KVM: MMU: introduce kvm_zap_rmapp
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46  * When setting this variable to true it enables Two-Dimensional-Paging
47  * where the hardware walks 2 page tables:
48  * 1. the guest-virtual to guest-physical
49  * 2. while doing 1. it walks guest-physical to host-physical
50  * If the hardware supports that we don't need to do shadow paging.
51  */
52 bool tdp_enabled = false;
53
54 enum {
55         AUDIT_PRE_PAGE_FAULT,
56         AUDIT_POST_PAGE_FAULT,
57         AUDIT_PRE_PTE_WRITE,
58         AUDIT_POST_PTE_WRITE,
59         AUDIT_PRE_SYNC,
60         AUDIT_POST_SYNC
61 };
62
63 #undef MMU_DEBUG
64
65 #ifdef MMU_DEBUG
66 static bool dbg = 0;
67 module_param(dbg, bool, 0644);
68
69 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define MMU_WARN_ON(x) WARN_ON(x)
72 #else
73 #define pgprintk(x...) do { } while (0)
74 #define rmap_printk(x...) do { } while (0)
75 #define MMU_WARN_ON(x) do { } while (0)
76 #endif
77
78 #define PTE_PREFETCH_NUM                8
79
80 #define PT_FIRST_AVAIL_BITS_SHIFT 10
81 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
83 #define PT64_LEVEL_BITS 9
84
85 #define PT64_LEVEL_SHIFT(level) \
86                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
87
88 #define PT64_INDEX(address, level)\
89         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92 #define PT32_LEVEL_BITS 10
93
94 #define PT32_LEVEL_SHIFT(level) \
95                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
96
97 #define PT32_LVL_OFFSET_MASK(level) \
98         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99                                                 * PT32_LEVEL_BITS))) - 1))
100
101 #define PT32_INDEX(address, level)\
102         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
105 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
106 #define PT64_DIR_BASE_ADDR_MASK \
107         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 #define PT64_LVL_ADDR_MASK(level) \
109         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110                                                 * PT64_LEVEL_BITS))) - 1))
111 #define PT64_LVL_OFFSET_MASK(level) \
112         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113                                                 * PT64_LEVEL_BITS))) - 1))
114
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 #define PT32_LVL_ADDR_MASK(level) \
119         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120                                             * PT32_LEVEL_BITS))) - 1))
121
122 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123                         | shadow_x_mask | shadow_nx_mask)
124
125 #define ACC_EXEC_MASK    1
126 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
127 #define ACC_USER_MASK    PT_USER_MASK
128 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
130 #include <trace/events/kvm.h>
131
132 #define CREATE_TRACE_POINTS
133 #include "mmutrace.h"
134
135 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137
138 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
142
143 struct pte_list_desc {
144         u64 *sptes[PTE_LIST_EXT];
145         struct pte_list_desc *more;
146 };
147
148 struct kvm_shadow_walk_iterator {
149         u64 addr;
150         hpa_t shadow_addr;
151         u64 *sptep;
152         int level;
153         unsigned index;
154 };
155
156 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
157         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
158              shadow_walk_okay(&(_walker));                      \
159              shadow_walk_next(&(_walker)))
160
161 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
162         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
163              shadow_walk_okay(&(_walker)) &&                            \
164                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
165              __shadow_walk_next(&(_walker), spte))
166
167 static struct kmem_cache *pte_list_desc_cache;
168 static struct kmem_cache *mmu_page_header_cache;
169 static struct percpu_counter kvm_total_used_mmu_pages;
170
171 static u64 __read_mostly shadow_nx_mask;
172 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173 static u64 __read_mostly shadow_user_mask;
174 static u64 __read_mostly shadow_accessed_mask;
175 static u64 __read_mostly shadow_dirty_mask;
176 static u64 __read_mostly shadow_mmio_mask;
177
178 static void mmu_spte_set(u64 *sptep, u64 spte);
179 static void mmu_free_roots(struct kvm_vcpu *vcpu);
180
181 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182 {
183         shadow_mmio_mask = mmio_mask;
184 }
185 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
187 /*
188  * the low bit of the generation number is always presumed to be zero.
189  * This disables mmio caching during memslot updates.  The concept is
190  * similar to a seqcount but instead of retrying the access we just punt
191  * and ignore the cache.
192  *
193  * spte bits 3-11 are used as bits 1-9 of the generation number,
194  * the bits 52-61 are used as bits 10-19 of the generation number.
195  */
196 #define MMIO_SPTE_GEN_LOW_SHIFT         2
197 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
198
199 #define MMIO_GEN_SHIFT                  20
200 #define MMIO_GEN_LOW_SHIFT              10
201 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
202 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
203
204 static u64 generation_mmio_spte_mask(unsigned int gen)
205 {
206         u64 mask;
207
208         WARN_ON(gen & ~MMIO_GEN_MASK);
209
210         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212         return mask;
213 }
214
215 static unsigned int get_mmio_spte_generation(u64 spte)
216 {
217         unsigned int gen;
218
219         spte &= ~shadow_mmio_mask;
220
221         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223         return gen;
224 }
225
226 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
227 {
228         return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
229 }
230
231 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
232                            unsigned access)
233 {
234         unsigned int gen = kvm_current_mmio_generation(kvm);
235         u64 mask = generation_mmio_spte_mask(gen);
236
237         access &= ACC_WRITE_MASK | ACC_USER_MASK;
238         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
239
240         trace_mark_mmio_spte(sptep, gfn, access, gen);
241         mmu_spte_set(sptep, mask);
242 }
243
244 static bool is_mmio_spte(u64 spte)
245 {
246         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247 }
248
249 static gfn_t get_mmio_spte_gfn(u64 spte)
250 {
251         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252         return (spte & ~mask) >> PAGE_SHIFT;
253 }
254
255 static unsigned get_mmio_spte_access(u64 spte)
256 {
257         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258         return (spte & ~mask) & ~PAGE_MASK;
259 }
260
261 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
262                           pfn_t pfn, unsigned access)
263 {
264         if (unlikely(is_noslot_pfn(pfn))) {
265                 mark_mmio_spte(kvm, sptep, gfn, access);
266                 return true;
267         }
268
269         return false;
270 }
271
272 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
273 {
274         unsigned int kvm_gen, spte_gen;
275
276         kvm_gen = kvm_current_mmio_generation(kvm);
277         spte_gen = get_mmio_spte_generation(spte);
278
279         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280         return likely(kvm_gen == spte_gen);
281 }
282
283 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
285 {
286         shadow_user_mask = user_mask;
287         shadow_accessed_mask = accessed_mask;
288         shadow_dirty_mask = dirty_mask;
289         shadow_nx_mask = nx_mask;
290         shadow_x_mask = x_mask;
291 }
292 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
294 static int is_cpuid_PSE36(void)
295 {
296         return 1;
297 }
298
299 static int is_nx(struct kvm_vcpu *vcpu)
300 {
301         return vcpu->arch.efer & EFER_NX;
302 }
303
304 static int is_shadow_present_pte(u64 pte)
305 {
306         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 }
308
309 static int is_large_pte(u64 pte)
310 {
311         return pte & PT_PAGE_SIZE_MASK;
312 }
313
314 static int is_rmap_spte(u64 pte)
315 {
316         return is_shadow_present_pte(pte);
317 }
318
319 static int is_last_spte(u64 pte, int level)
320 {
321         if (level == PT_PAGE_TABLE_LEVEL)
322                 return 1;
323         if (is_large_pte(pte))
324                 return 1;
325         return 0;
326 }
327
328 static pfn_t spte_to_pfn(u64 pte)
329 {
330         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 }
332
333 static gfn_t pse36_gfn_delta(u32 gpte)
334 {
335         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337         return (gpte & PT32_DIR_PSE36_MASK) << shift;
338 }
339
340 #ifdef CONFIG_X86_64
341 static void __set_spte(u64 *sptep, u64 spte)
342 {
343         *sptep = spte;
344 }
345
346 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347 {
348         *sptep = spte;
349 }
350
351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352 {
353         return xchg(sptep, spte);
354 }
355
356 static u64 __get_spte_lockless(u64 *sptep)
357 {
358         return ACCESS_ONCE(*sptep);
359 }
360
361 static bool __check_direct_spte_mmio_pf(u64 spte)
362 {
363         /* It is valid if the spte is zapped. */
364         return spte == 0ull;
365 }
366 #else
367 union split_spte {
368         struct {
369                 u32 spte_low;
370                 u32 spte_high;
371         };
372         u64 spte;
373 };
374
375 static void count_spte_clear(u64 *sptep, u64 spte)
376 {
377         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
378
379         if (is_shadow_present_pte(spte))
380                 return;
381
382         /* Ensure the spte is completely set before we increase the count */
383         smp_wmb();
384         sp->clear_spte_count++;
385 }
386
387 static void __set_spte(u64 *sptep, u64 spte)
388 {
389         union split_spte *ssptep, sspte;
390
391         ssptep = (union split_spte *)sptep;
392         sspte = (union split_spte)spte;
393
394         ssptep->spte_high = sspte.spte_high;
395
396         /*
397          * If we map the spte from nonpresent to present, We should store
398          * the high bits firstly, then set present bit, so cpu can not
399          * fetch this spte while we are setting the spte.
400          */
401         smp_wmb();
402
403         ssptep->spte_low = sspte.spte_low;
404 }
405
406 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
407 {
408         union split_spte *ssptep, sspte;
409
410         ssptep = (union split_spte *)sptep;
411         sspte = (union split_spte)spte;
412
413         ssptep->spte_low = sspte.spte_low;
414
415         /*
416          * If we map the spte from present to nonpresent, we should clear
417          * present bit firstly to avoid vcpu fetch the old high bits.
418          */
419         smp_wmb();
420
421         ssptep->spte_high = sspte.spte_high;
422         count_spte_clear(sptep, spte);
423 }
424
425 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
426 {
427         union split_spte *ssptep, sspte, orig;
428
429         ssptep = (union split_spte *)sptep;
430         sspte = (union split_spte)spte;
431
432         /* xchg acts as a barrier before the setting of the high bits */
433         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
434         orig.spte_high = ssptep->spte_high;
435         ssptep->spte_high = sspte.spte_high;
436         count_spte_clear(sptep, spte);
437
438         return orig.spte;
439 }
440
441 /*
442  * The idea using the light way get the spte on x86_32 guest is from
443  * gup_get_pte(arch/x86/mm/gup.c).
444  *
445  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
446  * coalesces them and we are running out of the MMU lock.  Therefore
447  * we need to protect against in-progress updates of the spte.
448  *
449  * Reading the spte while an update is in progress may get the old value
450  * for the high part of the spte.  The race is fine for a present->non-present
451  * change (because the high part of the spte is ignored for non-present spte),
452  * but for a present->present change we must reread the spte.
453  *
454  * All such changes are done in two steps (present->non-present and
455  * non-present->present), hence it is enough to count the number of
456  * present->non-present updates: if it changed while reading the spte,
457  * we might have hit the race.  This is done using clear_spte_count.
458  */
459 static u64 __get_spte_lockless(u64 *sptep)
460 {
461         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
462         union split_spte spte, *orig = (union split_spte *)sptep;
463         int count;
464
465 retry:
466         count = sp->clear_spte_count;
467         smp_rmb();
468
469         spte.spte_low = orig->spte_low;
470         smp_rmb();
471
472         spte.spte_high = orig->spte_high;
473         smp_rmb();
474
475         if (unlikely(spte.spte_low != orig->spte_low ||
476               count != sp->clear_spte_count))
477                 goto retry;
478
479         return spte.spte;
480 }
481
482 static bool __check_direct_spte_mmio_pf(u64 spte)
483 {
484         union split_spte sspte = (union split_spte)spte;
485         u32 high_mmio_mask = shadow_mmio_mask >> 32;
486
487         /* It is valid if the spte is zapped. */
488         if (spte == 0ull)
489                 return true;
490
491         /* It is valid if the spte is being zapped. */
492         if (sspte.spte_low == 0ull &&
493             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
494                 return true;
495
496         return false;
497 }
498 #endif
499
500 static bool spte_is_locklessly_modifiable(u64 spte)
501 {
502         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
503                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
504 }
505
506 static bool spte_has_volatile_bits(u64 spte)
507 {
508         /*
509          * Always atomicly update spte if it can be updated
510          * out of mmu-lock, it can ensure dirty bit is not lost,
511          * also, it can help us to get a stable is_writable_pte()
512          * to ensure tlb flush is not missed.
513          */
514         if (spte_is_locklessly_modifiable(spte))
515                 return true;
516
517         if (!shadow_accessed_mask)
518                 return false;
519
520         if (!is_shadow_present_pte(spte))
521                 return false;
522
523         if ((spte & shadow_accessed_mask) &&
524               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
525                 return false;
526
527         return true;
528 }
529
530 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
531 {
532         return (old_spte & bit_mask) && !(new_spte & bit_mask);
533 }
534
535 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
536 {
537         return (old_spte & bit_mask) != (new_spte & bit_mask);
538 }
539
540 /* Rules for using mmu_spte_set:
541  * Set the sptep from nonpresent to present.
542  * Note: the sptep being assigned *must* be either not present
543  * or in a state where the hardware will not attempt to update
544  * the spte.
545  */
546 static void mmu_spte_set(u64 *sptep, u64 new_spte)
547 {
548         WARN_ON(is_shadow_present_pte(*sptep));
549         __set_spte(sptep, new_spte);
550 }
551
552 /* Rules for using mmu_spte_update:
553  * Update the state bits, it means the mapped pfn is not changged.
554  *
555  * Whenever we overwrite a writable spte with a read-only one we
556  * should flush remote TLBs. Otherwise rmap_write_protect
557  * will find a read-only spte, even though the writable spte
558  * might be cached on a CPU's TLB, the return value indicates this
559  * case.
560  */
561 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
562 {
563         u64 old_spte = *sptep;
564         bool ret = false;
565
566         WARN_ON(!is_rmap_spte(new_spte));
567
568         if (!is_shadow_present_pte(old_spte)) {
569                 mmu_spte_set(sptep, new_spte);
570                 return ret;
571         }
572
573         if (!spte_has_volatile_bits(old_spte))
574                 __update_clear_spte_fast(sptep, new_spte);
575         else
576                 old_spte = __update_clear_spte_slow(sptep, new_spte);
577
578         /*
579          * For the spte updated out of mmu-lock is safe, since
580          * we always atomicly update it, see the comments in
581          * spte_has_volatile_bits().
582          */
583         if (spte_is_locklessly_modifiable(old_spte) &&
584               !is_writable_pte(new_spte))
585                 ret = true;
586
587         if (!shadow_accessed_mask)
588                 return ret;
589
590         /*
591          * Flush TLB when accessed/dirty bits are changed in the page tables,
592          * to guarantee consistency between TLB and page tables.
593          */
594         if (spte_is_bit_changed(old_spte, new_spte,
595                                 shadow_accessed_mask | shadow_dirty_mask))
596                 ret = true;
597
598         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
599                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
600         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
601                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
602
603         return ret;
604 }
605
606 /*
607  * Rules for using mmu_spte_clear_track_bits:
608  * It sets the sptep from present to nonpresent, and track the
609  * state bits, it is used to clear the last level sptep.
610  */
611 static int mmu_spte_clear_track_bits(u64 *sptep)
612 {
613         pfn_t pfn;
614         u64 old_spte = *sptep;
615
616         if (!spte_has_volatile_bits(old_spte))
617                 __update_clear_spte_fast(sptep, 0ull);
618         else
619                 old_spte = __update_clear_spte_slow(sptep, 0ull);
620
621         if (!is_rmap_spte(old_spte))
622                 return 0;
623
624         pfn = spte_to_pfn(old_spte);
625
626         /*
627          * KVM does not hold the refcount of the page used by
628          * kvm mmu, before reclaiming the page, we should
629          * unmap it from mmu first.
630          */
631         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
632
633         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
634                 kvm_set_pfn_accessed(pfn);
635         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
636                 kvm_set_pfn_dirty(pfn);
637         return 1;
638 }
639
640 /*
641  * Rules for using mmu_spte_clear_no_track:
642  * Directly clear spte without caring the state bits of sptep,
643  * it is used to set the upper level spte.
