633e30cfbd6393d752fefa2c6c3190e9d9784b56
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136                         | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157         u64 *sptes[PTE_LIST_EXT];
158         struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162         u64 addr;
163         hpa_t shadow_addr;
164         u64 *sptep;
165         int level;
166         unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
170         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
171              shadow_walk_okay(&(_walker));                      \
172              shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
175         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
176              shadow_walk_okay(&(_walker)) &&                            \
177                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
178              __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196         shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201 {
202         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
203
204         access &= ACC_WRITE_MASK | ACC_USER_MASK;
205
206         sp->mmio_cached = true;
207         trace_mark_mmio_spte(sptep, gfn, access);
208         mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
209 }
210
211 static bool is_mmio_spte(u64 spte)
212 {
213         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
214 }
215
216 static gfn_t get_mmio_spte_gfn(u64 spte)
217 {
218         return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
219 }
220
221 static unsigned get_mmio_spte_access(u64 spte)
222 {
223         return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
224 }
225
226 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
227 {
228         if (unlikely(is_noslot_pfn(pfn))) {
229                 mark_mmio_spte(sptep, gfn, access);
230                 return true;
231         }
232
233         return false;
234 }
235
236 static inline u64 rsvd_bits(int s, int e)
237 {
238         return ((1ULL << (e - s + 1)) - 1) << s;
239 }
240
241 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
242                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
243 {
244         shadow_user_mask = user_mask;
245         shadow_accessed_mask = accessed_mask;
246         shadow_dirty_mask = dirty_mask;
247         shadow_nx_mask = nx_mask;
248         shadow_x_mask = x_mask;
249 }
250 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
251
252 static int is_cpuid_PSE36(void)
253 {
254         return 1;
255 }
256
257 static int is_nx(struct kvm_vcpu *vcpu)
258 {
259         return vcpu->arch.efer & EFER_NX;
260 }
261
262 static int is_shadow_present_pte(u64 pte)
263 {
264         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
265 }
266
267 static int is_large_pte(u64 pte)
268 {
269         return pte & PT_PAGE_SIZE_MASK;
270 }
271
272 static int is_dirty_gpte(unsigned long pte)
273 {
274         return pte & PT_DIRTY_MASK;
275 }
276
277 static int is_rmap_spte(u64 pte)
278 {
279         return is_shadow_present_pte(pte);
280 }
281
282 static int is_last_spte(u64 pte, int level)
283 {
284         if (level == PT_PAGE_TABLE_LEVEL)
285                 return 1;
286         if (is_large_pte(pte))
287                 return 1;
288         return 0;
289 }
290
291 static pfn_t spte_to_pfn(u64 pte)
292 {
293         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
294 }
295
296 static gfn_t pse36_gfn_delta(u32 gpte)
297 {
298         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
299
300         return (gpte & PT32_DIR_PSE36_MASK) << shift;
301 }
302
303 #ifdef CONFIG_X86_64
304 static void __set_spte(u64 *sptep, u64 spte)
305 {
306         *sptep = spte;
307 }
308
309 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
310 {
311         *sptep = spte;
312 }
313
314 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
315 {
316         return xchg(sptep, spte);
317 }
318
319 static u64 __get_spte_lockless(u64 *sptep)
320 {
321         return ACCESS_ONCE(*sptep);
322 }
323
324 static bool __check_direct_spte_mmio_pf(u64 spte)
325 {
326         /* It is valid if the spte is zapped. */
327         return spte == 0ull;
328 }
329 #else
330 union split_spte {
331         struct {
332                 u32 spte_low;
333                 u32 spte_high;
334         };
335         u64 spte;
336 };
337
338 static void count_spte_clear(u64 *sptep, u64 spte)
339 {
340         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
341
342         if (is_shadow_present_pte(spte))
343                 return;
344
345         /* Ensure the spte is completely set before we increase the count */
346         smp_wmb();
347         sp->clear_spte_count++;
348 }
349
350 static void __set_spte(u64 *sptep, u64 spte)
351 {
352         union split_spte *ssptep, sspte;
353
354         ssptep = (union split_spte *)sptep;
355         sspte = (union split_spte)spte;
356
357         ssptep->spte_high = sspte.spte_high;
358
359         /*
360          * If we map the spte from nonpresent to present, We should store
361          * the high bits firstly, then set present bit, so cpu can not
362          * fetch this spte while we are setting the spte.
363          */
364         smp_wmb();
365
366         ssptep->spte_low = sspte.spte_low;
367 }
368
369 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
370 {
371         union split_spte *ssptep, sspte;
372
373         ssptep = (union split_spte *)sptep;
374         sspte = (union split_spte)spte;
375
376         ssptep->spte_low = sspte.spte_low;
377
378         /*
379          * If we map the spte from present to nonpresent, we should clear
380          * present bit firstly to avoid vcpu fetch the old high bits.
381          */
382         smp_wmb();
383
384         ssptep->spte_high = sspte.spte_high;
385         count_spte_clear(sptep, spte);
386 }
387
388 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
389 {
390         union split_spte *ssptep, sspte, orig;
391
392         ssptep = (union split_spte *)sptep;
393         sspte = (union split_spte)spte;
394
395         /* xchg acts as a barrier before the setting of the high bits */
396         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
397         orig.spte_high = ssptep->spte_high;
398         ssptep->spte_high = sspte.spte_high;
399         count_spte_clear(sptep, spte);
400
401         return orig.spte;
402 }
403
404 /*
405  * The idea using the light way get the spte on x86_32 guest is from
406  * gup_get_pte(arch/x86/mm/gup.c).
407  * The difference is we can not catch the spte tlb flush if we leave
408  * guest mode, so we emulate it by increase clear_spte_count when spte
409  * is cleared.
410  */
411 static u64 __get_spte_lockless(u64 *sptep)
412 {
413         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
414         union split_spte spte, *orig = (union split_spte *)sptep;
415         int count;
416
417 retry:
418         count = sp->clear_spte_count;
419         smp_rmb();
420
421         spte.spte_low = orig->spte_low;
422         smp_rmb();
423
424         spte.spte_high = orig->spte_high;
425         smp_rmb();
426
427         if (unlikely(spte.spte_low != orig->spte_low ||
428               count != sp->clear_spte_count))
429                 goto retry;
430
431         return spte.spte;
432 }
433
434 static bool __check_direct_spte_mmio_pf(u64 spte)
435 {
436         union split_spte sspte = (union split_spte)spte;
437         u32 high_mmio_mask = shadow_mmio_mask >> 32;
438
439         /* It is valid if the spte is zapped. */
440         if (spte == 0ull)
441                 return true;
442
443         /* It is valid if the spte is being zapped. */
444         if (sspte.spte_low == 0ull &&
445             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
446                 return true;
447
448         return false;
449 }
450 #endif
451
452 static bool spte_is_locklessly_modifiable(u64 spte)
453 {
454         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
455                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
456 }
457
458 static bool spte_has_volatile_bits(u64 spte)
459 {
460         /*
461          * Always atomicly update spte if it can be updated
462          * out of mmu-lock, it can ensure dirty bit is not lost,
463          * also, it can help us to get a stable is_writable_pte()
464          * to ensure tlb flush is not missed.
465          */
466         if (spte_is_locklessly_modifiable(spte))
467                 return true;
468
469         if (!shadow_accessed_mask)
470                 return false;
471
472         if (!is_shadow_present_pte(spte))
473                 return false;
474
475         if ((spte & shadow_accessed_mask) &&
476               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
477                 return false;
478
479         return true;
480 }
481
482 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
483 {
484         return (old_spte & bit_mask) && !(new_spte & bit_mask);
485 }
486
487 /* Rules for using mmu_spte_set:
488  * Set the sptep from nonpresent to present.
489  * Note: the sptep being assigned *must* be either not present
490  * or in a state where the hardware will not attempt to update
491  * the spte.
492  */
493 static void mmu_spte_set(u64 *sptep, u64 new_spte)
494 {
495         WARN_ON(is_shadow_present_pte(*sptep));
496         __set_spte(sptep, new_spte);
497 }
498
499 /* Rules for using mmu_spte_update:
500  * Update the state bits, it means the mapped pfn is not changged.
501  *
502  * Whenever we overwrite a writable spte with a read-only one we
503  * should flush remote TLBs. Otherwise rmap_write_protect
504  * will find a read-only spte, even though the writable spte
505  * might be cached on a CPU's TLB, the return value indicates this
506  * case.
507  */
508 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
509 {
510         u64 old_spte = *sptep;
511         bool ret = false;
512
513         WARN_ON(!is_rmap_spte(new_spte));
514
515         if (!is_shadow_present_pte(old_spte)) {
516                 mmu_spte_set(sptep, new_spte);
517                 return ret;
518         }
519
520         if (!spte_has_volatile_bits(old_spte))
521                 __update_clear_spte_fast(sptep, new_spte);
522         else
523                 old_spte = __update_clear_spte_slow(sptep, new_spte);
524
525         /*
526          * For the spte updated out of mmu-lock is safe, since
527          * we always atomicly update it, see the comments in
528          * spte_has_volatile_bits().
529          */
530         if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
531                 ret = true;
532
533         if (!shadow_accessed_mask)
534                 return ret;
535
536         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
537                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
538         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
539                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
540
541         return ret;
542 }
543
544 /*
545  * Rules for using mmu_spte_clear_track_bits:
546  * It sets the sptep from present to nonpresent, and track the
547  * state bits, it is used to clear the last level sptep.
548  */
549 static int mmu_spte_clear_track_bits(u64 *sptep)
550 {
551         pfn_t pfn;
552         u64 old_spte = *sptep;
553
554         if (!spte_has_volatile_bits(old_spte))
555                 __update_clear_spte_fast(sptep, 0ull);
556         else
557                 old_spte = __update_clear_spte_slow(sptep, 0ull);
558
559         if (!is_rmap_spte(old_spte))
560                 return 0;
561
562         pfn = spte_to_pfn(old_spte);
563
564         /*
565          * KVM does not hold the refcount of the page used by
566          * kvm mmu, before reclaiming the page, we should
567          * unmap it from mmu first.
568          */
569         WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
570
571         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
572                 kvm_set_pfn_accessed(pfn);
573         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
574                 kvm_set_pfn_dirty(pfn);
575         return 1;
576 }
577
578 /*
579  * Rules for using mmu_spte_clear_no_track:
580  * Directly clear spte without caring the state bits of sptep,
581  * it is used to set the upper level spte.
582  */
583 static void mmu_spte_clear_no_track(u64 *sptep)
584 {
585         __update_clear_spte_fast(sptep, 0ull);
586 }
587
588 static u64 mmu_spte_get_lockless(u64 *sptep)
589 {
590         return __get_spte_lockless(sptep);
591 }
592
593 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
594 {
595         /*
596          * Prevent page table teardown by making any free-er wait during
597          * kvm_flush_remote_tlbs() IPI to all active vcpus.
598          */
599         local_irq_disable();
600         vcpu->mode = READING_SHADOW_PAGE_TABLES;
601         /*
602          * Make sure a following spte read is not reordered ahead of the write
603          * to vcpu->mode.
604          */
605         smp_mb();
606 }
607
608 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
609 {
610         /*
611          * Make sure the write to vcpu->mode is not reordered in front of
612          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
613          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
614          */
615         smp_mb();
616         vcpu->mode = OUTSIDE_GUEST_MODE;
617         local_irq_enable();
618 }
619
620 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
621                                   struct kmem_cache *base_cache, int min)
622 {
623         void *obj;
624
625         if (cache->nobjs >= min)
626                 return 0;
627         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
628                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
629                 if (!obj)
630                         return -ENOMEM;
631                 cache->objects[cache->nobjs++] = obj;
632         }
633         return 0;
634 }
635
636 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
637 {
638         return cache->nobjs;
639 }
640
641 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
642                                   struct kmem_cache *cache)
643 {
644         while (mc->nobjs)
645                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
646 }
647
648 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
649                                        int min)
650 {
651         void *page;
652
653         if (cache->nobjs >= min)
654                 return 0;
655         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
656                 page = (void *)__get_free_page(GFP_KERNEL);
657                 if (!page)
658                         return -ENOMEM;
659                 cache->objects[cache->nobjs++] = page;
660         }
661         return 0;
662 }
663
664 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
665 {
666         while (mc->nobjs)
667                 free_page((unsigned long)mc->objects[--mc->nobjs]);
668 }
669
670 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
671 {
672         int r;
673
674         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
675                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
676         if (r)
677                 goto out;
678         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
679         if (r)
680                 goto out;
681         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
682                                    mmu_page_header_cache, 4);
683 out:
684         return r;
685 }
686
687 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
688 {
689         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
690                                 pte_list_desc_cache);
691         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
692         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
693                                 mmu_page_header_cache);
694 }
695
696 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
697 {
698         void *p;
699
700         BUG_ON(!mc->nobjs);
701         p = mc->objects[--mc->nobjs];
702         return p;
703 }
704
705 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
706 {
707         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
708 }
709
710 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
711 {
712         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
713 }
714
715 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
716 {
717         if (!sp->role.direct)
718                 return sp->gfns[index];
719
720         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
721 }
722
723 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
724 {
725         if (sp->role.direct)
726                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
727         else
728                 sp->gfns[index] = gfn;
729 }
730
731 /*
732  * Return the pointer to the large page information for a given gfn,
733  * handling slots that are not large page aligned.
