2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
24 #include "kvm_cache_regs.h"
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
41 #include <asm/cmpxchg.h>
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
52 bool tdp_enabled = false;
56 AUDIT_POST_PAGE_FAULT,
67 module_param(dbg, bool, 0644);
69 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define MMU_WARN_ON(x) WARN_ON(x)
73 #define pgprintk(x...) do { } while (0)
74 #define rmap_printk(x...) do { } while (0)
75 #define MMU_WARN_ON(x) do { } while (0)
78 #define PTE_PREFETCH_NUM 8
80 #define PT_FIRST_AVAIL_BITS_SHIFT 10
81 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
83 #define PT64_LEVEL_BITS 9
85 #define PT64_LEVEL_SHIFT(level) \
86 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
88 #define PT64_INDEX(address, level)\
89 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
92 #define PT32_LEVEL_BITS 10
94 #define PT32_LEVEL_SHIFT(level) \
95 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
97 #define PT32_LVL_OFFSET_MASK(level) \
98 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 * PT32_LEVEL_BITS))) - 1))
101 #define PT32_INDEX(address, level)\
102 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
105 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
106 #define PT64_DIR_BASE_ADDR_MASK \
107 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 #define PT64_LVL_ADDR_MASK(level) \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 * PT64_LEVEL_BITS))) - 1))
111 #define PT64_LVL_OFFSET_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 #define PT32_LVL_ADDR_MASK(level) \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT32_LEVEL_BITS))) - 1))
122 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 | shadow_x_mask | shadow_nx_mask)
125 #define ACC_EXEC_MASK 1
126 #define ACC_WRITE_MASK PT_WRITABLE_MASK
127 #define ACC_USER_MASK PT_USER_MASK
128 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130 #include <trace/events/kvm.h>
132 #define CREATE_TRACE_POINTS
133 #include "mmutrace.h"
135 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
143 struct pte_list_desc {
144 u64 *sptes[PTE_LIST_EXT];
145 struct pte_list_desc *more;
148 struct kvm_shadow_walk_iterator {
156 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
157 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
158 shadow_walk_okay(&(_walker)); \
159 shadow_walk_next(&(_walker)))
161 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
163 shadow_walk_okay(&(_walker)) && \
164 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
165 __shadow_walk_next(&(_walker), spte))
167 static struct kmem_cache *pte_list_desc_cache;
168 static struct kmem_cache *mmu_page_header_cache;
169 static struct percpu_counter kvm_total_used_mmu_pages;
171 static u64 __read_mostly shadow_nx_mask;
172 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173 static u64 __read_mostly shadow_user_mask;
174 static u64 __read_mostly shadow_accessed_mask;
175 static u64 __read_mostly shadow_dirty_mask;
176 static u64 __read_mostly shadow_mmio_mask;
178 static void mmu_spte_set(u64 *sptep, u64 spte);
179 static void mmu_free_roots(struct kvm_vcpu *vcpu);
181 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
183 shadow_mmio_mask = mmio_mask;
185 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
188 * the low bit of the generation number is always presumed to be zero.
189 * This disables mmio caching during memslot updates. The concept is
190 * similar to a seqcount but instead of retrying the access we just punt
191 * and ignore the cache.
193 * spte bits 3-11 are used as bits 1-9 of the generation number,
194 * the bits 52-61 are used as bits 10-19 of the generation number.
196 #define MMIO_SPTE_GEN_LOW_SHIFT 2
197 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
199 #define MMIO_GEN_SHIFT 20
200 #define MMIO_GEN_LOW_SHIFT 10
201 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
202 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
204 static u64 generation_mmio_spte_mask(unsigned int gen)
208 WARN_ON(gen & ~MMIO_GEN_MASK);
210 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
215 static unsigned int get_mmio_spte_generation(u64 spte)
219 spte &= ~shadow_mmio_mask;
221 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
226 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
228 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
231 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
234 unsigned int gen = kvm_current_mmio_generation(vcpu);
235 u64 mask = generation_mmio_spte_mask(gen);
237 access &= ACC_WRITE_MASK | ACC_USER_MASK;
238 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
240 trace_mark_mmio_spte(sptep, gfn, access, gen);
241 mmu_spte_set(sptep, mask);
244 static bool is_mmio_spte(u64 spte)
246 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
249 static gfn_t get_mmio_spte_gfn(u64 spte)
251 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252 return (spte & ~mask) >> PAGE_SHIFT;
255 static unsigned get_mmio_spte_access(u64 spte)
257 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258 return (spte & ~mask) & ~PAGE_MASK;
261 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
262 pfn_t pfn, unsigned access)
264 if (unlikely(is_noslot_pfn(pfn))) {
265 mark_mmio_spte(vcpu, sptep, gfn, access);
272 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
274 unsigned int kvm_gen, spte_gen;
276 kvm_gen = kvm_current_mmio_generation(vcpu);
277 spte_gen = get_mmio_spte_generation(spte);
279 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280 return likely(kvm_gen == spte_gen);
283 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284 u64 dirty_mask, u64 nx_mask, u64 x_mask)
286 shadow_user_mask = user_mask;
287 shadow_accessed_mask = accessed_mask;
288 shadow_dirty_mask = dirty_mask;
289 shadow_nx_mask = nx_mask;
290 shadow_x_mask = x_mask;
292 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
294 static int is_cpuid_PSE36(void)
299 static int is_nx(struct kvm_vcpu *vcpu)
301 return vcpu->arch.efer & EFER_NX;
304 static int is_shadow_present_pte(u64 pte)
306 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
309 static int is_large_pte(u64 pte)
311 return pte & PT_PAGE_SIZE_MASK;
314 static int is_rmap_spte(u64 pte)
316 return is_shadow_present_pte(pte);
319 static int is_last_spte(u64 pte, int level)
321 if (level == PT_PAGE_TABLE_LEVEL)
323 if (is_large_pte(pte))
328 static pfn_t spte_to_pfn(u64 pte)
330 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
333 static gfn_t pse36_gfn_delta(u32 gpte)
335 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
337 return (gpte & PT32_DIR_PSE36_MASK) << shift;
341 static void __set_spte(u64 *sptep, u64 spte)
346 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
353 return xchg(sptep, spte);
356 static u64 __get_spte_lockless(u64 *sptep)
358 return ACCESS_ONCE(*sptep);
369 static void count_spte_clear(u64 *sptep, u64 spte)
371 struct kvm_mmu_page *sp = page_header(__pa(sptep));
373 if (is_shadow_present_pte(spte))
376 /* Ensure the spte is completely set before we increase the count */
378 sp->clear_spte_count++;
381 static void __set_spte(u64 *sptep, u64 spte)
383 union split_spte *ssptep, sspte;
385 ssptep = (union split_spte *)sptep;
386 sspte = (union split_spte)spte;
388 ssptep->spte_high = sspte.spte_high;
391 * If we map the spte from nonpresent to present, We should store
392 * the high bits firstly, then set present bit, so cpu can not
393 * fetch this spte while we are setting the spte.
397 ssptep->spte_low = sspte.spte_low;
400 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
402 union split_spte *ssptep, sspte;
404 ssptep = (union split_spte *)sptep;
405 sspte = (union split_spte)spte;
407 ssptep->spte_low = sspte.spte_low;
410 * If we map the spte from present to nonpresent, we should clear
411 * present bit firstly to avoid vcpu fetch the old high bits.
415 ssptep->spte_high = sspte.spte_high;
416 count_spte_clear(sptep, spte);
419 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
421 union split_spte *ssptep, sspte, orig;
423 ssptep = (union split_spte *)sptep;
424 sspte = (union split_spte)spte;
426 /* xchg acts as a barrier before the setting of the high bits */
427 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
428 orig.spte_high = ssptep->spte_high;
429 ssptep->spte_high = sspte.spte_high;
430 count_spte_clear(sptep, spte);
436 * The idea using the light way get the spte on x86_32 guest is from
437 * gup_get_pte(arch/x86/mm/gup.c).
439 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
440 * coalesces them and we are running out of the MMU lock. Therefore
441 * we need to protect against in-progress updates of the spte.
443 * Reading the spte while an update is in progress may get the old value
444 * for the high part of the spte. The race is fine for a present->non-present
445 * change (because the high part of the spte is ignored for non-present spte),
446 * but for a present->present change we must reread the spte.
448 * All such changes are done in two steps (present->non-present and
449 * non-present->present), hence it is enough to count the number of
450 * present->non-present updates: if it changed while reading the spte,
451 * we might have hit the race. This is done using clear_spte_count.
453 static u64 __get_spte_lockless(u64 *sptep)
455 struct kvm_mmu_page *sp = page_header(__pa(sptep));
456 union split_spte spte, *orig = (union split_spte *)sptep;
460 count = sp->clear_spte_count;
463 spte.spte_low = orig->spte_low;
466 spte.spte_high = orig->spte_high;
469 if (unlikely(spte.spte_low != orig->spte_low ||
470 count != sp->clear_spte_count))
477 static bool spte_is_locklessly_modifiable(u64 spte)
479 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
480 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
483 static bool spte_has_volatile_bits(u64 spte)
486 * Always atomicly update spte if it can be updated
487 * out of mmu-lock, it can ensure dirty bit is not lost,
488 * also, it can help us to get a stable is_writable_pte()
489 * to ensure tlb flush is not missed.
491 if (spte_is_locklessly_modifiable(spte))
494 if (!shadow_accessed_mask)
497 if (!is_shadow_present_pte(spte))
500 if ((spte & shadow_accessed_mask) &&
501 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
507 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
509 return (old_spte & bit_mask) && !(new_spte & bit_mask);
512 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
514 return (old_spte & bit_mask) != (new_spte & bit_mask);
517 /* Rules for using mmu_spte_set:
518 * Set the sptep from nonpresent to present.
519 * Note: the sptep being assigned *must* be either not present
520 * or in a state where the hardware will not attempt to update
523 static void mmu_spte_set(u64 *sptep, u64 new_spte)
525 WARN_ON(is_shadow_present_pte(*sptep));
526 __set_spte(sptep, new_spte);
529 /* Rules for using mmu_spte_update:
530 * Update the state bits, it means the mapped pfn is not changged.
532 * Whenever we overwrite a writable spte with a read-only one we
533 * should flush remote TLBs. Otherwise rmap_write_protect
534 * will find a read-only spte, even though the writable spte
535 * might be cached on a CPU's TLB, the return value indicates this
538 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
540 u64 old_spte = *sptep;
543 WARN_ON(!is_rmap_spte(new_spte));
545 if (!is_shadow_present_pte(old_spte)) {
546 mmu_spte_set(sptep, new_spte);
550 if (!spte_has_volatile_bits(old_spte))
551 __update_clear_spte_fast(sptep, new_spte);
553 old_spte = __update_clear_spte_slow(sptep, new_spte);
556 * For the spte updated out of mmu-lock is safe, since
557 * we always atomicly update it, see the comments in
558 * spte_has_volatile_bits().
560 if (spte_is_locklessly_modifiable(old_spte) &&
561 !is_writable_pte(new_spte))
564 if (!shadow_accessed_mask)
568 * Flush TLB when accessed/dirty bits are changed in the page tables,
569 * to guarantee consistency between TLB and page tables.
571 if (spte_is_bit_changed(old_spte, new_spte,
572 shadow_accessed_mask | shadow_dirty_mask))
575 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
576 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
577 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
578 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
584 * Rules for using mmu_spte_clear_track_bits:
585 * It sets the sptep from present to nonpresent, and track the
586 * state bits, it is used to clear the last level sptep.
588 static int mmu_spte_clear_track_bits(u64 *sptep)
591 u64 old_spte = *sptep;
593 if (!spte_has_volatile_bits(old_spte))
594 __update_clear_spte_fast(sptep, 0ull);
596 old_spte = __update_clear_spte_slow(sptep, 0ull);
598 if (!is_rmap_spte(old_spte))
601 pfn = spte_to_pfn(old_spte);
604 * KVM does not hold the refcount of the page used by
605 * kvm mmu, before reclaiming the page, we should
606 * unmap it from mmu first.
608 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
610 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
611 kvm_set_pfn_accessed(pfn);
612 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
613 kvm_set_pfn_dirty(pfn);
618 * Rules for using mmu_spte_clear_no_track:
619 * Directly clear spte without caring the state bits of sptep,
620 * it is used to set the upper level spte.