644  */
645 static void mmu_spte_clear_no_track(u64 *sptep)
646 {
647         __update_clear_spte_fast(sptep, 0ull);
648 }
649
650 static u64 mmu_spte_get_lockless(u64 *sptep)
651 {
652         return __get_spte_lockless(sptep);
653 }
654
655 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
656 {
657         /*
658          * Prevent page table teardown by making any free-er wait during
659          * kvm_flush_remote_tlbs() IPI to all active vcpus.
660          */
661         local_irq_disable();
662         vcpu->mode = READING_SHADOW_PAGE_TABLES;
663         /*
664          * Make sure a following spte read is not reordered ahead of the write
665          * to vcpu->mode.
666          */
667         smp_mb();
668 }
669
670 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
671 {
672         /*
673          * Make sure the write to vcpu->mode is not reordered in front of
674          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
675          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
676          */
677         smp_mb();
678         vcpu->mode = OUTSIDE_GUEST_MODE;
679         local_irq_enable();
680 }
681
682 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
683                                   struct kmem_cache *base_cache, int min)
684 {
685         void *obj;
686
687         if (cache->nobjs >= min)
688                 return 0;
689         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
690                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
691                 if (!obj)
692                         return -ENOMEM;
693                 cache->objects[cache->nobjs++] = obj;
694         }
695         return 0;
696 }
697
698 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
699 {
700         return cache->nobjs;
701 }
702
703 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
704                                   struct kmem_cache *cache)
705 {
706         while (mc->nobjs)
707                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
708 }
709
710 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
711                                        int min)
712 {
713         void *page;
714
715         if (cache->nobjs >= min)
716                 return 0;
717         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
718                 page = (void *)__get_free_page(GFP_KERNEL);
719                 if (!page)
720                         return -ENOMEM;
721                 cache->objects[cache->nobjs++] = page;
722         }
723         return 0;
724 }
725
726 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
727 {
728         while (mc->nobjs)
729                 free_page((unsigned long)mc->objects[--mc->nobjs]);
730 }
731
732 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
733 {
734         int r;
735
736         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
737                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
738         if (r)
739                 goto out;
740         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
741         if (r)
742                 goto out;
743         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
744                                    mmu_page_header_cache, 4);
745 out:
746         return r;
747 }
748
749 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
750 {
751         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
752                                 pte_list_desc_cache);
753         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
754         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
755                                 mmu_page_header_cache);
756 }
757
758 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
759 {
760         void *p;
761
762         BUG_ON(!mc->nobjs);
763         p = mc->objects[--mc->nobjs];
764         return p;
765 }
766
767 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
768 {
769         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
770 }
771
772 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
773 {
774         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
775 }
776
777 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
778 {
779         if (!sp->role.direct)
780                 return sp->gfns[index];
781
782         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
783 }
784
785 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
786 {
787         if (sp->role.direct)
788                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
789         else
790                 sp->gfns[index] = gfn;
791 }
792
793 /*
794  * Return the pointer to the large page information for a given gfn,
795  * handling slots that are not large page aligned.
796  */
797 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
798                                               struct kvm_memory_slot *slot,
799                                               int level)
800 {
801         unsigned long idx;
802
803         idx = gfn_to_index(gfn, slot->base_gfn, level);
804         return &slot->arch.lpage_info[level - 2][idx];
805 }
806
807 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
808 {
809         struct kvm_memory_slot *slot;
810         struct kvm_lpage_info *linfo;
811         int i;
812
813         slot = gfn_to_memslot(kvm, gfn);
814         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
815                 linfo = lpage_info_slot(gfn, slot, i);
816                 linfo->write_count += 1;
817         }
818         kvm->arch.indirect_shadow_pages++;
819 }
820
821 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
822 {
823         struct kvm_memory_slot *slot;
824         struct kvm_lpage_info *linfo;
825         int i;
826
827         slot = gfn_to_memslot(kvm, gfn);
828         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
829                 linfo = lpage_info_slot(gfn, slot, i);
830                 linfo->write_count -= 1;
831                 WARN_ON(linfo->write_count < 0);
832         }
833         kvm->arch.indirect_shadow_pages--;
834 }
835
836 static int has_wrprotected_page(struct kvm *kvm,
837                                 gfn_t gfn,
838                                 int level)
839 {
840         struct kvm_memory_slot *slot;
841         struct kvm_lpage_info *linfo;
842
843         slot = gfn_to_memslot(kvm, gfn);
844         if (slot) {
845                 linfo = lpage_info_slot(gfn, slot, level);
846                 return linfo->write_count;
847         }
848
849         return 1;
850 }
851
852 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
853 {
854         unsigned long page_size;
855         int i, ret = 0;
856
857         page_size = kvm_host_page_size(kvm, gfn);
858
859         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
860                 if (page_size >= KVM_HPAGE_SIZE(i))
861                         ret = i;
862                 else
863                         break;
864         }
865
866         return ret;
867 }
868
869 static struct kvm_memory_slot *
870 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
871                             bool no_dirty_log)
872 {
873         struct kvm_memory_slot *slot;
874
875         slot = gfn_to_memslot(vcpu->kvm, gfn);
876         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
877               (no_dirty_log && slot->dirty_bitmap))
878                 slot = NULL;
879
880         return slot;
881 }
882
883 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
884 {
885         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
886 }
887
888 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
889 {
890         int host_level, level, max_level;
891
892         host_level = host_mapping_level(vcpu->kvm, large_gfn);
893
894         if (host_level == PT_PAGE_TABLE_LEVEL)
895                 return host_level;
896
897         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
898
899         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
900                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
901                         break;
902
903         return level - 1;
904 }
905
906 /*
907  * Pte mapping structures:
908  *
909  * If pte_list bit zero is zero, then pte_list point to the spte.
910  *
911  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
912  * pte_list_desc containing more mappings.
913  *
914  * Returns the number of pte entries before the spte was added or zero if
915  * the spte was not added.
916  *
917  */
918 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
919                         unsigned long *pte_list)
920 {
921         struct pte_list_desc *desc;
922         int i, count = 0;
923
924         if (!*pte_list) {
925                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
926                 *pte_list = (unsigned long)spte;
927         } else if (!(*pte_list & 1)) {
928                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
929                 desc = mmu_alloc_pte_list_desc(vcpu);
930                 desc->sptes[0] = (u64 *)*pte_list;
931                 desc->sptes[1] = spte;
932                 *pte_list = (unsigned long)desc | 1;
933                 ++count;
934         } else {
935                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
936                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
937                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
938                         desc = desc->more;
939                         count += PTE_LIST_EXT;
940                 }
941                 if (desc->sptes[PTE_LIST_EXT-1]) {
942                         desc->more = mmu_alloc_pte_list_desc(vcpu);
943                         desc = desc->more;
944                 }
945                 for (i = 0; desc->sptes[i]; ++i)
946                         ++count;
947                 desc->sptes[i] = spte;
948         }
949         return count;
950 }
951
952 static void
953 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
954                            int i, struct pte_list_desc *prev_desc)
955 {
956         int j;
957
958         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
959                 ;
960         desc->sptes[i] = desc->sptes[j];
961         desc->sptes[j] = NULL;
962         if (j != 0)
963                 return;
964         if (!prev_desc && !desc->more)
965                 *pte_list = (unsigned long)desc->sptes[0];
966         else
967                 if (prev_desc)
968                         prev_desc->more = desc->more;
969                 else
970                         *pte_list = (unsigned long)desc->more | 1;
971         mmu_free_pte_list_desc(desc);
972 }
973
974 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
975 {
976         struct pte_list_desc *desc;
977         struct pte_list_desc *prev_desc;
978         int i;
979
980         if (!*pte_list) {
981                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
982                 BUG();
983         } else if (!(*pte_list & 1)) {
984                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
985                 if ((u64 *)*pte_list != spte) {
986                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
987                         BUG();
988                 }
989                 *pte_list = 0;
990         } else {
991                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
992                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
993                 prev_desc = NULL;
994                 while (desc) {
995                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
996                                 if (desc->sptes[i] == spte) {
997                                         pte_list_desc_remove_entry(pte_list,
998                                                                desc, i,
999                                                                prev_desc);
1000                                         return;
1001                                 }
1002                         prev_desc = desc;
1003                         desc = desc->more;
1004                 }
1005                 pr_err("pte_list_remove: %p many->many\n", spte);
1006                 BUG();
1007         }
1008 }
1009
1010 typedef void (*pte_list_walk_fn) (u64 *spte);
1011 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1012 {
1013         struct pte_list_desc *desc;
1014         int i;
1015
1016         if (!*pte_list)
1017                 return;
1018
1019         if (!(*pte_list & 1))
1020                 return fn((u64 *)*pte_list);
1021
1022         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1023         while (desc) {
1024                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1025                         fn(desc->sptes[i]);
1026                 desc = desc->more;
1027         }
1028 }
1029
1030 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1031                                     struct kvm_memory_slot *slot)
1032 {
1033         unsigned long idx;
1034
1035         idx = gfn_to_index(gfn, slot->base_gfn, level);
1036         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1037 }
1038
1039 /*
1040  * Take gfn and return the reverse mapping to it.
1041  */
1042 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1043 {
1044         struct kvm_memory_slot *slot;
1045
1046         slot = gfn_to_memslot(kvm, gfn);
1047         return __gfn_to_rmap(gfn, level, slot);
1048 }
1049
1050 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1051 {
1052         struct kvm_mmu_memory_cache *cache;
1053
1054         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1055         return mmu_memory_cache_free_objects(cache);
1056 }
1057
1058 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1059 {
1060         struct kvm_mmu_page *sp;
1061         unsigned long *rmapp;
1062
1063         sp = page_header(__pa(spte));
1064         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1065         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1066         return pte_list_add(vcpu, spte, rmapp);
1067 }
1068
1069 static void rmap_remove(struct kvm *kvm, u64 *spte)
1070 {
1071         struct kvm_mmu_page *sp;
1072         gfn_t gfn;
1073         unsigned long *rmapp;
1074
1075         sp = page_header(__pa(spte));
1076         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1077         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1078         pte_list_remove(spte, rmapp);
1079 }
1080
1081 /*
1082  * Used by the following functions to iterate through the sptes linked by a
1083  * rmap.  All fields are private and not assumed to be used outside.
1084  */
1085 struct rmap_iterator {
1086         /* private fields */
1087         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1088         int pos;                        /* index of the sptep */
1089 };
1090
1091 /*
1092  * Iteration must be started by this function.  This should also be used after
1093  * removing/dropping sptes from the rmap link because in such cases the
1094  * information in the itererator may not be valid.
1095  *
1096  * Returns sptep if found, NULL otherwise.
1097  */
1098 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1099 {
1100         if (!rmap)
1101                 return NULL;
1102
1103         if (!(rmap & 1)) {
1104                 iter->desc = NULL;
1105                 return (u64 *)rmap;
1106         }
1107
1108         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1109         iter->pos = 0;
1110         return iter->desc->sptes[iter->pos];
1111 }
1112
1113 /*
1114  * Must be used with a valid iterator: e.g. after rmap_get_first().
1115  *
1116  * Returns sptep if found, NULL otherwise.
1117  */
1118 static u64 *rmap_get_next(struct rmap_iterator *iter)
1119 {
1120         if (iter->desc) {
1121                 if (iter->pos < PTE_LIST_EXT - 1) {
1122                         u64 *sptep;
1123
1124                         ++iter->pos;
1125                         sptep = iter->desc->sptes[iter->pos];
1126                         if (sptep)
1127                                 return sptep;
1128                 }
1129
1130                 iter->desc = iter->desc->more;
1131
1132                 if (iter->desc) {
1133                         iter->pos = 0;
1134                         /* desc->sptes[0] cannot be NULL */
1135                         return iter->desc->sptes[iter->pos];
1136                 }
1137         }
1138
1139         return NULL;
1140 }
1141
1142 #define for_each_rmap_spte(_rmap_, _iter_, _spte_)                          \
1143            for (_spte_ = rmap_get_first(*_rmap_, _iter_);                   \
1144                 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;});  \
1145                         _spte_ = rmap_get_next(_iter_))
1146
1147 static void drop_spte(struct kvm *kvm, u64 *sptep)
1148 {
1149         if (mmu_spte_clear_track_bits(sptep))
1150                 rmap_remove(kvm, sptep);
1151 }
1152
1153
1154 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1155 {
1156         if (is_large_pte(*sptep)) {
1157                 WARN_ON(page_header(__pa(sptep))->role.level ==
1158                         PT_PAGE_TABLE_LEVEL);
1159                 drop_spte(kvm, sptep);
1160                 --kvm->stat.lpages;
1161                 return true;
1162         }
1163
1164         return false;
1165 }
1166
1167 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1168 {
1169         if (__drop_large_spte(vcpu->kvm, sptep))
1170                 kvm_flush_remote_tlbs(vcpu->kvm);
1171 }
1172
1173 /*
1174  * Write-protect on the specified @sptep, @pt_protect indicates whether
1175  * spte write-protection is caused by protecting shadow page table.
1176  *
1177  * Note: write protection is difference between dirty logging and spte
1178  * protection:
1179  * - for dirty logging, the spte can be set to writable at anytime if
1180  *   its dirty bitmap is properly set.
1181  * - for spte protection, the spte can be writable only after unsync-ing
1182  *   shadow page.
1183  *
1184  * Return true if tlb need be flushed.
1185  */
1186 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1187 {
1188         u64 spte = *sptep;
1189
1190         if (!is_writable_pte(spte) &&
1191               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1192                 return false;
1193
1194         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1195
1196         if (pt_protect)
1197                 spte &= ~SPTE_MMU_WRITEABLE;
1198         spte = spte & ~PT_WRITABLE_MASK;
1199
1200         return mmu_spte_update(sptep, spte);
1201 }
1202
1203 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1204                                  bool pt_protect)
1205 {
1206         u64 *sptep;
1207         struct rmap_iterator iter;
1208         bool flush = false;
1209
1210         for_each_rmap_spte(rmapp, &iter, sptep)
1211                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1212
1213         return flush;
1214 }
1215
1216 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1217 {
1218         u64 spte = *sptep;
1219
1220         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1221
1222         spte &= ~shadow_dirty_mask;
1223
1224         return mmu_spte_update(sptep, spte);
1225 }
1226
1227 static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1228 {
1229         u64 *sptep;
1230         struct rmap_iterator iter;
1231         bool flush = false;
1232
1233         for_each_rmap_spte(rmapp, &iter, sptep)
1234                 flush |= spte_clear_dirty(kvm, sptep);
1235
1236         return flush;
1237 }
1238
1239 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1240 {
1241         u64 spte = *sptep;
1242
1243         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1244
1245         spte |= shadow_dirty_mask;
1246
1247         return mmu_spte_update(sptep, spte);
1248 }
1249
1250 static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1251 {
1252         u64 *sptep;
1253         struct rmap_iterator iter;
1254         bool flush = false;
1255
1256         for_each_rmap_spte(rmapp, &iter, sptep)
1257                 flush |= spte_set_dirty(kvm, sptep);
1258
1259         return flush;
1260 }
1261
1262 /**
1263  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1264  * @kvm: kvm instance
1265  * @slot: slot to protect
1266  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1267  * @mask: indicates which pages we should protect
1268  *
1269  * Used when we do not need to care about huge page mappings: e.g. during dirty
1270  * logging we do not have any such mappings.