734  */
735 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
736                                               struct kvm_memory_slot *slot,
737                                               int level)
738 {
739         unsigned long idx;
740
741         idx = gfn_to_index(gfn, slot->base_gfn, level);
742         return &slot->arch.lpage_info[level - 2][idx];
743 }
744
745 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
746 {
747         struct kvm_memory_slot *slot;
748         struct kvm_lpage_info *linfo;
749         int i;
750
751         slot = gfn_to_memslot(kvm, gfn);
752         for (i = PT_DIRECTORY_LEVEL;
753              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
754                 linfo = lpage_info_slot(gfn, slot, i);
755                 linfo->write_count += 1;
756         }
757         kvm->arch.indirect_shadow_pages++;
758 }
759
760 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
761 {
762         struct kvm_memory_slot *slot;
763         struct kvm_lpage_info *linfo;
764         int i;
765
766         slot = gfn_to_memslot(kvm, gfn);
767         for (i = PT_DIRECTORY_LEVEL;
768              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
769                 linfo = lpage_info_slot(gfn, slot, i);
770                 linfo->write_count -= 1;
771                 WARN_ON(linfo->write_count < 0);
772         }
773         kvm->arch.indirect_shadow_pages--;
774 }
775
776 static int has_wrprotected_page(struct kvm *kvm,
777                                 gfn_t gfn,
778                                 int level)
779 {
780         struct kvm_memory_slot *slot;
781         struct kvm_lpage_info *linfo;
782
783         slot = gfn_to_memslot(kvm, gfn);
784         if (slot) {
785                 linfo = lpage_info_slot(gfn, slot, level);
786                 return linfo->write_count;
787         }
788
789         return 1;
790 }
791
792 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
793 {
794         unsigned long page_size;
795         int i, ret = 0;
796
797         page_size = kvm_host_page_size(kvm, gfn);
798
799         for (i = PT_PAGE_TABLE_LEVEL;
800              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
801                 if (page_size >= KVM_HPAGE_SIZE(i))
802                         ret = i;
803                 else
804                         break;
805         }
806
807         return ret;
808 }
809
810 static struct kvm_memory_slot *
811 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
812                             bool no_dirty_log)
813 {
814         struct kvm_memory_slot *slot;
815
816         slot = gfn_to_memslot(vcpu->kvm, gfn);
817         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
818               (no_dirty_log && slot->dirty_bitmap))
819                 slot = NULL;
820
821         return slot;
822 }
823
824 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
825 {
826         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
827 }
828
829 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
830 {
831         int host_level, level, max_level;
832
833         host_level = host_mapping_level(vcpu->kvm, large_gfn);
834
835         if (host_level == PT_PAGE_TABLE_LEVEL)
836                 return host_level;
837
838         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
839
840         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
841                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
842                         break;
843
844         return level - 1;
845 }
846
847 /*
848  * Pte mapping structures:
849  *
850  * If pte_list bit zero is zero, then pte_list point to the spte.
851  *
852  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
853  * pte_list_desc containing more mappings.
854  *
855  * Returns the number of pte entries before the spte was added or zero if
856  * the spte was not added.
857  *
858  */
859 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
860                         unsigned long *pte_list)
861 {
862         struct pte_list_desc *desc;
863         int i, count = 0;
864
865         if (!*pte_list) {
866                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
867                 *pte_list = (unsigned long)spte;
868         } else if (!(*pte_list & 1)) {
869                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
870                 desc = mmu_alloc_pte_list_desc(vcpu);
871                 desc->sptes[0] = (u64 *)*pte_list;
872                 desc->sptes[1] = spte;
873                 *pte_list = (unsigned long)desc | 1;
874                 ++count;
875         } else {
876                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
877                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
878                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
879                         desc = desc->more;
880                         count += PTE_LIST_EXT;
881                 }
882                 if (desc->sptes[PTE_LIST_EXT-1]) {
883                         desc->more = mmu_alloc_pte_list_desc(vcpu);
884                         desc = desc->more;
885                 }
886                 for (i = 0; desc->sptes[i]; ++i)
887                         ++count;
888                 desc->sptes[i] = spte;
889         }
890         return count;
891 }
892
893 static void
894 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
895                            int i, struct pte_list_desc *prev_desc)
896 {
897         int j;
898
899         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
900                 ;
901         desc->sptes[i] = desc->sptes[j];
902         desc->sptes[j] = NULL;
903         if (j != 0)
904                 return;
905         if (!prev_desc && !desc->more)
906                 *pte_list = (unsigned long)desc->sptes[0];
907         else
908                 if (prev_desc)
909                         prev_desc->more = desc->more;
910                 else
911                         *pte_list = (unsigned long)desc->more | 1;
912         mmu_free_pte_list_desc(desc);
913 }
914
915 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
916 {
917         struct pte_list_desc *desc;
918         struct pte_list_desc *prev_desc;
919         int i;
920
921         if (!*pte_list) {
922                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
923                 BUG();
924         } else if (!(*pte_list & 1)) {
925                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
926                 if ((u64 *)*pte_list != spte) {
927                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
928                         BUG();
929                 }
930                 *pte_list = 0;
931         } else {
932                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
933                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
934                 prev_desc = NULL;
935                 while (desc) {
936                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
937                                 if (desc->sptes[i] == spte) {
938                                         pte_list_desc_remove_entry(pte_list,
939                                                                desc, i,
940                                                                prev_desc);
941                                         return;
942                                 }
943                         prev_desc = desc;
944                         desc = desc->more;
945                 }
946                 pr_err("pte_list_remove: %p many->many\n", spte);
947                 BUG();
948         }
949 }
950
951 typedef void (*pte_list_walk_fn) (u64 *spte);
952 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
953 {
954         struct pte_list_desc *desc;
955         int i;
956
957         if (!*pte_list)
958                 return;
959
960         if (!(*pte_list & 1))
961                 return fn((u64 *)*pte_list);
962
963         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
964         while (desc) {
965                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
966                         fn(desc->sptes[i]);
967                 desc = desc->more;
968         }
969 }
970
971 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
972                                     struct kvm_memory_slot *slot)
973 {
974         unsigned long idx;
975
976         idx = gfn_to_index(gfn, slot->base_gfn, level);
977         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
978 }
979
980 /*
981  * Take gfn and return the reverse mapping to it.
982  */
983 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
984 {
985         struct kvm_memory_slot *slot;
986
987         slot = gfn_to_memslot(kvm, gfn);
988         return __gfn_to_rmap(gfn, level, slot);
989 }
990
991 static bool rmap_can_add(struct kvm_vcpu *vcpu)
992 {
993         struct kvm_mmu_memory_cache *cache;
994
995         cache = &vcpu->arch.mmu_pte_list_desc_cache;
996         return mmu_memory_cache_free_objects(cache);
997 }
998
999 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1000 {
1001         struct kvm_mmu_page *sp;
1002         unsigned long *rmapp;
1003
1004         sp = page_header(__pa(spte));
1005         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1006         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1007         return pte_list_add(vcpu, spte, rmapp);
1008 }
1009
1010 static void rmap_remove(struct kvm *kvm, u64 *spte)
1011 {
1012         struct kvm_mmu_page *sp;
1013         gfn_t gfn;
1014         unsigned long *rmapp;
1015
1016         sp = page_header(__pa(spte));
1017         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1018         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1019         pte_list_remove(spte, rmapp);
1020 }
1021
1022 /*
1023  * Used by the following functions to iterate through the sptes linked by a
1024  * rmap.  All fields are private and not assumed to be used outside.
1025  */
1026 struct rmap_iterator {
1027         /* private fields */
1028         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1029         int pos;                        /* index of the sptep */
1030 };
1031
1032 /*
1033  * Iteration must be started by this function.  This should also be used after
1034  * removing/dropping sptes from the rmap link because in such cases the
1035  * information in the itererator may not be valid.
1036  *
1037  * Returns sptep if found, NULL otherwise.
1038  */
1039 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1040 {
1041         if (!rmap)
1042                 return NULL;
1043
1044         if (!(rmap & 1)) {
1045                 iter->desc = NULL;
1046                 return (u64 *)rmap;
1047         }
1048
1049         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1050         iter->pos = 0;
1051         return iter->desc->sptes[iter->pos];
1052 }
1053
1054 /*
1055  * Must be used with a valid iterator: e.g. after rmap_get_first().
1056  *
1057  * Returns sptep if found, NULL otherwise.
1058  */
1059 static u64 *rmap_get_next(struct rmap_iterator *iter)
1060 {
1061         if (iter->desc) {
1062                 if (iter->pos < PTE_LIST_EXT - 1) {
1063                         u64 *sptep;
1064
1065                         ++iter->pos;
1066                         sptep = iter->desc->sptes[iter->pos];
1067                         if (sptep)
1068                                 return sptep;
1069                 }
1070
1071                 iter->desc = iter->desc->more;
1072
1073                 if (iter->desc) {
1074                         iter->pos = 0;
1075                         /* desc->sptes[0] cannot be NULL */
1076                         return iter->desc->sptes[iter->pos];
1077                 }
1078         }
1079
1080         return NULL;
1081 }
1082
1083 static void drop_spte(struct kvm *kvm, u64 *sptep)
1084 {
1085         if (mmu_spte_clear_track_bits(sptep))
1086                 rmap_remove(kvm, sptep);
1087 }
1088
1089
1090 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1091 {
1092         if (is_large_pte(*sptep)) {
1093                 WARN_ON(page_header(__pa(sptep))->role.level ==
1094                         PT_PAGE_TABLE_LEVEL);
1095                 drop_spte(kvm, sptep);
1096                 --kvm->stat.lpages;
1097                 return true;
1098         }
1099
1100         return false;
1101 }
1102
1103 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1104 {
1105         if (__drop_large_spte(vcpu->kvm, sptep))
1106                 kvm_flush_remote_tlbs(vcpu->kvm);
1107 }
1108
1109 /*
1110  * Write-protect on the specified @sptep, @pt_protect indicates whether
1111  * spte writ-protection is caused by protecting shadow page table.
1112  * @flush indicates whether tlb need be flushed.
1113  *
1114  * Note: write protection is difference between drity logging and spte
1115  * protection:
1116  * - for dirty logging, the spte can be set to writable at anytime if
1117  *   its dirty bitmap is properly set.
1118  * - for spte protection, the spte can be writable only after unsync-ing
1119  *   shadow page.
1120  *
1121  * Return true if the spte is dropped.
1122  */
1123 static bool
1124 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1125 {
1126         u64 spte = *sptep;
1127
1128         if (!is_writable_pte(spte) &&
1129               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1130                 return false;
1131
1132         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1133
1134         if (__drop_large_spte(kvm, sptep)) {
1135                 *flush |= true;
1136                 return true;
1137         }
1138
1139         if (pt_protect)
1140                 spte &= ~SPTE_MMU_WRITEABLE;
1141         spte = spte & ~PT_WRITABLE_MASK;
1142
1143         *flush |= mmu_spte_update(sptep, spte);
1144         return false;
1145 }
1146
1147 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1148                                  bool pt_protect)
1149 {
1150         u64 *sptep;
1151         struct rmap_iterator iter;
1152         bool flush = false;
1153
1154         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1155                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1156                 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1157                         sptep = rmap_get_first(*rmapp, &iter);
1158                         continue;
1159                 }
1160
1161                 sptep = rmap_get_next(&iter);
1162         }
1163
1164         return flush;
1165 }
1166
1167 /**
1168  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1169  * @kvm: kvm instance
1170  * @slot: slot to protect
1171  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1172  * @mask: indicates which pages we should protect
1173  *
1174  * Used when we do not need to care about huge page mappings: e.g. during dirty
1175  * logging we do not have any such mappings.
1176  */
1177 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1178                                      struct kvm_memory_slot *slot,
1179                                      gfn_t gfn_offset, unsigned long mask)
1180 {
1181         unsigned long *rmapp;
1182
1183         while (mask) {
1184                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1185                                       PT_PAGE_TABLE_LEVEL, slot);
1186                 __rmap_write_protect(kvm, rmapp, false);
1187
1188                 /* clear the first set bit */
1189                 mask &= mask - 1;
1190         }
1191 }
1192
1193 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1194 {
1195         struct kvm_memory_slot *slot;
1196         unsigned long *rmapp;
1197         int i;
1198         bool write_protected = false;
1199
1200         slot = gfn_to_memslot(kvm, gfn);
1201
1202         for (i = PT_PAGE_TABLE_LEVEL;
1203              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1204                 rmapp = __gfn_to_rmap(gfn, i, slot);
1205                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1206         }
1207
1208         return write_protected;
1209 }
1210
1211 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1212                            struct kvm_memory_slot *slot, unsigned long data)
1213 {
1214         u64 *sptep;
1215         struct rmap_iterator iter;
1216         int need_tlb_flush = 0;
1217
1218         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1219                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1220                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1221
1222                 drop_spte(kvm, sptep);
1223                 need_tlb_flush = 1;
1224         }
1225
1226         return need_tlb_flush;
1227 }
1228
1229 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1230                              struct kvm_memory_slot *slot, unsigned long data)
1231 {
1232         u64 *sptep;
1233         struct rmap_iterator iter;
1234         int need_flush = 0;
1235         u64 new_spte;
1236         pte_t *ptep = (pte_t *)data;
1237         pfn_t new_pfn;
1238
1239         WARN_ON(pte_huge(*ptep));
1240         new_pfn = pte_pfn(*ptep);
1241
1242         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1243                 BUG_ON(!is_shadow_present_pte(*sptep));
1244                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1245
1246                 need_flush = 1;
1247
1248                 if (pte_write(*ptep)) {
1249                         drop_spte(kvm, sptep);
1250                         sptep = rmap_get_first(*rmapp, &iter);
1251                 } else {
1252                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1253                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1254
1255                         new_spte &= ~PT_WRITABLE_MASK;
1256                         new_spte &= ~SPTE_HOST_WRITEABLE;
1257                         new_spte &= ~shadow_accessed_mask;
1258
1259                         mmu_spte_clear_track_bits(sptep);
1260                         mmu_spte_set(sptep, new_spte);
1261                         sptep = rmap_get_next(&iter);
1262                 }
1263         }
1264
1265         if (need_flush)
1266                 kvm_flush_remote_tlbs(kvm);
1267
1268         return 0;
1269 }
1270
1271 static int kvm_handle_hva_range(struct kvm *kvm,
1272                                 unsigned long start,
1273                                 unsigned long end,
1274                                 unsigned long data,
1275                                 int (*handler)(struct kvm *kvm,
1276                                                unsigned long *rmapp,
1277                                                struct kvm_memory_slot *slot,
1278                                                unsigned long data))
1279 {
1280         int j;
1281         int ret = 0;
1282         struct kvm_memslots *slots;
1283         struct kvm_memory_slot *memslot;
1284
1285         slots = kvm_memslots(kvm);
1286
1287         kvm_for_each_memslot(memslot, slots) {
1288                 unsigned long hva_start, hva_end;
1289                 gfn_t gfn_start, gfn_end;
1290
1291                 hva_start = max(start, memslot->userspace_addr);
1292                 hva_end = min(end, memslot->userspace_addr +
1293                                         (memslot->npages << PAGE_SHIFT));
1294                 if (hva_start >= hva_end)
1295                         continue;
1296                 /*
1297                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1298                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1299                  */
1300                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1301                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1302
1303                 for (j = PT_PAGE_TABLE_LEVEL;
1304                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1305                         unsigned long idx, idx_end;
1306                         unsigned long *rmapp;
1307
1308                         /*
1309                          * {idx(page_j) | page_j intersects with
1310                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1311                          */
1312                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1313                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1314
1315                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1316
1317                         for (; idx <= idx_end; ++idx)
1318                                 ret |= handler(kvm, rmapp++, memslot, data);
1319                 }
1320         }
1321
1322         return ret;
1323 }
1324
1325 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1326                           unsigned long data,
1327                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1328                                          struct kvm_memory_slot *slot,
1329                                          unsigned long data))
1330 {
1331         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1332 }
1333
1334 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1335 {
1336         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1337 }
1338
1339 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1340 {
1341         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1342 }
1343
1344 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1345 {
1346         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1347 }
1348
1349 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1350                          struct kvm_memory_slot *slot, unsigned long data)
1351 {
1352         u64 *sptep;
1353         struct rmap_iterator uninitialized_var(iter);
1354         int young = 0;
1355
1356         /*
1357          * In case of absence of EPT Access and Dirty Bits supports,
1358          * emulate the accessed bit for EPT, by checking if this page has
1359          * an EPT mapping, and clearing it if it does. On the next access,
1360          * a new EPT mapping will be established.