622 static void mmu_spte_clear_no_track(u64 *sptep)
624 __update_clear_spte_fast(sptep, 0ull);
627 static u64 mmu_spte_get_lockless(u64 *sptep)
629 return __get_spte_lockless(sptep);
632 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635 * Prevent page table teardown by making any free-er wait during
636 * kvm_flush_remote_tlbs() IPI to all active vcpus.
639 vcpu->mode = READING_SHADOW_PAGE_TABLES;
641 * Make sure a following spte read is not reordered ahead of the write
647 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650 * Make sure the write to vcpu->mode is not reordered in front of
651 * reads to sptes. If it does, kvm_commit_zap_page() can see us
652 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655 vcpu->mode = OUTSIDE_GUEST_MODE;
659 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
660 struct kmem_cache *base_cache, int min)
664 if (cache->nobjs >= min)
666 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
667 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
670 cache->objects[cache->nobjs++] = obj;
675 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
680 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
681 struct kmem_cache *cache)
684 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
687 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
692 if (cache->nobjs >= min)
694 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
695 page = (void *)__get_free_page(GFP_KERNEL);
698 cache->objects[cache->nobjs++] = page;
703 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
706 free_page((unsigned long)mc->objects[--mc->nobjs]);
709 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
713 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
714 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
717 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
720 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
721 mmu_page_header_cache, 4);
726 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
728 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
729 pte_list_desc_cache);
730 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
731 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
732 mmu_page_header_cache);
735 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
740 p = mc->objects[--mc->nobjs];
744 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
746 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
749 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
751 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
754 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
756 if (!sp->role.direct)
757 return sp->gfns[index];
759 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
762 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
765 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
767 sp->gfns[index] = gfn;
771 * Return the pointer to the large page information for a given gfn,
772 * handling slots that are not large page aligned.
774 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
775 struct kvm_memory_slot *slot,
780 idx = gfn_to_index(gfn, slot->base_gfn, level);
781 return &slot->arch.lpage_info[level - 2][idx];
784 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
786 struct kvm_memslots *slots;
787 struct kvm_memory_slot *slot;
788 struct kvm_lpage_info *linfo;
793 slots = kvm_memslots_for_spte_role(kvm, sp->role);
794 slot = __gfn_to_memslot(slots, gfn);
795 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
796 linfo = lpage_info_slot(gfn, slot, i);
797 linfo->write_count += 1;
799 kvm->arch.indirect_shadow_pages++;
802 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
804 struct kvm_memslots *slots;
805 struct kvm_memory_slot *slot;
806 struct kvm_lpage_info *linfo;
811 slots = kvm_memslots_for_spte_role(kvm, sp->role);
812 slot = __gfn_to_memslot(slots, gfn);
813 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
814 linfo = lpage_info_slot(gfn, slot, i);
815 linfo->write_count -= 1;
816 WARN_ON(linfo->write_count < 0);
818 kvm->arch.indirect_shadow_pages--;
821 static int has_wrprotected_page(struct kvm_vcpu *vcpu,
825 struct kvm_memory_slot *slot;
826 struct kvm_lpage_info *linfo;
828 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
830 linfo = lpage_info_slot(gfn, slot, level);
831 return linfo->write_count;
837 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
839 unsigned long page_size;
842 page_size = kvm_host_page_size(kvm, gfn);
844 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
845 if (page_size >= KVM_HPAGE_SIZE(i))
854 static struct kvm_memory_slot *
855 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
858 struct kvm_memory_slot *slot;
860 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
861 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
862 (no_dirty_log && slot->dirty_bitmap))
868 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
870 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
873 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
875 int host_level, level, max_level;
877 host_level = host_mapping_level(vcpu->kvm, large_gfn);
879 if (host_level == PT_PAGE_TABLE_LEVEL)
882 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
884 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
885 if (has_wrprotected_page(vcpu, large_gfn, level))
892 * Pte mapping structures:
894 * If pte_list bit zero is zero, then pte_list point to the spte.
896 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
897 * pte_list_desc containing more mappings.
899 * Returns the number of pte entries before the spte was added or zero if
900 * the spte was not added.
903 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
904 unsigned long *pte_list)
906 struct pte_list_desc *desc;
910 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
911 *pte_list = (unsigned long)spte;
912 } else if (!(*pte_list & 1)) {
913 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
914 desc = mmu_alloc_pte_list_desc(vcpu);
915 desc->sptes[0] = (u64 *)*pte_list;
916 desc->sptes[1] = spte;
917 *pte_list = (unsigned long)desc | 1;
920 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
921 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
922 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
924 count += PTE_LIST_EXT;
926 if (desc->sptes[PTE_LIST_EXT-1]) {
927 desc->more = mmu_alloc_pte_list_desc(vcpu);
930 for (i = 0; desc->sptes[i]; ++i)
932 desc->sptes[i] = spte;
938 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
939 int i, struct pte_list_desc *prev_desc)
943 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
945 desc->sptes[i] = desc->sptes[j];
946 desc->sptes[j] = NULL;
949 if (!prev_desc && !desc->more)
950 *pte_list = (unsigned long)desc->sptes[0];
953 prev_desc->more = desc->more;
955 *pte_list = (unsigned long)desc->more | 1;
956 mmu_free_pte_list_desc(desc);
959 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
961 struct pte_list_desc *desc;
962 struct pte_list_desc *prev_desc;
966 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
968 } else if (!(*pte_list & 1)) {
969 rmap_printk("pte_list_remove: %p 1->0\n", spte);
970 if ((u64 *)*pte_list != spte) {
971 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
976 rmap_printk("pte_list_remove: %p many->many\n", spte);
977 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
980 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
981 if (desc->sptes[i] == spte) {
982 pte_list_desc_remove_entry(pte_list,
990 pr_err("pte_list_remove: %p many->many\n", spte);
995 typedef void (*pte_list_walk_fn) (u64 *spte);
996 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
998 struct pte_list_desc *desc;
1004 if (!(*pte_list & 1))
1005 return fn((u64 *)*pte_list);
1007 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1009 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1015 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1016 struct kvm_memory_slot *slot)
1020 idx = gfn_to_index(gfn, slot->base_gfn, level);
1021 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1025 * Take gfn and return the reverse mapping to it.
1027 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, struct kvm_mmu_page *sp)
1029 struct kvm_memslots *slots;
1030 struct kvm_memory_slot *slot;
1032 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1033 slot = __gfn_to_memslot(slots, gfn);
1034 return __gfn_to_rmap(gfn, sp->role.level, slot);
1037 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1039 struct kvm_mmu_memory_cache *cache;
1041 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1042 return mmu_memory_cache_free_objects(cache);
1045 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1047 struct kvm_mmu_page *sp;
1048 unsigned long *rmapp;
1050 sp = page_header(__pa(spte));
1051 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1052 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1053 return pte_list_add(vcpu, spte, rmapp);
1056 static void rmap_remove(struct kvm *kvm, u64 *spte)
1058 struct kvm_mmu_page *sp;
1060 unsigned long *rmapp;
1062 sp = page_header(__pa(spte));
1063 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1064 rmapp = gfn_to_rmap(kvm, gfn, sp);
1065 pte_list_remove(spte, rmapp);
1069 * Used by the following functions to iterate through the sptes linked by a
1070 * rmap. All fields are private and not assumed to be used outside.
1072 struct rmap_iterator {
1073 /* private fields */
1074 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1075 int pos; /* index of the sptep */
1079 * Iteration must be started by this function. This should also be used after
1080 * removing/dropping sptes from the rmap link because in such cases the
1081 * information in the itererator may not be valid.
1083 * Returns sptep if found, NULL otherwise.
1085 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1095 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1097 return iter->desc->sptes[iter->pos];
1101 * Must be used with a valid iterator: e.g. after rmap_get_first().
1103 * Returns sptep if found, NULL otherwise.
1105 static u64 *rmap_get_next(struct rmap_iterator *iter)
1108 if (iter->pos < PTE_LIST_EXT - 1) {
1112 sptep = iter->desc->sptes[iter->pos];
1117 iter->desc = iter->desc->more;
1121 /* desc->sptes[0] cannot be NULL */
1122 return iter->desc->sptes[iter->pos];
1129 #define for_each_rmap_spte(_rmap_, _iter_, _spte_) \
1130 for (_spte_ = rmap_get_first(*_rmap_, _iter_); \
1131 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;}); \
1132 _spte_ = rmap_get_next(_iter_))
1134 static void drop_spte(struct kvm *kvm, u64 *sptep)
1136 if (mmu_spte_clear_track_bits(sptep))
1137 rmap_remove(kvm, sptep);
1141 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1143 if (is_large_pte(*sptep)) {
1144 WARN_ON(page_header(__pa(sptep))->role.level ==
1145 PT_PAGE_TABLE_LEVEL);
1146 drop_spte(kvm, sptep);
1154 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1156 if (__drop_large_spte(vcpu->kvm, sptep))
1157 kvm_flush_remote_tlbs(vcpu->kvm);
1161 * Write-protect on the specified @sptep, @pt_protect indicates whether
1162 * spte write-protection is caused by protecting shadow page table.
1164 * Note: write protection is difference between dirty logging and spte
1166 * - for dirty logging, the spte can be set to writable at anytime if
1167 * its dirty bitmap is properly set.
1168 * - for spte protection, the spte can be writable only after unsync-ing
1171 * Return true if tlb need be flushed.
1173 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1177 if (!is_writable_pte(spte) &&
1178 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1181 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1184 spte &= ~SPTE_MMU_WRITEABLE;
1185 spte = spte & ~PT_WRITABLE_MASK;
1187 return mmu_spte_update(sptep, spte);
1190 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1194 struct rmap_iterator iter;
1197 for_each_rmap_spte(rmapp, &iter, sptep)
1198 flush |= spte_write_protect(kvm, sptep, pt_protect);
1203 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1207 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1209 spte &= ~shadow_dirty_mask;
1211 return mmu_spte_update(sptep, spte);
1214 static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1217 struct rmap_iterator iter;
1220 for_each_rmap_spte(rmapp, &iter, sptep)
1221 flush |= spte_clear_dirty(kvm, sptep);
1226 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1230 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1232 spte |= shadow_dirty_mask;
1234 return mmu_spte_update(sptep, spte);
1237 static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1240 struct rmap_iterator iter;
1243 for_each_rmap_spte(rmapp, &iter, sptep)
1244 flush |= spte_set_dirty(kvm, sptep);
1250 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1251 * @kvm: kvm instance
1252 * @slot: slot to protect
1253 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1254 * @mask: indicates which pages we should protect
1256 * Used when we do not need to care about huge page mappings: e.g. during dirty
1257 * logging we do not have any such mappings.
1259 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1260 struct kvm_memory_slot *slot,
1261 gfn_t gfn_offset, unsigned long mask)
1263 unsigned long *rmapp;
1266 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1267 PT_PAGE_TABLE_LEVEL, slot);
1268 __rmap_write_protect(kvm, rmapp, false);
1270 /* clear the first set bit */
1276 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1277 * @kvm: kvm instance
1278 * @slot: slot to clear D-bit
1279 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1280 * @mask: indicates which pages we should clear D-bit
1282 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1284 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1285 struct kvm_memory_slot *slot,
1286 gfn_t gfn_offset, unsigned long mask)
1288 unsigned long *rmapp;
1291 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1292 PT_PAGE_TABLE_LEVEL, slot);
1293 __rmap_clear_dirty(kvm, rmapp);
1295 /* clear the first set bit */
1299 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1302 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1305 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1306 * enable dirty logging for them.
1308 * Used when we do not need to care about huge page mappings: e.g. during dirty
1309 * logging we do not have any such mappings.