1271  */
1272 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1273                                      struct kvm_memory_slot *slot,
1274                                      gfn_t gfn_offset, unsigned long mask)
1275 {
1276         unsigned long *rmapp;
1277
1278         while (mask) {
1279                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1280                                       PT_PAGE_TABLE_LEVEL, slot);
1281                 __rmap_write_protect(kvm, rmapp, false);
1282
1283                 /* clear the first set bit */
1284                 mask &= mask - 1;
1285         }
1286 }
1287
1288 /**
1289  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1290  * @kvm: kvm instance
1291  * @slot: slot to clear D-bit
1292  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1293  * @mask: indicates which pages we should clear D-bit
1294  *
1295  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1296  */
1297 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1298                                      struct kvm_memory_slot *slot,
1299                                      gfn_t gfn_offset, unsigned long mask)
1300 {
1301         unsigned long *rmapp;
1302
1303         while (mask) {
1304                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1305                                       PT_PAGE_TABLE_LEVEL, slot);
1306                 __rmap_clear_dirty(kvm, rmapp);
1307
1308                 /* clear the first set bit */
1309                 mask &= mask - 1;
1310         }
1311 }
1312 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1313
1314 /**
1315  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1316  * PT level pages.
1317  *
1318  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1319  * enable dirty logging for them.
1320  *
1321  * Used when we do not need to care about huge page mappings: e.g. during dirty
1322  * logging we do not have any such mappings.
1323  */
1324 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1325                                 struct kvm_memory_slot *slot,
1326                                 gfn_t gfn_offset, unsigned long mask)
1327 {
1328         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1329                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1330                                 mask);
1331         else
1332                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1333 }
1334
1335 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1336 {
1337         struct kvm_memory_slot *slot;
1338         unsigned long *rmapp;
1339         int i;
1340         bool write_protected = false;
1341
1342         slot = gfn_to_memslot(kvm, gfn);
1343
1344         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1345                 rmapp = __gfn_to_rmap(gfn, i, slot);
1346                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1347         }
1348
1349         return write_protected;
1350 }
1351
1352 static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
1353 {
1354         u64 *sptep;
1355         struct rmap_iterator iter;
1356         bool flush = false;
1357
1358         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1359                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1360                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1361
1362                 drop_spte(kvm, sptep);
1363                 flush = true;
1364         }
1365
1366         return flush;
1367 }
1368
1369 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1370                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1371                            unsigned long data)
1372 {
1373         return kvm_zap_rmapp(kvm, rmapp);
1374 }
1375
1376 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1377                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1378                              unsigned long data)
1379 {
1380         u64 *sptep;
1381         struct rmap_iterator iter;
1382         int need_flush = 0;
1383         u64 new_spte;
1384         pte_t *ptep = (pte_t *)data;
1385         pfn_t new_pfn;
1386
1387         WARN_ON(pte_huge(*ptep));
1388         new_pfn = pte_pfn(*ptep);
1389
1390 restart:
1391         for_each_rmap_spte(rmapp, &iter, sptep) {
1392                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1393                              sptep, *sptep, gfn, level);
1394
1395                 need_flush = 1;
1396
1397                 if (pte_write(*ptep)) {
1398                         drop_spte(kvm, sptep);
1399                         goto restart;
1400                 } else {
1401                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1402                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1403
1404                         new_spte &= ~PT_WRITABLE_MASK;
1405                         new_spte &= ~SPTE_HOST_WRITEABLE;
1406                         new_spte &= ~shadow_accessed_mask;
1407
1408                         mmu_spte_clear_track_bits(sptep);
1409                         mmu_spte_set(sptep, new_spte);
1410                 }
1411         }
1412
1413         if (need_flush)
1414                 kvm_flush_remote_tlbs(kvm);
1415
1416         return 0;
1417 }
1418
1419 struct slot_rmap_walk_iterator {
1420         /* input fields. */
1421         struct kvm_memory_slot *slot;
1422         gfn_t start_gfn;
1423         gfn_t end_gfn;
1424         int start_level;
1425         int end_level;
1426
1427         /* output fields. */
1428         gfn_t gfn;
1429         unsigned long *rmap;
1430         int level;
1431
1432         /* private field. */
1433         unsigned long *end_rmap;
1434 };
1435
1436 static void
1437 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1438 {
1439         iterator->level = level;
1440         iterator->gfn = iterator->start_gfn;
1441         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1442         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1443                                            iterator->slot);
1444 }
1445
1446 static void
1447 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1448                     struct kvm_memory_slot *slot, int start_level,
1449                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1450 {
1451         iterator->slot = slot;
1452         iterator->start_level = start_level;
1453         iterator->end_level = end_level;
1454         iterator->start_gfn = start_gfn;
1455         iterator->end_gfn = end_gfn;
1456
1457         rmap_walk_init_level(iterator, iterator->start_level);
1458 }
1459
1460 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1461 {
1462         return !!iterator->rmap;
1463 }
1464
1465 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1466 {
1467         if (++iterator->rmap <= iterator->end_rmap) {
1468                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1469                 return;
1470         }
1471
1472         if (++iterator->level > iterator->end_level) {
1473                 iterator->rmap = NULL;
1474                 return;
1475         }
1476
1477         rmap_walk_init_level(iterator, iterator->level);
1478 }
1479
1480 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1481            _start_gfn, _end_gfn, _iter_)                                \
1482         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1483                                  _end_level_, _start_gfn, _end_gfn);    \
1484              slot_rmap_walk_okay(_iter_);                               \
1485              slot_rmap_walk_next(_iter_))
1486
1487 static int kvm_handle_hva_range(struct kvm *kvm,
1488                                 unsigned long start,
1489                                 unsigned long end,
1490                                 unsigned long data,
1491                                 int (*handler)(struct kvm *kvm,
1492                                                unsigned long *rmapp,
1493                                                struct kvm_memory_slot *slot,
1494                                                gfn_t gfn,
1495                                                int level,
1496                                                unsigned long data))
1497 {
1498         struct kvm_memslots *slots;
1499         struct kvm_memory_slot *memslot;
1500         struct slot_rmap_walk_iterator iterator;
1501         int ret = 0;
1502
1503         slots = kvm_memslots(kvm);
1504
1505         kvm_for_each_memslot(memslot, slots) {
1506                 unsigned long hva_start, hva_end;
1507                 gfn_t gfn_start, gfn_end;
1508
1509                 hva_start = max(start, memslot->userspace_addr);
1510                 hva_end = min(end, memslot->userspace_addr +
1511                                         (memslot->npages << PAGE_SHIFT));
1512                 if (hva_start >= hva_end)
1513                         continue;
1514                 /*
1515                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1516                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1517                  */
1518                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1519                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1520
1521                 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1522                                 PT_MAX_HUGEPAGE_LEVEL, gfn_start, gfn_end - 1,
1523                                 &iterator)
1524                         ret |= handler(kvm, iterator.rmap, memslot,
1525                                        iterator.gfn, iterator.level, data);
1526         }
1527
1528         return ret;
1529 }
1530
1531 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1532                           unsigned long data,
1533                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1534                                          struct kvm_memory_slot *slot,
1535                                          gfn_t gfn, int level,
1536                                          unsigned long data))
1537 {
1538         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1539 }
1540
1541 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1542 {
1543         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1544 }
1545
1546 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1547 {
1548         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1549 }
1550
1551 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1552 {
1553         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1554 }
1555
1556 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1557                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1558                          unsigned long data)
1559 {
1560         u64 *sptep;
1561         struct rmap_iterator uninitialized_var(iter);
1562         int young = 0;
1563
1564         BUG_ON(!shadow_accessed_mask);
1565
1566         for_each_rmap_spte(rmapp, &iter, sptep)
1567                 if (*sptep & shadow_accessed_mask) {
1568                         young = 1;
1569                         clear_bit((ffs(shadow_accessed_mask) - 1),
1570                                  (unsigned long *)sptep);
1571                 }
1572
1573         trace_kvm_age_page(gfn, level, slot, young);
1574         return young;
1575 }
1576
1577 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1578                               struct kvm_memory_slot *slot, gfn_t gfn,
1579                               int level, unsigned long data)
1580 {
1581         u64 *sptep;
1582         struct rmap_iterator iter;
1583         int young = 0;
1584
1585         /*
1586          * If there's no access bit in the secondary pte set by the
1587          * hardware it's up to gup-fast/gup to set the access bit in
1588          * the primary pte or in the page structure.
1589          */
1590         if (!shadow_accessed_mask)
1591                 goto out;
1592
1593         for_each_rmap_spte(rmapp, &iter, sptep)
1594                 if (*sptep & shadow_accessed_mask) {
1595                         young = 1;
1596                         break;
1597                 }
1598 out:
1599         return young;
1600 }
1601
1602 #define RMAP_RECYCLE_THRESHOLD 1000
1603
1604 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1605 {
1606         unsigned long *rmapp;
1607         struct kvm_mmu_page *sp;
1608
1609         sp = page_header(__pa(spte));
1610
1611         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1612
1613         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1614         kvm_flush_remote_tlbs(vcpu->kvm);
1615 }
1616
1617 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1618 {
1619         /*
1620          * In case of absence of EPT Access and Dirty Bits supports,
1621          * emulate the accessed bit for EPT, by checking if this page has
1622          * an EPT mapping, and clearing it if it does. On the next access,
1623          * a new EPT mapping will be established.
1624          * This has some overhead, but not as much as the cost of swapping
1625          * out actively used pages or breaking up actively used hugepages.
1626          */
1627         if (!shadow_accessed_mask) {
1628                 /*
1629                  * We are holding the kvm->mmu_lock, and we are blowing up
1630                  * shadow PTEs. MMU notifier consumers need to be kept at bay.
1631                  * This is correct as long as we don't decouple the mmu_lock
1632                  * protected regions (like invalidate_range_start|end does).
1633                  */
1634                 kvm->mmu_notifier_seq++;
1635                 return kvm_handle_hva_range(kvm, start, end, 0,
1636                                             kvm_unmap_rmapp);
1637         }
1638
1639         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1640 }
1641
1642 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1643 {
1644         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1645 }
1646
1647 #ifdef MMU_DEBUG
1648 static int is_empty_shadow_page(u64 *spt)
1649 {
1650         u64 *pos;
1651         u64 *end;
1652
1653         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1654                 if (is_shadow_present_pte(*pos)) {
1655                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1656                                pos, *pos);
1657                         return 0;
1658                 }
1659         return 1;
1660 }
1661 #endif
1662
1663 /*
1664  * This value is the sum of all of the kvm instances's
1665  * kvm->arch.n_used_mmu_pages values.  We need a global,
1666  * aggregate version in order to make the slab shrinker
1667  * faster
1668  */
1669 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1670 {
1671         kvm->arch.n_used_mmu_pages += nr;
1672         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1673 }
1674
1675 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1676 {
1677         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1678         hlist_del(&sp->hash_link);
1679         list_del(&sp->link);
1680         free_page((unsigned long)sp->spt);
1681         if (!sp->role.direct)
1682                 free_page((unsigned long)sp->gfns);
1683         kmem_cache_free(mmu_page_header_cache, sp);
1684 }
1685
1686 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1687 {
1688         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1689 }
1690
1691 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1692                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1693 {
1694         if (!parent_pte)
1695                 return;
1696
1697         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1698 }
1699
1700 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1701                                        u64 *parent_pte)
1702 {
1703         pte_list_remove(parent_pte, &sp->parent_ptes);
1704 }
1705
1706 static void drop_parent_pte(struct kvm_mmu_page *sp,
1707                             u64 *parent_pte)
1708 {
1709         mmu_page_remove_parent_pte(sp, parent_pte);
1710         mmu_spte_clear_no_track(parent_pte);
1711 }
1712
1713 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1714                                                u64 *parent_pte, int direct)
1715 {
1716         struct kvm_mmu_page *sp;
1717
1718         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1719         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1720         if (!direct)
1721                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1722         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1723
1724         /*
1725          * The active_mmu_pages list is the FIFO list, do not move the
1726          * page until it is zapped. kvm_zap_obsolete_pages depends on
1727          * this feature. See the comments in kvm_zap_obsolete_pages().
1728          */
1729         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1730         sp->parent_ptes = 0;
1731         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1732         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1733         return sp;
1734 }
1735
1736 static void mark_unsync(u64 *spte);
1737 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1738 {
1739         pte_list_walk(&sp->parent_ptes, mark_unsync);
1740 }
1741
1742 static void mark_unsync(u64 *spte)
1743 {
1744         struct kvm_mmu_page *sp;
1745         unsigned int index;
1746
1747         sp = page_header(__pa(spte));
1748         index = spte - sp->spt;
1749         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1750                 return;
1751         if (sp->unsync_children++)
1752                 return;
1753         kvm_mmu_mark_parents_unsync(sp);
1754 }
1755
1756 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1757                                struct kvm_mmu_page *sp)
1758 {
1759         return 1;
1760 }
1761
1762 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1763 {
1764 }
1765
1766 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1767                                  struct kvm_mmu_page *sp, u64 *spte,
1768                                  const void *pte)
1769 {
1770         WARN_ON(1);
1771 }
1772
1773 #define KVM_PAGE_ARRAY_NR 16
1774
1775 struct kvm_mmu_pages {
1776         struct mmu_page_and_offset {
1777                 struct kvm_mmu_page *sp;
1778                 unsigned int idx;
1779         } page[KVM_PAGE_ARRAY_NR];
1780         unsigned int nr;
1781 };
1782
1783 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1784                          int idx)
1785 {
1786         int i;
1787
1788         if (sp->unsync)
1789                 for (i=0; i < pvec->nr; i++)
1790                         if (pvec->page[i].sp == sp)
1791                                 return 0;
1792
1793         pvec->page[pvec->nr].sp = sp;
1794         pvec->page[pvec->nr].idx = idx;
1795         pvec->nr++;
1796         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1797 }
1798
1799 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1800                            struct kvm_mmu_pages *pvec)
1801 {
1802         int i, ret, nr_unsync_leaf = 0;
1803
1804         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1805                 struct kvm_mmu_page *child;
1806                 u64 ent = sp->spt[i];
1807
1808                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1809                         goto clear_child_bitmap;
1810
1811                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1812
1813                 if (child->unsync_children) {
1814                         if (mmu_pages_add(pvec, child, i))
1815                                 return -ENOSPC;
1816
1817                         ret = __mmu_unsync_walk(child, pvec);
1818                         if (!ret)
1819                                 goto clear_child_bitmap;
1820                         else if (ret > 0)
1821                                 nr_unsync_leaf += ret;
1822                         else
1823                                 return ret;
1824                 } else if (child->unsync) {
1825                         nr_unsync_leaf++;
1826                         if (mmu_pages_add(pvec, child, i))
1827                                 return -ENOSPC;
1828                 } else
1829                          goto clear_child_bitmap;
1830
1831                 continue;
1832
1833 clear_child_bitmap:
1834                 __clear_bit(i, sp->unsync_child_bitmap);
1835                 sp->unsync_children--;
1836                 WARN_ON((int)sp->unsync_children < 0);
1837         }
1838
1839
1840         return nr_unsync_leaf;
1841 }
1842
1843 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1844                            struct kvm_mmu_pages *pvec)
1845 {
1846         if (!sp->unsync_children)
1847                 return 0;
1848
1849         mmu_pages_add(pvec, sp, 0);
1850         return __mmu_unsync_walk(sp, pvec);
1851 }
1852
1853 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1854 {
1855         WARN_ON(!sp->unsync);
1856         trace_kvm_mmu_sync_page(sp);
1857         sp->unsync = 0;
1858         --kvm->stat.mmu_unsync;
1859 }
1860
1861 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1862                                     struct list_head *invalid_list);
1863 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1864                                     struct list_head *invalid_list);
1865
1866 /*
1867  * NOTE: we should pay more attention on the zapped-obsolete page
1868  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1869  * since it has been deleted from active_mmu_pages but still can be found
1870  * at hast list.
1871  *
1872  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1873  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1874  * all the obsolete pages.