1361          * This has some overhead, but not as much as the cost of swapping
1362          * out actively used pages or breaking up actively used hugepages.
1363          */
1364         if (!shadow_accessed_mask) {
1365                 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1366                 goto out;
1367         }
1368
1369         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1370              sptep = rmap_get_next(&iter)) {
1371                 BUG_ON(!is_shadow_present_pte(*sptep));
1372
1373                 if (*sptep & shadow_accessed_mask) {
1374                         young = 1;
1375                         clear_bit((ffs(shadow_accessed_mask) - 1),
1376                                  (unsigned long *)sptep);
1377                 }
1378         }
1379 out:
1380         /* @data has hva passed to kvm_age_hva(). */
1381         trace_kvm_age_page(data, slot, young);
1382         return young;
1383 }
1384
1385 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1386                               struct kvm_memory_slot *slot, unsigned long data)
1387 {
1388         u64 *sptep;
1389         struct rmap_iterator iter;
1390         int young = 0;
1391
1392         /*
1393          * If there's no access bit in the secondary pte set by the
1394          * hardware it's up to gup-fast/gup to set the access bit in
1395          * the primary pte or in the page structure.
1396          */
1397         if (!shadow_accessed_mask)
1398                 goto out;
1399
1400         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1401              sptep = rmap_get_next(&iter)) {
1402                 BUG_ON(!is_shadow_present_pte(*sptep));
1403
1404                 if (*sptep & shadow_accessed_mask) {
1405                         young = 1;
1406                         break;
1407                 }
1408         }
1409 out:
1410         return young;
1411 }
1412
1413 #define RMAP_RECYCLE_THRESHOLD 1000
1414
1415 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1416 {
1417         unsigned long *rmapp;
1418         struct kvm_mmu_page *sp;
1419
1420         sp = page_header(__pa(spte));
1421
1422         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1423
1424         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1425         kvm_flush_remote_tlbs(vcpu->kvm);
1426 }
1427
1428 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1429 {
1430         return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1431 }
1432
1433 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1434 {
1435         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1436 }
1437
1438 #ifdef MMU_DEBUG
1439 static int is_empty_shadow_page(u64 *spt)
1440 {
1441         u64 *pos;
1442         u64 *end;
1443
1444         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1445                 if (is_shadow_present_pte(*pos)) {
1446                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1447                                pos, *pos);
1448                         return 0;
1449                 }
1450         return 1;
1451 }
1452 #endif
1453
1454 /*
1455  * This value is the sum of all of the kvm instances's
1456  * kvm->arch.n_used_mmu_pages values.  We need a global,
1457  * aggregate version in order to make the slab shrinker
1458  * faster
1459  */
1460 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1461 {
1462         kvm->arch.n_used_mmu_pages += nr;
1463         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1464 }
1465
1466 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1467 {
1468         ASSERT(is_empty_shadow_page(sp->spt));
1469         hlist_del(&sp->hash_link);
1470         list_del(&sp->link);
1471         free_page((unsigned long)sp->spt);
1472         if (!sp->role.direct)
1473                 free_page((unsigned long)sp->gfns);
1474         kmem_cache_free(mmu_page_header_cache, sp);
1475 }
1476
1477 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1478 {
1479         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1480 }
1481
1482 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1483                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1484 {
1485         if (!parent_pte)
1486                 return;
1487
1488         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1489 }
1490
1491 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1492                                        u64 *parent_pte)
1493 {
1494         pte_list_remove(parent_pte, &sp->parent_ptes);
1495 }
1496
1497 static void drop_parent_pte(struct kvm_mmu_page *sp,
1498                             u64 *parent_pte)
1499 {
1500         mmu_page_remove_parent_pte(sp, parent_pte);
1501         mmu_spte_clear_no_track(parent_pte);
1502 }
1503
1504 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
1505
1506 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1507                                                u64 *parent_pte, int direct)
1508 {
1509         struct kvm_mmu_page *sp;
1510
1511         make_mmu_pages_available(vcpu);
1512
1513         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1514         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1515         if (!direct)
1516                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1517         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1518         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1519         sp->parent_ptes = 0;
1520         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1521         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1522         return sp;
1523 }
1524
1525 static void mark_unsync(u64 *spte);
1526 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1527 {
1528         pte_list_walk(&sp->parent_ptes, mark_unsync);
1529 }
1530
1531 static void mark_unsync(u64 *spte)
1532 {
1533         struct kvm_mmu_page *sp;
1534         unsigned int index;
1535
1536         sp = page_header(__pa(spte));
1537         index = spte - sp->spt;
1538         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1539                 return;
1540         if (sp->unsync_children++)
1541                 return;
1542         kvm_mmu_mark_parents_unsync(sp);
1543 }
1544
1545 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1546                                struct kvm_mmu_page *sp)
1547 {
1548         return 1;
1549 }
1550
1551 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1552 {
1553 }
1554
1555 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1556                                  struct kvm_mmu_page *sp, u64 *spte,
1557                                  const void *pte)
1558 {
1559         WARN_ON(1);
1560 }
1561
1562 #define KVM_PAGE_ARRAY_NR 16
1563
1564 struct kvm_mmu_pages {
1565         struct mmu_page_and_offset {
1566                 struct kvm_mmu_page *sp;
1567                 unsigned int idx;
1568         } page[KVM_PAGE_ARRAY_NR];
1569         unsigned int nr;
1570 };
1571
1572 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1573                          int idx)
1574 {
1575         int i;
1576
1577         if (sp->unsync)
1578                 for (i=0; i < pvec->nr; i++)
1579                         if (pvec->page[i].sp == sp)
1580                                 return 0;
1581
1582         pvec->page[pvec->nr].sp = sp;
1583         pvec->page[pvec->nr].idx = idx;
1584         pvec->nr++;
1585         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1586 }
1587
1588 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1589                            struct kvm_mmu_pages *pvec)
1590 {
1591         int i, ret, nr_unsync_leaf = 0;
1592
1593         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1594                 struct kvm_mmu_page *child;
1595                 u64 ent = sp->spt[i];
1596
1597                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1598                         goto clear_child_bitmap;
1599
1600                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1601
1602                 if (child->unsync_children) {
1603                         if (mmu_pages_add(pvec, child, i))
1604                                 return -ENOSPC;
1605
1606                         ret = __mmu_unsync_walk(child, pvec);
1607                         if (!ret)
1608                                 goto clear_child_bitmap;
1609                         else if (ret > 0)
1610                                 nr_unsync_leaf += ret;
1611                         else
1612                                 return ret;
1613                 } else if (child->unsync) {
1614                         nr_unsync_leaf++;
1615                         if (mmu_pages_add(pvec, child, i))
1616                                 return -ENOSPC;
1617                 } else
1618                          goto clear_child_bitmap;
1619
1620                 continue;
1621
1622 clear_child_bitmap:
1623                 __clear_bit(i, sp->unsync_child_bitmap);
1624                 sp->unsync_children--;
1625                 WARN_ON((int)sp->unsync_children < 0);
1626         }
1627
1628
1629         return nr_unsync_leaf;
1630 }
1631
1632 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1633                            struct kvm_mmu_pages *pvec)
1634 {
1635         if (!sp->unsync_children)
1636                 return 0;
1637
1638         mmu_pages_add(pvec, sp, 0);
1639         return __mmu_unsync_walk(sp, pvec);
1640 }
1641
1642 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1643 {
1644         WARN_ON(!sp->unsync);
1645         trace_kvm_mmu_sync_page(sp);
1646         sp->unsync = 0;
1647         --kvm->stat.mmu_unsync;
1648 }
1649
1650 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1651                                     struct list_head *invalid_list);
1652 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1653                                     struct list_head *invalid_list);
1654
1655 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1656         hlist_for_each_entry(_sp,                                       \
1657           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1658                 if ((_sp)->gfn != (_gfn)) {} else
1659
1660 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1661         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1662                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1663
1664 /* @sp->gfn should be write-protected at the call site */
1665 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1666                            struct list_head *invalid_list, bool clear_unsync)
1667 {
1668         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1669                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1670                 return 1;
1671         }
1672
1673         if (clear_unsync)
1674                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1675
1676         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1677                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1678                 return 1;
1679         }
1680
1681         kvm_mmu_flush_tlb(vcpu);
1682         return 0;
1683 }
1684
1685 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1686                                    struct kvm_mmu_page *sp)
1687 {
1688         LIST_HEAD(invalid_list);
1689         int ret;
1690
1691         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1692         if (ret)
1693                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1694
1695         return ret;
1696 }
1697
1698 #ifdef CONFIG_KVM_MMU_AUDIT
1699 #include "mmu_audit.c"
1700 #else
1701 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1702 static void mmu_audit_disable(void) { }
1703 #endif
1704
1705 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1706                          struct list_head *invalid_list)
1707 {
1708         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1709 }
1710
1711 /* @gfn should be write-protected at the call site */
1712 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1713 {
1714         struct kvm_mmu_page *s;
1715         LIST_HEAD(invalid_list);
1716         bool flush = false;
1717
1718         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1719                 if (!s->unsync)
1720                         continue;
1721
1722                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1723                 kvm_unlink_unsync_page(vcpu->kvm, s);
1724                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1725                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1726                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1727                         continue;
1728                 }
1729                 flush = true;
1730         }
1731
1732         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1733         if (flush)
1734                 kvm_mmu_flush_tlb(vcpu);
1735 }
1736
1737 struct mmu_page_path {
1738         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1739         unsigned int idx[PT64_ROOT_LEVEL-1];
1740 };
1741
1742 #define for_each_sp(pvec, sp, parents, i)                       \
1743                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1744                         sp = pvec.page[i].sp;                   \
1745                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1746                         i = mmu_pages_next(&pvec, &parents, i))
1747
1748 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1749                           struct mmu_page_path *parents,
1750                           int i)
1751 {
1752         int n;
1753
1754         for (n = i+1; n < pvec->nr; n++) {
1755                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1756
1757                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1758                         parents->idx[0] = pvec->page[n].idx;
1759                         return n;
1760                 }
1761
1762                 parents->parent[sp->role.level-2] = sp;
1763                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1764         }
1765
1766         return n;
1767 }
1768
1769 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1770 {
1771         struct kvm_mmu_page *sp;
1772         unsigned int level = 0;
1773
1774         do {
1775                 unsigned int idx = parents->idx[level];
1776
1777                 sp = parents->parent[level];
1778                 if (!sp)
1779                         return;
1780
1781                 --sp->unsync_children;
1782                 WARN_ON((int)sp->unsync_children < 0);
1783                 __clear_bit(idx, sp->unsync_child_bitmap);
1784                 level++;
1785         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1786 }
1787
1788 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1789                                struct mmu_page_path *parents,
1790                                struct kvm_mmu_pages *pvec)
1791 {
1792         parents->parent[parent->role.level-1] = NULL;
1793         pvec->nr = 0;
1794 }
1795
1796 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1797                               struct kvm_mmu_page *parent)
1798 {
1799         int i;
1800         struct kvm_mmu_page *sp;
1801         struct mmu_page_path parents;
1802         struct kvm_mmu_pages pages;
1803         LIST_HEAD(invalid_list);
1804
1805         kvm_mmu_pages_init(parent, &parents, &pages);
1806         while (mmu_unsync_walk(parent, &pages)) {
1807                 bool protected = false;
1808
1809                 for_each_sp(pages, sp, parents, i)
1810                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1811
1812                 if (protected)
1813                         kvm_flush_remote_tlbs(vcpu->kvm);
1814
1815                 for_each_sp(pages, sp, parents, i) {
1816                         kvm_sync_page(vcpu, sp, &invalid_list);
1817                         mmu_pages_clear_parents(&parents);
1818                 }
1819                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1820                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1821                 kvm_mmu_pages_init(parent, &parents, &pages);
1822         }
1823 }
1824
1825 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1826 {
1827         int i;
1828
1829         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1830                 sp->spt[i] = 0ull;
1831 }
1832
1833 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1834 {
1835         sp->write_flooding_count = 0;
1836 }
1837
1838 static void clear_sp_write_flooding_count(u64 *spte)
1839 {
1840         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1841
1842         __clear_sp_write_flooding_count(sp);
1843 }
1844
1845 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1846                                              gfn_t gfn,
1847                                              gva_t gaddr,
1848                                              unsigned level,
1849                                              int direct,
1850                                              unsigned access,
1851                                              u64 *parent_pte)
1852 {
1853         union kvm_mmu_page_role role;
1854         unsigned quadrant;
1855         struct kvm_mmu_page *sp;
1856         bool need_sync = false;
1857
1858         role = vcpu->arch.mmu.base_role;
1859         role.level = level;
1860         role.direct = direct;
1861         if (role.direct)
1862                 role.cr4_pae = 0;
1863         role.access = access;
1864         if (!vcpu->arch.mmu.direct_map
1865             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1866                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1867                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1868                 role.quadrant = quadrant;
1869         }
1870         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1871                 if (!need_sync && sp->unsync)
1872                         need_sync = true;
1873
1874                 if (sp->role.word != role.word)
1875                         continue;
1876
1877                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1878                         break;
1879
1880                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1881                 if (sp->unsync_children) {
1882                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1883                         kvm_mmu_mark_parents_unsync(sp);
1884                 } else if (sp->unsync)
1885                         kvm_mmu_mark_parents_unsync(sp);
1886
1887                 __clear_sp_write_flooding_count(sp);
1888                 trace_kvm_mmu_get_page(sp, false);
1889                 return sp;
1890         }
1891         ++vcpu->kvm->stat.mmu_cache_miss;
1892         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1893         if (!sp)
1894                 return sp;
1895         sp->gfn = gfn;
1896         sp->role = role;
1897         hlist_add_head(&sp->hash_link,
1898                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1899         if (!direct) {
1900                 if (rmap_write_protect(vcpu->kvm, gfn))
1901                         kvm_flush_remote_tlbs(vcpu->kvm);
1902                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1903                         kvm_sync_pages(vcpu, gfn);
1904
1905                 account_shadowed(vcpu->kvm, gfn);
1906         }
1907         init_shadow_page_table(sp);
1908         trace_kvm_mmu_get_page(sp, true);
1909         return sp;
1910 }
1911
1912 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1913                              struct kvm_vcpu *vcpu, u64 addr)
1914 {
1915         iterator->addr = addr;
1916         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1917         iterator->level = vcpu->arch.mmu.shadow_root_level;
1918
1919         if (iterator->level == PT64_ROOT_LEVEL &&
1920             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1921             !vcpu->arch.mmu.direct_map)
1922                 --iterator->level;
1923
1924         if (iterator->level == PT32E_ROOT_LEVEL) {
1925                 iterator->shadow_addr
1926                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1927                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1928                 --iterator->level;
1929                 if (!iterator->shadow_addr)
1930                         iterator->level = 0;
1931         }
1932 }
1933
1934 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1935 {
1936         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1937                 return false;
1938
1939         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1940         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1941         return true;
1942 }
1943
1944 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1945                                u64 spte)
1946 {
1947         if (is_last_spte(spte, iterator->level)) {
1948                 iterator->level = 0;
1949                 return;
1950         }
1951
1952         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1953         --iterator->level;
1954 }
1955
1956 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1957 {
1958         return __shadow_walk_next(iterator, *iterator->sptep);
1959 }
1960
1961 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1962 {
1963         u64 spte;
1964
1965         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
1966                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
1967
1968         mmu_spte_set(sptep, spte);
1969 }
1970
1971 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1972                                    unsigned direct_access)
1973 {
1974         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1975                 struct kvm_mmu_page *child;
1976
1977                 /*
1978                  * For the direct sp, if the guest pte's dirty bit
1979                  * changed form clean to dirty, it will corrupt the
1980                  * sp's access: allow writable in the read-only sp,
1981                  * so we should update the spte at this point to get
1982                  * a new sp with the correct access.