1311 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1312 struct kvm_memory_slot *slot,
1313 gfn_t gfn_offset, unsigned long mask)
1315 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1316 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1319 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1322 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1324 struct kvm_memory_slot *slot;
1325 unsigned long *rmapp;
1327 bool write_protected = false;
1329 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1331 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1332 rmapp = __gfn_to_rmap(gfn, i, slot);
1333 write_protected |= __rmap_write_protect(vcpu->kvm, rmapp, true);
1336 return write_protected;
1339 static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
1342 struct rmap_iterator iter;
1345 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1346 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1347 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1349 drop_spte(kvm, sptep);
1356 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1357 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1360 return kvm_zap_rmapp(kvm, rmapp);
1363 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1364 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1368 struct rmap_iterator iter;
1371 pte_t *ptep = (pte_t *)data;
1374 WARN_ON(pte_huge(*ptep));
1375 new_pfn = pte_pfn(*ptep);
1378 for_each_rmap_spte(rmapp, &iter, sptep) {
1379 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1380 sptep, *sptep, gfn, level);
1384 if (pte_write(*ptep)) {
1385 drop_spte(kvm, sptep);
1388 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1389 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1391 new_spte &= ~PT_WRITABLE_MASK;
1392 new_spte &= ~SPTE_HOST_WRITEABLE;
1393 new_spte &= ~shadow_accessed_mask;
1395 mmu_spte_clear_track_bits(sptep);
1396 mmu_spte_set(sptep, new_spte);
1401 kvm_flush_remote_tlbs(kvm);
1406 struct slot_rmap_walk_iterator {
1408 struct kvm_memory_slot *slot;
1414 /* output fields. */
1416 unsigned long *rmap;
1419 /* private field. */
1420 unsigned long *end_rmap;
1424 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1426 iterator->level = level;
1427 iterator->gfn = iterator->start_gfn;
1428 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1429 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1434 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1435 struct kvm_memory_slot *slot, int start_level,
1436 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1438 iterator->slot = slot;
1439 iterator->start_level = start_level;
1440 iterator->end_level = end_level;
1441 iterator->start_gfn = start_gfn;
1442 iterator->end_gfn = end_gfn;
1444 rmap_walk_init_level(iterator, iterator->start_level);
1447 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1449 return !!iterator->rmap;
1452 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1454 if (++iterator->rmap <= iterator->end_rmap) {
1455 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1459 if (++iterator->level > iterator->end_level) {
1460 iterator->rmap = NULL;
1464 rmap_walk_init_level(iterator, iterator->level);
1467 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1468 _start_gfn, _end_gfn, _iter_) \
1469 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1470 _end_level_, _start_gfn, _end_gfn); \
1471 slot_rmap_walk_okay(_iter_); \
1472 slot_rmap_walk_next(_iter_))
1474 static int kvm_handle_hva_range(struct kvm *kvm,
1475 unsigned long start,
1478 int (*handler)(struct kvm *kvm,
1479 unsigned long *rmapp,
1480 struct kvm_memory_slot *slot,
1483 unsigned long data))
1485 struct kvm_memslots *slots;
1486 struct kvm_memory_slot *memslot;
1487 struct slot_rmap_walk_iterator iterator;
1491 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1492 slots = __kvm_memslots(kvm, i);
1493 kvm_for_each_memslot(memslot, slots) {
1494 unsigned long hva_start, hva_end;
1495 gfn_t gfn_start, gfn_end;
1497 hva_start = max(start, memslot->userspace_addr);
1498 hva_end = min(end, memslot->userspace_addr +
1499 (memslot->npages << PAGE_SHIFT));
1500 if (hva_start >= hva_end)
1503 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1504 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1506 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1507 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1509 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1510 PT_MAX_HUGEPAGE_LEVEL,
1511 gfn_start, gfn_end - 1,
1513 ret |= handler(kvm, iterator.rmap, memslot,
1514 iterator.gfn, iterator.level, data);
1521 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1523 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1524 struct kvm_memory_slot *slot,
1525 gfn_t gfn, int level,
1526 unsigned long data))
1528 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1531 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1533 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1536 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1538 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1541 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1543 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1546 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1547 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1551 struct rmap_iterator uninitialized_var(iter);
1554 BUG_ON(!shadow_accessed_mask);
1556 for_each_rmap_spte(rmapp, &iter, sptep)
1557 if (*sptep & shadow_accessed_mask) {
1559 clear_bit((ffs(shadow_accessed_mask) - 1),
1560 (unsigned long *)sptep);
1563 trace_kvm_age_page(gfn, level, slot, young);
1567 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1568 struct kvm_memory_slot *slot, gfn_t gfn,
1569 int level, unsigned long data)
1572 struct rmap_iterator iter;
1576 * If there's no access bit in the secondary pte set by the
1577 * hardware it's up to gup-fast/gup to set the access bit in
1578 * the primary pte or in the page structure.
1580 if (!shadow_accessed_mask)
1583 for_each_rmap_spte(rmapp, &iter, sptep)
1584 if (*sptep & shadow_accessed_mask) {
1592 #define RMAP_RECYCLE_THRESHOLD 1000
1594 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1596 unsigned long *rmapp;
1597 struct kvm_mmu_page *sp;
1599 sp = page_header(__pa(spte));
1601 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1603 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1604 kvm_flush_remote_tlbs(vcpu->kvm);
1607 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1610 * In case of absence of EPT Access and Dirty Bits supports,
1611 * emulate the accessed bit for EPT, by checking if this page has
1612 * an EPT mapping, and clearing it if it does. On the next access,
1613 * a new EPT mapping will be established.
1614 * This has some overhead, but not as much as the cost of swapping
1615 * out actively used pages or breaking up actively used hugepages.
1617 if (!shadow_accessed_mask) {
1619 * We are holding the kvm->mmu_lock, and we are blowing up
1620 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1621 * This is correct as long as we don't decouple the mmu_lock
1622 * protected regions (like invalidate_range_start|end does).
1624 kvm->mmu_notifier_seq++;
1625 return kvm_handle_hva_range(kvm, start, end, 0,
1629 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1632 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1634 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1638 static int is_empty_shadow_page(u64 *spt)
1643 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1644 if (is_shadow_present_pte(*pos)) {
1645 printk(KERN_ERR "%s: %p %llx\n", __func__,
1654 * This value is the sum of all of the kvm instances's
1655 * kvm->arch.n_used_mmu_pages values. We need a global,
1656 * aggregate version in order to make the slab shrinker
1659 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1661 kvm->arch.n_used_mmu_pages += nr;
1662 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1665 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1667 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1668 hlist_del(&sp->hash_link);
1669 list_del(&sp->link);
1670 free_page((unsigned long)sp->spt);
1671 if (!sp->role.direct)
1672 free_page((unsigned long)sp->gfns);
1673 kmem_cache_free(mmu_page_header_cache, sp);
1676 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1678 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1681 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1682 struct kvm_mmu_page *sp, u64 *parent_pte)
1687 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1690 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1693 pte_list_remove(parent_pte, &sp->parent_ptes);
1696 static void drop_parent_pte(struct kvm_mmu_page *sp,
1699 mmu_page_remove_parent_pte(sp, parent_pte);
1700 mmu_spte_clear_no_track(parent_pte);
1703 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1704 u64 *parent_pte, int direct)
1706 struct kvm_mmu_page *sp;
1708 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1709 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1711 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1712 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1715 * The active_mmu_pages list is the FIFO list, do not move the
1716 * page until it is zapped. kvm_zap_obsolete_pages depends on
1717 * this feature. See the comments in kvm_zap_obsolete_pages().
1719 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1720 sp->parent_ptes = 0;
1721 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1722 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1726 static void mark_unsync(u64 *spte);
1727 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1729 pte_list_walk(&sp->parent_ptes, mark_unsync);
1732 static void mark_unsync(u64 *spte)
1734 struct kvm_mmu_page *sp;
1737 sp = page_header(__pa(spte));
1738 index = spte - sp->spt;
1739 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1741 if (sp->unsync_children++)
1743 kvm_mmu_mark_parents_unsync(sp);
1746 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1747 struct kvm_mmu_page *sp)
1752 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1756 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1757 struct kvm_mmu_page *sp, u64 *spte,
1763 #define KVM_PAGE_ARRAY_NR 16
1765 struct kvm_mmu_pages {
1766 struct mmu_page_and_offset {
1767 struct kvm_mmu_page *sp;
1769 } page[KVM_PAGE_ARRAY_NR];
1773 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1779 for (i=0; i < pvec->nr; i++)
1780 if (pvec->page[i].sp == sp)
1783 pvec->page[pvec->nr].sp = sp;
1784 pvec->page[pvec->nr].idx = idx;
1786 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1789 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1790 struct kvm_mmu_pages *pvec)
1792 int i, ret, nr_unsync_leaf = 0;
1794 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1795 struct kvm_mmu_page *child;
1796 u64 ent = sp->spt[i];
1798 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1799 goto clear_child_bitmap;
1801 child = page_header(ent & PT64_BASE_ADDR_MASK);
1803 if (child->unsync_children) {
1804 if (mmu_pages_add(pvec, child, i))
1807 ret = __mmu_unsync_walk(child, pvec);
1809 goto clear_child_bitmap;
1811 nr_unsync_leaf += ret;
1814 } else if (child->unsync) {
1816 if (mmu_pages_add(pvec, child, i))
1819 goto clear_child_bitmap;
1824 __clear_bit(i, sp->unsync_child_bitmap);
1825 sp->unsync_children--;
1826 WARN_ON((int)sp->unsync_children < 0);
1830 return nr_unsync_leaf;
1833 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1834 struct kvm_mmu_pages *pvec)
1836 if (!sp->unsync_children)
1839 mmu_pages_add(pvec, sp, 0);
1840 return __mmu_unsync_walk(sp, pvec);
1843 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1845 WARN_ON(!sp->unsync);
1846 trace_kvm_mmu_sync_page(sp);
1848 --kvm->stat.mmu_unsync;
1851 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1852 struct list_head *invalid_list);
1853 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1854 struct list_head *invalid_list);
1857 * NOTE: we should pay more attention on the zapped-obsolete page
1858 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1859 * since it has been deleted from active_mmu_pages but still can be found
1862 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1863 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1864 * all the obsolete pages.
