((mod_64(d, c->count) == 0) && (d != 0));
194 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
198 out = (d == c->count);
205 static void pit_latch_count(struct kvm *kvm, int channel)
207 struct kvm_kpit_channel_state *c =
208 &kvm->arch.vpit->pit_state.channels[channel];
210 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
212 if (!c->count_latched) {
213 c->latched_count = pit_get_count(kvm, channel);
214 c->count_latched = c->rw_mode;
218 static void pit_latch_status(struct kvm *kvm, int channel)
220 struct kvm_kpit_channel_state *c =
221 &kvm->arch.vpit->pit_state.channels[channel];
223 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
225 if (!c->status_latched) {
226 /* TODO: Return NULL COUNT (bit 6). */
227 c->status = ((pit_get_out(kvm, channel) << 7) |
231 c->status_latched = 1;
235 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
237 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
241 spin_lock(&ps->inject_lock);
242 value = atomic_dec_return(&ps->pending);
244 /* spurious acks can be generated if, for example, the
245 * PIC is being reset. Handle it gracefully here
247 atomic_inc(&ps->pending);
248 else if (value > 0 && ps->reinject)
249 /* in this case, we had multiple outstanding pit interrupts
250 * that we needed to inject. Reinject
252 queue_kthread_work(&ps->pit->worker, &ps->pit->expired);
254 spin_unlock(&ps->inject_lock);
257 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
259 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
260 struct hrtimer *timer;
262 if (!kvm_vcpu_is_bsp(vcpu) || !pit)
265 timer = &pit->pit_state.timer;
266 mutex_lock(&pit->pit_state.lock);
267 if (hrtimer_cancel(timer))
268 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
269 mutex_unlock(&pit->pit_state.lock);
272 static void destroy_pit_timer(struct kvm_pit *pit)
274 hrtimer_cancel(&pit->pit_state.timer);
275 flush_kthread_work(&pit->expired);
278 static void pit_do_work(struct kthread_work *work)
280 struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
281 struct kvm *kvm = pit->kvm;
282 struct kvm_vcpu *vcpu;
284 struct kvm_kpit_state *ps = &pit->pit_state;
287 /* Try to inject pending interrupts when
288 * last one has been acked.
290 spin_lock(&ps->inject_lock);
293 else if (ps->irq_ack) {
297 spin_unlock(&ps->inject_lock);
299 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false);
300 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false);
303 * Provides NMI watchdog support via Virtual Wire mode.
304 * The route is: PIT -> PIC -> LVT0 in NMI mode.
306 * Note: Our Virtual Wire implementation is simplified, only
307 * propagating PIT interrupts to all VCPUs when they have set
308 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
309 * VCPU0, and only if its LVT0 is in EXTINT mode.
311 if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
312 kvm_for_each_vcpu(i, vcpu, kvm)
313 kvm_apic_nmi_wd_deliver(vcpu);
317 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
319 struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
320 struct kvm_pit *pt = ps->kvm->arch.vpit;
323 atomic_inc(&ps->pending);
325 queue_kthread_work(&pt->worker, &pt->expired);
327 if (ps->is_periodic) {
328 hrtimer_add_expires_ns(&ps->timer, ps->period);
329 return HRTIMER_RESTART;
331 return HRTIMER_NORESTART;
334 static void create_pit_timer(struct kvm *kvm, u32 val, int is_period)
336 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
339 if (!ioapic_in_kernel(kvm) ||
340 ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
343 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
345 pr_debug("create pit timer, interval is %llu nsec\n", interval);
347 /* TODO The new value only affected after the retriggered */
348 hrtimer_cancel(&ps->timer);
349 flush_kthread_work(&ps->pit->expired);
350 ps->period = interval;
351 ps->is_periodic = is_period;
353 ps->timer.function = pit_timer_fn;
354 ps->kvm = ps->pit->kvm;
356 atomic_set(&ps->pending, 0);
360 * Do not allow the guest to program periodic timers with small
361 * interval, since the hrtimers are not throttled by the host
364 if (ps->is_periodic) {
365 s64 min_period = min_timer_period_us * 1000LL;
367 if (ps->period < min_period) {
369 "kvm: requested %lld ns "
370 "i8254 timer period limited to %lld ns\n",
371 ps->period, min_period);
372 ps->period = min_period;
376 hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
380 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
382 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
384 WARN_ON(!mutex_is_locked(&ps->lock));
386 pr_debug("load_count val is %d, channel is %d\n", val, channel);
389 * The largest possible initial count is 0; this is equivalent
390 * to 216 for binary counting and 104 for BCD counting.