1875  */
1876 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1877         hlist_for_each_entry(_sp,                                       \
1878           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1879                 if ((_sp)->gfn != (_gfn)) {} else
1880
1881 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1882         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1883                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1884
1885 /* @sp->gfn should be write-protected at the call site */
1886 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1887                            struct list_head *invalid_list, bool clear_unsync)
1888 {
1889         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1890                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1891                 return 1;
1892         }
1893
1894         if (clear_unsync)
1895                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1896
1897         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1898                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1899                 return 1;
1900         }
1901
1902         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1903         return 0;
1904 }
1905
1906 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1907                                    struct kvm_mmu_page *sp)
1908 {
1909         LIST_HEAD(invalid_list);
1910         int ret;
1911
1912         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1913         if (ret)
1914                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1915
1916         return ret;
1917 }
1918
1919 #ifdef CONFIG_KVM_MMU_AUDIT
1920 #include "mmu_audit.c"
1921 #else
1922 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1923 static void mmu_audit_disable(void) { }
1924 #endif
1925
1926 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1927                          struct list_head *invalid_list)
1928 {
1929         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1930 }
1931
1932 /* @gfn should be write-protected at the call site */
1933 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1934 {
1935         struct kvm_mmu_page *s;
1936         LIST_HEAD(invalid_list);
1937         bool flush = false;
1938
1939         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1940                 if (!s->unsync)
1941                         continue;
1942
1943                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1944                 kvm_unlink_unsync_page(vcpu->kvm, s);
1945                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1946                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1947                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1948                         continue;
1949                 }
1950                 flush = true;
1951         }
1952
1953         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1954         if (flush)
1955                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1956 }
1957
1958 struct mmu_page_path {
1959         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1960         unsigned int idx[PT64_ROOT_LEVEL-1];
1961 };
1962
1963 #define for_each_sp(pvec, sp, parents, i)                       \
1964                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1965                         sp = pvec.page[i].sp;                   \
1966                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1967                         i = mmu_pages_next(&pvec, &parents, i))
1968
1969 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1970                           struct mmu_page_path *parents,
1971                           int i)
1972 {
1973         int n;
1974
1975         for (n = i+1; n < pvec->nr; n++) {
1976                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1977
1978                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1979                         parents->idx[0] = pvec->page[n].idx;
1980                         return n;
1981                 }
1982
1983                 parents->parent[sp->role.level-2] = sp;
1984                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1985         }
1986
1987         return n;
1988 }
1989
1990 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1991 {
1992         struct kvm_mmu_page *sp;
1993         unsigned int level = 0;
1994
1995         do {
1996                 unsigned int idx = parents->idx[level];
1997
1998                 sp = parents->parent[level];
1999                 if (!sp)
2000                         return;
2001
2002                 --sp->unsync_children;
2003                 WARN_ON((int)sp->unsync_children < 0);
2004                 __clear_bit(idx, sp->unsync_child_bitmap);
2005                 level++;
2006         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
2007 }
2008
2009 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2010                                struct mmu_page_path *parents,
2011                                struct kvm_mmu_pages *pvec)
2012 {
2013         parents->parent[parent->role.level-1] = NULL;
2014         pvec->nr = 0;
2015 }
2016
2017 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2018                               struct kvm_mmu_page *parent)
2019 {
2020         int i;
2021         struct kvm_mmu_page *sp;
2022         struct mmu_page_path parents;
2023         struct kvm_mmu_pages pages;
2024         LIST_HEAD(invalid_list);
2025
2026         kvm_mmu_pages_init(parent, &parents, &pages);
2027         while (mmu_unsync_walk(parent, &pages)) {
2028                 bool protected = false;
2029
2030                 for_each_sp(pages, sp, parents, i)
2031                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
2032
2033                 if (protected)
2034                         kvm_flush_remote_tlbs(vcpu->kvm);
2035
2036                 for_each_sp(pages, sp, parents, i) {
2037                         kvm_sync_page(vcpu, sp, &invalid_list);
2038                         mmu_pages_clear_parents(&parents);
2039                 }
2040                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2041                 cond_resched_lock(&vcpu->kvm->mmu_lock);
2042                 kvm_mmu_pages_init(parent, &parents, &pages);
2043         }
2044 }
2045
2046 static void init_shadow_page_table(struct kvm_mmu_page *sp)
2047 {
2048         int i;
2049
2050         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2051                 sp->spt[i] = 0ull;
2052 }
2053
2054 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2055 {
2056         sp->write_flooding_count = 0;
2057 }
2058
2059 static void clear_sp_write_flooding_count(u64 *spte)
2060 {
2061         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2062
2063         __clear_sp_write_flooding_count(sp);
2064 }
2065
2066 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2067 {
2068         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2069 }
2070
2071 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2072                                              gfn_t gfn,
2073                                              gva_t gaddr,
2074                                              unsigned level,
2075                                              int direct,
2076                                              unsigned access,
2077                                              u64 *parent_pte)
2078 {
2079         union kvm_mmu_page_role role;
2080         unsigned quadrant;
2081         struct kvm_mmu_page *sp;
2082         bool need_sync = false;
2083
2084         role = vcpu->arch.mmu.base_role;
2085         role.level = level;
2086         role.direct = direct;
2087         if (role.direct)
2088                 role.cr4_pae = 0;
2089         role.access = access;
2090         if (!vcpu->arch.mmu.direct_map
2091             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2092                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2093                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2094                 role.quadrant = quadrant;
2095         }
2096         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2097                 if (is_obsolete_sp(vcpu->kvm, sp))
2098                         continue;
2099
2100                 if (!need_sync && sp->unsync)
2101                         need_sync = true;
2102
2103                 if (sp->role.word != role.word)
2104                         continue;
2105
2106                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2107                         break;
2108
2109                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2110                 if (sp->unsync_children) {
2111                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2112                         kvm_mmu_mark_parents_unsync(sp);
2113                 } else if (sp->unsync)
2114                         kvm_mmu_mark_parents_unsync(sp);
2115
2116                 __clear_sp_write_flooding_count(sp);
2117                 trace_kvm_mmu_get_page(sp, false);
2118                 return sp;
2119         }
2120         ++vcpu->kvm->stat.mmu_cache_miss;
2121         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2122         if (!sp)
2123                 return sp;
2124         sp->gfn = gfn;
2125         sp->role = role;
2126         hlist_add_head(&sp->hash_link,
2127                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2128         if (!direct) {
2129                 if (rmap_write_protect(vcpu->kvm, gfn))
2130                         kvm_flush_remote_tlbs(vcpu->kvm);
2131                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2132                         kvm_sync_pages(vcpu, gfn);
2133
2134                 account_shadowed(vcpu->kvm, gfn);
2135         }
2136         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2137         init_shadow_page_table(sp);
2138         trace_kvm_mmu_get_page(sp, true);
2139         return sp;
2140 }
2141
2142 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2143                              struct kvm_vcpu *vcpu, u64 addr)
2144 {
2145         iterator->addr = addr;
2146         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2147         iterator->level = vcpu->arch.mmu.shadow_root_level;
2148
2149         if (iterator->level == PT64_ROOT_LEVEL &&
2150             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2151             !vcpu->arch.mmu.direct_map)
2152                 --iterator->level;
2153
2154         if (iterator->level == PT32E_ROOT_LEVEL) {
2155                 iterator->shadow_addr
2156                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2157                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2158                 --iterator->level;
2159                 if (!iterator->shadow_addr)
2160                         iterator->level = 0;
2161         }
2162 }
2163
2164 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2165 {
2166         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2167                 return false;
2168
2169         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2170         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2171         return true;
2172 }
2173
2174 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2175                                u64 spte)
2176 {
2177         if (is_last_spte(spte, iterator->level)) {
2178                 iterator->level = 0;
2179                 return;
2180         }
2181
2182         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2183         --iterator->level;
2184 }
2185
2186 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2187 {
2188         return __shadow_walk_next(iterator, *iterator->sptep);
2189 }
2190
2191 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2192 {
2193         u64 spte;
2194
2195         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2196                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2197
2198         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2199                shadow_user_mask | shadow_x_mask;
2200
2201         if (accessed)
2202                 spte |= shadow_accessed_mask;
2203
2204         mmu_spte_set(sptep, spte);
2205 }
2206
2207 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2208                                    unsigned direct_access)
2209 {
2210         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2211                 struct kvm_mmu_page *child;
2212
2213                 /*
2214                  * For the direct sp, if the guest pte's dirty bit
2215                  * changed form clean to dirty, it will corrupt the
2216                  * sp's access: allow writable in the read-only sp,
2217                  * so we should update the spte at this point to get
2218                  * a new sp with the correct access.
2219                  */
2220                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2221                 if (child->role.access == direct_access)
2222                         return;
2223
2224                 drop_parent_pte(child, sptep);
2225                 kvm_flush_remote_tlbs(vcpu->kvm);
2226         }
2227 }
2228
2229 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2230                              u64 *spte)
2231 {
2232         u64 pte;
2233         struct kvm_mmu_page *child;
2234
2235         pte = *spte;
2236         if (is_shadow_present_pte(pte)) {
2237                 if (is_last_spte(pte, sp->role.level)) {
2238                         drop_spte(kvm, spte);
2239                         if (is_large_pte(pte))
2240                                 --kvm->stat.lpages;
2241                 } else {
2242                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2243                         drop_parent_pte(child, spte);
2244                 }
2245                 return true;
2246         }
2247
2248         if (is_mmio_spte(pte))
2249                 mmu_spte_clear_no_track(spte);
2250
2251         return false;
2252 }
2253
2254 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2255                                          struct kvm_mmu_page *sp)
2256 {
2257         unsigned i;
2258
2259         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2260                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2261 }
2262
2263 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2264 {
2265         mmu_page_remove_parent_pte(sp, parent_pte);
2266 }
2267
2268 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2269 {
2270         u64 *sptep;
2271         struct rmap_iterator iter;
2272
2273         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2274                 drop_parent_pte(sp, sptep);
2275 }
2276
2277 static int mmu_zap_unsync_children(struct kvm *kvm,
2278                                    struct kvm_mmu_page *parent,
2279                                    struct list_head *invalid_list)
2280 {
2281         int i, zapped = 0;
2282         struct mmu_page_path parents;
2283         struct kvm_mmu_pages pages;
2284
2285         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2286                 return 0;
2287
2288         kvm_mmu_pages_init(parent, &parents, &pages);
2289         while (mmu_unsync_walk(parent, &pages)) {
2290                 struct kvm_mmu_page *sp;
2291
2292                 for_each_sp(pages, sp, parents, i) {
2293                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2294                         mmu_pages_clear_parents(&parents);
2295                         zapped++;
2296                 }
2297                 kvm_mmu_pages_init(parent, &parents, &pages);
2298         }
2299
2300         return zapped;
2301 }
2302
2303 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2304                                     struct list_head *invalid_list)
2305 {
2306         int ret;
2307
2308         trace_kvm_mmu_prepare_zap_page(sp);
2309         ++kvm->stat.mmu_shadow_zapped;
2310         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2311         kvm_mmu_page_unlink_children(kvm, sp);
2312         kvm_mmu_unlink_parents(kvm, sp);
2313
2314         if (!sp->role.invalid && !sp->role.direct)
2315                 unaccount_shadowed(kvm, sp->gfn);
2316
2317         if (sp->unsync)
2318                 kvm_unlink_unsync_page(kvm, sp);
2319         if (!sp->root_count) {
2320                 /* Count self */
2321                 ret++;
2322                 list_move(&sp->link, invalid_list);
2323                 kvm_mod_used_mmu_pages(kvm, -1);
2324         } else {
2325                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2326
2327                 /*
2328                  * The obsolete pages can not be used on any vcpus.
2329                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2330                  */
2331                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2332                         kvm_reload_remote_mmus(kvm);
2333         }
2334
2335         sp->role.invalid = 1;
2336         return ret;
2337 }
2338
2339 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2340                                     struct list_head *invalid_list)
2341 {
2342         struct kvm_mmu_page *sp, *nsp;
2343
2344         if (list_empty(invalid_list))
2345                 return;
2346
2347         /*
2348          * wmb: make sure everyone sees our modifications to the page tables
2349          * rmb: make sure we see changes to vcpu->mode
2350          */
2351         smp_mb();
2352
2353         /*
2354          * Wait for all vcpus to exit guest mode and/or lockless shadow
2355          * page table walks.
2356          */
2357         kvm_flush_remote_tlbs(kvm);
2358
2359         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2360                 WARN_ON(!sp->role.invalid || sp->root_count);
2361                 kvm_mmu_free_page(sp);
2362         }
2363 }
2364
2365 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2366                                         struct list_head *invalid_list)
2367 {
2368         struct kvm_mmu_page *sp;
2369
2370         if (list_empty(&kvm->arch.active_mmu_pages))
2371                 return false;
2372
2373         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2374                         struct kvm_mmu_page, link);
2375         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2376
2377         return true;
2378 }
2379
2380 /*
2381  * Changing the number of mmu pages allocated to the vm
2382  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2383  */
2384 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2385 {
2386         LIST_HEAD(invalid_list);
2387
2388         spin_lock(&kvm->mmu_lock);
2389
2390         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2391                 /* Need to free some mmu pages to achieve the goal. */
2392                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2393                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2394                                 break;
2395
2396                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2397                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2398         }
2399
2400         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2401
2402         spin_unlock(&kvm->mmu_lock);
2403 }
2404
2405 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2406 {
2407         struct kvm_mmu_page *sp;
2408         LIST_HEAD(invalid_list);
2409         int r;
2410
2411         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2412         r = 0;
2413         spin_lock(&kvm->mmu_lock);
2414         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2415                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2416                          sp->role.word);
2417                 r = 1;
2418                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2419         }
2420         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2421         spin_unlock(&kvm->mmu_lock);
2422
2423         return r;
2424 }
2425 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2426
2427 /*
2428  * The function is based on mtrr_type_lookup() in
2429  * arch/x86/kernel/cpu/mtrr/generic.c
2430  */
2431 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2432                          u64 start, u64 end)
2433 {
2434         int i;
2435         u64 base, mask;
2436         u8 prev_match, curr_match;
2437         int num_var_ranges = KVM_NR_VAR_MTRR;
2438
2439         if (!mtrr_state->enabled)
2440                 return 0xFF;
2441
2442         /* Make end inclusive end, instead of exclusive */
2443         end--;
2444
2445         /* Look in fixed ranges. Just return the type as per start */
2446         if (mtrr_state->have_fixed && (start < 0x100000)) {
2447                 int idx;
2448
2449                 if (start < 0x80000) {
2450                         idx = 0;
2451                         idx += (start >> 16);
2452                         return mtrr_state->fixed_ranges[idx];
2453                 } else if (start < 0xC0000) {
2454                         idx = 1 * 8;
2455                         idx += ((start - 0x80000) >> 14);
2456                         return mtrr_state->fixed_ranges[idx];
2457                 } else if (start < 0x1000000) {
2458                         idx = 3 * 8;
2459                         idx += ((start - 0xC0000) >> 12);
2460                         return mtrr_state->fixed_ranges[idx];
2461                 }
2462         }
2463
2464         /*
2465          * Look in variable ranges
2466          * Look of multiple ranges matching this address and pick type
2467          * as per MTRR precedence
2468          */
2469         if (!(mtrr_state->enabled & 2))
2470                 return mtrr_state->def_type;
2471
2472         prev_match = 0xFF;
2473         for (i = 0; i < num_var_ranges; ++i) {
2474                 unsigned short start_state, end_state;
2475
2476                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2477                         continue;
2478
2479                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2480                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2481                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2482                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2483
2484                 start_state = ((start & mask) == (base & mask));
2485                 end_state = ((end & mask) == (base & mask));
2486                 if (start_state != end_state)
2487                         return 0xFE;
2488
2489                 if ((start & mask) != (base & mask))
2490                         continue;
2491
2492                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2493                 if (prev_match == 0xFF) {
2494                         prev_match = curr_match;
2495                         continue;
2496                 }
2497
2498                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2499                     curr_match == MTRR_TYPE_UNCACHABLE)
2500                         return MTRR_TYPE_UNCACHABLE;
2501
2502                 if ((prev_match == MTRR_TYPE_WRBACK &&
2503                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2504                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2505                      curr_match == MTRR_TYPE_WRBACK)) {
2506                         prev_match = MTRR_TYPE_WRTHROUGH;
2507                         curr_match = MTRR_TYPE_WRTHROUGH;
2508                 }
2509
2510                 if (prev_match != curr_match)
2511                         return MTRR_TYPE_UNCACHABLE;
2512         }
2513
2514         if (prev_match != 0xFF)
2515                 return prev_match;
2516
2517         return mtrr_state->def_type;
2518 }
2519
2520 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2521 {
2522         u8 mtrr;
2523
2524         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2525                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2526         if (mtrr == 0xfe || mtrr == 0xff)
2527                 mtrr = MTRR_TYPE_WRBACK;
2528         return mtrr;
2529 }
2530 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2531
2532 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2533 {
2534         trace_kvm_mmu_unsync_page(sp);
2535         ++vcpu->kvm->stat.mmu_unsync;
2536         sp->unsync = 1;
2537
2538         kvm_mmu_mark_parents_unsync(sp);
2539 }
2540
2541 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2542 {
2543         struct kvm_mmu_page *s;
2544
2545         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2546                 if (s->unsync)
2547                         continue;
2548                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2549                 __kvm_unsync_page(vcpu, s);
2550         }
2551 }
2552
2553 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2554                                   bool can_unsync)
2555 {
2556         struct kvm_mmu_page *s;
2557         bool need_unsync = false;
2558
2559         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2560                 if (!can_unsync)
2561                         return 1;
2562
2563                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2564                         return 1;
2565
2566                 if (!s->unsync)
2567                         need_unsync = true;
2568         }
2569         if (need_unsync)
2570                 kvm_unsync_pages(vcpu, gfn);
2571         return 0;
2572 }
2573
2574 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2575                     unsigned pte_access, int level,
2576                     gfn_t gfn, pfn_t pfn, bool speculative,
2577                     bool can_unsync, bool host_writable)
2578 {
2579         u64 spte;
2580         int ret = 0;
2581
2582         if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2583                 return 0;
2584
2585         spte = PT_PRESENT_MASK;
2586         if (!speculative)
2587                 spte |= shadow_accessed_mask;
2588
2589         if (pte_access & ACC_EXEC_MASK)
2590                 spte |= shadow_x_mask;
2591         else
2592                 spte |= shadow_nx_mask;
2593
2594         if (pte_access & ACC_USER_MASK)
2595                 spte |= shadow_user_mask;
2596
2597         if (level > PT_PAGE_TABLE_LEVEL)
2598                 spte |= PT_PAGE_SIZE_MASK;
2599         if (tdp_enabled)
2600                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2601                         kvm_is_reserved_pfn(pfn));
2602
2603         if (host_writable)
2604                 spte |= SPTE_HOST_WRITEABLE;
2605         else
2606                 pte_access &= ~ACC_WRITE_MASK;
2607
2608         spte |= (u64)pfn << PAGE_SHIFT;
2609
2610         if (pte_access & ACC_WRITE_MASK) {
2611
2612                 /*
2613                  * Other vcpu creates new sp in the window between
2614                  * mapping_level() and acquiring mmu-lock. We can
2615                  * allow guest to retry the access, the mapping can
2616                  * be fixed if guest refault.