1866 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1867 hlist_for_each_entry(_sp, \
1868 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1869 if ((_sp)->gfn != (_gfn)) {} else
1871 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1872 for_each_gfn_sp(_kvm, _sp, _gfn) \
1873 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1875 /* @sp->gfn should be write-protected at the call site */
1876 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1877 struct list_head *invalid_list, bool clear_unsync)
1879 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1880 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1885 kvm_unlink_unsync_page(vcpu->kvm, sp);
1887 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1888 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1892 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1896 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1897 struct kvm_mmu_page *sp)
1899 LIST_HEAD(invalid_list);
1902 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1904 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1909 #ifdef CONFIG_KVM_MMU_AUDIT
1910 #include "mmu_audit.c"
1912 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1913 static void mmu_audit_disable(void) { }
1916 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1917 struct list_head *invalid_list)
1919 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1922 /* @gfn should be write-protected at the call site */
1923 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1925 struct kvm_mmu_page *s;
1926 LIST_HEAD(invalid_list);
1929 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1933 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1934 kvm_unlink_unsync_page(vcpu->kvm, s);
1935 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1936 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1937 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1943 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1945 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1948 struct mmu_page_path {
1949 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1950 unsigned int idx[PT64_ROOT_LEVEL-1];
1953 #define for_each_sp(pvec, sp, parents, i) \
1954 for (i = mmu_pages_next(&pvec, &parents, -1), \
1955 sp = pvec.page[i].sp; \
1956 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1957 i = mmu_pages_next(&pvec, &parents, i))
1959 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1960 struct mmu_page_path *parents,
1965 for (n = i+1; n < pvec->nr; n++) {
1966 struct kvm_mmu_page *sp = pvec->page[n].sp;
1968 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1969 parents->idx[0] = pvec->page[n].idx;
1973 parents->parent[sp->role.level-2] = sp;
1974 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1980 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1982 struct kvm_mmu_page *sp;
1983 unsigned int level = 0;
1986 unsigned int idx = parents->idx[level];
1988 sp = parents->parent[level];
1992 --sp->unsync_children;
1993 WARN_ON((int)sp->unsync_children < 0);
1994 __clear_bit(idx, sp->unsync_child_bitmap);
1996 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1999 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2000 struct mmu_page_path *parents,
2001 struct kvm_mmu_pages *pvec)
2003 parents->parent[parent->role.level-1] = NULL;
2007 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2008 struct kvm_mmu_page *parent)
2011 struct kvm_mmu_page *sp;
2012 struct mmu_page_path parents;
2013 struct kvm_mmu_pages pages;
2014 LIST_HEAD(invalid_list);
2016 kvm_mmu_pages_init(parent, &parents, &pages);
2017 while (mmu_unsync_walk(parent, &pages)) {
2018 bool protected = false;
2020 for_each_sp(pages, sp, parents, i)
2021 protected |= rmap_write_protect(vcpu, sp->gfn);
2024 kvm_flush_remote_tlbs(vcpu->kvm);
2026 for_each_sp(pages, sp, parents, i) {
2027 kvm_sync_page(vcpu, sp, &invalid_list);
2028 mmu_pages_clear_parents(&parents);
2030 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2031 cond_resched_lock(&vcpu->kvm->mmu_lock);
2032 kvm_mmu_pages_init(parent, &parents, &pages);
2036 static void init_shadow_page_table(struct kvm_mmu_page *sp)
2040 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2044 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2046 sp->write_flooding_count = 0;
2049 static void clear_sp_write_flooding_count(u64 *spte)
2051 struct kvm_mmu_page *sp = page_header(__pa(spte));
2053 __clear_sp_write_flooding_count(sp);
2056 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2058 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2061 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2069 union kvm_mmu_page_role role;
2071 struct kvm_mmu_page *sp;
2072 bool need_sync = false;
2074 role = vcpu->arch.mmu.base_role;
2076 role.direct = direct;
2079 role.access = access;
2080 if (!vcpu->arch.mmu.direct_map
2081 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2082 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2083 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2084 role.quadrant = quadrant;
2086 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2087 if (is_obsolete_sp(vcpu->kvm, sp))
2090 if (!need_sync && sp->unsync)
2093 if (sp->role.word != role.word)
2096 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2099 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2100 if (sp->unsync_children) {
2101 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2102 kvm_mmu_mark_parents_unsync(sp);
2103 } else if (sp->unsync)
2104 kvm_mmu_mark_parents_unsync(sp);
2106 __clear_sp_write_flooding_count(sp);
2107 trace_kvm_mmu_get_page(sp, false);
2110 ++vcpu->kvm->stat.mmu_cache_miss;
2111 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2116 hlist_add_head(&sp->hash_link,
2117 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2119 if (rmap_write_protect(vcpu, gfn))
2120 kvm_flush_remote_tlbs(vcpu->kvm);
2121 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2122 kvm_sync_pages(vcpu, gfn);
2124 account_shadowed(vcpu->kvm, sp);
2126 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2127 init_shadow_page_table(sp);
2128 trace_kvm_mmu_get_page(sp, true);
2132 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2133 struct kvm_vcpu *vcpu, u64 addr)
2135 iterator->addr = addr;
2136 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2137 iterator->level = vcpu->arch.mmu.shadow_root_level;
2139 if (iterator->level == PT64_ROOT_LEVEL &&
2140 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2141 !vcpu->arch.mmu.direct_map)
2144 if (iterator->level == PT32E_ROOT_LEVEL) {
2145 iterator->shadow_addr
2146 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2147 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2149 if (!iterator->shadow_addr)
2150 iterator->level = 0;
2154 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2156 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2159 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2160 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2164 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2167 if (is_last_spte(spte, iterator->level)) {
2168 iterator->level = 0;
2172 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2176 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2178 return __shadow_walk_next(iterator, *iterator->sptep);
2181 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2185 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2186 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2188 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2189 shadow_user_mask | shadow_x_mask;
2192 spte |= shadow_accessed_mask;
2194 mmu_spte_set(sptep, spte);
2197 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2198 unsigned direct_access)
2200 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2201 struct kvm_mmu_page *child;
2204 * For the direct sp, if the guest pte's dirty bit
2205 * changed form clean to dirty, it will corrupt the
2206 * sp's access: allow writable in the read-only sp,
2207 * so we should update the spte at this point to get
2208 * a new sp with the correct access.
2210 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2211 if (child->role.access == direct_access)
2214 drop_parent_pte(child, sptep);
2215 kvm_flush_remote_tlbs(vcpu->kvm);
2219 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2223 struct kvm_mmu_page *child;
2226 if (is_shadow_present_pte(pte)) {
2227 if (is_last_spte(pte, sp->role.level)) {
2228 drop_spte(kvm, spte);
2229 if (is_large_pte(pte))
2232 child = page_header(pte & PT64_BASE_ADDR_MASK);
2233 drop_parent_pte(child, spte);
2238 if (is_mmio_spte(pte))
2239 mmu_spte_clear_no_track(spte);
2244 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2245 struct kvm_mmu_page *sp)
2249 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2250 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2253 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2255 mmu_page_remove_parent_pte(sp, parent_pte);
2258 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2261 struct rmap_iterator iter;
2263 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2264 drop_parent_pte(sp, sptep);
2267 static int mmu_zap_unsync_children(struct kvm *kvm,
2268 struct kvm_mmu_page *parent,
2269 struct list_head *invalid_list)
2272 struct mmu_page_path parents;
2273 struct kvm_mmu_pages pages;
2275 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2278 kvm_mmu_pages_init(parent, &parents, &pages);
2279 while (mmu_unsync_walk(parent, &pages)) {
2280 struct kvm_mmu_page *sp;
2282 for_each_sp(pages, sp, parents, i) {
2283 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2284 mmu_pages_clear_parents(&parents);
2287 kvm_mmu_pages_init(parent, &parents, &pages);
2293 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2294 struct list_head *invalid_list)
2298 trace_kvm_mmu_prepare_zap_page(sp);
2299 ++kvm->stat.mmu_shadow_zapped;
2300 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2301 kvm_mmu_page_unlink_children(kvm, sp);
2302 kvm_mmu_unlink_parents(kvm, sp);
2304 if (!sp->role.invalid && !sp->role.direct)
2305 unaccount_shadowed(kvm, sp);
2308 kvm_unlink_unsync_page(kvm, sp);
2309 if (!sp->root_count) {
2312 list_move(&sp->link, invalid_list);
2313 kvm_mod_used_mmu_pages(kvm, -1);
2315 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2318 * The obsolete pages can not be used on any vcpus.
2319 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2321 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2322 kvm_reload_remote_mmus(kvm);
2325 sp->role.invalid = 1;
2329 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2330 struct list_head *invalid_list)
2332 struct kvm_mmu_page *sp, *nsp;
2334 if (list_empty(invalid_list))
2338 * wmb: make sure everyone sees our modifications to the page tables
2339 * rmb: make sure we see changes to vcpu->mode
2344 * Wait for all vcpus to exit guest mode and/or lockless shadow
2347 kvm_flush_remote_tlbs(kvm);
2349 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2350 WARN_ON(!sp->role.invalid || sp->root_count);
2351 kvm_mmu_free_page(sp);
2355 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2356 struct list_head *invalid_list)
2358 struct kvm_mmu_page *sp;
2360 if (list_empty(&kvm->arch.active_mmu_pages))
2363 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2364 struct kvm_mmu_page, link);
2365 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2371 * Changing the number of mmu pages allocated to the vm
2372 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2374 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2376 LIST_HEAD(invalid_list);
2378 spin_lock(&kvm->mmu_lock);
2380 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2381 /* Need to free some mmu pages to achieve the goal. */
2382 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2383 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2386 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2387 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2390 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2392 spin_unlock(&kvm->mmu_lock);
2395 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2397 struct kvm_mmu_page *sp;
2398 LIST_HEAD(invalid_list);
2401 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2403 spin_lock(&kvm->mmu_lock);
2404 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2405 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2408 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2410 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2411 spin_unlock(&kvm->mmu_lock);
2415 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2417 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2419 trace_kvm_mmu_unsync_page(sp);
2420 ++vcpu->kvm->stat.mmu_unsync;
2423 kvm_mmu_mark_parents_unsync(sp);
2426 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2428 struct kvm_mmu_page *s;
2430 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2433 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2434 __kvm_unsync_page(vcpu, s);
2438 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2441 struct kvm_mmu_page *s;
2442 bool need_unsync = false;
2444 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2448 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2455 kvm_unsync_pages(vcpu, gfn);
2459 static bool kvm_is_mmio_pfn(pfn_t pfn)
2462 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2467 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2468 unsigned pte_access, int level,
2469 gfn_t gfn, pfn_t pfn, bool speculative,
2470 bool can_unsync, bool host_writable)
2475 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2478 spte = PT_PRESENT_MASK;
2480 spte |= shadow_accessed_mask;
2482 if (pte_access & ACC_EXEC_MASK)
2483 spte |= shadow_x_mask;
2485 spte |= shadow_nx_mask;
2487 if (pte_access & ACC_USER_MASK)
2488 spte |= shadow_user_mask;
2490 if (level > PT_PAGE_TABLE_LEVEL)
2491 spte |= PT_PAGE_SIZE_MASK;
2493 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2494 kvm_is_mmio_pfn(pfn));
2497 spte |= SPTE_HOST_WRITEABLE;
2499 pte_access &= ~ACC_WRITE_MASK;
2501 spte |= (u64)pfn << PAGE_SHIFT;
2503 if (pte_access & ACC_WRITE_MASK) {
2506 * Other vcpu creates new sp in the window between
2507 * mapping_level() and acquiring mmu-lock. We can
2508 * allow guest to retry the access, the mapping can
2509 * be fixed if guest refault.
2511 if (level > PT_PAGE_TABLE_LEVEL &&
2512 has_wrprotected_page(vcpu, gfn, level))
2515 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2518 * Optimization: for pte sync, if spte was writable the hash
2519 * lookup is unnecessary (and expensive). Write protection
2520 * is responsibility of mmu_get_page / kvm_sync_page.
2521 * Same reasoning can be applied to dirty page accounting.
2523 if (!can_unsync && is_writable_pte(*sptep))
2526 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2527 pgprintk("%s: found shadow page for %llx, marking ro\n",
2530 pte_access &= ~ACC_WRITE_MASK;
2531 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2535 if (pte_access & ACC_WRITE_MASK) {
2536 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2537 spte |= shadow_dirty_mask;
2541 if (mmu_spte_update(sptep, spte))
2542 kvm_flush_remote_tlbs(vcpu->kvm);
2547 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2548 unsigned pte_access, int write_fault, int *emulate,
2549 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2552 int was_rmapped = 0;
2555 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2556 *sptep, write_fault, gfn);
2558 if (is_rmap_spte(*sptep)) {
2560 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2561 * the parent of the now unreachable PTE.