395 ps->channels[channel].count = val;
398 ps->channels[channel].count_load_time = ktime_get();
402 /* Two types of timer
403 * mode 1 is one shot, mode 2 is period, otherwise del timer */
404 switch (ps->channels[0].mode) {
407 /* FIXME: enhance mode 4 precision */
409 create_pit_timer(kvm, val, 0);
413 create_pit_timer(kvm, val, 1);
416 destroy_pit_timer(kvm->arch.vpit);
420 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
423 if (hpet_legacy_start) {
424 /* save existing mode for later reenablement */
425 WARN_ON(channel != 0);
426 saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
427 kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
428 pit_load_count(kvm, channel, val);
429 kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
431 pit_load_count(kvm, channel, val);
435 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
437 return container_of(dev, struct kvm_pit, dev);
440 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
442 return container_of(dev, struct kvm_pit, speaker_dev);
445 static inline int pit_in_range(gpa_t addr)
447 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
448 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
451 static int pit_ioport_write(struct kvm_vcpu *vcpu,
452 struct kvm_io_device *this,
453 gpa_t addr, int len, const void *data)
455 struct kvm_pit *pit = dev_to_pit(this);
456 struct kvm_kpit_state *pit_state = &pit->pit_state;
457 struct kvm *kvm = pit->kvm;
459 struct kvm_kpit_channel_state *s;
460 u32 val = *(u32 *) data;
461 if (!pit_in_range(addr))
465 addr &= KVM_PIT_CHANNEL_MASK;
467 mutex_lock(&pit_state->lock);
470 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
471 (unsigned int)addr, len, val);
476 /* Read-Back Command. */
477 for (channel = 0; channel < 3; channel++) {
478 s = &pit_state->channels[channel];
479 if (val & (2 << channel)) {
481 pit_latch_count(kvm, channel);
483 pit_latch_status(kvm, channel);
487 /* Select Counter <channel>. */
488 s = &pit_state->channels[channel];
489 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
491 pit_latch_count(kvm, channel);
494 s->read_state = access;
495 s->write_state = access;
496 s->mode = (val >> 1) & 7;
504 s = &pit_state->channels[addr];
505 switch (s->write_state) {
508 pit_load_count(kvm, addr, val);
511 pit_load_count(kvm, addr, val << 8);
514 s->write_latch = val;
515 s->write_state = RW_STATE_WORD1;
518 pit_load_count(kvm, addr, s->write_latch | (val << 8));
519 s->write_state = RW_STATE_WORD0;
524 mutex_unlock(&pit_state->lock);
528 static int pit_ioport_read(struct kvm_vcpu *vcpu,
529 struct kvm_io_device *this,
530 gpa_t addr, int len, void *data)
532 struct kvm_pit *pit = dev_to_pit(this);
533 struct kvm_kpit_state *pit_state = &pit->pit_state;
534 struct kvm *kvm = pit->kvm;
536 struct kvm_kpit_channel_state *s;
537 if (!pit_in_range(addr))
540 addr &= KVM_PIT_CHANNEL_MASK;
544 s = &pit_state->channels[addr];
546 mutex_lock(&pit_state->lock);
548 if (s->status_latched) {
549 s->status_latched = 0;
551 } else if (s->count_latched) {
552 switch (s->count_latched) {
555 ret = s->latched_count & 0xff;
556 s->count_latched = 0;
559 ret = s->latched_count >> 8;
560 s->count_latched = 0;
563 ret = s->latched_count & 0xff;
564 s->count_latched = RW_STATE_MSB;
568 switch (s->read_state) {
571 count = pit_get_count(kvm, addr);
575 count = pit_get_count(kvm, addr);
576 ret = (count >> 8) & 0xff;
579 count = pit_get_count(kvm, addr);
581 s->read_state = RW_STATE_WORD1;
584 count = pit_get_count(kvm, addr);
585 ret = (count >> 8) & 0xff;
586 s->read_state = RW_STATE_WORD0;
591 if (len > sizeof(ret))
593 memcpy(data, (char *)&ret, len);
595 mutex_unlock(&pit_state->lock);
599 static int speaker_ioport_write(struct kvm_vcpu *vcpu,
600 struct kvm_io_device *this,
601 gpa_t addr, int len, const void *data)
603 struct kvm_pit *pit = speaker_to_pit(this);
604 struct kvm_kpit_state *pit_state = &pit->pit_state;
605 struct kvm *kvm = pit->kvm;
606 u32 val = *(u32 *) data;
607 if (addr != KVM_SPEAKER_BASE_ADDRESS)
610 mutex_lock(&pit_state->lock);
611 pit_state->speaker_data_on = (val >> 1) & 1;
612 pit_set_gate(kvm, 2, val & 1);
613 mutex_unlock(&pit_state->lock);