2617                  */
2618                 if (level > PT_PAGE_TABLE_LEVEL &&
2619                     has_wrprotected_page(vcpu->kvm, gfn, level))
2620                         goto done;
2621
2622                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2623
2624                 /*
2625                  * Optimization: for pte sync, if spte was writable the hash
2626                  * lookup is unnecessary (and expensive). Write protection
2627                  * is responsibility of mmu_get_page / kvm_sync_page.
2628                  * Same reasoning can be applied to dirty page accounting.
2629                  */
2630                 if (!can_unsync && is_writable_pte(*sptep))
2631                         goto set_pte;
2632
2633                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2634                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2635                                  __func__, gfn);
2636                         ret = 1;
2637                         pte_access &= ~ACC_WRITE_MASK;
2638                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2639                 }
2640         }
2641
2642         if (pte_access & ACC_WRITE_MASK) {
2643                 mark_page_dirty(vcpu->kvm, gfn);
2644                 spte |= shadow_dirty_mask;
2645         }
2646
2647 set_pte:
2648         if (mmu_spte_update(sptep, spte))
2649                 kvm_flush_remote_tlbs(vcpu->kvm);
2650 done:
2651         return ret;
2652 }
2653
2654 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2655                          unsigned pte_access, int write_fault, int *emulate,
2656                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2657                          bool host_writable)
2658 {
2659         int was_rmapped = 0;
2660         int rmap_count;
2661
2662         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2663                  *sptep, write_fault, gfn);
2664
2665         if (is_rmap_spte(*sptep)) {
2666                 /*
2667                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2668                  * the parent of the now unreachable PTE.
2669                  */
2670                 if (level > PT_PAGE_TABLE_LEVEL &&
2671                     !is_large_pte(*sptep)) {
2672                         struct kvm_mmu_page *child;
2673                         u64 pte = *sptep;
2674
2675                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2676                         drop_parent_pte(child, sptep);
2677                         kvm_flush_remote_tlbs(vcpu->kvm);
2678                 } else if (pfn != spte_to_pfn(*sptep)) {
2679                         pgprintk("hfn old %llx new %llx\n",
2680                                  spte_to_pfn(*sptep), pfn);
2681                         drop_spte(vcpu->kvm, sptep);
2682                         kvm_flush_remote_tlbs(vcpu->kvm);
2683                 } else
2684                         was_rmapped = 1;
2685         }
2686
2687         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2688               true, host_writable)) {
2689                 if (write_fault)
2690                         *emulate = 1;
2691                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2692         }
2693
2694         if (unlikely(is_mmio_spte(*sptep) && emulate))
2695                 *emulate = 1;
2696
2697         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2698         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2699                  is_large_pte(*sptep)? "2MB" : "4kB",
2700                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2701                  *sptep, sptep);
2702         if (!was_rmapped && is_large_pte(*sptep))
2703                 ++vcpu->kvm->stat.lpages;
2704
2705         if (is_shadow_present_pte(*sptep)) {
2706                 if (!was_rmapped) {
2707                         rmap_count = rmap_add(vcpu, sptep, gfn);
2708                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2709                                 rmap_recycle(vcpu, sptep, gfn);
2710                 }
2711         }
2712
2713         kvm_release_pfn_clean(pfn);
2714 }
2715
2716 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2717                                      bool no_dirty_log)
2718 {
2719         struct kvm_memory_slot *slot;
2720
2721         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2722         if (!slot)
2723                 return KVM_PFN_ERR_FAULT;
2724
2725         return gfn_to_pfn_memslot_atomic(slot, gfn);
2726 }
2727
2728 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2729                                     struct kvm_mmu_page *sp,
2730                                     u64 *start, u64 *end)
2731 {
2732         struct page *pages[PTE_PREFETCH_NUM];
2733         unsigned access = sp->role.access;
2734         int i, ret;
2735         gfn_t gfn;
2736
2737         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2738         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2739                 return -1;
2740
2741         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2742         if (ret <= 0)
2743                 return -1;
2744
2745         for (i = 0; i < ret; i++, gfn++, start++)
2746                 mmu_set_spte(vcpu, start, access, 0, NULL,
2747                              sp->role.level, gfn, page_to_pfn(pages[i]),
2748                              true, true);
2749
2750         return 0;
2751 }
2752
2753 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2754                                   struct kvm_mmu_page *sp, u64 *sptep)
2755 {
2756         u64 *spte, *start = NULL;
2757         int i;
2758
2759         WARN_ON(!sp->role.direct);
2760
2761         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2762         spte = sp->spt + i;
2763
2764         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2765                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2766                         if (!start)
2767                                 continue;
2768                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2769                                 break;
2770                         start = NULL;
2771                 } else if (!start)
2772                         start = spte;
2773         }
2774 }
2775
2776 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2777 {
2778         struct kvm_mmu_page *sp;
2779
2780         /*
2781          * Since it's no accessed bit on EPT, it's no way to
2782          * distinguish between actually accessed translations
2783          * and prefetched, so disable pte prefetch if EPT is
2784          * enabled.
2785          */
2786         if (!shadow_accessed_mask)
2787                 return;
2788
2789         sp = page_header(__pa(sptep));
2790         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2791                 return;
2792
2793         __direct_pte_prefetch(vcpu, sp, sptep);
2794 }
2795
2796 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2797                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2798                         bool prefault)
2799 {
2800         struct kvm_shadow_walk_iterator iterator;
2801         struct kvm_mmu_page *sp;
2802         int emulate = 0;
2803         gfn_t pseudo_gfn;
2804
2805         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2806                 return 0;
2807
2808         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2809                 if (iterator.level == level) {
2810                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2811                                      write, &emulate, level, gfn, pfn,
2812                                      prefault, map_writable);
2813                         direct_pte_prefetch(vcpu, iterator.sptep);
2814                         ++vcpu->stat.pf_fixed;
2815                         break;
2816                 }
2817
2818                 drop_large_spte(vcpu, iterator.sptep);
2819                 if (!is_shadow_present_pte(*iterator.sptep)) {
2820                         u64 base_addr = iterator.addr;
2821
2822                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2823                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2824                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2825                                               iterator.level - 1,
2826                                               1, ACC_ALL, iterator.sptep);
2827
2828                         link_shadow_page(iterator.sptep, sp, true);
2829                 }
2830         }
2831         return emulate;
2832 }
2833
2834 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2835 {
2836         siginfo_t info;
2837
2838         info.si_signo   = SIGBUS;
2839         info.si_errno   = 0;
2840         info.si_code    = BUS_MCEERR_AR;
2841         info.si_addr    = (void __user *)address;
2842         info.si_addr_lsb = PAGE_SHIFT;
2843
2844         send_sig_info(SIGBUS, &info, tsk);
2845 }
2846
2847 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2848 {
2849         /*
2850          * Do not cache the mmio info caused by writing the readonly gfn
2851          * into the spte otherwise read access on readonly gfn also can
2852          * caused mmio page fault and treat it as mmio access.
2853          * Return 1 to tell kvm to emulate it.
2854          */
2855         if (pfn == KVM_PFN_ERR_RO_FAULT)
2856                 return 1;
2857
2858         if (pfn == KVM_PFN_ERR_HWPOISON) {
2859                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2860                 return 0;
2861         }
2862
2863         return -EFAULT;
2864 }
2865
2866 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2867                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2868 {
2869         pfn_t pfn = *pfnp;
2870         gfn_t gfn = *gfnp;
2871         int level = *levelp;
2872
2873         /*
2874          * Check if it's a transparent hugepage. If this would be an
2875          * hugetlbfs page, level wouldn't be set to
2876          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2877          * here.
2878          */
2879         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2880             level == PT_PAGE_TABLE_LEVEL &&
2881             PageTransCompound(pfn_to_page(pfn)) &&
2882             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2883                 unsigned long mask;
2884                 /*
2885                  * mmu_notifier_retry was successful and we hold the
2886                  * mmu_lock here, so the pmd can't become splitting
2887                  * from under us, and in turn
2888                  * __split_huge_page_refcount() can't run from under
2889                  * us and we can safely transfer the refcount from
2890                  * PG_tail to PG_head as we switch the pfn to tail to
2891                  * head.
2892                  */
2893                 *levelp = level = PT_DIRECTORY_LEVEL;
2894                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2895                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2896                 if (pfn & mask) {
2897                         gfn &= ~mask;
2898                         *gfnp = gfn;
2899                         kvm_release_pfn_clean(pfn);
2900                         pfn &= ~mask;
2901                         kvm_get_pfn(pfn);
2902                         *pfnp = pfn;
2903                 }
2904         }
2905 }
2906
2907 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2908                                 pfn_t pfn, unsigned access, int *ret_val)
2909 {
2910         bool ret = true;
2911
2912         /* The pfn is invalid, report the error! */
2913         if (unlikely(is_error_pfn(pfn))) {
2914                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2915                 goto exit;
2916         }
2917
2918         if (unlikely(is_noslot_pfn(pfn)))
2919                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2920
2921         ret = false;
2922 exit:
2923         return ret;
2924 }
2925
2926 static bool page_fault_can_be_fast(u32 error_code)
2927 {
2928         /*
2929          * Do not fix the mmio spte with invalid generation number which
2930          * need to be updated by slow page fault path.
2931          */
2932         if (unlikely(error_code & PFERR_RSVD_MASK))
2933                 return false;
2934
2935         /*
2936          * #PF can be fast only if the shadow page table is present and it
2937          * is caused by write-protect, that means we just need change the
2938          * W bit of the spte which can be done out of mmu-lock.
2939          */
2940         if (!(error_code & PFERR_PRESENT_MASK) ||
2941               !(error_code & PFERR_WRITE_MASK))
2942                 return false;
2943
2944         return true;
2945 }
2946
2947 static bool
2948 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2949                         u64 *sptep, u64 spte)
2950 {
2951         gfn_t gfn;
2952
2953         WARN_ON(!sp->role.direct);
2954
2955         /*
2956          * The gfn of direct spte is stable since it is calculated
2957          * by sp->gfn.
2958          */
2959         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2960
2961         /*
2962          * Theoretically we could also set dirty bit (and flush TLB) here in
2963          * order to eliminate unnecessary PML logging. See comments in
2964          * set_spte. But fast_page_fault is very unlikely to happen with PML
2965          * enabled, so we do not do this. This might result in the same GPA
2966          * to be logged in PML buffer again when the write really happens, and
2967          * eventually to be called by mark_page_dirty twice. But it's also no
2968          * harm. This also avoids the TLB flush needed after setting dirty bit
2969          * so non-PML cases won't be impacted.
2970          *
2971          * Compare with set_spte where instead shadow_dirty_mask is set.
2972          */
2973         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2974                 mark_page_dirty(vcpu->kvm, gfn);
2975
2976         return true;
2977 }
2978
2979 /*
2980  * Return value:
2981  * - true: let the vcpu to access on the same address again.
2982  * - false: let the real page fault path to fix it.
2983  */
2984 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2985                             u32 error_code)
2986 {
2987         struct kvm_shadow_walk_iterator iterator;
2988         struct kvm_mmu_page *sp;
2989         bool ret = false;
2990         u64 spte = 0ull;
2991
2992         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2993                 return false;
2994
2995         if (!page_fault_can_be_fast(error_code))
2996                 return false;
2997
2998         walk_shadow_page_lockless_begin(vcpu);
2999         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3000                 if (!is_shadow_present_pte(spte) || iterator.level < level)
3001                         break;
3002
3003         /*
3004          * If the mapping has been changed, let the vcpu fault on the
3005          * same address again.
3006          */
3007         if (!is_rmap_spte(spte)) {
3008                 ret = true;
3009                 goto exit;
3010         }
3011
3012         sp = page_header(__pa(iterator.sptep));
3013         if (!is_last_spte(spte, sp->role.level))
3014                 goto exit;
3015
3016         /*
3017          * Check if it is a spurious fault caused by TLB lazily flushed.
3018          *
3019          * Need not check the access of upper level table entries since
3020          * they are always ACC_ALL.
3021          */
3022          if (is_writable_pte(spte)) {
3023                 ret = true;
3024                 goto exit;
3025         }
3026
3027         /*
3028          * Currently, to simplify the code, only the spte write-protected
3029          * by dirty-log can be fast fixed.
3030          */
3031         if (!spte_is_locklessly_modifiable(spte))
3032                 goto exit;
3033
3034         /*
3035          * Do not fix write-permission on the large spte since we only dirty
3036          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
3037          * that means other pages are missed if its slot is dirty-logged.
3038          *
3039          * Instead, we let the slow page fault path create a normal spte to
3040          * fix the access.
3041          *
3042          * See the comments in kvm_arch_commit_memory_region().
3043          */
3044         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3045                 goto exit;
3046
3047         /*
3048          * Currently, fast page fault only works for direct mapping since
3049          * the gfn is not stable for indirect shadow page.
3050          * See Documentation/virtual/kvm/locking.txt to get more detail.
3051          */
3052         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
3053 exit:
3054         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3055                               spte, ret);
3056         walk_shadow_page_lockless_end(vcpu);
3057
3058         return ret;
3059 }
3060
3061 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3062                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
3063 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3064
3065 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3066                          gfn_t gfn, bool prefault)
3067 {
3068         int r;
3069         int level;
3070         int force_pt_level;
3071         pfn_t pfn;
3072         unsigned long mmu_seq;
3073         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3074
3075         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3076         if (likely(!force_pt_level)) {
3077                 level = mapping_level(vcpu, gfn);
3078                 /*
3079                  * This path builds a PAE pagetable - so we can map
3080                  * 2mb pages at maximum. Therefore check if the level
3081                  * is larger than that.