2563 if (level > PT_PAGE_TABLE_LEVEL &&
2564 !is_large_pte(*sptep)) {
2565 struct kvm_mmu_page *child;
2568 child = page_header(pte & PT64_BASE_ADDR_MASK);
2569 drop_parent_pte(child, sptep);
2570 kvm_flush_remote_tlbs(vcpu->kvm);
2571 } else if (pfn != spte_to_pfn(*sptep)) {
2572 pgprintk("hfn old %llx new %llx\n",
2573 spte_to_pfn(*sptep), pfn);
2574 drop_spte(vcpu->kvm, sptep);
2575 kvm_flush_remote_tlbs(vcpu->kvm);
2580 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2581 true, host_writable)) {
2584 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2587 if (unlikely(is_mmio_spte(*sptep) && emulate))
2590 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2591 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2592 is_large_pte(*sptep)? "2MB" : "4kB",
2593 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2595 if (!was_rmapped && is_large_pte(*sptep))
2596 ++vcpu->kvm->stat.lpages;
2598 if (is_shadow_present_pte(*sptep)) {
2600 rmap_count = rmap_add(vcpu, sptep, gfn);
2601 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2602 rmap_recycle(vcpu, sptep, gfn);
2606 kvm_release_pfn_clean(pfn);
2609 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2612 struct kvm_memory_slot *slot;
2614 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2616 return KVM_PFN_ERR_FAULT;
2618 return gfn_to_pfn_memslot_atomic(slot, gfn);
2621 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2622 struct kvm_mmu_page *sp,
2623 u64 *start, u64 *end)
2625 struct page *pages[PTE_PREFETCH_NUM];
2626 struct kvm_memory_slot *slot;
2627 unsigned access = sp->role.access;
2631 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2632 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2636 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2640 for (i = 0; i < ret; i++, gfn++, start++)
2641 mmu_set_spte(vcpu, start, access, 0, NULL,
2642 sp->role.level, gfn, page_to_pfn(pages[i]),
2648 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2649 struct kvm_mmu_page *sp, u64 *sptep)
2651 u64 *spte, *start = NULL;
2654 WARN_ON(!sp->role.direct);
2656 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2659 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2660 if (is_shadow_present_pte(*spte) || spte == sptep) {
2663 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2671 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2673 struct kvm_mmu_page *sp;
2676 * Since it's no accessed bit on EPT, it's no way to
2677 * distinguish between actually accessed translations
2678 * and prefetched, so disable pte prefetch if EPT is
2681 if (!shadow_accessed_mask)
2684 sp = page_header(__pa(sptep));
2685 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2688 __direct_pte_prefetch(vcpu, sp, sptep);
2691 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2692 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2695 struct kvm_shadow_walk_iterator iterator;
2696 struct kvm_mmu_page *sp;
2700 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2703 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2704 if (iterator.level == level) {
2705 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2706 write, &emulate, level, gfn, pfn,
2707 prefault, map_writable);
2708 direct_pte_prefetch(vcpu, iterator.sptep);
2709 ++vcpu->stat.pf_fixed;
2713 drop_large_spte(vcpu, iterator.sptep);
2714 if (!is_shadow_present_pte(*iterator.sptep)) {
2715 u64 base_addr = iterator.addr;
2717 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2718 pseudo_gfn = base_addr >> PAGE_SHIFT;
2719 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2721 1, ACC_ALL, iterator.sptep);
2723 link_shadow_page(iterator.sptep, sp, true);
2729 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2733 info.si_signo = SIGBUS;
2735 info.si_code = BUS_MCEERR_AR;
2736 info.si_addr = (void __user *)address;
2737 info.si_addr_lsb = PAGE_SHIFT;
2739 send_sig_info(SIGBUS, &info, tsk);
2742 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2745 * Do not cache the mmio info caused by writing the readonly gfn
2746 * into the spte otherwise read access on readonly gfn also can
2747 * caused mmio page fault and treat it as mmio access.
2748 * Return 1 to tell kvm to emulate it.
2750 if (pfn == KVM_PFN_ERR_RO_FAULT)
2753 if (pfn == KVM_PFN_ERR_HWPOISON) {
2754 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2761 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2762 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2766 int level = *levelp;
2769 * Check if it's a transparent hugepage. If this would be an
2770 * hugetlbfs page, level wouldn't be set to
2771 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2774 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2775 level == PT_PAGE_TABLE_LEVEL &&
2776 PageTransCompound(pfn_to_page(pfn)) &&
2777 !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2780 * mmu_notifier_retry was successful and we hold the
2781 * mmu_lock here, so the pmd can't become splitting
2782 * from under us, and in turn
2783 * __split_huge_page_refcount() can't run from under
2784 * us and we can safely transfer the refcount from
2785 * PG_tail to PG_head as we switch the pfn to tail to
2788 *levelp = level = PT_DIRECTORY_LEVEL;
2789 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2790 VM_BUG_ON((gfn & mask) != (pfn & mask));
2794 kvm_release_pfn_clean(pfn);
2802 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2803 pfn_t pfn, unsigned access, int *ret_val)
2807 /* The pfn is invalid, report the error! */
2808 if (unlikely(is_error_pfn(pfn))) {
2809 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2813 if (unlikely(is_noslot_pfn(pfn)))
2814 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2821 static bool page_fault_can_be_fast(u32 error_code)
2824 * Do not fix the mmio spte with invalid generation number which
2825 * need to be updated by slow page fault path.
2827 if (unlikely(error_code & PFERR_RSVD_MASK))
2831 * #PF can be fast only if the shadow page table is present and it
2832 * is caused by write-protect, that means we just need change the
2833 * W bit of the spte which can be done out of mmu-lock.
2835 if (!(error_code & PFERR_PRESENT_MASK) ||
2836 !(error_code & PFERR_WRITE_MASK))
2843 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2844 u64 *sptep, u64 spte)
2848 WARN_ON(!sp->role.direct);
2851 * The gfn of direct spte is stable since it is calculated
2854 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2857 * Theoretically we could also set dirty bit (and flush TLB) here in
2858 * order to eliminate unnecessary PML logging. See comments in
2859 * set_spte. But fast_page_fault is very unlikely to happen with PML
2860 * enabled, so we do not do this. This might result in the same GPA
2861 * to be logged in PML buffer again when the write really happens, and
2862 * eventually to be called by mark_page_dirty twice. But it's also no
2863 * harm. This also avoids the TLB flush needed after setting dirty bit
2864 * so non-PML cases won't be impacted.
2866 * Compare with set_spte where instead shadow_dirty_mask is set.
2868 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2869 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2876 * - true: let the vcpu to access on the same address again.
2877 * - false: let the real page fault path to fix it.
2879 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2882 struct kvm_shadow_walk_iterator iterator;
2883 struct kvm_mmu_page *sp;
2887 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2890 if (!page_fault_can_be_fast(error_code))
2893 walk_shadow_page_lockless_begin(vcpu);
2894 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2895 if (!is_shadow_present_pte(spte) || iterator.level < level)
2899 * If the mapping has been changed, let the vcpu fault on the
2900 * same address again.
2902 if (!is_rmap_spte(spte)) {
2907 sp = page_header(__pa(iterator.sptep));
2908 if (!is_last_spte(spte, sp->role.level))
2912 * Check if it is a spurious fault caused by TLB lazily flushed.
2914 * Need not check the access of upper level table entries since
2915 * they are always ACC_ALL.
2917 if (is_writable_pte(spte)) {
2923 * Currently, to simplify the code, only the spte write-protected
2924 * by dirty-log can be fast fixed.
2926 if (!spte_is_locklessly_modifiable(spte))
2930 * Do not fix write-permission on the large spte since we only dirty
2931 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2932 * that means other pages are missed if its slot is dirty-logged.
2934 * Instead, we let the slow page fault path create a normal spte to
2937 * See the comments in kvm_arch_commit_memory_region().
2939 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2943 * Currently, fast page fault only works for direct mapping since
2944 * the gfn is not stable for indirect shadow page.
2945 * See Documentation/virtual/kvm/locking.txt to get more detail.
2947 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2949 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2951 walk_shadow_page_lockless_end(vcpu);
2956 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2957 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2958 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2960 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2961 gfn_t gfn, bool prefault)
2967 unsigned long mmu_seq;
2968 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2970 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2971 if (likely(!force_pt_level)) {
2972 level = mapping_level(vcpu, gfn);
2974 * This path builds a PAE pagetable - so we can map
2975 * 2mb pages at maximum. Therefore check if the level
2976 * is larger than that.
2978 if (level > PT_DIRECTORY_LEVEL)
2979 level = PT_DIRECTORY_LEVEL;
2981 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2983 level = PT_PAGE_TABLE_LEVEL;
2985 if (fast_page_fault(vcpu, v, level, error_code))
2988 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2991 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2994 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2997 spin_lock(&vcpu->kvm->mmu_lock);
2998 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3000 make_mmu_pages_available(vcpu);
3001 if (likely(!force_pt_level))
3002 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3003 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3005 spin_unlock(&vcpu->kvm->mmu_lock);
3011 spin_unlock(&vcpu->kvm->mmu_lock);
3012 kvm_release_pfn_clean(pfn);
3017 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3020 struct kvm_mmu_page *sp;
3021 LIST_HEAD(invalid_list);
3023 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3026 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3027 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3028 vcpu->arch.mmu.direct_map)) {
3029 hpa_t root = vcpu->arch.mmu.root_hpa;
3031 spin_lock(&vcpu->kvm->mmu_lock);
3032 sp = page_header(root);
3034 if (!sp->root_count && sp->role.invalid) {
3035 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3036 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3038 spin_unlock(&vcpu->kvm->mmu_lock);
3039 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3043 spin_lock(&vcpu->kvm->mmu_lock);
3044 for (i = 0; i < 4; ++i) {
3045 hpa_t root = vcpu->arch.mmu.pae_root[i];
3048 root &= PT64_BASE_ADDR_MASK;
3049 sp = page_header(root);
3051 if (!sp->root_count && sp->role.invalid)
3052 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3055 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3057 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3058 spin_unlock(&vcpu->kvm->mmu_lock);
3059 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3062 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3066 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3067 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3074 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3076 struct kvm_mmu_page *sp;
3079 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3080 spin_lock(&vcpu->kvm->mmu_lock);
3081 make_mmu_pages_available(vcpu);
3082 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3085 spin_unlock(&vcpu->kvm->mmu_lock);
3086 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3087 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3088 for (i = 0; i < 4; ++i) {
3089 hpa_t root = vcpu->arch.mmu.pae_root[i];
3091 MMU_WARN_ON(VALID_PAGE(root));
3092 spin_lock(&vcpu->kvm->mmu_lock);
3093 make_mmu_pages_available(vcpu);
3094 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3096 PT32_ROOT_LEVEL, 1, ACC_ALL,
3098 root = __pa(sp->spt);
3100 spin_unlock(&vcpu->kvm->mmu_lock);
3101 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3103 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3110 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3112 struct kvm_mmu_page *sp;
3117 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3119 if (mmu_check_root(vcpu, root_gfn))
3123 * Do we shadow a long mode page table? If so we need to
3124 * write-protect the guests page table root.
3126 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3127 hpa_t root = vcpu->arch.mmu.root_hpa;
3129 MMU_WARN_ON(VALID_PAGE(root));
3131 spin_lock(&vcpu->kvm->mmu_lock);
3132 make_mmu_pages_available(vcpu);
3133 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3135 root = __pa(sp->spt);
3137 spin_unlock(&vcpu->kvm->mmu_lock);
3138 vcpu->arch.mmu.root_hpa = root;
3143 * We shadow a 32 bit page table. This may be a legacy 2-level
3144 * or a PAE 3-level page table. In either case we need to be aware that
3145 * the shadow page table may be a PAE or a long mode page table.
3147 pm_mask = PT_PRESENT_MASK;
3148 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3149 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3151 for (i = 0; i < 4; ++i) {
3152 hpa_t root = vcpu->arch.mmu.pae_root[i];
3154 MMU_WARN_ON(VALID_PAGE(root));
3155 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3156 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3157 if (!is_present_gpte(pdptr)) {
3158 vcpu->arch.mmu.pae_root[i] = 0;
3161 root_gfn = pdptr >> PAGE_SHIFT;
3162 if (mmu_check_root(vcpu, root_gfn))
3165 spin_lock(&vcpu->kvm->mmu_lock);
3166 make_mmu_pages_available(vcpu);
3167 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3170 root = __pa(sp->spt);
3172 spin_unlock(&vcpu->kvm->mmu_lock);
3174 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3176 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3179 * If we shadow a 32 bit page table with a long mode page
3180 * table we enter this path.
3182 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3183 if (vcpu->arch.mmu.lm_root == NULL) {
3185 * The additional page necessary for this is only
3186 * allocated on demand.