617 static int speaker_ioport_read(struct kvm_vcpu *vcpu,
618 struct kvm_io_device *this,
619 gpa_t addr, int len, void *data)
621 struct kvm_pit *pit = speaker_to_pit(this);
622 struct kvm_kpit_state *pit_state = &pit->pit_state;
623 struct kvm *kvm = pit->kvm;
624 unsigned int refresh_clock;
626 if (addr != KVM_SPEAKER_BASE_ADDRESS)
629 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
630 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
632 mutex_lock(&pit_state->lock);
633 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
634 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
635 if (len > sizeof(ret))
637 memcpy(data, (char *)&ret, len);
638 mutex_unlock(&pit_state->lock);
642 void kvm_pit_reset(struct kvm_pit *pit)
645 struct kvm_kpit_channel_state *c;
647 mutex_lock(&pit->pit_state.lock);
648 pit->pit_state.flags = 0;
649 for (i = 0; i < 3; i++) {
650 c = &pit->pit_state.channels[i];
653 pit_load_count(pit->kvm, i, 0);
655 mutex_unlock(&pit->pit_state.lock);
657 atomic_set(&pit->pit_state.pending, 0);
658 pit->pit_state.irq_ack = 1;
661 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
663 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
666 atomic_set(&pit->pit_state.pending, 0);
667 pit->pit_state.irq_ack = 1;
671 static const struct kvm_io_device_ops pit_dev_ops = {
672 .read = pit_ioport_read,
673 .write = pit_ioport_write,
676 static const struct kvm_io_device_ops speaker_dev_ops = {
677 .read = speaker_ioport_read,
678 .write = speaker_ioport_write,
681 /* Caller must hold slots_lock */
682 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
685 struct kvm_kpit_state *pit_state;
690 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
694 pit->irq_source_id = kvm_request_irq_source_id(kvm);
695 if (pit->irq_source_id < 0) {
700 mutex_init(&pit->pit_state.lock);
701 mutex_lock(&pit->pit_state.lock);
702 spin_lock_init(&pit->pit_state.inject_lock);
704 pid = get_pid(task_tgid(current));
705 pid_nr = pid_vnr(pid);
708 init_kthread_worker(&pit->worker);
709 pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
710 "kvm-pit/%d", pid_nr);
711 if (IS_ERR(pit->worker_task)) {
712 mutex_unlock(&pit->pit_state.lock);
713 kvm_free_irq_source_id(kvm, pit->irq_source_id);
717 init_kthread_work(&pit->expired, pit_do_work);
719 kvm->arch.vpit = pit;
722 pit_state = &pit->pit_state;
723 pit_state->pit = pit;
724 hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
725 pit_state->irq_ack_notifier.gsi = 0;
726 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
727 kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
728 pit_state->reinject = true;
729 mutex_unlock(&pit->pit_state.lock);
733 pit->mask_notifier.func = pit_mask_notifer;
734 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
736 kvm_iodevice_init(&pit->dev, &pit_dev_ops);
737 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
738 KVM_PIT_MEM_LENGTH, &pit->dev);
742 if (flags & KVM_PIT_SPEAKER_DUMMY) {
743 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
744 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
745 KVM_SPEAKER_BASE_ADDRESS, 4,
748 goto fail_unregister;
754 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
757 kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
758 kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
759 kvm_free_irq_source_id(kvm, pit->irq_source_id);
760 kthread_stop(pit->worker_task);
765 void kvm_free_pit(struct kvm *kvm)
767 struct hrtimer *timer;
769 if (kvm->arch.vpit) {
770 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
771 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
772 &kvm->arch.vpit->speaker_dev);
773 kvm_unregister_irq_mask_notifier(kvm, 0,
774 &kvm->arch.vpit->mask_notifier);
775 kvm_unregister_irq_ack_notifier(kvm,
776 &kvm->arch.vpit->pit_state.irq_ack_notifier);
777 mutex_lock(&kvm->arch.vpit->pit_state.lock);
778 timer = &kvm->arch.vpit->pit_state.timer;
779 hrtimer_cancel(timer);
780 flush_kthread_work(&kvm->arch.vpit->expired);
781 kthread_stop(kvm->arch.vpit->worker_task);
782 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
783 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
784 kfree(kvm->arch.vpit);