3082                  */
3083                 if (level > PT_DIRECTORY_LEVEL)
3084                         level = PT_DIRECTORY_LEVEL;
3085
3086                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3087         } else
3088                 level = PT_PAGE_TABLE_LEVEL;
3089
3090         if (fast_page_fault(vcpu, v, level, error_code))
3091                 return 0;
3092
3093         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3094         smp_rmb();
3095
3096         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3097                 return 0;
3098
3099         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3100                 return r;
3101
3102         spin_lock(&vcpu->kvm->mmu_lock);
3103         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3104                 goto out_unlock;
3105         make_mmu_pages_available(vcpu);
3106         if (likely(!force_pt_level))
3107                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3108         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3109                          prefault);
3110         spin_unlock(&vcpu->kvm->mmu_lock);
3111
3112
3113         return r;
3114
3115 out_unlock:
3116         spin_unlock(&vcpu->kvm->mmu_lock);
3117         kvm_release_pfn_clean(pfn);
3118         return 0;
3119 }
3120
3121
3122 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3123 {
3124         int i;
3125         struct kvm_mmu_page *sp;
3126         LIST_HEAD(invalid_list);
3127
3128         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3129                 return;
3130
3131         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3132             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3133              vcpu->arch.mmu.direct_map)) {
3134                 hpa_t root = vcpu->arch.mmu.root_hpa;
3135
3136                 spin_lock(&vcpu->kvm->mmu_lock);
3137                 sp = page_header(root);
3138                 --sp->root_count;
3139                 if (!sp->root_count && sp->role.invalid) {
3140                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3141                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3142                 }
3143                 spin_unlock(&vcpu->kvm->mmu_lock);
3144                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3145                 return;
3146         }
3147
3148         spin_lock(&vcpu->kvm->mmu_lock);
3149         for (i = 0; i < 4; ++i) {
3150                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3151
3152                 if (root) {
3153                         root &= PT64_BASE_ADDR_MASK;
3154                         sp = page_header(root);
3155                         --sp->root_count;
3156                         if (!sp->root_count && sp->role.invalid)
3157                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3158                                                          &invalid_list);
3159                 }
3160                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3161         }
3162         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3163         spin_unlock(&vcpu->kvm->mmu_lock);
3164         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3165 }
3166
3167 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3168 {
3169         int ret = 0;
3170
3171         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3172                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3173                 ret = 1;
3174         }
3175
3176         return ret;
3177 }
3178
3179 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3180 {
3181         struct kvm_mmu_page *sp;
3182         unsigned i;
3183
3184         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3185                 spin_lock(&vcpu->kvm->mmu_lock);
3186                 make_mmu_pages_available(vcpu);
3187                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3188                                       1, ACC_ALL, NULL);
3189                 ++sp->root_count;
3190                 spin_unlock(&vcpu->kvm->mmu_lock);
3191                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3192         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3193                 for (i = 0; i < 4; ++i) {
3194                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3195
3196                         MMU_WARN_ON(VALID_PAGE(root));
3197                         spin_lock(&vcpu->kvm->mmu_lock);
3198                         make_mmu_pages_available(vcpu);
3199                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3200                                               i << 30,
3201                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
3202                                               NULL);
3203                         root = __pa(sp->spt);
3204                         ++sp->root_count;
3205                         spin_unlock(&vcpu->kvm->mmu_lock);
3206                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3207                 }
3208                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3209         } else
3210                 BUG();
3211
3212         return 0;
3213 }
3214
3215 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3216 {
3217         struct kvm_mmu_page *sp;
3218         u64 pdptr, pm_mask;
3219         gfn_t root_gfn;
3220         int i;
3221
3222         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3223
3224         if (mmu_check_root(vcpu, root_gfn))
3225                 return 1;
3226
3227         /*
3228          * Do we shadow a long mode page table? If so we need to
3229          * write-protect the guests page table root.
3230          */
3231         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3232                 hpa_t root = vcpu->arch.mmu.root_hpa;
3233
3234                 MMU_WARN_ON(VALID_PAGE(root));
3235
3236                 spin_lock(&vcpu->kvm->mmu_lock);
3237                 make_mmu_pages_available(vcpu);
3238                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3239                                       0, ACC_ALL, NULL);
3240                 root = __pa(sp->spt);
3241                 ++sp->root_count;
3242                 spin_unlock(&vcpu->kvm->mmu_lock);
3243                 vcpu->arch.mmu.root_hpa = root;
3244                 return 0;
3245         }
3246
3247         /*
3248          * We shadow a 32 bit page table. This may be a legacy 2-level
3249          * or a PAE 3-level page table. In either case we need to be aware that
3250          * the shadow page table may be a PAE or a long mode page table.
3251          */
3252         pm_mask = PT_PRESENT_MASK;
3253         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3254                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3255
3256         for (i = 0; i < 4; ++i) {
3257                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3258
3259                 MMU_WARN_ON(VALID_PAGE(root));
3260                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3261                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3262                         if (!is_present_gpte(pdptr)) {
3263                                 vcpu->arch.mmu.pae_root[i] = 0;
3264                                 continue;
3265                         }
3266                         root_gfn = pdptr >> PAGE_SHIFT;
3267                         if (mmu_check_root(vcpu, root_gfn))
3268                                 return 1;
3269                 }
3270                 spin_lock(&vcpu->kvm->mmu_lock);
3271                 make_mmu_pages_available(vcpu);
3272                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3273                                       PT32_ROOT_LEVEL, 0,
3274                                       ACC_ALL, NULL);
3275                 root = __pa(sp->spt);
3276                 ++sp->root_count;
3277                 spin_unlock(&vcpu->kvm->mmu_lock);
3278
3279                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3280         }
3281         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3282
3283         /*
3284          * If we shadow a 32 bit page table with a long mode page
3285          * table we enter this path.
3286          */
3287         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3288                 if (vcpu->arch.mmu.lm_root == NULL) {
3289                         /*
3290                          * The additional page necessary for this is only
3291                          * allocated on demand.
3292                          */
3293
3294                         u64 *lm_root;
3295
3296                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3297                         if (lm_root == NULL)
3298                                 return 1;
3299
3300                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3301
3302                         vcpu->arch.mmu.lm_root = lm_root;
3303                 }
3304
3305                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3306         }
3307
3308         return 0;
3309 }
3310
3311 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3312 {
3313         if (vcpu->arch.mmu.direct_map)
3314                 return mmu_alloc_direct_roots(vcpu);
3315         else
3316                 return mmu_alloc_shadow_roots(vcpu);
3317 }
3318
3319 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3320 {
3321         int i;
3322         struct kvm_mmu_page *sp;
3323
3324         if (vcpu->arch.mmu.direct_map)
3325                 return;
3326
3327         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3328                 return;
3329
3330         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3331         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3332         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3333                 hpa_t root = vcpu->arch.mmu.root_hpa;
3334                 sp = page_header(root);
3335                 mmu_sync_children(vcpu, sp);
3336                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3337                 return;
3338         }
3339         for (i = 0; i < 4; ++i) {
3340                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3341
3342                 if (root && VALID_PAGE(root)) {
3343                         root &= PT64_BASE_ADDR_MASK;
3344                         sp = page_header(root);
3345                         mmu_sync_children(vcpu, sp);
3346                 }
3347         }
3348         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3349 }
3350
3351 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3352 {
3353         spin_lock(&vcpu->kvm->mmu_lock);
3354         mmu_sync_roots(vcpu);
3355         spin_unlock(&vcpu->kvm->mmu_lock);
3356 }
3357 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3358
3359 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3360                                   u32 access, struct x86_exception *exception)
3361 {
3362         if (exception)
3363                 exception->error_code = 0;
3364         return vaddr;
3365 }
3366
3367 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3368                                          u32 access,
3369                                          struct x86_exception *exception)
3370 {
3371         if (exception)
3372                 exception->error_code = 0;
3373         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3374 }
3375
3376 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3377 {
3378         if (direct)
3379                 return vcpu_match_mmio_gpa(vcpu, addr);
3380
3381         return vcpu_match_mmio_gva(vcpu, addr);
3382 }
3383
3384
3385 /*
3386  * On direct hosts, the last spte is only allows two states
3387  * for mmio page fault:
3388  *   - It is the mmio spte
3389  *   - It is zapped or it is being zapped.
3390  *
3391  * This function completely checks the spte when the last spte
3392  * is not the mmio spte.
3393  */
3394 static bool check_direct_spte_mmio_pf(u64 spte)
3395 {
3396         return __check_direct_spte_mmio_pf(spte);
3397 }
3398
3399 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3400 {
3401         struct kvm_shadow_walk_iterator iterator;
3402         u64 spte = 0ull;
3403
3404         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3405                 return spte;
3406
3407         walk_shadow_page_lockless_begin(vcpu);
3408         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3409                 if (!is_shadow_present_pte(spte))
3410                         break;
3411         walk_shadow_page_lockless_end(vcpu);
3412
3413         return spte;
3414 }
3415
3416 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3417 {
3418         u64 spte;
3419
3420         if (quickly_check_mmio_pf(vcpu, addr, direct))
3421                 return RET_MMIO_PF_EMULATE;
3422
3423         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3424
3425         if (is_mmio_spte(spte)) {
3426                 gfn_t gfn = get_mmio_spte_gfn(spte);
3427                 unsigned access = get_mmio_spte_access(spte);
3428
3429                 if (!check_mmio_spte(vcpu->kvm, spte))
3430                         return RET_MMIO_PF_INVALID;
3431
3432                 if (direct)
3433                         addr = 0;
3434
3435                 trace_handle_mmio_page_fault(addr, gfn, access);
3436                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3437                 return RET_MMIO_PF_EMULATE;
3438         }
3439
3440         /*
3441          * It's ok if the gva is remapped by other cpus on shadow guest,
3442          * it's a BUG if the gfn is not a mmio page.
3443          */
3444         if (direct && !check_direct_spte_mmio_pf(spte))
3445                 return RET_MMIO_PF_BUG;
3446
3447         /*
3448          * If the page table is zapped by other cpus, let CPU fault again on
3449          * the address.
3450          */
3451         return RET_MMIO_PF_RETRY;
3452 }
3453 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3454
3455 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3456                                   u32 error_code, bool direct)
3457 {
3458         int ret;
3459
3460         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3461         WARN_ON(ret == RET_MMIO_PF_BUG);
3462         return ret;
3463 }
3464
3465 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3466                                 u32 error_code, bool prefault)
3467 {
3468         gfn_t gfn;
3469         int r;
3470
3471         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3472
3473         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3474                 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3475
3476                 if (likely(r != RET_MMIO_PF_INVALID))
3477                         return r;
3478         }
3479
3480         r = mmu_topup_memory_caches(vcpu);
3481         if (r)
3482                 return r;
3483
3484         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3485
3486         gfn = gva >> PAGE_SHIFT;
3487
3488         return nonpaging_map(vcpu, gva & PAGE_MASK,
3489                              error_code, gfn, prefault);
3490 }
3491
3492 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3493 {
3494         struct kvm_arch_async_pf arch;
3495
3496         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3497         arch.gfn = gfn;
3498         arch.direct_map = vcpu->arch.mmu.direct_map;
3499         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3500
3501         return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3502 }
3503
3504 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3505 {
3506         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3507                      kvm_event_needs_reinjection(vcpu)))
3508                 return false;
3509
3510         return kvm_x86_ops->interrupt_allowed(vcpu);
3511 }
3512
3513 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3514                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3515 {
3516         bool async;
3517
3518         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3519
3520         if (!async)
3521                 return false; /* *pfn has correct page already */
3522
3523         if (!prefault && can_do_async_pf(vcpu)) {
3524                 trace_kvm_try_async_get_page(gva, gfn);
3525                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3526                         trace_kvm_async_pf_doublefault(gva, gfn);
3527                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3528                         return true;
3529                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3530                         return true;
3531         }
3532
3533         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3534
3535         return false;
3536 }
3537
3538 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3539                           bool prefault)
3540 {
3541         pfn_t pfn;
3542         int r;
3543         int level;
3544         int force_pt_level;
3545         gfn_t gfn = gpa >> PAGE_SHIFT;
3546         unsigned long mmu_seq;
3547         int write = error_code & PFERR_WRITE_MASK;
3548         bool map_writable;
3549
3550         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3551
3552         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3553                 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3554
3555                 if (likely(r != RET_MMIO_PF_INVALID))
3556                         return r;
3557         }
3558
3559         r = mmu_topup_memory_caches(vcpu);
3560         if (r)
3561                 return r;
3562
3563         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3564         if (likely(!force_pt_level)) {
3565                 level = mapping_level(vcpu, gfn);
3566                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3567         } else
3568                 level = PT_PAGE_TABLE_LEVEL;
3569
3570         if (fast_page_fault(vcpu, gpa, level, error_code))
3571                 return 0;
3572
3573         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3574         smp_rmb();
3575
3576         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3577                 return 0;
3578
3579         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3580                 return r;
3581
3582         spin_lock(&vcpu->kvm->mmu_lock);
3583         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3584                 goto out_unlock;
3585         make_mmu_pages_available(vcpu);
3586         if (likely(!force_pt_level))
3587                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3588         r = __direct_map(vcpu, gpa, write, map_writable,
3589                          level, gfn, pfn, prefault);
3590         spin_unlock(&vcpu->kvm->mmu_lock);
3591
3592         return r;
3593
3594 out_unlock:
3595         spin_unlock(&vcpu->kvm->mmu_lock);
3596         kvm_release_pfn_clean(pfn);
3597         return 0;
3598 }
3599
3600 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3601                                    struct kvm_mmu *context)
3602 {
3603         context->page_fault = nonpaging_page_fault;
3604         context->gva_to_gpa = nonpaging_gva_to_gpa;
3605         context->sync_page = nonpaging_sync_page;
3606         context->invlpg = nonpaging_invlpg;
3607         context->update_pte = nonpaging_update_pte;
3608         context->root_level = 0;
3609         context->shadow_root_level = PT32E_ROOT_LEVEL;
3610         context->root_hpa = INVALID_PAGE;
3611         context->direct_map = true;
3612         context->nx = false;
3613 }
3614
3615 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3616 {
3617         mmu_free_roots(vcpu);
3618 }
3619
3620 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3621 {
3622         return kvm_read_cr3(vcpu);
3623 }
3624
3625 static void inject_page_fault(struct kvm_vcpu *vcpu,
3626                               struct x86_exception *fault)
3627 {
3628         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3629 }
3630
3631 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3632                            unsigned access, int *nr_present)
3633 {
3634         if (unlikely(is_mmio_spte(*sptep))) {
3635                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3636                         mmu_spte_clear_no_track(sptep);
3637                         return true;
3638                 }
3639
3640                 (*nr_present)++;
3641                 mark_mmio_spte(kvm, sptep, gfn, access);
3642                 return true;
3643         }
3644
3645         return false;
3646 }
3647
3648 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3649 {
3650         unsigned index;
3651
3652         index = level - 1;
3653         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3654         return mmu->last_pte_bitmap & (1 << index);
3655 }
3656
3657 #define PTTYPE_EPT 18 /* arbitrary */
3658 #define PTTYPE PTTYPE_EPT
3659 #include "paging_tmpl.h"
3660 #undef PTTYPE
3661
3662 #define PTTYPE 64
3663 #include "paging_tmpl.h"
3664 #undef PTTYPE
3665
3666 #define PTTYPE 32
3667 #include "paging_tmpl.h"
3668 #undef PTTYPE
3669
3670 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3671                                   struct kvm_mmu *context)
3672 {
3673         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3674         u64 exb_bit_rsvd = 0;
3675         u64 gbpages_bit_rsvd = 0;
3676         u64 nonleaf_bit8_rsvd = 0;
3677
3678         context->bad_mt_xwr = 0;
3679
3680         if (!context->nx)
3681                 exb_bit_rsvd = rsvd_bits(63, 63);
3682         if (!guest_cpuid_has_gbpages(vcpu))
3683                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3684
3685         /*
3686          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3687          * leaf entries) on AMD CPUs only.