3191 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3192 if (lm_root == NULL)
3195 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3197 vcpu->arch.mmu.lm_root = lm_root;
3200 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3206 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3208 if (vcpu->arch.mmu.direct_map)
3209 return mmu_alloc_direct_roots(vcpu);
3211 return mmu_alloc_shadow_roots(vcpu);
3214 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3217 struct kvm_mmu_page *sp;
3219 if (vcpu->arch.mmu.direct_map)
3222 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3225 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3226 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3227 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3228 hpa_t root = vcpu->arch.mmu.root_hpa;
3229 sp = page_header(root);
3230 mmu_sync_children(vcpu, sp);
3231 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3234 for (i = 0; i < 4; ++i) {
3235 hpa_t root = vcpu->arch.mmu.pae_root[i];
3237 if (root && VALID_PAGE(root)) {
3238 root &= PT64_BASE_ADDR_MASK;
3239 sp = page_header(root);
3240 mmu_sync_children(vcpu, sp);
3243 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3246 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3248 spin_lock(&vcpu->kvm->mmu_lock);
3249 mmu_sync_roots(vcpu);
3250 spin_unlock(&vcpu->kvm->mmu_lock);
3252 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3254 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3255 u32 access, struct x86_exception *exception)
3258 exception->error_code = 0;
3262 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3264 struct x86_exception *exception)
3267 exception->error_code = 0;
3268 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3272 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3274 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3276 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3277 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3280 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3282 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3285 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3287 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3290 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3293 return vcpu_match_mmio_gpa(vcpu, addr);
3295 return vcpu_match_mmio_gva(vcpu, addr);
3298 /* return true if reserved bit is detected on spte. */
3300 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3302 struct kvm_shadow_walk_iterator iterator;
3303 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3305 bool reserved = false;
3307 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3310 walk_shadow_page_lockless_begin(vcpu);
3312 for (shadow_walk_init(&iterator, vcpu, addr),
3313 leaf = root = iterator.level;
3314 shadow_walk_okay(&iterator);
3315 __shadow_walk_next(&iterator, spte)) {
3316 spte = mmu_spte_get_lockless(iterator.sptep);
3318 sptes[leaf - 1] = spte;
3321 if (!is_shadow_present_pte(spte))
3324 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3328 walk_shadow_page_lockless_end(vcpu);
3331 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3333 while (root > leaf) {
3334 pr_err("------ spte 0x%llx level %d.\n",
3335 sptes[root - 1], root);
3344 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3349 if (quickly_check_mmio_pf(vcpu, addr, direct))
3350 return RET_MMIO_PF_EMULATE;
3352 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3353 if (unlikely(reserved))
3354 return RET_MMIO_PF_BUG;
3356 if (is_mmio_spte(spte)) {
3357 gfn_t gfn = get_mmio_spte_gfn(spte);
3358 unsigned access = get_mmio_spte_access(spte);
3360 if (!check_mmio_spte(vcpu, spte))
3361 return RET_MMIO_PF_INVALID;
3366 trace_handle_mmio_page_fault(addr, gfn, access);
3367 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3368 return RET_MMIO_PF_EMULATE;
3372 * If the page table is zapped by other cpus, let CPU fault again on
3375 return RET_MMIO_PF_RETRY;
3377 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3379 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3380 u32 error_code, bool direct)
3384 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3385 WARN_ON(ret == RET_MMIO_PF_BUG);
3389 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3390 u32 error_code, bool prefault)
3395 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3397 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3398 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3400 if (likely(r != RET_MMIO_PF_INVALID))
3404 r = mmu_topup_memory_caches(vcpu);
3408 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3410 gfn = gva >> PAGE_SHIFT;
3412 return nonpaging_map(vcpu, gva & PAGE_MASK,
3413 error_code, gfn, prefault);
3416 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3418 struct kvm_arch_async_pf arch;
3420 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3422 arch.direct_map = vcpu->arch.mmu.direct_map;
3423 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3425 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3428 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3430 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3431 kvm_event_needs_reinjection(vcpu)))
3434 return kvm_x86_ops->interrupt_allowed(vcpu);
3437 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3438 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3440 struct kvm_memory_slot *slot;
3443 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3445 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3447 return false; /* *pfn has correct page already */
3449 if (!prefault && can_do_async_pf(vcpu)) {
3450 trace_kvm_try_async_get_page(gva, gfn);
3451 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3452 trace_kvm_async_pf_doublefault(gva, gfn);
3453 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3455 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3459 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3464 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3466 int page_num = KVM_PAGES_PER_HPAGE(level);
3468 gfn &= ~(page_num - 1);
3470 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3473 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3480 gfn_t gfn = gpa >> PAGE_SHIFT;
3481 unsigned long mmu_seq;
3482 int write = error_code & PFERR_WRITE_MASK;
3485 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3487 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3488 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3490 if (likely(r != RET_MMIO_PF_INVALID))
3494 r = mmu_topup_memory_caches(vcpu);
3498 if (mapping_level_dirty_bitmap(vcpu, gfn) ||
3499 !check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL))
3504 if (likely(!force_pt_level)) {
3505 level = mapping_level(vcpu, gfn);
3506 if (level > PT_DIRECTORY_LEVEL &&
3507 !check_hugepage_cache_consistency(vcpu, gfn, level))
3508 level = PT_DIRECTORY_LEVEL;
3509 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3511 level = PT_PAGE_TABLE_LEVEL;
3513 if (fast_page_fault(vcpu, gpa, level, error_code))
3516 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3519 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3522 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3525 spin_lock(&vcpu->kvm->mmu_lock);
3526 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3528 make_mmu_pages_available(vcpu);
3529 if (likely(!force_pt_level))
3530 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3531 r = __direct_map(vcpu, gpa, write, map_writable,
3532 level, gfn, pfn, prefault);
3533 spin_unlock(&vcpu->kvm->mmu_lock);
3538 spin_unlock(&vcpu->kvm->mmu_lock);
3539 kvm_release_pfn_clean(pfn);
3543 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3544 struct kvm_mmu *context)
3546 context->page_fault = nonpaging_page_fault;
3547 context->gva_to_gpa = nonpaging_gva_to_gpa;
3548 context->sync_page = nonpaging_sync_page;
3549 context->invlpg = nonpaging_invlpg;
3550 context->update_pte = nonpaging_update_pte;
3551 context->root_level = 0;
3552 context->shadow_root_level = PT32E_ROOT_LEVEL;
3553 context->root_hpa = INVALID_PAGE;
3554 context->direct_map = true;
3555 context->nx = false;
3558 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3560 mmu_free_roots(vcpu);
3563 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3565 return kvm_read_cr3(vcpu);
3568 static void inject_page_fault(struct kvm_vcpu *vcpu,
3569 struct x86_exception *fault)
3571 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3574 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3575 unsigned access, int *nr_present)
3577 if (unlikely(is_mmio_spte(*sptep))) {
3578 if (gfn != get_mmio_spte_gfn(*sptep)) {
3579 mmu_spte_clear_no_track(sptep);
3584 mark_mmio_spte(vcpu, sptep, gfn, access);
3591 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3596 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3597 return mmu->last_pte_bitmap & (1 << index);
3600 #define PTTYPE_EPT 18 /* arbitrary */
3601 #define PTTYPE PTTYPE_EPT
3602 #include "paging_tmpl.h"
3606 #include "paging_tmpl.h"
3610 #include "paging_tmpl.h"
3614 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3615 struct rsvd_bits_validate *rsvd_check,
3616 int maxphyaddr, int level, bool nx, bool gbpages,
3619 u64 exb_bit_rsvd = 0;
3620 u64 gbpages_bit_rsvd = 0;
3621 u64 nonleaf_bit8_rsvd = 0;
3623 rsvd_check->bad_mt_xwr = 0;
3626 exb_bit_rsvd = rsvd_bits(63, 63);
3628 gbpages_bit_rsvd = rsvd_bits(7, 7);
3631 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3632 * leaf entries) on AMD CPUs only.
3634 if (guest_cpuid_is_amd(vcpu))
3635 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3638 case PT32_ROOT_LEVEL:
3639 /* no rsvd bits for 2 level 4K page table entries */
3640 rsvd_check->rsvd_bits_mask[0][1] = 0;
3641 rsvd_check->rsvd_bits_mask[0][0] = 0;
3642 rsvd_check->rsvd_bits_mask[1][0] =
3643 rsvd_check->rsvd_bits_mask[0][0];
3646 rsvd_check->rsvd_bits_mask[1][1] = 0;
3650 if (is_cpuid_PSE36())
3651 /* 36bits PSE 4MB page */
3652 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3654 /* 32 bits PSE 4MB page */
3655 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3657 case PT32E_ROOT_LEVEL:
3658 rsvd_check->rsvd_bits_mask[0][2] =
3659 rsvd_bits(maxphyaddr, 63) |
3660 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3661 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3662 rsvd_bits(maxphyaddr, 62); /* PDE */
3663 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3664 rsvd_bits(maxphyaddr, 62); /* PTE */
3665 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3666 rsvd_bits(maxphyaddr, 62) |
3667 rsvd_bits(13, 20); /* large page */
3668 rsvd_check->rsvd_bits_mask[1][0] =
3669 rsvd_check->rsvd_bits_mask[0][0];
3671 case PT64_ROOT_LEVEL:
3672 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3673 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3674 rsvd_bits(maxphyaddr, 51);
3675 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3676 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3677 rsvd_bits(maxphyaddr, 51);
3678 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3679 rsvd_bits(maxphyaddr, 51);
3680 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3681 rsvd_bits(maxphyaddr, 51);
3682 rsvd_check->rsvd_bits_mask[1][3] =
3683 rsvd_check->rsvd_bits_mask[0][3];
3684 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3685 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3687 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3688 rsvd_bits(maxphyaddr, 51) |
3689 rsvd_bits(13, 20); /* large page */
3690 rsvd_check->rsvd_bits_mask[1][0] =
3691 rsvd_check->rsvd_bits_mask[0][0];
3696 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3697 struct kvm_mmu *context)
3699 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3700 cpuid_maxphyaddr(vcpu), context->root_level,
3701 context->nx, guest_cpuid_has_gbpages(vcpu),
3706 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3707 int maxphyaddr, bool execonly)
3711 rsvd_check->rsvd_bits_mask[0][3] =
3712 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3713 rsvd_check->rsvd_bits_mask[0][2] =
3714 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3715 rsvd_check->rsvd_bits_mask[0][1] =
3716 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3717 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3720 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3721 rsvd_check->rsvd_bits_mask[1][2] =
3722 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3723 rsvd_check->rsvd_bits_mask[1][1] =
3724 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3725 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3727 for (pte = 0; pte < 64; pte++) {
3728 int rwx_bits = pte & 7;
3730 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3731 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3732 (rwx_bits == 0x4 && !execonly))
3733 rsvd_check->bad_mt_xwr |= (1ull << pte);
3737 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3738 struct kvm_mmu *context, bool execonly)
3740 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3741 cpuid_maxphyaddr(vcpu), execonly);
3745 * the page table on host is the shadow page table for the page
3746 * table in guest or amd nested guest, its mmu features completely
3747 * follow the features in guest.
3750 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3752 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3753 boot_cpu_data.x86_phys_bits,
3754 context->shadow_root_level, context->nx,
3755 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu));
3757 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3760 * the direct page table on host, use as much mmu features as
3761 * possible, however, kvm currently does not do execution-protection.
3764 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3765 struct kvm_mmu *context)
3767 if (guest_cpuid_is_amd(vcpu))
3768 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3769 boot_cpu_data.x86_phys_bits,
3770 context->shadow_root_level, false,
3771 cpu_has_gbpages, true);
3773 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3774 boot_cpu_data.x86_phys_bits,
3780 * as the comments in reset_shadow_zero_bits_mask() except it
3781 * is the shadow page table for intel nested guest.
3784 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3785 struct kvm_mmu *context, bool execonly)
3787 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3788 boot_cpu_data.x86_phys_bits, execonly);
3791 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3792 struct kvm_mmu *mmu, bool ept)
3794 unsigned bit, byte, pfec;
3796 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3798 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3799 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3800 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3803 wf = pfec & PFERR_WRITE_MASK;
3804 uf = pfec & PFERR_USER_MASK;
3805 ff = pfec & PFERR_FETCH_MASK;
3807 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3808 * subject to SMAP restrictions, and cleared otherwise. The
3809 * bit is only meaningful if the SMAP bit is set in CR4.
3811 smapf = !(pfec & PFERR_RSVD_MASK);
3812 for (bit = 0; bit < 8; ++bit) {
3813 x = bit & ACC_EXEC_MASK;
3814 w = bit & ACC_WRITE_MASK;
3815 u = bit & ACC_USER_MASK;
3818 /* Not really needed: !nx will cause pte.nx to fault */
3820 /* Allow supervisor writes if !cr0.wp */
3821 w |= !is_write_protection(vcpu) && !uf;
3822 /* Disallow supervisor fetches of user code if cr4.smep */
3823 x &= !(cr4_smep && u && !uf);
3826 * SMAP:kernel-mode data accesses from user-mode
3827 * mappings should fault. A fault is considered
3828 * as a SMAP violation if all of the following
3829 * conditions are ture:
3830 * - X86_CR4_SMAP is set in CR4
3831 * - An user page is accessed
3832 * - Page fault in kernel mode
3833 * - if CPL = 3 or X86_EFLAGS_AC is clear
3835 * Here, we cover the first three conditions.
3836 * The fourth is computed dynamically in
3837 * permission_fault() and is in smapf.