1983                  */
1984                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1985                 if (child->role.access == direct_access)
1986                         return;
1987
1988                 drop_parent_pte(child, sptep);
1989                 kvm_flush_remote_tlbs(vcpu->kvm);
1990         }
1991 }
1992
1993 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1994                              u64 *spte)
1995 {
1996         u64 pte;
1997         struct kvm_mmu_page *child;
1998
1999         pte = *spte;
2000         if (is_shadow_present_pte(pte)) {
2001                 if (is_last_spte(pte, sp->role.level)) {
2002                         drop_spte(kvm, spte);
2003                         if (is_large_pte(pte))
2004                                 --kvm->stat.lpages;
2005                 } else {
2006                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2007                         drop_parent_pte(child, spte);
2008                 }
2009                 return true;
2010         }
2011
2012         if (is_mmio_spte(pte))
2013                 mmu_spte_clear_no_track(spte);
2014
2015         return false;
2016 }
2017
2018 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2019                                          struct kvm_mmu_page *sp)
2020 {
2021         unsigned i;
2022
2023         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2024                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2025 }
2026
2027 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2028 {
2029         mmu_page_remove_parent_pte(sp, parent_pte);
2030 }
2031
2032 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2033 {
2034         u64 *sptep;
2035         struct rmap_iterator iter;
2036
2037         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2038                 drop_parent_pte(sp, sptep);
2039 }
2040
2041 static int mmu_zap_unsync_children(struct kvm *kvm,
2042                                    struct kvm_mmu_page *parent,
2043                                    struct list_head *invalid_list)
2044 {
2045         int i, zapped = 0;
2046         struct mmu_page_path parents;
2047         struct kvm_mmu_pages pages;
2048
2049         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2050                 return 0;
2051
2052         kvm_mmu_pages_init(parent, &parents, &pages);
2053         while (mmu_unsync_walk(parent, &pages)) {
2054                 struct kvm_mmu_page *sp;
2055
2056                 for_each_sp(pages, sp, parents, i) {
2057                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2058                         mmu_pages_clear_parents(&parents);
2059                         zapped++;
2060                 }
2061                 kvm_mmu_pages_init(parent, &parents, &pages);
2062         }
2063
2064         return zapped;
2065 }
2066
2067 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2068                                     struct list_head *invalid_list)
2069 {
2070         int ret;
2071
2072         trace_kvm_mmu_prepare_zap_page(sp);
2073         ++kvm->stat.mmu_shadow_zapped;
2074         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2075         kvm_mmu_page_unlink_children(kvm, sp);
2076         kvm_mmu_unlink_parents(kvm, sp);
2077         if (!sp->role.invalid && !sp->role.direct)
2078                 unaccount_shadowed(kvm, sp->gfn);
2079         if (sp->unsync)
2080                 kvm_unlink_unsync_page(kvm, sp);
2081         if (!sp->root_count) {
2082                 /* Count self */
2083                 ret++;
2084                 list_move(&sp->link, invalid_list);
2085                 kvm_mod_used_mmu_pages(kvm, -1);
2086         } else {
2087                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2088                 kvm_reload_remote_mmus(kvm);
2089         }
2090
2091         sp->role.invalid = 1;
2092         return ret;
2093 }
2094
2095 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2096                                     struct list_head *invalid_list)
2097 {
2098         struct kvm_mmu_page *sp, *nsp;
2099
2100         if (list_empty(invalid_list))
2101                 return;
2102
2103         /*
2104          * wmb: make sure everyone sees our modifications to the page tables
2105          * rmb: make sure we see changes to vcpu->mode
2106          */
2107         smp_mb();
2108
2109         /*
2110          * Wait for all vcpus to exit guest mode and/or lockless shadow
2111          * page table walks.
2112          */
2113         kvm_flush_remote_tlbs(kvm);
2114
2115         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2116                 WARN_ON(!sp->role.invalid || sp->root_count);
2117                 kvm_mmu_free_page(sp);
2118         }
2119 }
2120
2121 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2122                                         struct list_head *invalid_list)
2123 {
2124         struct kvm_mmu_page *sp;
2125
2126         if (list_empty(&kvm->arch.active_mmu_pages))
2127                 return false;
2128
2129         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2130                         struct kvm_mmu_page, link);
2131         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2132
2133         return true;
2134 }
2135
2136 /*
2137  * Changing the number of mmu pages allocated to the vm
2138  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2139  */
2140 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2141 {
2142         LIST_HEAD(invalid_list);
2143
2144         spin_lock(&kvm->mmu_lock);
2145
2146         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2147                 /* Need to free some mmu pages to achieve the goal. */
2148                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2149                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2150                                 break;
2151
2152                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2153                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2154         }
2155
2156         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2157
2158         spin_unlock(&kvm->mmu_lock);
2159 }
2160
2161 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2162 {
2163         struct kvm_mmu_page *sp;
2164         LIST_HEAD(invalid_list);
2165         int r;
2166
2167         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2168         r = 0;
2169         spin_lock(&kvm->mmu_lock);
2170         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2171                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2172                          sp->role.word);
2173                 r = 1;
2174                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2175         }
2176         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2177         spin_unlock(&kvm->mmu_lock);
2178
2179         return r;
2180 }
2181 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2182
2183 /*
2184  * The function is based on mtrr_type_lookup() in
2185  * arch/x86/kernel/cpu/mtrr/generic.c
2186  */
2187 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2188                          u64 start, u64 end)
2189 {
2190         int i;
2191         u64 base, mask;
2192         u8 prev_match, curr_match;
2193         int num_var_ranges = KVM_NR_VAR_MTRR;
2194
2195         if (!mtrr_state->enabled)
2196                 return 0xFF;
2197
2198         /* Make end inclusive end, instead of exclusive */
2199         end--;
2200
2201         /* Look in fixed ranges. Just return the type as per start */
2202         if (mtrr_state->have_fixed && (start < 0x100000)) {
2203                 int idx;
2204
2205                 if (start < 0x80000) {
2206                         idx = 0;
2207                         idx += (start >> 16);
2208                         return mtrr_state->fixed_ranges[idx];
2209                 } else if (start < 0xC0000) {
2210                         idx = 1 * 8;
2211                         idx += ((start - 0x80000) >> 14);
2212                         return mtrr_state->fixed_ranges[idx];
2213                 } else if (start < 0x1000000) {
2214                         idx = 3 * 8;
2215                         idx += ((start - 0xC0000) >> 12);
2216                         return mtrr_state->fixed_ranges[idx];
2217                 }
2218         }
2219
2220         /*
2221          * Look in variable ranges
2222          * Look of multiple ranges matching this address and pick type
2223          * as per MTRR precedence
2224          */
2225         if (!(mtrr_state->enabled & 2))
2226                 return mtrr_state->def_type;
2227
2228         prev_match = 0xFF;
2229         for (i = 0; i < num_var_ranges; ++i) {
2230                 unsigned short start_state, end_state;
2231
2232                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2233                         continue;
2234
2235                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2236                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2237                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2238                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2239
2240                 start_state = ((start & mask) == (base & mask));
2241                 end_state = ((end & mask) == (base & mask));
2242                 if (start_state != end_state)
2243                         return 0xFE;
2244
2245                 if ((start & mask) != (base & mask))
2246                         continue;
2247
2248                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2249                 if (prev_match == 0xFF) {
2250                         prev_match = curr_match;
2251                         continue;
2252                 }
2253
2254                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2255                     curr_match == MTRR_TYPE_UNCACHABLE)
2256                         return MTRR_TYPE_UNCACHABLE;
2257
2258                 if ((prev_match == MTRR_TYPE_WRBACK &&
2259                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2260                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2261                      curr_match == MTRR_TYPE_WRBACK)) {
2262                         prev_match = MTRR_TYPE_WRTHROUGH;
2263                         curr_match = MTRR_TYPE_WRTHROUGH;
2264                 }
2265
2266                 if (prev_match != curr_match)
2267                         return MTRR_TYPE_UNCACHABLE;
2268         }
2269
2270         if (prev_match != 0xFF)
2271                 return prev_match;
2272
2273         return mtrr_state->def_type;
2274 }
2275
2276 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2277 {
2278         u8 mtrr;
2279
2280         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2281                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2282         if (mtrr == 0xfe || mtrr == 0xff)
2283                 mtrr = MTRR_TYPE_WRBACK;
2284         return mtrr;
2285 }
2286 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2287
2288 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2289 {
2290         trace_kvm_mmu_unsync_page(sp);
2291         ++vcpu->kvm->stat.mmu_unsync;
2292         sp->unsync = 1;
2293
2294         kvm_mmu_mark_parents_unsync(sp);
2295 }
2296
2297 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2298 {
2299         struct kvm_mmu_page *s;
2300
2301         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2302                 if (s->unsync)
2303                         continue;
2304                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2305                 __kvm_unsync_page(vcpu, s);
2306         }
2307 }
2308
2309 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2310                                   bool can_unsync)
2311 {
2312         struct kvm_mmu_page *s;
2313         bool need_unsync = false;
2314
2315         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2316                 if (!can_unsync)
2317                         return 1;
2318
2319                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2320                         return 1;
2321
2322                 if (!s->unsync)
2323                         need_unsync = true;
2324         }
2325         if (need_unsync)
2326                 kvm_unsync_pages(vcpu, gfn);
2327         return 0;
2328 }
2329
2330 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2331                     unsigned pte_access, int level,
2332                     gfn_t gfn, pfn_t pfn, bool speculative,
2333                     bool can_unsync, bool host_writable)
2334 {
2335         u64 spte;
2336         int ret = 0;
2337
2338         if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2339                 return 0;
2340
2341         spte = PT_PRESENT_MASK;
2342         if (!speculative)
2343                 spte |= shadow_accessed_mask;
2344
2345         if (pte_access & ACC_EXEC_MASK)
2346                 spte |= shadow_x_mask;
2347         else
2348                 spte |= shadow_nx_mask;
2349
2350         if (pte_access & ACC_USER_MASK)
2351                 spte |= shadow_user_mask;
2352
2353         if (level > PT_PAGE_TABLE_LEVEL)
2354                 spte |= PT_PAGE_SIZE_MASK;
2355         if (tdp_enabled)
2356                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2357                         kvm_is_mmio_pfn(pfn));
2358
2359         if (host_writable)
2360                 spte |= SPTE_HOST_WRITEABLE;
2361         else
2362                 pte_access &= ~ACC_WRITE_MASK;
2363
2364         spte |= (u64)pfn << PAGE_SHIFT;
2365
2366         if (pte_access & ACC_WRITE_MASK) {
2367
2368                 /*
2369                  * Other vcpu creates new sp in the window between
2370                  * mapping_level() and acquiring mmu-lock. We can
2371                  * allow guest to retry the access, the mapping can
2372                  * be fixed if guest refault.