3688          */
3689         if (guest_cpuid_is_amd(vcpu))
3690                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3691
3692         switch (context->root_level) {
3693         case PT32_ROOT_LEVEL:
3694                 /* no rsvd bits for 2 level 4K page table entries */
3695                 context->rsvd_bits_mask[0][1] = 0;
3696                 context->rsvd_bits_mask[0][0] = 0;
3697                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3698
3699                 if (!is_pse(vcpu)) {
3700                         context->rsvd_bits_mask[1][1] = 0;
3701                         break;
3702                 }
3703
3704                 if (is_cpuid_PSE36())
3705                         /* 36bits PSE 4MB page */
3706                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3707                 else
3708                         /* 32 bits PSE 4MB page */
3709                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3710                 break;
3711         case PT32E_ROOT_LEVEL:
3712                 context->rsvd_bits_mask[0][2] =
3713                         rsvd_bits(maxphyaddr, 63) |
3714                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3715                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3716                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3717                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3718                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3719                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3720                         rsvd_bits(maxphyaddr, 62) |
3721                         rsvd_bits(13, 20);              /* large page */
3722                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3723                 break;
3724         case PT64_ROOT_LEVEL:
3725                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3726                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3727                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3728                         nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3729                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3730                         rsvd_bits(maxphyaddr, 51);
3731                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3732                         rsvd_bits(maxphyaddr, 51);
3733                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3734                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3735                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3736                         rsvd_bits(13, 29);
3737                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3738                         rsvd_bits(maxphyaddr, 51) |
3739                         rsvd_bits(13, 20);              /* large page */
3740                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3741                 break;
3742         }
3743 }
3744
3745 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3746                 struct kvm_mmu *context, bool execonly)
3747 {
3748         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3749         int pte;
3750
3751         context->rsvd_bits_mask[0][3] =
3752                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3753         context->rsvd_bits_mask[0][2] =
3754                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3755         context->rsvd_bits_mask[0][1] =
3756                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3757         context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3758
3759         /* large page */
3760         context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3761         context->rsvd_bits_mask[1][2] =
3762                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3763         context->rsvd_bits_mask[1][1] =
3764                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3765         context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3766
3767         for (pte = 0; pte < 64; pte++) {
3768                 int rwx_bits = pte & 7;
3769                 int mt = pte >> 3;
3770                 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3771                                 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3772                                 (rwx_bits == 0x4 && !execonly))
3773                         context->bad_mt_xwr |= (1ull << pte);
3774         }
3775 }
3776
3777 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3778                                       struct kvm_mmu *mmu, bool ept)
3779 {
3780         unsigned bit, byte, pfec;
3781         u8 map;
3782         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3783
3784         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3785         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3786         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3787                 pfec = byte << 1;
3788                 map = 0;
3789                 wf = pfec & PFERR_WRITE_MASK;
3790                 uf = pfec & PFERR_USER_MASK;
3791                 ff = pfec & PFERR_FETCH_MASK;
3792                 /*
3793                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3794                  * subject to SMAP restrictions, and cleared otherwise. The
3795                  * bit is only meaningful if the SMAP bit is set in CR4.
3796                  */
3797                 smapf = !(pfec & PFERR_RSVD_MASK);
3798                 for (bit = 0; bit < 8; ++bit) {
3799                         x = bit & ACC_EXEC_MASK;
3800                         w = bit & ACC_WRITE_MASK;
3801                         u = bit & ACC_USER_MASK;
3802
3803                         if (!ept) {
3804                                 /* Not really needed: !nx will cause pte.nx to fault */
3805                                 x |= !mmu->nx;
3806                                 /* Allow supervisor writes if !cr0.wp */
3807                                 w |= !is_write_protection(vcpu) && !uf;
3808                                 /* Disallow supervisor fetches of user code if cr4.smep */
3809                                 x &= !(cr4_smep && u && !uf);
3810
3811                                 /*
3812                                  * SMAP:kernel-mode data accesses from user-mode
3813                                  * mappings should fault. A fault is considered
3814                                  * as a SMAP violation if all of the following
3815                                  * conditions are ture:
3816                                  *   - X86_CR4_SMAP is set in CR4
3817                                  *   - An user page is accessed
3818                                  *   - Page fault in kernel mode
3819                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3820                                  *
3821                                  *   Here, we cover the first three conditions.
3822                                  *   The fourth is computed dynamically in
3823                                  *   permission_fault() and is in smapf.
3824                                  *
3825                                  *   Also, SMAP does not affect instruction
3826                                  *   fetches, add the !ff check here to make it
3827                                  *   clearer.
3828                                  */
3829                                 smap = cr4_smap && u && !uf && !ff;
3830                         } else
3831                                 /* Not really needed: no U/S accesses on ept  */
3832                                 u = 1;
3833
3834                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3835                                 (smapf && smap);
3836                         map |= fault << bit;
3837                 }
3838                 mmu->permissions[byte] = map;
3839         }
3840 }
3841
3842 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3843 {
3844         u8 map;
3845         unsigned level, root_level = mmu->root_level;
3846         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3847
3848         if (root_level == PT32E_ROOT_LEVEL)
3849                 --root_level;
3850         /* PT_PAGE_TABLE_LEVEL always terminates */
3851         map = 1 | (1 << ps_set_index);
3852         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3853                 if (level <= PT_PDPE_LEVEL
3854                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3855                         map |= 1 << (ps_set_index | (level - 1));
3856         }
3857         mmu->last_pte_bitmap = map;
3858 }
3859
3860 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3861                                          struct kvm_mmu *context,
3862                                          int level)
3863 {
3864         context->nx = is_nx(vcpu);
3865         context->root_level = level;
3866
3867         reset_rsvds_bits_mask(vcpu, context);
3868         update_permission_bitmask(vcpu, context, false);
3869         update_last_pte_bitmap(vcpu, context);
3870
3871         MMU_WARN_ON(!is_pae(vcpu));
3872         context->page_fault = paging64_page_fault;
3873         context->gva_to_gpa = paging64_gva_to_gpa;
3874         context->sync_page = paging64_sync_page;
3875         context->invlpg = paging64_invlpg;
3876         context->update_pte = paging64_update_pte;
3877         context->shadow_root_level = level;
3878         context->root_hpa = INVALID_PAGE;
3879         context->direct_map = false;
3880 }
3881
3882 static void paging64_init_context(struct kvm_vcpu *vcpu,
3883                                   struct kvm_mmu *context)
3884 {
3885         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3886 }
3887
3888 static void paging32_init_context(struct kvm_vcpu *vcpu,
3889                                   struct kvm_mmu *context)
3890 {
3891         context->nx = false;
3892         context->root_level = PT32_ROOT_LEVEL;
3893
3894         reset_rsvds_bits_mask(vcpu, context);
3895         update_permission_bitmask(vcpu, context, false);
3896         update_last_pte_bitmap(vcpu, context);
3897
3898         context->page_fault = paging32_page_fault;
3899         context->gva_to_gpa = paging32_gva_to_gpa;
3900         context->sync_page = paging32_sync_page;
3901         context->invlpg = paging32_invlpg;
3902         context->update_pte = paging32_update_pte;
3903         context->shadow_root_level = PT32E_ROOT_LEVEL;
3904         context->root_hpa = INVALID_PAGE;
3905         context->direct_map = false;
3906 }
3907
3908 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3909                                    struct kvm_mmu *context)
3910 {
3911         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3912 }
3913
3914 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3915 {
3916         struct kvm_mmu *context = &vcpu->arch.mmu;
3917
3918         context->base_role.word = 0;
3919         context->page_fault = tdp_page_fault;
3920         context->sync_page = nonpaging_sync_page;
3921         context->invlpg = nonpaging_invlpg;
3922         context->update_pte = nonpaging_update_pte;
3923         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3924         context->root_hpa = INVALID_PAGE;
3925         context->direct_map = true;
3926         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3927         context->get_cr3 = get_cr3;
3928         context->get_pdptr = kvm_pdptr_read;
3929         context->inject_page_fault = kvm_inject_page_fault;
3930
3931         if (!is_paging(vcpu)) {
3932                 context->nx = false;
3933                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3934                 context->root_level = 0;
3935         } else if (is_long_mode(vcpu)) {
3936                 context->nx = is_nx(vcpu);
3937                 context->root_level = PT64_ROOT_LEVEL;
3938                 reset_rsvds_bits_mask(vcpu, context);
3939                 context->gva_to_gpa = paging64_gva_to_gpa;
3940         } else if (is_pae(vcpu)) {
3941                 context->nx = is_nx(vcpu);
3942                 context->root_level = PT32E_ROOT_LEVEL;
3943                 reset_rsvds_bits_mask(vcpu, context);
3944                 context->gva_to_gpa = paging64_gva_to_gpa;
3945         } else {
3946                 context->nx = false;
3947                 context->root_level = PT32_ROOT_LEVEL;
3948                 reset_rsvds_bits_mask(vcpu, context);
3949                 context->gva_to_gpa = paging32_gva_to_gpa;
3950         }
3951
3952         update_permission_bitmask(vcpu, context, false);
3953         update_last_pte_bitmap(vcpu, context);
3954 }
3955
3956 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
3957 {
3958         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3959         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3960         struct kvm_mmu *context = &vcpu->arch.mmu;
3961
3962         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3963
3964         if (!is_paging(vcpu))
3965                 nonpaging_init_context(vcpu, context);
3966         else if (is_long_mode(vcpu))
3967                 paging64_init_context(vcpu, context);
3968         else if (is_pae(vcpu))
3969                 paging32E_init_context(vcpu, context);
3970         else
3971                 paging32_init_context(vcpu, context);
3972
3973         context->base_role.nxe = is_nx(vcpu);
3974         context->base_role.cr4_pae = !!is_pae(vcpu);
3975         context->base_role.cr0_wp  = is_write_protection(vcpu);
3976         context->base_role.smep_andnot_wp
3977                 = smep && !is_write_protection(vcpu);
3978         context->base_role.smap_andnot_wp
3979                 = smap && !is_write_protection(vcpu);
3980 }
3981 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3982
3983 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
3984 {
3985         struct kvm_mmu *context = &vcpu->arch.mmu;
3986
3987         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3988
3989         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3990
3991         context->nx = true;
3992         context->page_fault = ept_page_fault;
3993         context->gva_to_gpa = ept_gva_to_gpa;
3994         context->sync_page = ept_sync_page;
3995         context->invlpg = ept_invlpg;
3996         context->update_pte = ept_update_pte;
3997         context->root_level = context->shadow_root_level;
3998         context->root_hpa = INVALID_PAGE;
3999         context->direct_map = false;
4000
4001         update_permission_bitmask(vcpu, context, true);
4002         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4003 }
4004 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4005
4006 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4007 {
4008         struct kvm_mmu *context = &vcpu->arch.mmu;
4009
4010         kvm_init_shadow_mmu(vcpu);
4011         context->set_cr3           = kvm_x86_ops->set_cr3;
4012         context->get_cr3           = get_cr3;
4013         context->get_pdptr         = kvm_pdptr_read;
4014         context->inject_page_fault = kvm_inject_page_fault;
4015 }
4016
4017 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4018 {
4019         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4020
4021         g_context->get_cr3           = get_cr3;
4022         g_context->get_pdptr         = kvm_pdptr_read;
4023         g_context->inject_page_fault = kvm_inject_page_fault;
4024
4025         /*
4026          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
4027          * translation of l2_gpa to l1_gpa addresses is done using the
4028          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
4029          * functions between mmu and nested_mmu are swapped.
4030          */
4031         if (!is_paging(vcpu)) {
4032                 g_context->nx = false;
4033                 g_context->root_level = 0;
4034                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4035         } else if (is_long_mode(vcpu)) {
4036                 g_context->nx = is_nx(vcpu);
4037                 g_context->root_level = PT64_ROOT_LEVEL;
4038                 reset_rsvds_bits_mask(vcpu, g_context);
4039                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4040         } else if (is_pae(vcpu)) {
4041                 g_context->nx = is_nx(vcpu);
4042                 g_context->root_level = PT32E_ROOT_LEVEL;
4043                 reset_rsvds_bits_mask(vcpu, g_context);
4044                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4045         } else {
4046                 g_context->nx = false;
4047                 g_context->root_level = PT32_ROOT_LEVEL;
4048                 reset_rsvds_bits_mask(vcpu, g_context);
4049                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4050         }
4051
4052         update_permission_bitmask(vcpu, g_context, false);
4053         update_last_pte_bitmap(vcpu, g_context);
4054 }
4055
4056 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4057 {
4058         if (mmu_is_nested(vcpu))
4059                 init_kvm_nested_mmu(vcpu);
4060         else if (tdp_enabled)
4061                 init_kvm_tdp_mmu(vcpu);
4062         else
4063                 init_kvm_softmmu(vcpu);
4064 }
4065
4066 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4067 {
4068         kvm_mmu_unload(vcpu);
4069         init_kvm_mmu(vcpu);
4070 }
4071 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4072
4073 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4074 {
4075         int r;
4076
4077         r = mmu_topup_memory_caches(vcpu);
4078         if (r)
4079                 goto out;
4080         r = mmu_alloc_roots(vcpu);
4081         kvm_mmu_sync_roots(vcpu);
4082         if (r)
4083                 goto out;
4084         /* set_cr3() should ensure TLB has been flushed */
4085         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4086 out:
4087         return r;
4088 }
4089 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4090
4091 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4092 {
4093         mmu_free_roots(vcpu);
4094         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4095 }
4096 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4097
4098 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4099                                   struct kvm_mmu_page *sp, u64 *spte,
4100                                   const void *new)
4101 {
4102         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4103                 ++vcpu->kvm->stat.mmu_pde_zapped;
4104                 return;
4105         }
4106
4107         ++vcpu->kvm->stat.mmu_pte_updated;
4108         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4109 }
4110
4111 static bool need_remote_flush(u64 old, u64 new)
4112 {
4113         if (!is_shadow_present_pte(old))
4114                 return false;
4115         if (!is_shadow_present_pte(new))
4116                 return true;
4117         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4118                 return true;
4119         old ^= shadow_nx_mask;
4120         new ^= shadow_nx_mask;
4121         return (old & ~new & PT64_PERM_MASK) != 0;
4122 }
4123
4124 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4125                                     bool remote_flush, bool local_flush)
4126 {
4127         if (zap_page)
4128                 return;
4129
4130         if (remote_flush)
4131                 kvm_flush_remote_tlbs(vcpu->kvm);
4132         else if (local_flush)
4133                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4134 }
4135
4136 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4137                                     const u8 *new, int *bytes)
4138 {
4139         u64 gentry;
4140         int r;
4141
4142         /*
4143          * Assume that the pte write on a page table of the same type
4144          * as the current vcpu paging mode since we update the sptes only
4145          * when they have the same mode.
4146          */
4147         if (is_pae(vcpu) && *bytes == 4) {
4148                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4149                 *gpa &= ~(gpa_t)7;
4150                 *bytes = 8;
4151                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
4152                 if (r)
4153                         gentry = 0;
4154                 new = (const u8 *)&gentry;
4155         }
4156
4157         switch (*bytes) {
4158         case 4:
4159                 gentry = *(const u32 *)new;
4160                 break;
4161         case 8:
4162                 gentry = *(const u64 *)new;
4163                 break;
4164         default:
4165                 gentry = 0;
4166                 break;
4167         }
4168
4169         return gentry;
4170 }
4171
4172 /*
4173  * If we're seeing too many writes to a page, it may no longer be a page table,
4174  * or we may be forking, in which case it is better to unmap the page.
4175  */
4176 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4177 {
4178         /*
4179          * Skip write-flooding detected for the sp whose level is 1, because
4180          * it can become unsync, then the guest page is not write-protected.