3839 * Also, SMAP does not affect instruction
3840 * fetches, add the !ff check here to make it
3843 smap = cr4_smap && u && !uf && !ff;
3845 /* Not really needed: no U/S accesses on ept */
3848 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3850 map |= fault << bit;
3852 mmu->permissions[byte] = map;
3856 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3859 unsigned level, root_level = mmu->root_level;
3860 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3862 if (root_level == PT32E_ROOT_LEVEL)
3864 /* PT_PAGE_TABLE_LEVEL always terminates */
3865 map = 1 | (1 << ps_set_index);
3866 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3867 if (level <= PT_PDPE_LEVEL
3868 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3869 map |= 1 << (ps_set_index | (level - 1));
3871 mmu->last_pte_bitmap = map;
3874 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3875 struct kvm_mmu *context,
3878 context->nx = is_nx(vcpu);
3879 context->root_level = level;
3881 reset_rsvds_bits_mask(vcpu, context);
3882 update_permission_bitmask(vcpu, context, false);
3883 update_last_pte_bitmap(vcpu, context);
3885 MMU_WARN_ON(!is_pae(vcpu));
3886 context->page_fault = paging64_page_fault;
3887 context->gva_to_gpa = paging64_gva_to_gpa;
3888 context->sync_page = paging64_sync_page;
3889 context->invlpg = paging64_invlpg;
3890 context->update_pte = paging64_update_pte;
3891 context->shadow_root_level = level;
3892 context->root_hpa = INVALID_PAGE;
3893 context->direct_map = false;
3896 static void paging64_init_context(struct kvm_vcpu *vcpu,
3897 struct kvm_mmu *context)
3899 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3902 static void paging32_init_context(struct kvm_vcpu *vcpu,
3903 struct kvm_mmu *context)
3905 context->nx = false;
3906 context->root_level = PT32_ROOT_LEVEL;
3908 reset_rsvds_bits_mask(vcpu, context);
3909 update_permission_bitmask(vcpu, context, false);
3910 update_last_pte_bitmap(vcpu, context);
3912 context->page_fault = paging32_page_fault;
3913 context->gva_to_gpa = paging32_gva_to_gpa;
3914 context->sync_page = paging32_sync_page;
3915 context->invlpg = paging32_invlpg;
3916 context->update_pte = paging32_update_pte;
3917 context->shadow_root_level = PT32E_ROOT_LEVEL;
3918 context->root_hpa = INVALID_PAGE;
3919 context->direct_map = false;
3922 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3923 struct kvm_mmu *context)
3925 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3928 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3930 struct kvm_mmu *context = &vcpu->arch.mmu;
3932 context->base_role.word = 0;
3933 context->base_role.smm = is_smm(vcpu);
3934 context->page_fault = tdp_page_fault;
3935 context->sync_page = nonpaging_sync_page;
3936 context->invlpg = nonpaging_invlpg;
3937 context->update_pte = nonpaging_update_pte;
3938 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3939 context->root_hpa = INVALID_PAGE;
3940 context->direct_map = true;
3941 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3942 context->get_cr3 = get_cr3;
3943 context->get_pdptr = kvm_pdptr_read;
3944 context->inject_page_fault = kvm_inject_page_fault;
3946 if (!is_paging(vcpu)) {
3947 context->nx = false;
3948 context->gva_to_gpa = nonpaging_gva_to_gpa;
3949 context->root_level = 0;
3950 } else if (is_long_mode(vcpu)) {
3951 context->nx = is_nx(vcpu);
3952 context->root_level = PT64_ROOT_LEVEL;
3953 reset_rsvds_bits_mask(vcpu, context);
3954 context->gva_to_gpa = paging64_gva_to_gpa;
3955 } else if (is_pae(vcpu)) {
3956 context->nx = is_nx(vcpu);
3957 context->root_level = PT32E_ROOT_LEVEL;
3958 reset_rsvds_bits_mask(vcpu, context);
3959 context->gva_to_gpa = paging64_gva_to_gpa;
3961 context->nx = false;
3962 context->root_level = PT32_ROOT_LEVEL;
3963 reset_rsvds_bits_mask(vcpu, context);
3964 context->gva_to_gpa = paging32_gva_to_gpa;
3967 update_permission_bitmask(vcpu, context, false);
3968 update_last_pte_bitmap(vcpu, context);
3969 reset_tdp_shadow_zero_bits_mask(vcpu, context);
3972 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
3974 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3975 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3976 struct kvm_mmu *context = &vcpu->arch.mmu;
3978 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3980 if (!is_paging(vcpu))
3981 nonpaging_init_context(vcpu, context);
3982 else if (is_long_mode(vcpu))
3983 paging64_init_context(vcpu, context);
3984 else if (is_pae(vcpu))
3985 paging32E_init_context(vcpu, context);
3987 paging32_init_context(vcpu, context);
3989 context->base_role.nxe = is_nx(vcpu);
3990 context->base_role.cr4_pae = !!is_pae(vcpu);
3991 context->base_role.cr0_wp = is_write_protection(vcpu);
3992 context->base_role.smep_andnot_wp
3993 = smep && !is_write_protection(vcpu);
3994 context->base_role.smap_andnot_wp
3995 = smap && !is_write_protection(vcpu);
3996 context->base_role.smm = is_smm(vcpu);
3997 reset_shadow_zero_bits_mask(vcpu, context);
3999 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4001 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4003 struct kvm_mmu *context = &vcpu->arch.mmu;
4005 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4007 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4010 context->page_fault = ept_page_fault;
4011 context->gva_to_gpa = ept_gva_to_gpa;
4012 context->sync_page = ept_sync_page;
4013 context->invlpg = ept_invlpg;
4014 context->update_pte = ept_update_pte;
4015 context->root_level = context->shadow_root_level;
4016 context->root_hpa = INVALID_PAGE;
4017 context->direct_map = false;
4019 update_permission_bitmask(vcpu, context, true);
4020 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4021 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4023 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4025 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4027 struct kvm_mmu *context = &vcpu->arch.mmu;
4029 kvm_init_shadow_mmu(vcpu);
4030 context->set_cr3 = kvm_x86_ops->set_cr3;
4031 context->get_cr3 = get_cr3;
4032 context->get_pdptr = kvm_pdptr_read;
4033 context->inject_page_fault = kvm_inject_page_fault;
4036 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4038 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4040 g_context->get_cr3 = get_cr3;
4041 g_context->get_pdptr = kvm_pdptr_read;
4042 g_context->inject_page_fault = kvm_inject_page_fault;
4045 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
4046 * translation of l2_gpa to l1_gpa addresses is done using the
4047 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
4048 * functions between mmu and nested_mmu are swapped.
4050 if (!is_paging(vcpu)) {
4051 g_context->nx = false;
4052 g_context->root_level = 0;
4053 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4054 } else if (is_long_mode(vcpu)) {
4055 g_context->nx = is_nx(vcpu);
4056 g_context->root_level = PT64_ROOT_LEVEL;
4057 reset_rsvds_bits_mask(vcpu, g_context);
4058 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4059 } else if (is_pae(vcpu)) {
4060 g_context->nx = is_nx(vcpu);
4061 g_context->root_level = PT32E_ROOT_LEVEL;
4062 reset_rsvds_bits_mask(vcpu, g_context);
4063 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4065 g_context->nx = false;
4066 g_context->root_level = PT32_ROOT_LEVEL;
4067 reset_rsvds_bits_mask(vcpu, g_context);
4068 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4071 update_permission_bitmask(vcpu, g_context, false);
4072 update_last_pte_bitmap(vcpu, g_context);
4075 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4077 if (mmu_is_nested(vcpu))
4078 init_kvm_nested_mmu(vcpu);
4079 else if (tdp_enabled)
4080 init_kvm_tdp_mmu(vcpu);
4082 init_kvm_softmmu(vcpu);
4085 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4087 kvm_mmu_unload(vcpu);
4090 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4092 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4096 r = mmu_topup_memory_caches(vcpu);
4099 r = mmu_alloc_roots(vcpu);
4100 kvm_mmu_sync_roots(vcpu);
4103 /* set_cr3() should ensure TLB has been flushed */
4104 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4108 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4110 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4112 mmu_free_roots(vcpu);
4113 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4115 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4117 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4118 struct kvm_mmu_page *sp, u64 *spte,
4121 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4122 ++vcpu->kvm->stat.mmu_pde_zapped;
4126 ++vcpu->kvm->stat.mmu_pte_updated;
4127 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4130 static bool need_remote_flush(u64 old, u64 new)
4132 if (!is_shadow_present_pte(old))
4134 if (!is_shadow_present_pte(new))
4136 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4138 old ^= shadow_nx_mask;
4139 new ^= shadow_nx_mask;
4140 return (old & ~new & PT64_PERM_MASK) != 0;
4143 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4144 bool remote_flush, bool local_flush)
4150 kvm_flush_remote_tlbs(vcpu->kvm);
4151 else if (local_flush)
4152 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4155 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4156 const u8 *new, int *bytes)
4162 * Assume that the pte write on a page table of the same type
4163 * as the current vcpu paging mode since we update the sptes only
4164 * when they have the same mode.
4166 if (is_pae(vcpu) && *bytes == 4) {
4167 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4170 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4173 new = (const u8 *)&gentry;
4178 gentry = *(const u32 *)new;
4181 gentry = *(const u64 *)new;
4192 * If we're seeing too many writes to a page, it may no longer be a page table,
4193 * or we may be forking, in which case it is better to unmap the page.
4195 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4198 * Skip write-flooding detected for the sp whose level is 1, because
4199 * it can become unsync, then the guest page is not write-protected.
4201 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4204 return ++sp->write_flooding_count >= 3;
4208 * Misaligned accesses are too much trouble to fix up; also, they usually
4209 * indicate a page is not used as a page table.
4211 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4214 unsigned offset, pte_size, misaligned;
4216 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4217 gpa, bytes, sp->role.word);
4219 offset = offset_in_page(gpa);
4220 pte_size = sp->role.cr4_pae ? 8 : 4;
4223 * Sometimes, the OS only writes the last one bytes to update status
4224 * bits, for example, in linux, andb instruction is used in clear_bit().
4226 if (!(offset & (pte_size - 1)) && bytes == 1)
4229 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4230 misaligned |= bytes < 4;
4235 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4237 unsigned page_offset, quadrant;
4241 page_offset = offset_in_page(gpa);
4242 level = sp->role.level;
4244 if (!sp->role.cr4_pae) {
4245 page_offset <<= 1; /* 32->64 */
4247 * A 32-bit pde maps 4MB while the shadow pdes map
4248 * only 2MB. So we need to double the offset again
4249 * and zap two pdes instead of one.
4251 if (level == PT32_ROOT_LEVEL) {
4252 page_offset &= ~7; /* kill rounding error */
4256 quadrant = page_offset >> PAGE_SHIFT;
4257 page_offset &= ~PAGE_MASK;
4258 if (quadrant != sp->role.quadrant)
4262 spte = &sp->spt[page_offset / sizeof(*spte)];
4266 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4267 const u8 *new, int bytes)
4269 gfn_t gfn = gpa >> PAGE_SHIFT;
4270 struct kvm_mmu_page *sp;
4271 LIST_HEAD(invalid_list);
4272 u64 entry, gentry, *spte;
4274 bool remote_flush, local_flush, zap_page;
4275 union kvm_mmu_page_role mask = { };
4280 mask.smep_andnot_wp = 1;
4281 mask.smap_andnot_wp = 1;
4285 * If we don't have indirect shadow pages, it means no page is
4286 * write-protected, so we can exit simply.
4288 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4291 zap_page = remote_flush = local_flush = false;
4293 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4295 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4298 * No need to care whether allocation memory is successful
4299 * or not since pte prefetch is skiped if it does not have
4300 * enough objects in the cache.