2373                  */
2374                 if (level > PT_PAGE_TABLE_LEVEL &&
2375                     has_wrprotected_page(vcpu->kvm, gfn, level))
2376                         goto done;
2377
2378                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2379
2380                 /*
2381                  * Optimization: for pte sync, if spte was writable the hash
2382                  * lookup is unnecessary (and expensive). Write protection
2383                  * is responsibility of mmu_get_page / kvm_sync_page.
2384                  * Same reasoning can be applied to dirty page accounting.
2385                  */
2386                 if (!can_unsync && is_writable_pte(*sptep))
2387                         goto set_pte;
2388
2389                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2390                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2391                                  __func__, gfn);
2392                         ret = 1;
2393                         pte_access &= ~ACC_WRITE_MASK;
2394                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2395                 }
2396         }
2397
2398         if (pte_access & ACC_WRITE_MASK)
2399                 mark_page_dirty(vcpu->kvm, gfn);
2400
2401 set_pte:
2402         if (mmu_spte_update(sptep, spte))
2403                 kvm_flush_remote_tlbs(vcpu->kvm);
2404 done:
2405         return ret;
2406 }
2407
2408 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2409                          unsigned pte_access, int write_fault, int *emulate,
2410                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2411                          bool host_writable)
2412 {
2413         int was_rmapped = 0;
2414         int rmap_count;
2415
2416         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2417                  *sptep, write_fault, gfn);
2418
2419         if (is_rmap_spte(*sptep)) {
2420                 /*
2421                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2422                  * the parent of the now unreachable PTE.
2423                  */
2424                 if (level > PT_PAGE_TABLE_LEVEL &&
2425                     !is_large_pte(*sptep)) {
2426                         struct kvm_mmu_page *child;
2427                         u64 pte = *sptep;
2428
2429                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2430                         drop_parent_pte(child, sptep);
2431                         kvm_flush_remote_tlbs(vcpu->kvm);
2432                 } else if (pfn != spte_to_pfn(*sptep)) {
2433                         pgprintk("hfn old %llx new %llx\n",
2434                                  spte_to_pfn(*sptep), pfn);
2435                         drop_spte(vcpu->kvm, sptep);
2436                         kvm_flush_remote_tlbs(vcpu->kvm);
2437                 } else
2438                         was_rmapped = 1;
2439         }
2440
2441         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2442               true, host_writable)) {
2443                 if (write_fault)
2444                         *emulate = 1;
2445                 kvm_mmu_flush_tlb(vcpu);
2446         }
2447
2448         if (unlikely(is_mmio_spte(*sptep) && emulate))
2449                 *emulate = 1;
2450
2451         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2452         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2453                  is_large_pte(*sptep)? "2MB" : "4kB",
2454                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2455                  *sptep, sptep);
2456         if (!was_rmapped && is_large_pte(*sptep))
2457                 ++vcpu->kvm->stat.lpages;
2458
2459         if (is_shadow_present_pte(*sptep)) {
2460                 if (!was_rmapped) {
2461                         rmap_count = rmap_add(vcpu, sptep, gfn);
2462                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2463                                 rmap_recycle(vcpu, sptep, gfn);
2464                 }
2465         }
2466
2467         kvm_release_pfn_clean(pfn);
2468 }
2469
2470 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2471 {
2472         mmu_free_roots(vcpu);
2473 }
2474
2475 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2476 {
2477         int bit7;
2478
2479         bit7 = (gpte >> 7) & 1;
2480         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2481 }
2482
2483 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2484                                      bool no_dirty_log)
2485 {
2486         struct kvm_memory_slot *slot;
2487
2488         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2489         if (!slot)
2490                 return KVM_PFN_ERR_FAULT;
2491
2492         return gfn_to_pfn_memslot_atomic(slot, gfn);
2493 }
2494
2495 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2496                                   struct kvm_mmu_page *sp, u64 *spte,
2497                                   u64 gpte)
2498 {
2499         if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2500                 goto no_present;
2501
2502         if (!is_present_gpte(gpte))
2503                 goto no_present;
2504
2505         if (!(gpte & PT_ACCESSED_MASK))
2506                 goto no_present;
2507
2508         return false;
2509
2510 no_present:
2511         drop_spte(vcpu->kvm, spte);
2512         return true;
2513 }
2514
2515 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2516                                     struct kvm_mmu_page *sp,
2517                                     u64 *start, u64 *end)
2518 {
2519         struct page *pages[PTE_PREFETCH_NUM];
2520         unsigned access = sp->role.access;
2521         int i, ret;
2522         gfn_t gfn;
2523
2524         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2525         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2526                 return -1;
2527
2528         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2529         if (ret <= 0)
2530                 return -1;
2531
2532         for (i = 0; i < ret; i++, gfn++, start++)
2533                 mmu_set_spte(vcpu, start, access, 0, NULL,
2534                              sp->role.level, gfn, page_to_pfn(pages[i]),
2535                              true, true);
2536
2537         return 0;
2538 }
2539
2540 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2541                                   struct kvm_mmu_page *sp, u64 *sptep)
2542 {
2543         u64 *spte, *start = NULL;
2544         int i;
2545
2546         WARN_ON(!sp->role.direct);
2547
2548         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2549         spte = sp->spt + i;
2550
2551         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2552                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2553                         if (!start)
2554                                 continue;
2555                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2556                                 break;
2557                         start = NULL;
2558                 } else if (!start)
2559                         start = spte;
2560         }
2561 }
2562
2563 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2564 {
2565         struct kvm_mmu_page *sp;
2566
2567         /*
2568          * Since it's no accessed bit on EPT, it's no way to
2569          * distinguish between actually accessed translations
2570          * and prefetched, so disable pte prefetch if EPT is
2571          * enabled.
2572          */
2573         if (!shadow_accessed_mask)
2574                 return;
2575
2576         sp = page_header(__pa(sptep));
2577         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2578                 return;
2579
2580         __direct_pte_prefetch(vcpu, sp, sptep);
2581 }
2582
2583 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2584                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2585                         bool prefault)
2586 {
2587         struct kvm_shadow_walk_iterator iterator;
2588         struct kvm_mmu_page *sp;
2589         int emulate = 0;
2590         gfn_t pseudo_gfn;
2591
2592         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2593                 if (iterator.level == level) {
2594                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2595                                      write, &emulate, level, gfn, pfn,
2596                                      prefault, map_writable);
2597                         direct_pte_prefetch(vcpu, iterator.sptep);
2598                         ++vcpu->stat.pf_fixed;
2599                         break;
2600                 }
2601
2602                 if (!is_shadow_present_pte(*iterator.sptep)) {
2603                         u64 base_addr = iterator.addr;
2604
2605                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2606                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2607                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2608                                               iterator.level - 1,
2609                                               1, ACC_ALL, iterator.sptep);
2610
2611                         link_shadow_page(iterator.sptep, sp);
2612                 }
2613         }
2614         return emulate;
2615 }
2616
2617 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2618 {
2619         siginfo_t info;
2620
2621         info.si_signo   = SIGBUS;
2622         info.si_errno   = 0;
2623         info.si_code    = BUS_MCEERR_AR;
2624         info.si_addr    = (void __user *)address;
2625         info.si_addr_lsb = PAGE_SHIFT;
2626
2627         send_sig_info(SIGBUS, &info, tsk);
2628 }
2629
2630 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2631 {
2632         /*
2633          * Do not cache the mmio info caused by writing the readonly gfn
2634          * into the spte otherwise read access on readonly gfn also can
2635          * caused mmio page fault and treat it as mmio access.
2636          * Return 1 to tell kvm to emulate it.
2637          */
2638         if (pfn == KVM_PFN_ERR_RO_FAULT)
2639                 return 1;
2640
2641         if (pfn == KVM_PFN_ERR_HWPOISON) {
2642                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2643                 return 0;
2644         }
2645
2646         return -EFAULT;
2647 }
2648
2649 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2650                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2651 {
2652         pfn_t pfn = *pfnp;
2653         gfn_t gfn = *gfnp;
2654         int level = *levelp;
2655
2656         /*
2657          * Check if it's a transparent hugepage. If this would be an
2658          * hugetlbfs page, level wouldn't be set to
2659          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2660          * here.
2661          */
2662         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2663             level == PT_PAGE_TABLE_LEVEL &&
2664             PageTransCompound(pfn_to_page(pfn)) &&
2665             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2666                 unsigned long mask;
2667                 /*
2668                  * mmu_notifier_retry was successful and we hold the
2669                  * mmu_lock here, so the pmd can't become splitting
2670                  * from under us, and in turn
2671                  * __split_huge_page_refcount() can't run from under
2672                  * us and we can safely transfer the refcount from
2673                  * PG_tail to PG_head as we switch the pfn to tail to
2674                  * head.
2675                  */
2676                 *levelp = level = PT_DIRECTORY_LEVEL;
2677                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2678                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2679                 if (pfn & mask) {
2680                         gfn &= ~mask;
2681                         *gfnp = gfn;
2682                         kvm_release_pfn_clean(pfn);
2683                         pfn &= ~mask;
2684                         kvm_get_pfn(pfn);
2685                         *pfnp = pfn;
2686                 }
2687         }
2688 }
2689
2690 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2691                                 pfn_t pfn, unsigned access, int *ret_val)
2692 {
2693         bool ret = true;
2694
2695         /* The pfn is invalid, report the error! */
2696         if (unlikely(is_error_pfn(pfn))) {
2697                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2698                 goto exit;
2699         }
2700
2701         if (unlikely(is_noslot_pfn(pfn)))
2702                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2703
2704         ret = false;
2705 exit:
2706         return ret;
2707 }
2708
2709 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2710 {
2711         /*
2712          * #PF can be fast only if the shadow page table is present and it
2713          * is caused by write-protect, that means we just need change the
2714          * W bit of the spte which can be done out of mmu-lock.
2715          */
2716         if (!(error_code & PFERR_PRESENT_MASK) ||
2717               !(error_code & PFERR_WRITE_MASK))
2718                 return false;
2719
2720         return true;
2721 }
2722
2723 static bool
2724 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2725 {
2726         struct kvm_mmu_page *sp = page_header(__pa(sptep));
2727         gfn_t gfn;
2728
2729         WARN_ON(!sp->role.direct);
2730
2731         /*
2732          * The gfn of direct spte is stable since it is calculated
2733          * by sp->gfn.
2734          */
2735         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2736
2737         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2738                 mark_page_dirty(vcpu->kvm, gfn);
2739
2740         return true;
2741 }
2742
2743 /*
2744  * Return value:
2745  * - true: let the vcpu to access on the same address again.
2746  * - false: let the real page fault path to fix it.
2747  */
2748 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2749                             u32 error_code)
2750 {
2751         struct kvm_shadow_walk_iterator iterator;
2752         bool ret = false;
2753         u64 spte = 0ull;
2754
2755         if (!page_fault_can_be_fast(vcpu, error_code))
2756                 return false;
2757
2758         walk_shadow_page_lockless_begin(vcpu);
2759         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2760                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2761                         break;
2762
2763         /*
2764          * If the mapping has been changed, let the vcpu fault on the
2765          * same address again.
2766          */
2767         if (!is_rmap_spte(spte)) {
2768                 ret = true;
2769                 goto exit;
2770         }
2771
2772         if (!is_last_spte(spte, level))
2773                 goto exit;
2774
2775         /*
2776          * Check if it is a spurious fault caused by TLB lazily flushed.
2777          *
2778          * Need not check the access of upper level table entries since
2779          * they are always ACC_ALL.
2780          */
2781          if (is_writable_pte(spte)) {
2782                 ret = true;
2783                 goto exit;
2784         }
2785
2786         /*
2787          * Currently, to simplify the code, only the spte write-protected
2788          * by dirty-log can be fast fixed.
2789          */
2790         if (!spte_is_locklessly_modifiable(spte))
2791                 goto exit;
2792
2793         /*
2794          * Currently, fast page fault only works for direct mapping since
2795          * the gfn is not stable for indirect shadow page.
2796          * See Documentation/virtual/kvm/locking.txt to get more detail.
2797          */
2798         ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2799 exit:
2800         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2801                               spte, ret);
2802         walk_shadow_page_lockless_end(vcpu);
2803
2804         return ret;
2805 }
2806
2807 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2808                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2809
2810 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2811                          gfn_t gfn, bool prefault)
2812 {
2813         int r;
2814         int level;
2815         int force_pt_level;
2816         pfn_t pfn;
2817         unsigned long mmu_seq;
2818         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2819
2820         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2821         if (likely(!force_pt_level)) {
2822                 level = mapping_level(vcpu, gfn);
2823                 /*
2824                  * This path builds a PAE pagetable - so we can map
2825                  * 2mb pages at maximum. Therefore check if the level
2826                  * is larger than that.
2827                  */
2828                 if (level > PT_DIRECTORY_LEVEL)
2829                         level = PT_DIRECTORY_LEVEL;
2830
2831                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2832         } else
2833                 level = PT_PAGE_TABLE_LEVEL;
2834
2835         if (fast_page_fault(vcpu, v, level, error_code))
2836                 return 0;
2837
2838         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2839         smp_rmb();
2840
2841         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2842                 return 0;
2843
2844         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2845                 return r;
2846
2847         spin_lock(&vcpu->kvm->mmu_lock);
2848         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2849                 goto out_unlock;
2850         if (likely(!force_pt_level))
2851                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2852         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2853                          prefault);
2854         spin_unlock(&vcpu->kvm->mmu_lock);
2855
2856
2857         return r;
2858
2859 out_unlock:
2860         spin_unlock(&vcpu->kvm->mmu_lock);
2861         kvm_release_pfn_clean(pfn);
2862         return 0;
2863 }
2864
2865
2866 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2867 {
2868         int i;
2869         struct kvm_mmu_page *sp;
2870         LIST_HEAD(invalid_list);
2871
2872         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2873                 return;
2874         spin_lock(&vcpu->kvm->mmu_lock);
2875         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2876             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2877              vcpu->arch.mmu.direct_map)) {
2878                 hpa_t root = vcpu->arch.mmu.root_hpa;
2879
2880                 sp = page_header(root);
2881                 --sp->root_count;
2882                 if (!sp->root_count && sp->role.invalid) {
2883                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2884                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2885                 }
2886                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2887                 spin_unlock(&vcpu->kvm->mmu_lock);
2888                 return;
2889         }
2890         for (i = 0; i < 4; ++i) {
2891                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2892
2893                 if (root) {
2894                         root &= PT64_BASE_ADDR_MASK;
2895                         sp = page_header(root);
2896                         --sp->root_count;
2897                         if (!sp->root_count && sp->role.invalid)
2898                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2899                                                          &invalid_list);
2900                 }
2901                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2902         }
2903         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2904         spin_unlock(&vcpu->kvm->mmu_lock);
2905         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2906 }
2907
2908 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2909 {
2910         int ret = 0;
2911
2912         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2913                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2914                 ret = 1;
2915         }
2916
2917         return ret;
2918 }
2919
2920 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2921 {
2922         struct kvm_mmu_page *sp;
2923         unsigned i;
2924
2925         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2926                 spin_lock(&vcpu->kvm->mmu_lock);
2927                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2928                                       1, ACC_ALL, NULL);
2929                 ++sp->root_count;
2930                 spin_unlock(&vcpu->kvm->mmu_lock);
2931                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2932         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2933                 for (i = 0; i < 4; ++i) {
2934                         hpa_t root = vcpu->arch.mmu.pae_root[i];
2935
2936                         ASSERT(!VALID_PAGE(root));
2937                         spin_lock(&vcpu->kvm->mmu_lock);
2938                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2939                                               i << 30,
2940                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
2941                                               NULL);
2942                         root = __pa(sp->spt);
2943                         ++sp->root_count;
2944                         spin_unlock(&vcpu->kvm->mmu_lock);
2945                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2946                 }
2947                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2948         } else
2949                 BUG();
2950
2951         return 0;
2952 }
2953
2954 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2955 {
2956         struct kvm_mmu_page *sp;
2957         u64 pdptr, pm_mask;
2958         gfn_t root_gfn;
2959         int i;
2960
2961         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2962
2963         if (mmu_check_root(vcpu, root_gfn))
2964                 return 1;
2965
2966         /*
2967          * Do we shadow a long mode page table? If so we need to
2968          * write-protect the guests page table root.
2969          */
2970         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2971                 hpa_t root = vcpu->arch.mmu.root_hpa;
2972
2973                 ASSERT(!VALID_PAGE(root));
2974
2975                 spin_lock(&vcpu->kvm->mmu_lock);
2976                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2977                                       0, ACC_ALL, NULL);
2978                 root = __pa(sp->spt);
2979                 ++sp->root_count;
2980                 spin_unlock(&vcpu->kvm->mmu_lock);
2981                 vcpu->arch.mmu.root_hpa = root;
2982                 return 0;
2983         }
2984
2985         /*
2986          * We shadow a 32 bit page table. This may be a legacy 2-level
2987          * or a PAE 3-level page table. In either case we need to be aware that
2988          * the shadow page table may be a PAE or a long mode page table.
2989          */
2990         pm_mask = PT_PRESENT_MASK;
2991         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2992                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2993
2994         for (i = 0; i < 4; ++i) {
2995                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2996
2997                 ASSERT(!VALID_PAGE(root));
2998                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2999                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3000                         if (!is_present_gpte(pdptr)) {
3001                                 vcpu->arch.mmu.pae_root[i] = 0;
3002                                 continue;
3003                         }
3004                         root_gfn = pdptr >> PAGE_SHIFT;
3005                         if (mmu_check_root(vcpu, root_gfn))
3006                                 return 1;
3007                 }
3008                 spin_lock(&vcpu->kvm->mmu_lock);
3009                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3010                                       PT32_ROOT_LEVEL, 0,
3011                                       ACC_ALL, NULL);
3012                 root = __pa(sp->spt);
3013                 ++sp->root_count;
3014                 spin_unlock(&vcpu->kvm->mmu_lock);
3015
3016                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3017         }
3018         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3019
3020         /*
3021          * If we shadow a 32 bit page table with a long mode page
3022          * table we enter this path.
3023          */
3024         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3025                 if (vcpu->arch.mmu.lm_root == NULL) {
3026                         /*
3027                          * The additional page necessary for this is only
3028                          * allocated on demand.
3029                          */
3030
3031                         u64 *lm_root;
3032
3033                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3034                         if (lm_root == NULL)
3035                                 return 1;
3036
3037                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3038
3039                         vcpu->arch.mmu.lm_root = lm_root;
3040                 }
3041
3042                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3043         }
3044
3045         return 0;
3046 }
3047
3048 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3049 {
3050         if (vcpu->arch.mmu.direct_map)
3051                 return mmu_alloc_direct_roots(vcpu);
3052         else
3053                 return mmu_alloc_shadow_roots(vcpu);
3054 }
3055
3056 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3057 {
3058         int i;
3059         struct kvm_mmu_page *sp;
3060
3061         if (vcpu->arch.mmu.direct_map)
3062                 return;
3063
3064         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3065                 return;
3066
3067         vcpu_clear_mmio_info(vcpu, ~0ul);
3068         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3069         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3070                 hpa_t root = vcpu->arch.mmu.root_hpa;
3071                 sp = page_header(root);
3072                 mmu_sync_children(vcpu, sp);
3073                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3074                 return;
3075         }
3076         for (i = 0; i < 4; ++i) {
3077                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3078
3079                 if (root && VALID_PAGE(root)) {
3080                         root &= PT64_BASE_ADDR_MASK;
3081                         sp = page_header(root);
3082                         mmu_sync_children(vcpu, sp);
3083                 }
3084         }
3085         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3086 }
3087
3088 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3089 {
3090         spin_lock(&vcpu->kvm->mmu_lock);
3091         mmu_sync_roots(vcpu);
3092         spin_unlock(&vcpu->kvm->mmu_lock);
3093 }
3094
3095 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3096                                   u32 access, struct x86_exception *exception)
3097 {
3098         if (exception)
3099                 exception->error_code = 0;
3100         return vaddr;
3101 }
3102
3103 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3104                                          u32 access,
3105                                          struct x86_exception *exception)
3106 {
3107         if (exception)
3108                 exception->error_code = 0;
3109         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3110 }
3111
3112 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3113 {
3114         if (direct)
3115                 return vcpu_match_mmio_gpa(vcpu, addr);
3116
3117         return vcpu_match_mmio_gva(vcpu, addr);
3118 }
3119
3120
3121 /*
3122  * On direct hosts, the last spte is only allows two states
3123  * for mmio page fault:
3124  *   - It is the mmio spte
3125  *   - It is zapped or it is being zapped.
3126  *
3127  * This function completely checks the spte when the last spte
3128  * is not the mmio spte.
3129  */
3130 static bool check_direct_spte_mmio_pf(u64 spte)
3131 {
3132         return __check_direct_spte_mmio_pf(spte);
3133 }
3134
3135 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3136 {
3137         struct kvm_shadow_walk_iterator iterator;
3138         u64 spte = 0ull;
3139
3140         walk_shadow_page_lockless_begin(vcpu);
3141         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3142                 if (!is_shadow_present_pte(spte))
3143                         break;
3144         walk_shadow_page_lockless_end(vcpu);
3145
3146         return spte;
3147 }
3148
3149 /*
3150  * If it is a real mmio page fault, return 1 and emulat the instruction
3151  * directly, return 0 to let CPU fault again on the address, -1 is
3152  * returned if bug is detected.
3153  */
3154 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3155 {
3156         u64 spte;
3157
3158         if (quickly_check_mmio_pf(vcpu, addr, direct))
3159                 return 1;
3160
3161         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3162
3163         if (is_mmio_spte(spte)) {
3164                 gfn_t gfn = get_mmio_spte_gfn(spte);
3165                 unsigned access = get_mmio_spte_access(spte);
3166
3167                 if (direct)
3168                         addr = 0;
3169
3170                 trace_handle_mmio_page_fault(addr, gfn, access);
3171                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3172                 return 1;
3173         }
3174
3175         /*
3176          * It's ok if the gva is remapped by other cpus on shadow guest,
3177          * it's a BUG if the gfn is not a mmio page.
3178          */
3179         if (direct && !check_direct_spte_mmio_pf(spte))
3180                 return -1;
3181
3182         /*
3183          * If the page table is zapped by other cpus, let CPU fault again on
3184          * the address.
3185          */
3186         return 0;
3187 }
3188 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3189
3190 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3191                                   u32 error_code, bool direct)
3192 {
3193         int ret;
3194
3195         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3196         WARN_ON(ret < 0);
3197         return ret;
3198 }
3199
3200 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3201                                 u32 error_code, bool prefault)
3202 {
3203         gfn_t gfn;
3204         int r;
3205
3206         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3207
3208         if (unlikely(error_code & PFERR_RSVD_MASK))
3209                 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3210
3211         r = mmu_topup_memory_caches(vcpu);
3212         if (r)
3213                 return r;
3214
3215         ASSERT(vcpu);
3216         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3217
3218         gfn = gva >> PAGE_SHIFT;
3219
3220         return nonpaging_map(vcpu, gva & PAGE_MASK,
3221                              error_code, gfn, prefault);
3222 }
3223
3224 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3225 {
3226         struct kvm_arch_async_pf arch;
3227
3228         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3229         arch.gfn = gfn;
3230         arch.direct_map = vcpu->arch.mmu.direct_map;
3231         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3232
3233         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3234 }
3235
3236 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3237 {
3238         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3239                      kvm_event_needs_reinjection(vcpu)))
3240                 return false;
3241
3242         return kvm_x86_ops->interrupt_allowed(vcpu);
3243 }
3244
3245 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3246                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3247 {
3248         bool async;
3249
3250         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3251
3252         if (!async)
3253                 return false; /* *pfn has correct page already */
3254
3255         if (!prefault && can_do_async_pf(vcpu)) {
3256                 trace_kvm_try_async_get_page(gva, gfn);
3257                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3258                         trace_kvm_async_pf_doublefault(gva, gfn);
3259                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3260                         return true;
3261                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3262                         return true;
3263         }
3264
3265         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3266
3267         return false;
3268 }
3269
3270 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3271                           bool prefault)
3272 {
3273         pfn_t pfn;
3274         int r;
3275         int level;
3276         int force_pt_level;
3277         gfn_t gfn = gpa >> PAGE_SHIFT;
3278         unsigned long mmu_seq;
3279         int write = error_code & PFERR_WRITE_MASK;
3280         bool map_writable;
3281
3282         ASSERT(vcpu);
3283         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3284
3285         if (unlikely(error_code & PFERR_RSVD_MASK))
3286                 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3287
3288         r = mmu_topup_memory_caches(vcpu);
3289         if (r)
3290                 return r;
3291
3292         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3293         if (likely(!force_pt_level)) {
3294                 level = mapping_level(vcpu, gfn);
3295                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3296         } else
3297                 level = PT_PAGE_TABLE_LEVEL;
3298
3299         if (fast_page_fault(vcpu, gpa, level, error_code))
3300                 return 0;
3301
3302         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3303         smp_rmb();
3304
3305         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3306                 return 0;
3307
3308         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3309                 return r;
3310
3311         spin_lock(&vcpu->kvm->mmu_lock);
3312         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3313                 goto out_unlock;
3314         if (likely(!force_pt_level))
3315                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3316         r = __direct_map(vcpu, gpa, write, map_writable,
3317                          level, gfn, pfn, prefault);
3318         spin_unlock(&vcpu->kvm->mmu_lock);
3319
3320         return r;
3321
3322 out_unlock:
3323         spin_unlock(&vcpu->kvm->mmu_lock);
3324         kvm_release_pfn_clean(pfn);
3325         return 0;
3326 }
3327
3328 static void nonpaging_free(struct kvm_vcpu *vcpu)
3329 {
3330         mmu_free_roots(vcpu);
3331 }
3332
3333 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3334                                   struct kvm_mmu *context)
3335 {
3336         context->new_cr3 = nonpaging_new_cr3;
3337         context->page_fault = nonpaging_page_fault;
3338         context->gva_to_gpa = nonpaging_gva_to_gpa;
3339         context->free = nonpaging_free;
3340         context->sync_page = nonpaging_sync_page;
3341         context->invlpg = nonpaging_invlpg;
3342         context->update_pte = nonpaging_update_pte;