4302 mmu_topup_memory_caches(vcpu);
4304 spin_lock(&vcpu->kvm->mmu_lock);
4305 ++vcpu->kvm->stat.mmu_pte_write;
4306 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4308 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4309 if (detect_write_misaligned(sp, gpa, bytes) ||
4310 detect_write_flooding(sp)) {
4311 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4313 ++vcpu->kvm->stat.mmu_flooded;
4317 spte = get_written_sptes(sp, gpa, &npte);
4324 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4326 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4327 & mask.word) && rmap_can_add(vcpu))
4328 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4329 if (need_remote_flush(entry, *spte))
4330 remote_flush = true;
4334 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4335 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4336 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4337 spin_unlock(&vcpu->kvm->mmu_lock);
4340 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4345 if (vcpu->arch.mmu.direct_map)
4348 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4350 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4354 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4356 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4358 LIST_HEAD(invalid_list);
4360 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4363 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4364 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4367 ++vcpu->kvm->stat.mmu_recycled;
4369 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4372 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4374 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4375 return vcpu_match_mmio_gpa(vcpu, addr);
4377 return vcpu_match_mmio_gva(vcpu, addr);
4380 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4381 void *insn, int insn_len)
4383 int r, emulation_type = EMULTYPE_RETRY;
4384 enum emulation_result er;
4386 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4395 if (is_mmio_page_fault(vcpu, cr2))
4398 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4403 case EMULATE_USER_EXIT:
4404 ++vcpu->stat.mmio_exits;
4414 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4416 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4418 vcpu->arch.mmu.invlpg(vcpu, gva);
4419 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4420 ++vcpu->stat.invlpg;
4422 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4424 void kvm_enable_tdp(void)
4428 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4430 void kvm_disable_tdp(void)
4432 tdp_enabled = false;
4434 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4436 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4438 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4439 if (vcpu->arch.mmu.lm_root != NULL)
4440 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4443 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4449 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4450 * Therefore we need to allocate shadow page tables in the first
4451 * 4GB of memory, which happens to fit the DMA32 zone.
4453 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4457 vcpu->arch.mmu.pae_root = page_address(page);
4458 for (i = 0; i < 4; ++i)
4459 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4464 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4466 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4467 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4468 vcpu->arch.mmu.translate_gpa = translate_gpa;
4469 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4471 return alloc_mmu_pages(vcpu);
4474 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4476 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4481 /* The return value indicates if tlb flush on all vcpus is needed. */
4482 typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
4484 /* The caller should hold mmu-lock before calling this function. */
4486 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4487 slot_level_handler fn, int start_level, int end_level,
4488 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4490 struct slot_rmap_walk_iterator iterator;
4493 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4494 end_gfn, &iterator) {
4496 flush |= fn(kvm, iterator.rmap);
4498 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4499 if (flush && lock_flush_tlb) {
4500 kvm_flush_remote_tlbs(kvm);
4503 cond_resched_lock(&kvm->mmu_lock);
4507 if (flush && lock_flush_tlb) {
4508 kvm_flush_remote_tlbs(kvm);
4516 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4517 slot_level_handler fn, int start_level, int end_level,
4518 bool lock_flush_tlb)
4520 return slot_handle_level_range(kvm, memslot, fn, start_level,
4521 end_level, memslot->base_gfn,
4522 memslot->base_gfn + memslot->npages - 1,
4527 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4528 slot_level_handler fn, bool lock_flush_tlb)
4530 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4531 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4535 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4536 slot_level_handler fn, bool lock_flush_tlb)
4538 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4539 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4543 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4544 slot_level_handler fn, bool lock_flush_tlb)
4546 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4547 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4550 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4552 struct kvm_memslots *slots;
4553 struct kvm_memory_slot *memslot;
4556 spin_lock(&kvm->mmu_lock);
4557 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4558 slots = __kvm_memslots(kvm, i);
4559 kvm_for_each_memslot(memslot, slots) {
4562 start = max(gfn_start, memslot->base_gfn);
4563 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4567 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4568 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4569 start, end - 1, true);
4573 spin_unlock(&kvm->mmu_lock);
4576 static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
4578 return __rmap_write_protect(kvm, rmapp, false);
4581 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4582 struct kvm_memory_slot *memslot)
4586 spin_lock(&kvm->mmu_lock);
4587 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4589 spin_unlock(&kvm->mmu_lock);
4592 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4593 * which do tlb flush out of mmu-lock should be serialized by
4594 * kvm->slots_lock otherwise tlb flush would be missed.
4596 lockdep_assert_held(&kvm->slots_lock);
4599 * We can flush all the TLBs out of the mmu lock without TLB
4600 * corruption since we just change the spte from writable to
4601 * readonly so that we only need to care the case of changing
4602 * spte from present to present (changing the spte from present
4603 * to nonpresent will flush all the TLBs immediately), in other
4604 * words, the only case we care is mmu_spte_update() where we
4605 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4606 * instead of PT_WRITABLE_MASK, that means it does not depend
4607 * on PT_WRITABLE_MASK anymore.
4610 kvm_flush_remote_tlbs(kvm);
4613 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4614 unsigned long *rmapp)
4617 struct rmap_iterator iter;
4618 int need_tlb_flush = 0;
4620 struct kvm_mmu_page *sp;
4623 for_each_rmap_spte(rmapp, &iter, sptep) {
4624 sp = page_header(__pa(sptep));
4625 pfn = spte_to_pfn(*sptep);
4628 * We cannot do huge page mapping for indirect shadow pages,
4629 * which are found on the last rmap (level = 1) when not using
4630 * tdp; such shadow pages are synced with the page table in
4631 * the guest, and the guest page table is using 4K page size
4632 * mapping if the indirect sp has level = 1.
4634 if (sp->role.direct &&
4635 !kvm_is_reserved_pfn(pfn) &&
4636 PageTransCompound(pfn_to_page(pfn))) {
4637 drop_spte(kvm, sptep);
4643 return need_tlb_flush;
4646 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4647 const struct kvm_memory_slot *memslot)
4649 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
4650 spin_lock(&kvm->mmu_lock);
4651 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4652 kvm_mmu_zap_collapsible_spte, true);
4653 spin_unlock(&kvm->mmu_lock);
4656 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4657 struct kvm_memory_slot *memslot)
4661 spin_lock(&kvm->mmu_lock);
4662 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4663 spin_unlock(&kvm->mmu_lock);
4665 lockdep_assert_held(&kvm->slots_lock);
4668 * It's also safe to flush TLBs out of mmu lock here as currently this
4669 * function is only used for dirty logging, in which case flushing TLB
4670 * out of mmu lock also guarantees no dirty pages will be lost in
4674 kvm_flush_remote_tlbs(kvm);
4676 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4678 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4679 struct kvm_memory_slot *memslot)
4683 spin_lock(&kvm->mmu_lock);
4684 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4686 spin_unlock(&kvm->mmu_lock);
4688 /* see kvm_mmu_slot_remove_write_access */
4689 lockdep_assert_held(&kvm->slots_lock);
4692 kvm_flush_remote_tlbs(kvm);
4694 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4696 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4697 struct kvm_memory_slot *memslot)
4701 spin_lock(&kvm->mmu_lock);
4702 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4703 spin_unlock(&kvm->mmu_lock);
4705 lockdep_assert_held(&kvm->slots_lock);
4707 /* see kvm_mmu_slot_leaf_clear_dirty */
4709 kvm_flush_remote_tlbs(kvm);
4711 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4713 #define BATCH_ZAP_PAGES 10
4714 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4716 struct kvm_mmu_page *sp, *node;
4720 list_for_each_entry_safe_reverse(sp, node,
4721 &kvm->arch.active_mmu_pages, link) {
4725 * No obsolete page exists before new created page since
4726 * active_mmu_pages is the FIFO list.
4728 if (!is_obsolete_sp(kvm, sp))
4732 * Since we are reversely walking the list and the invalid
4733 * list will be moved to the head, skip the invalid page
4734 * can help us to avoid the infinity list walking.
4736 if (sp->role.invalid)
4740 * Need not flush tlb since we only zap the sp with invalid
4741 * generation number.
4743 if (batch >= BATCH_ZAP_PAGES &&
4744 cond_resched_lock(&kvm->mmu_lock)) {
4749 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4750 &kvm->arch.zapped_obsolete_pages);
4758 * Should flush tlb before free page tables since lockless-walking
4759 * may use the pages.
4761 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4765 * Fast invalidate all shadow pages and use lock-break technique
4766 * to zap obsolete pages.
4768 * It's required when memslot is being deleted or VM is being
4769 * destroyed, in these cases, we should ensure that KVM MMU does
4770 * not use any resource of the being-deleted slot or all slots
4771 * after calling the function.
4773 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4775 spin_lock(&kvm->mmu_lock);
4776 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4777 kvm->arch.mmu_valid_gen++;
4780 * Notify all vcpus to reload its shadow page table
4781 * and flush TLB. Then all vcpus will switch to new
4782 * shadow page table with the new mmu_valid_gen.
4784 * Note: we should do this under the protection of
4785 * mmu-lock, otherwise, vcpu would purge shadow page
4786 * but miss tlb flush.
4788 kvm_reload_remote_mmus(kvm);
4790 kvm_zap_obsolete_pages(kvm);
4791 spin_unlock(&kvm->mmu_lock);
4794 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4796 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4799 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4802 * The very rare case: if the generation-number is round,
4803 * zap all shadow pages.
4805 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4806 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4807 kvm_mmu_invalidate_zap_all_pages(kvm);
4811 static unsigned long
4812 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4815 int nr_to_scan = sc->nr_to_scan;
4816 unsigned long freed = 0;
4818 spin_lock(&kvm_lock);
4820 list_for_each_entry(kvm, &vm_list, vm_list) {
4822 LIST_HEAD(invalid_list);
4825 * Never scan more than sc->nr_to_scan VM instances.
4826 * Will not hit this condition practically since we do not try
4827 * to shrink more than one VM and it is very unlikely to see
4828 * !n_used_mmu_pages so many times.
4833 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4834 * here. We may skip a VM instance errorneosly, but we do not
4835 * want to shrink a VM that only started to populate its MMU
4838 if (!kvm->arch.n_used_mmu_pages &&
4839 !kvm_has_zapped_obsolete_pages(kvm))
4842 idx = srcu_read_lock(&kvm->srcu);
4843 spin_lock(&kvm->mmu_lock);
4845 if (kvm_has_zapped_obsolete_pages(kvm)) {
4846 kvm_mmu_commit_zap_page(kvm,
4847 &kvm->arch.zapped_obsolete_pages);
4851 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4853 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4856 spin_unlock(&kvm->mmu_lock);
4857 srcu_read_unlock(&kvm->srcu, idx);
4860 * unfair on small ones
4861 * per-vm shrinkers cry out
4862 * sadness comes quickly
4864 list_move_tail(&kvm->vm_list, &vm_list);
4868 spin_unlock(&kvm_lock);
4872 static unsigned long
4873 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4875 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4878 static struct shrinker mmu_shrinker = {
4879 .count_objects = mmu_shrink_count,
4880 .scan_objects = mmu_shrink_scan,
4881 .seeks = DEFAULT_SEEKS * 10,
4884 static void mmu_destroy_caches(void)
4886 if (pte_list_desc_cache)
4887 kmem_cache_destroy(pte_list_desc_cache);
4888 if (mmu_page_header_cache)
4889 kmem_cache_destroy(mmu_page_header_cache);
4892 int kvm_mmu_module_init(void)
4894 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4895 sizeof(struct pte_list_desc),
4897 if (!pte_list_desc_cache)
4900 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4901 sizeof(struct kvm_mmu_page),
4903 if (!mmu_page_header_cache)
4906 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4909 register_shrinker(&mmu_shrinker);
4914 mmu_destroy_caches();
4919 * Caculate mmu pages needed for kvm.
4921 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4923 unsigned int nr_mmu_pages;
4924 unsigned int nr_pages = 0;
4925 struct kvm_memslots *slots;
4926 struct kvm_memory_slot *memslot;
4929 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4930 slots = __kvm_memslots(kvm, i);
4932 kvm_for_each_memslot(memslot, slots)
4933 nr_pages += memslot->npages;
4936 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4937 nr_mmu_pages = max(nr_mmu_pages,
4938 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4940 return nr_mmu_pages;
4943 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4945 kvm_mmu_unload(vcpu);
4946 free_mmu_pages(vcpu);
4947 mmu_free_memory_caches(vcpu);
4950 void kvm_mmu_module_exit(void)
4952 mmu_destroy_caches();
4953 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4954 unregister_shrinker(&mmu_shrinker);
4955 mmu_audit_disable();