3343         context->root_level = 0;
3344         context->shadow_root_level = PT32E_ROOT_LEVEL;
3345         context->root_hpa = INVALID_PAGE;
3346         context->direct_map = true;
3347         context->nx = false;
3348         return 0;
3349 }
3350
3351 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3352 {
3353         ++vcpu->stat.tlb_flush;
3354         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3355 }
3356
3357 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3358 {
3359         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3360         mmu_free_roots(vcpu);
3361 }
3362
3363 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3364 {
3365         return kvm_read_cr3(vcpu);
3366 }
3367
3368 static void inject_page_fault(struct kvm_vcpu *vcpu,
3369                               struct x86_exception *fault)
3370 {
3371         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3372 }
3373
3374 static void paging_free(struct kvm_vcpu *vcpu)
3375 {
3376         nonpaging_free(vcpu);
3377 }
3378
3379 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3380 {
3381         unsigned mask;
3382
3383         BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3384
3385         mask = (unsigned)~ACC_WRITE_MASK;
3386         /* Allow write access to dirty gptes */
3387         mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3388         *access &= mask;
3389 }
3390
3391 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3392                            int *nr_present)
3393 {
3394         if (unlikely(is_mmio_spte(*sptep))) {
3395                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3396                         mmu_spte_clear_no_track(sptep);
3397                         return true;
3398                 }
3399
3400                 (*nr_present)++;
3401                 mark_mmio_spte(sptep, gfn, access);
3402                 return true;
3403         }
3404
3405         return false;
3406 }
3407
3408 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3409 {
3410         unsigned access;
3411
3412         access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3413         access &= ~(gpte >> PT64_NX_SHIFT);
3414
3415         return access;
3416 }
3417
3418 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3419 {
3420         unsigned index;
3421
3422         index = level - 1;
3423         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3424         return mmu->last_pte_bitmap & (1 << index);
3425 }
3426
3427 #define PTTYPE 64
3428 #include "paging_tmpl.h"
3429 #undef PTTYPE
3430
3431 #define PTTYPE 32
3432 #include "paging_tmpl.h"
3433 #undef PTTYPE
3434
3435 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3436                                   struct kvm_mmu *context)
3437 {
3438         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3439         u64 exb_bit_rsvd = 0;
3440
3441         if (!context->nx)
3442                 exb_bit_rsvd = rsvd_bits(63, 63);
3443         switch (context->root_level) {
3444         case PT32_ROOT_LEVEL:
3445                 /* no rsvd bits for 2 level 4K page table entries */
3446                 context->rsvd_bits_mask[0][1] = 0;
3447                 context->rsvd_bits_mask[0][0] = 0;
3448                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3449
3450                 if (!is_pse(vcpu)) {
3451                         context->rsvd_bits_mask[1][1] = 0;
3452                         break;
3453                 }
3454
3455                 if (is_cpuid_PSE36())
3456                         /* 36bits PSE 4MB page */
3457                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3458                 else
3459                         /* 32 bits PSE 4MB page */
3460                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3461                 break;
3462         case PT32E_ROOT_LEVEL:
3463                 context->rsvd_bits_mask[0][2] =
3464                         rsvd_bits(maxphyaddr, 63) |
3465                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3466                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3467                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3468                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3469                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3470                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3471                         rsvd_bits(maxphyaddr, 62) |
3472                         rsvd_bits(13, 20);              /* large page */
3473                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3474                 break;
3475         case PT64_ROOT_LEVEL:
3476                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3477                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3478                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3479                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3480                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3481                         rsvd_bits(maxphyaddr, 51);
3482                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3483                         rsvd_bits(maxphyaddr, 51);
3484                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3485                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3486                         rsvd_bits(maxphyaddr, 51) |
3487                         rsvd_bits(13, 29);
3488                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3489                         rsvd_bits(maxphyaddr, 51) |
3490                         rsvd_bits(13, 20);              /* large page */
3491                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3492                 break;
3493         }
3494 }
3495
3496 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3497 {
3498         unsigned bit, byte, pfec;
3499         u8 map;
3500         bool fault, x, w, u, wf, uf, ff, smep;
3501
3502         smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3503         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3504                 pfec = byte << 1;
3505                 map = 0;
3506                 wf = pfec & PFERR_WRITE_MASK;
3507                 uf = pfec & PFERR_USER_MASK;
3508                 ff = pfec & PFERR_FETCH_MASK;
3509                 for (bit = 0; bit < 8; ++bit) {
3510                         x = bit & ACC_EXEC_MASK;
3511                         w = bit & ACC_WRITE_MASK;
3512                         u = bit & ACC_USER_MASK;
3513
3514                         /* Not really needed: !nx will cause pte.nx to fault */
3515                         x |= !mmu->nx;
3516                         /* Allow supervisor writes if !cr0.wp */
3517                         w |= !is_write_protection(vcpu) && !uf;
3518                         /* Disallow supervisor fetches of user code if cr4.smep */
3519                         x &= !(smep && u && !uf);
3520
3521                         fault = (ff && !x) || (uf && !u) || (wf && !w);
3522                         map |= fault << bit;
3523                 }
3524                 mmu->permissions[byte] = map;
3525         }
3526 }
3527
3528 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3529 {
3530         u8 map;
3531         unsigned level, root_level = mmu->root_level;
3532         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3533
3534         if (root_level == PT32E_ROOT_LEVEL)
3535                 --root_level;
3536         /* PT_PAGE_TABLE_LEVEL always terminates */
3537         map = 1 | (1 << ps_set_index);
3538         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3539                 if (level <= PT_PDPE_LEVEL
3540                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3541                         map |= 1 << (ps_set_index | (level - 1));
3542         }
3543         mmu->last_pte_bitmap = map;
3544 }
3545
3546 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3547                                         struct kvm_mmu *context,
3548                                         int level)
3549 {
3550         context->nx = is_nx(vcpu);
3551         context->root_level = level;
3552
3553         reset_rsvds_bits_mask(vcpu, context);
3554         update_permission_bitmask(vcpu, context);
3555         update_last_pte_bitmap(vcpu, context);
3556
3557         ASSERT(is_pae(vcpu));
3558         context->new_cr3 = paging_new_cr3;
3559         context->page_fault = paging64_page_fault;
3560         context->gva_to_gpa = paging64_gva_to_gpa;
3561         context->sync_page = paging64_sync_page;
3562         context->invlpg = paging64_invlpg;
3563         context->update_pte = paging64_update_pte;
3564         context->free = paging_free;
3565         context->shadow_root_level = level;
3566         context->root_hpa = INVALID_PAGE;
3567         context->direct_map = false;
3568         return 0;
3569 }
3570
3571 static int paging64_init_context(struct kvm_vcpu *vcpu,
3572                                  struct kvm_mmu *context)
3573 {
3574         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3575 }
3576
3577 static int paging32_init_context(struct kvm_vcpu *vcpu,
3578                                  struct kvm_mmu *context)
3579 {
3580         context->nx = false;
3581         context->root_level = PT32_ROOT_LEVEL;
3582
3583         reset_rsvds_bits_mask(vcpu, context);
3584         update_permission_bitmask(vcpu, context);
3585         update_last_pte_bitmap(vcpu, context);
3586
3587         context->new_cr3 = paging_new_cr3;
3588         context->page_fault = paging32_page_fault;
3589         context->gva_to_gpa = paging32_gva_to_gpa;
3590         context->free = paging_free;
3591         context->sync_page = paging32_sync_page;
3592         context->invlpg = paging32_invlpg;
3593         context->update_pte = paging32_update_pte;
3594         context->shadow_root_level = PT32E_ROOT_LEVEL;
3595         context->root_hpa = INVALID_PAGE;
3596         context->direct_map = false;
3597         return 0;
3598 }
3599
3600 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3601                                   struct kvm_mmu *context)
3602 {
3603         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3604 }
3605
3606 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3607 {
3608         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3609
3610         context->base_role.word = 0;
3611         context->new_cr3 = nonpaging_new_cr3;
3612         context->page_fault = tdp_page_fault;
3613         context->free = nonpaging_free;
3614         context->sync_page = nonpaging_sync_page;
3615         context->invlpg = nonpaging_invlpg;
3616         context->update_pte = nonpaging_update_pte;
3617         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3618         context->root_hpa = INVALID_PAGE;
3619         context->direct_map = true;
3620         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3621         context->get_cr3 = get_cr3;
3622         context->get_pdptr = kvm_pdptr_read;
3623         context->inject_page_fault = kvm_inject_page_fault;
3624
3625         if (!is_paging(vcpu)) {
3626                 context->nx = false;
3627                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3628                 context->root_level = 0;
3629         } else if (is_long_mode(vcpu)) {
3630                 context->nx = is_nx(vcpu);
3631                 context->root_level = PT64_ROOT_LEVEL;
3632                 reset_rsvds_bits_mask(vcpu, context);
3633                 context->gva_to_gpa = paging64_gva_to_gpa;
3634         } else if (is_pae(vcpu)) {
3635                 context->nx = is_nx(vcpu);
3636                 context->root_level = PT32E_ROOT_LEVEL;
3637                 reset_rsvds_bits_mask(vcpu, context);
3638                 context->gva_to_gpa = paging64_gva_to_gpa;
3639         } else {
3640                 context->nx = false;
3641                 context->root_level = PT32_ROOT_LEVEL;
3642                 reset_rsvds_bits_mask(vcpu, context);
3643                 context->gva_to_gpa = paging32_gva_to_gpa;
3644         }
3645
3646         update_permission_bitmask(vcpu, context);
3647         update_last_pte_bitmap(vcpu, context);
3648
3649         return 0;
3650 }
3651
3652 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3653 {
3654         int r;
3655         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3656         ASSERT(vcpu);
3657         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3658
3659         if (!is_paging(vcpu))
3660                 r = nonpaging_init_context(vcpu, context);
3661         else if (is_long_mode(vcpu))
3662                 r = paging64_init_context(vcpu, context);
3663         else if (is_pae(vcpu))
3664                 r = paging32E_init_context(vcpu, context);
3665         else
3666                 r = paging32_init_context(vcpu, context);
3667
3668         vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3669         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3670         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3671         vcpu->arch.mmu.base_role.smep_andnot_wp
3672                 = smep && !is_write_protection(vcpu);
3673
3674         return r;
3675 }
3676 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3677
3678 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3679 {
3680         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3681
3682         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3683         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3684         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3685         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3686
3687         return r;
3688 }
3689
3690 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3691 {
3692         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3693
3694         g_context->get_cr3           = get_cr3;
3695         g_context->get_pdptr         = kvm_pdptr_read;
3696         g_context->inject_page_fault = kvm_inject_page_fault;
3697
3698         /*
3699          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3700          * translation of l2_gpa to l1_gpa addresses is done using the
3701          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3702          * functions between mmu and nested_mmu are swapped.
3703          */
3704         if (!is_paging(vcpu)) {
3705                 g_context->nx = false;
3706                 g_context->root_level = 0;
3707                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3708         } else if (is_long_mode(vcpu)) {
3709                 g_context->nx = is_nx(vcpu);
3710                 g_context->root_level = PT64_ROOT_LEVEL;
3711                 reset_rsvds_bits_mask(vcpu, g_context);
3712                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3713         } else if (is_pae(vcpu)) {
3714                 g_context->nx = is_nx(vcpu);
3715                 g_context->root_level = PT32E_ROOT_LEVEL;
3716                 reset_rsvds_bits_mask(vcpu, g_context);
3717                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3718         } else {
3719                 g_context->nx = false;
3720                 g_context->root_level = PT32_ROOT_LEVEL;
3721                 reset_rsvds_bits_mask(vcpu, g_context);
3722                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3723         }
3724
3725         update_permission_bitmask(vcpu, g_context);
3726         update_last_pte_bitmap(vcpu, g_context);
3727
3728         return 0;
3729 }
3730
3731 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3732 {
3733         if (mmu_is_nested(vcpu))
3734                 return init_kvm_nested_mmu(vcpu);
3735         else if (tdp_enabled)
3736                 return init_kvm_tdp_mmu(vcpu);
3737         else
3738                 return init_kvm_softmmu(vcpu);
3739 }
3740
3741 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3742 {
3743         ASSERT(vcpu);
3744         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3745                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3746                 vcpu->arch.mmu.free(vcpu);
3747 }
3748
3749 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3750 {
3751         destroy_kvm_mmu(vcpu);
3752         return init_kvm_mmu(vcpu);
3753 }
3754 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3755
3756 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3757 {
3758         int r;
3759
3760         r = mmu_topup_memory_caches(vcpu);
3761         if (r)
3762                 goto out;
3763         r = mmu_alloc_roots(vcpu);
3764         spin_lock(&vcpu->kvm->mmu_lock);
3765         mmu_sync_roots(vcpu);
3766         spin_unlock(&vcpu->kvm->mmu_lock);
3767         if (r)
3768                 goto out;
3769         /* set_cr3() should ensure TLB has been flushed */
3770         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3771 out:
3772         return r;
3773 }
3774 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3775
3776 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3777 {
3778         mmu_free_roots(vcpu);
3779 }
3780 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3781
3782 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3783                                   struct kvm_mmu_page *sp, u64 *spte,
3784                                   const void *new)
3785 {
3786         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3787                 ++vcpu->kvm->stat.mmu_pde_zapped;
3788                 return;
3789         }
3790
3791         ++vcpu->kvm->stat.mmu_pte_updated;
3792         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3793 }
3794
3795 static bool need_remote_flush(u64 old, u64 new)
3796 {
3797         if (!is_shadow_present_pte(old))
3798                 return false;
3799         if (!is_shadow_present_pte(new))
3800                 return true;
3801         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3802                 return true;
3803         old ^= PT64_NX_MASK;
3804         new ^= PT64_NX_MASK;
3805         return (old & ~new & PT64_PERM_MASK) != 0;
3806 }
3807
3808 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3809                                     bool remote_flush, bool local_flush)
3810 {
3811         if (zap_page)
3812                 return;
3813
3814         if (remote_flush)
3815                 kvm_flush_remote_tlbs(vcpu->kvm);
3816         else if (local_flush)
3817                 kvm_mmu_flush_tlb(vcpu);
3818 }
3819
3820 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3821                                     const u8 *new, int *bytes)
3822 {
3823         u64 gentry;
3824         int r;
3825
3826         /*
3827          * Assume that the pte write on a page table of the same type
3828          * as the current vcpu paging mode since we update the sptes only
3829          * when they have the same mode.
3830          */
3831         if (is_pae(vcpu) && *bytes == 4) {
3832                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3833                 *gpa &= ~(gpa_t)7;
3834                 *bytes = 8;
3835                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3836                 if (r)
3837                         gentry = 0;
3838                 new = (const u8 *)&gentry;
3839         }
3840
3841         switch (*bytes) {
3842         case 4:
3843                 gentry = *(const u32 *)new;
3844                 break;
3845         case 8:
3846                 gentry = *(const u64 *)new;
3847                 break;
3848         default:
3849                 gentry = 0;
3850                 break;
3851         }
3852
3853         return gentry;
3854 }
3855
3856 /*
3857  * If we're seeing too many writes to a page, it may no longer be a page table,
3858  * or we may be forking, in which case it is better to unmap the page.
3859  */
3860 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3861 {
3862         /*
3863          * Skip write-flooding detected for the sp whose level is 1, because
3864          * it can become unsync, then the guest page is not write-protected.
3865          */
3866         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3867                 return false;
3868
3869         return ++sp->write_flooding_count >= 3;
3870 }
3871
3872 /*
3873  * Misaligned accesses are too much trouble to fix up; also, they usually
3874  * indicate a page is not used as a page table.
3875  */
3876 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3877                                     int bytes)
3878 {
3879         unsigned offset, pte_size, misaligned;
3880
3881         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3882                  gpa, bytes, sp->role.word);
3883
3884         offset = offset_in_page(gpa);
3885         pte_size = sp->role.cr4_pae ? 8 : 4;
3886
3887         /*
3888          * Sometimes, the OS only writes the last one bytes to update status
3889          * bits, for example, in linux, andb instruction is used in clear_bit().
3890          */
3891         if (!(offset & (pte_size - 1)) && bytes == 1)
3892                 return false;
3893
3894         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3895         misaligned |= bytes < 4;
3896
3897         return misaligned;
3898 }
3899
3900 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3901 {
3902         unsigned page_offset, quadrant;
3903         u64 *spte;
3904         int level;
3905
3906         page_offset = offset_in_page(gpa);
3907         level = sp->role.level;
3908         *nspte = 1;
3909         if (!sp->role.cr4_pae) {
3910                 page_offset <<= 1;      /* 32->64 */
3911                 /*
3912                  * A 32-bit pde maps 4MB while the shadow pdes map
3913                  * only 2MB.  So we need to double the offset again
3914                  * and zap two pdes instead of one.
3915                  */
3916                 if (level == PT32_ROOT_LEVEL) {
3917                         page_offset &= ~7; /* kill rounding error */
3918                         page_offset <<= 1;
3919                         *nspte = 2;
3920                 }
3921                 quadrant = page_offset >> PAGE_SHIFT;
3922                 page_offset &= ~PAGE_MASK;
3923                 if (quadrant != sp->role.quadrant)
3924                         return NULL;
3925         }
3926
3927         spte = &sp->spt[page_offset / sizeof(*spte)];
3928         return spte;
3929 }
3930
3931 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3932                        const u8 *new, int bytes)
3933 {
3934         gfn_t gfn = gpa >> PAGE_SHIFT;
3935         union kvm_mmu_page_role mask = { .word = 0 };
3936         struct kvm_mmu_page *sp;
3937         LIST_HEAD(invalid_list);
3938         u64 entry, gentry, *spte;
3939         int npte;
3940         bool remote_flush, local_flush, zap_page;
3941
3942         /*
3943          * If we don't have indirect shadow pages, it means no page is
3944          * write-protected, so we can exit simply.
3945          */
3946         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3947                 return;
3948
3949         zap_page = remote_flush = local_flush = false;
3950
3951         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3952
3953         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3954
3955         /*
3956          * No need to care whether allocation memory is successful
3957          * or not since pte prefetch is skiped if it does not have
3958          * enough objects in the cache.
3959          */
3960         mmu_topup_memory_caches(vcpu);
3961
3962         spin_lock(&vcpu->kvm->mmu_lock);
3963         ++vcpu->kvm->stat.mmu_pte_write;
3964         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3965
3966         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3967         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
3968                 if (detect_write_misaligned(sp, gpa, bytes) ||
3969                       detect_write_flooding(sp)) {
3970                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3971                                                      &invalid_list);
3972                         ++vcpu->kvm->stat.mmu_flooded;
3973                         continue;
3974                 }
3975
3976                 spte = get_written_sptes(sp, gpa, &npte);
3977                 if (!spte)
3978                         continue;
3979
3980                 local_flush = true;
3981                 while (npte--) {
3982                         entry = *spte;
3983                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
3984                         if (gentry &&
3985                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3986                               & mask.word) && rmap_can_add(vcpu))
3987                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3988                         if (need_remote_flush(entry, *spte))
3989                                 remote_flush = true;
3990                         ++spte;
3991                 }
3992         }
3993         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3994         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3995         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3996         spin_unlock(&vcpu->kvm->mmu_lock);
3997 }
3998
3999 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4000 {
4001         gpa_t gpa;
4002         int r;
4003
4004         if (vcpu->arch.mmu.direct_map)
4005                 return 0;
4006
4007         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4008
4009         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4010
4011         return r;
4012 }
4013 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4014
4015 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4016 {
4017         LIST_HEAD(invalid_list);
4018
4019         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4020                 return;
4021
4022         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4023                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4024                         break;
4025
4026                 ++vcpu->kvm->stat.mmu_recycled;
4027         }
4028         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4029 }
4030
4031 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4032 {
4033         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4034                 return vcpu_match_mmio_gpa(vcpu, addr);
4035
4036         return vcpu_match_mmio_gva(vcpu, addr);
4037 }
4038
4039 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4040                        void *insn, int insn_len)
4041 {
4042         int r, emulation_type = EMULTYPE_RETRY;
4043         enum emulation_result er;
4044
4045         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4046         if (r < 0)
4047                 goto out;
4048
4049         if (!r) {
4050                 r = 1;
4051                 goto out;
4052         }
4053
4054         if (is_mmio_page_fault(vcpu, cr2))
4055                 emulation_type = 0;
4056
4057         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4058
4059         switch (er) {
4060         case EMULATE_DONE:
4061                 return 1;
4062         case EMULATE_DO_MMIO:
4063                 ++vcpu->stat.mmio_exits;
4064                 /* fall through */
4065         case EMULATE_FAIL:
4066                 return 0;
4067         default:
4068                 BUG();
4069         }
4070 out:
4071         return r;
4072 }
4073 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4074
4075 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4076 {
4077         vcpu->arch.mmu.invlpg(vcpu, gva);
4078         kvm_mmu_flush_tlb(vcpu);
4079         ++vcpu->stat.invlpg;
4080 }
4081 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4082
4083 void kvm_enable_tdp(void)
4084 {
4085         tdp_enabled = true;
4086 }
4087 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4088
4089 void kvm_disable_tdp(void)
4090 {
4091         tdp_enabled = false;
4092 }
4093 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4094
4095 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4096 {
4097         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4098         if (vcpu->arch.mmu.lm_root != NULL)
4099                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4100 }
4101
4102 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4103 {
4104         struct page *page;
4105         int i;
4106
4107         ASSERT(vcpu);
4108
4109         /*
4110          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4111          * Therefore we need to allocate shadow page tables in the first
4112          * 4GB of memory, which happens to fit the DMA32 zone.
4113          */
4114         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4115         if (!page)
4116                 return -ENOMEM;
4117
4118         vcpu->arch.mmu.pae_root = page_address(page);
4119         for (i = 0; i < 4; ++i)
4120                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4121
4122         return 0;
4123 }
4124
4125 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4126 {
4127         ASSERT(vcpu);
4128
4129         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4130         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4131         vcpu->arch.mmu.translate_gpa = translate_gpa;
4132         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4133
4134         return alloc_mmu_pages(vcpu);
4135 }
4136
4137 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4138 {
4139         ASSERT(vcpu);
4140         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4141
4142         return init_kvm_mmu(vcpu);
4143 }
4144
4145 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4146 {
4147         struct kvm_memory_slot *memslot;
4148         gfn_t last_gfn;
4149         int i;
4150
4151         memslot = id_to_memslot(kvm->memslots, slot);
4152         last_gfn = memslot->base_gfn + memslot->npages - 1;
4153
4154         spin_lock(&kvm->mmu_lock);
4155
4156         for (i = PT_PAGE_TABLE_LEVEL;
4157              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4158                 unsigned long *rmapp;
4159                 unsigned long last_index, index;
4160
4161                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4162                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4163
4164                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4165                         if (*rmapp)
4166                                 __rmap_write_protect(kvm, rmapp, false);
4167
4168                         if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4169                                 kvm_flush_remote_tlbs(kvm);
4170                                 cond_resched_lock(&kvm->mmu_lock);
4171                         }
4172                 }
4173         }
4174
4175         kvm_flush_remote_tlbs(kvm);
4176         spin_unlock(&kvm->mmu_lock);
4177 }
4178
4179 void kvm_mmu_zap_all(struct kvm *kvm)
4180 {
4181         struct kvm_mmu_page *sp, *node;
4182         LIST_HEAD(invalid_list);
4183
4184         spin_lock(&kvm->mmu_lock);
4185 restart:
4186         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
4187                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4188                         goto restart;
4189
4190         kvm_mmu_commit_zap_page(kvm, &invalid_list);
4191         spin_unlock(&kvm->mmu_lock);
4192 }
4193
4194 void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
4195 {
4196         struct kvm_mmu_page *sp, *node;
4197         LIST_HEAD(invalid_list);
4198
4199         spin_lock(&kvm->mmu_lock);
4200 restart:
4201         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
4202                 if (!sp->mmio_cached)
4203                         continue;
4204                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4205                         goto restart;
4206         }
4207
4208         kvm_mmu_commit_zap_page(kvm, &invalid_list);
4209         spin_unlock(&kvm->mmu_lock);
4210 }
4211
4212 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4213 {
4214         struct kvm *kvm;
4215         int nr_to_scan = sc->nr_to_scan;
4216
4217         if (nr_to_scan == 0)
4218                 goto out;
4219
4220         raw_spin_lock(&kvm_lock);
4221
4222         list_for_each_entry(kvm, &vm_list, vm_list) {
4223                 int idx;
4224                 LIST_HEAD(invalid_list);
4225
4226                 /*
4227                  * Never scan more than sc->nr_to_scan VM instances.
4228                  * Will not hit this condition practically since we do not try
4229                  * to shrink more than one VM and it is very unlikely to see
4230                  * !n_used_mmu_pages so many times.
4231                  */
4232                 if (!nr_to_scan--)
4233                         break;
4234                 /*
4235                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4236                  * here. We may skip a VM instance errorneosly, but we do not
4237                  * want to shrink a VM that only started to populate its MMU
4238                  * anyway.
4239                  */
4240                 if (!kvm->arch.n_used_mmu_pages)
4241                         continue;
4242
4243                 idx = srcu_read_lock(&kvm->srcu);
4244                 spin_lock(&kvm->mmu_lock);
4245
4246                 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
4247                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4248
4249                 spin_unlock(&kvm->mmu_lock);
4250                 srcu_read_unlock(&kvm->srcu, idx);
4251
4252                 list_move_tail(&kvm->vm_list, &vm_list);
4253                 break;
4254         }
4255
4256         raw_spin_unlock(&kvm_lock);
4257
4258 out:
4259         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4260 }
4261
4262 static struct shrinker mmu_shrinker = {
4263         .shrink = mmu_shrink,
4264         .seeks = DEFAULT_SEEKS * 10,
4265 };
4266
4267 static void mmu_destroy_caches(void)
4268 {
4269         if (pte_list_desc_cache)
4270                 kmem_cache_destroy(pte_list_desc_cache);
4271         if (mmu_page_header_cache)
4272                 kmem_cache_destroy(mmu_page_header_cache);
4273 }
4274
4275 int kvm_mmu_module_init(void)
4276 {
4277         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4278                                             sizeof(struct pte_list_desc),
4279                                             0, 0, NULL);
4280         if (!pte_list_desc_cache)
4281                 goto nomem;
4282
4283         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4284                                                   sizeof(struct kvm_mmu_page),
4285                                                   0, 0, NULL);
4286         if (!mmu_page_header_cache)
4287                 goto nomem;
4288
4289         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4290                 goto nomem;
4291
4292         register_shrinker(&mmu_shrinker);
4293
4294         return 0;
4295
4296 nomem:
4297         mmu_destroy_caches();
4298         return -ENOMEM;
4299 }
4300
4301 /*
4302  * Caculate mmu pages needed for kvm.
4303  */
4304 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4305 {
4306         unsigned int nr_mmu_pages;
4307         unsigned int  nr_pages = 0;
4308         struct kvm_memslots *slots;
4309         struct kvm_memory_slot *memslot;
4310
4311         slots = kvm_memslots(kvm);
4312
4313         kvm_for_each_memslot(memslot, slots)
4314                 nr_pages += memslot->npages;
4315
4316         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4317         nr_mmu_pages = max(nr_mmu_pages,
4318                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4319
4320         return nr_mmu_pages;
4321 }
4322
4323 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4324 {
4325         struct kvm_shadow_walk_iterator iterator;
4326         u64 spte;
4327         int nr_sptes = 0;
4328
4329         walk_shadow_page_lockless_begin(vcpu);
4330         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4331                 sptes[iterator.level-1] = spte;
4332                 nr_sptes++;
4333                 if (!is_shadow_present_pte(spte))
4334                         break;
4335         }
4336         walk_shadow_page_lockless_end(vcpu);
4337
4338         return nr_sptes;
4339 }
4340 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4341
4342 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4343 {
4344         ASSERT(vcpu);
4345
4346         destroy_kvm_mmu(vcpu);
4347         free_mmu_pages(vcpu);
4348         mmu_free_memory_caches(vcpu);
4349 }
4350
4351 void kvm_mmu_module_exit(void)
4352 {
4353         mmu_destroy_caches();
4354         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4355         unregister_shrinker(&mmu_shrinker);
4356         mmu_audit_disable();
4357 }