4181          */
4182         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4183                 return false;
4184
4185         return ++sp->write_flooding_count >= 3;
4186 }
4187
4188 /*
4189  * Misaligned accesses are too much trouble to fix up; also, they usually
4190  * indicate a page is not used as a page table.
4191  */
4192 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4193                                     int bytes)
4194 {
4195         unsigned offset, pte_size, misaligned;
4196
4197         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4198                  gpa, bytes, sp->role.word);
4199
4200         offset = offset_in_page(gpa);
4201         pte_size = sp->role.cr4_pae ? 8 : 4;
4202
4203         /*
4204          * Sometimes, the OS only writes the last one bytes to update status
4205          * bits, for example, in linux, andb instruction is used in clear_bit().
4206          */
4207         if (!(offset & (pte_size - 1)) && bytes == 1)
4208                 return false;
4209
4210         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4211         misaligned |= bytes < 4;
4212
4213         return misaligned;
4214 }
4215
4216 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4217 {
4218         unsigned page_offset, quadrant;
4219         u64 *spte;
4220         int level;
4221
4222         page_offset = offset_in_page(gpa);
4223         level = sp->role.level;
4224         *nspte = 1;
4225         if (!sp->role.cr4_pae) {
4226                 page_offset <<= 1;      /* 32->64 */
4227                 /*
4228                  * A 32-bit pde maps 4MB while the shadow pdes map
4229                  * only 2MB.  So we need to double the offset again
4230                  * and zap two pdes instead of one.
4231                  */
4232                 if (level == PT32_ROOT_LEVEL) {
4233                         page_offset &= ~7; /* kill rounding error */
4234                         page_offset <<= 1;
4235                         *nspte = 2;
4236                 }
4237                 quadrant = page_offset >> PAGE_SHIFT;
4238                 page_offset &= ~PAGE_MASK;
4239                 if (quadrant != sp->role.quadrant)
4240                         return NULL;
4241         }
4242
4243         spte = &sp->spt[page_offset / sizeof(*spte)];
4244         return spte;
4245 }
4246
4247 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4248                        const u8 *new, int bytes)
4249 {
4250         gfn_t gfn = gpa >> PAGE_SHIFT;
4251         struct kvm_mmu_page *sp;
4252         LIST_HEAD(invalid_list);
4253         u64 entry, gentry, *spte;
4254         int npte;
4255         bool remote_flush, local_flush, zap_page;
4256         union kvm_mmu_page_role mask = (union kvm_mmu_page_role) {
4257                 .cr0_wp = 1,
4258                 .cr4_pae = 1,
4259                 .nxe = 1,
4260                 .smep_andnot_wp = 1,
4261                 .smap_andnot_wp = 1,
4262         };
4263
4264         /*
4265          * If we don't have indirect shadow pages, it means no page is
4266          * write-protected, so we can exit simply.
4267          */
4268         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4269                 return;
4270
4271         zap_page = remote_flush = local_flush = false;
4272
4273         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4274
4275         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4276
4277         /*
4278          * No need to care whether allocation memory is successful
4279          * or not since pte prefetch is skiped if it does not have
4280          * enough objects in the cache.
4281          */
4282         mmu_topup_memory_caches(vcpu);
4283
4284         spin_lock(&vcpu->kvm->mmu_lock);
4285         ++vcpu->kvm->stat.mmu_pte_write;
4286         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4287
4288         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4289                 if (detect_write_misaligned(sp, gpa, bytes) ||
4290                       detect_write_flooding(sp)) {
4291                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4292                                                      &invalid_list);
4293                         ++vcpu->kvm->stat.mmu_flooded;
4294                         continue;
4295                 }
4296
4297                 spte = get_written_sptes(sp, gpa, &npte);
4298                 if (!spte)
4299                         continue;
4300
4301                 local_flush = true;
4302                 while (npte--) {
4303                         entry = *spte;
4304                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4305                         if (gentry &&
4306                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4307                               & mask.word) && rmap_can_add(vcpu))
4308                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4309                         if (need_remote_flush(entry, *spte))
4310                                 remote_flush = true;
4311                         ++spte;
4312                 }
4313         }
4314         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4315         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4316         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4317         spin_unlock(&vcpu->kvm->mmu_lock);
4318 }
4319
4320 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4321 {
4322         gpa_t gpa;
4323         int r;
4324
4325         if (vcpu->arch.mmu.direct_map)
4326                 return 0;
4327
4328         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4329
4330         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4331
4332         return r;
4333 }
4334 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4335
4336 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4337 {
4338         LIST_HEAD(invalid_list);
4339
4340         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4341                 return;
4342
4343         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4344                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4345                         break;
4346
4347                 ++vcpu->kvm->stat.mmu_recycled;
4348         }
4349         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4350 }
4351
4352 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4353 {
4354         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4355                 return vcpu_match_mmio_gpa(vcpu, addr);
4356
4357         return vcpu_match_mmio_gva(vcpu, addr);
4358 }
4359
4360 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4361                        void *insn, int insn_len)
4362 {
4363         int r, emulation_type = EMULTYPE_RETRY;
4364         enum emulation_result er;
4365
4366         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4367         if (r < 0)
4368                 goto out;
4369
4370         if (!r) {
4371                 r = 1;
4372                 goto out;
4373         }
4374
4375         if (is_mmio_page_fault(vcpu, cr2))
4376                 emulation_type = 0;
4377
4378         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4379
4380         switch (er) {
4381         case EMULATE_DONE:
4382                 return 1;
4383         case EMULATE_USER_EXIT:
4384                 ++vcpu->stat.mmio_exits;
4385                 /* fall through */
4386         case EMULATE_FAIL:
4387                 return 0;
4388         default:
4389                 BUG();
4390         }
4391 out:
4392         return r;
4393 }
4394 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4395
4396 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4397 {
4398         vcpu->arch.mmu.invlpg(vcpu, gva);
4399         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4400         ++vcpu->stat.invlpg;
4401 }
4402 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4403
4404 void kvm_enable_tdp(void)
4405 {
4406         tdp_enabled = true;
4407 }
4408 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4409
4410 void kvm_disable_tdp(void)
4411 {
4412         tdp_enabled = false;
4413 }
4414 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4415
4416 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4417 {
4418         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4419         if (vcpu->arch.mmu.lm_root != NULL)
4420                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4421 }
4422
4423 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4424 {
4425         struct page *page;
4426         int i;
4427
4428         /*
4429          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4430          * Therefore we need to allocate shadow page tables in the first
4431          * 4GB of memory, which happens to fit the DMA32 zone.
4432          */
4433         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4434         if (!page)
4435                 return -ENOMEM;
4436
4437         vcpu->arch.mmu.pae_root = page_address(page);
4438         for (i = 0; i < 4; ++i)
4439                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4440
4441         return 0;
4442 }
4443
4444 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4445 {
4446         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4447         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4448         vcpu->arch.mmu.translate_gpa = translate_gpa;
4449         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4450
4451         return alloc_mmu_pages(vcpu);
4452 }
4453
4454 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4455 {
4456         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4457
4458         init_kvm_mmu(vcpu);
4459 }
4460
4461 /* The return value indicates if tlb flush on all vcpus is needed. */
4462 typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
4463
4464 /* The caller should hold mmu-lock before calling this function. */
4465 static bool
4466 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4467                         slot_level_handler fn, int start_level, int end_level,
4468                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4469 {
4470         struct slot_rmap_walk_iterator iterator;
4471         bool flush = false;
4472
4473         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4474                         end_gfn, &iterator) {
4475                 if (iterator.rmap)
4476                         flush |= fn(kvm, iterator.rmap);
4477
4478                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4479                         if (flush && lock_flush_tlb) {
4480                                 kvm_flush_remote_tlbs(kvm);
4481                                 flush = false;
4482                         }
4483                         cond_resched_lock(&kvm->mmu_lock);
4484                 }
4485         }
4486
4487         if (flush && lock_flush_tlb) {
4488                 kvm_flush_remote_tlbs(kvm);
4489                 flush = false;
4490         }
4491
4492         return flush;
4493 }
4494
4495 static bool
4496 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4497                   slot_level_handler fn, int start_level, int end_level,
4498                   bool lock_flush_tlb)
4499 {
4500         return slot_handle_level_range(kvm, memslot, fn, start_level,
4501                         end_level, memslot->base_gfn,
4502                         memslot->base_gfn + memslot->npages - 1,
4503                         lock_flush_tlb);
4504 }
4505
4506 static bool
4507 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4508                       slot_level_handler fn, bool lock_flush_tlb)
4509 {
4510         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4511                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4512 }
4513
4514 static bool
4515 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4516                         slot_level_handler fn, bool lock_flush_tlb)
4517 {
4518         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4519                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4520 }
4521
4522 static bool
4523 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4524                  slot_level_handler fn, bool lock_flush_tlb)
4525 {
4526         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4527                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4528 }
4529
4530 static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
4531 {
4532         return __rmap_write_protect(kvm, rmapp, false);
4533 }
4534
4535 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4536                                       struct kvm_memory_slot *memslot)
4537 {
4538         bool flush;
4539
4540         spin_lock(&kvm->mmu_lock);
4541         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4542                                       false);
4543         spin_unlock(&kvm->mmu_lock);
4544
4545         /*
4546          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4547          * which do tlb flush out of mmu-lock should be serialized by
4548          * kvm->slots_lock otherwise tlb flush would be missed.
4549          */
4550         lockdep_assert_held(&kvm->slots_lock);
4551
4552         /*
4553          * We can flush all the TLBs out of the mmu lock without TLB
4554          * corruption since we just change the spte from writable to
4555          * readonly so that we only need to care the case of changing
4556          * spte from present to present (changing the spte from present
4557          * to nonpresent will flush all the TLBs immediately), in other
4558          * words, the only case we care is mmu_spte_update() where we
4559          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4560          * instead of PT_WRITABLE_MASK, that means it does not depend
4561          * on PT_WRITABLE_MASK anymore.
4562          */
4563         if (flush)
4564                 kvm_flush_remote_tlbs(kvm);
4565 }
4566
4567 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4568                 unsigned long *rmapp)
4569 {
4570         u64 *sptep;
4571         struct rmap_iterator iter;
4572         int need_tlb_flush = 0;
4573         pfn_t pfn;
4574         struct kvm_mmu_page *sp;
4575
4576 restart:
4577         for_each_rmap_spte(rmapp, &iter, sptep) {
4578                 sp = page_header(__pa(sptep));
4579                 pfn = spte_to_pfn(*sptep);
4580
4581                 /*
4582                  * We cannot do huge page mapping for indirect shadow pages,
4583                  * which are found on the last rmap (level = 1) when not using
4584                  * tdp; such shadow pages are synced with the page table in
4585                  * the guest, and the guest page table is using 4K page size
4586                  * mapping if the indirect sp has level = 1.
4587                  */
4588                 if (sp->role.direct &&
4589                         !kvm_is_reserved_pfn(pfn) &&
4590                         PageTransCompound(pfn_to_page(pfn))) {
4591                         drop_spte(kvm, sptep);
4592                         need_tlb_flush = 1;
4593                         goto restart;
4594                 }
4595         }
4596
4597         return need_tlb_flush;
4598 }
4599
4600 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4601                         struct kvm_memory_slot *memslot)
4602 {
4603         spin_lock(&kvm->mmu_lock);
4604         slot_handle_leaf(kvm, memslot, kvm_mmu_zap_collapsible_spte, true);
4605         spin_unlock(&kvm->mmu_lock);
4606 }
4607
4608 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4609                                    struct kvm_memory_slot *memslot)
4610 {
4611         bool flush;
4612
4613         spin_lock(&kvm->mmu_lock);
4614         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4615         spin_unlock(&kvm->mmu_lock);
4616
4617         lockdep_assert_held(&kvm->slots_lock);
4618
4619         /*
4620          * It's also safe to flush TLBs out of mmu lock here as currently this
4621          * function is only used for dirty logging, in which case flushing TLB
4622          * out of mmu lock also guarantees no dirty pages will be lost in
4623          * dirty_bitmap.
4624          */
4625         if (flush)
4626                 kvm_flush_remote_tlbs(kvm);
4627 }
4628 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4629
4630 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4631                                         struct kvm_memory_slot *memslot)
4632 {
4633         bool flush;
4634
4635         spin_lock(&kvm->mmu_lock);
4636         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4637                                         false);
4638         spin_unlock(&kvm->mmu_lock);
4639
4640         /* see kvm_mmu_slot_remove_write_access */
4641         lockdep_assert_held(&kvm->slots_lock);
4642
4643         if (flush)
4644                 kvm_flush_remote_tlbs(kvm);
4645 }
4646 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4647
4648 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4649                             struct kvm_memory_slot *memslot)
4650 {
4651         bool flush;
4652
4653         spin_lock(&kvm->mmu_lock);
4654         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4655         spin_unlock(&kvm->mmu_lock);
4656
4657         lockdep_assert_held(&kvm->slots_lock);
4658
4659         /* see kvm_mmu_slot_leaf_clear_dirty */
4660         if (flush)
4661                 kvm_flush_remote_tlbs(kvm);
4662 }
4663 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4664
4665 #define BATCH_ZAP_PAGES 10
4666 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4667 {
4668         struct kvm_mmu_page *sp, *node;
4669         int batch = 0;
4670
4671 restart:
4672         list_for_each_entry_safe_reverse(sp, node,
4673               &kvm->arch.active_mmu_pages, link) {
4674                 int ret;
4675
4676                 /*
4677                  * No obsolete page exists before new created page since
4678                  * active_mmu_pages is the FIFO list.
4679                  */
4680                 if (!is_obsolete_sp(kvm, sp))
4681                         break;
4682
4683                 /*
4684                  * Since we are reversely walking the list and the invalid
4685                  * list will be moved to the head, skip the invalid page
4686                  * can help us to avoid the infinity list walking.
4687                  */
4688                 if (sp->role.invalid)
4689                         continue;
4690
4691                 /*
4692                  * Need not flush tlb since we only zap the sp with invalid
4693                  * generation number.
4694                  */
4695                 if (batch >= BATCH_ZAP_PAGES &&
4696                       cond_resched_lock(&kvm->mmu_lock)) {
4697                         batch = 0;
4698                         goto restart;
4699                 }
4700
4701                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4702                                 &kvm->arch.zapped_obsolete_pages);
4703                 batch += ret;
4704
4705                 if (ret)
4706                         goto restart;
4707         }
4708
4709         /*
4710          * Should flush tlb before free page tables since lockless-walking
4711          * may use the pages.
4712          */
4713         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4714 }
4715
4716 /*
4717  * Fast invalidate all shadow pages and use lock-break technique
4718  * to zap obsolete pages.
4719  *
4720  * It's required when memslot is being deleted or VM is being
4721  * destroyed, in these cases, we should ensure that KVM MMU does
4722  * not use any resource of the being-deleted slot or all slots
4723  * after calling the function.
4724  */
4725 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4726 {
4727         spin_lock(&kvm->mmu_lock);
4728         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4729         kvm->arch.mmu_valid_gen++;
4730
4731         /*
4732          * Notify all vcpus to reload its shadow page table
4733          * and flush TLB. Then all vcpus will switch to new
4734          * shadow page table with the new mmu_valid_gen.
4735          *
4736          * Note: we should do this under the protection of
4737          * mmu-lock, otherwise, vcpu would purge shadow page
4738          * but miss tlb flush.
4739          */
4740         kvm_reload_remote_mmus(kvm);
4741
4742         kvm_zap_obsolete_pages(kvm);
4743         spin_unlock(&kvm->mmu_lock);
4744 }
4745
4746 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4747 {
4748         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4749 }
4750
4751 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4752 {
4753         /*
4754          * The very rare case: if the generation-number is round,
4755          * zap all shadow pages.
4756          */
4757         if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4758                 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4759                 kvm_mmu_invalidate_zap_all_pages(kvm);
4760         }
4761 }
4762
4763 static unsigned long
4764 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4765 {
4766         struct kvm *kvm;
4767         int nr_to_scan = sc->nr_to_scan;
4768         unsigned long freed = 0;
4769
4770         spin_lock(&kvm_lock);
4771
4772         list_for_each_entry(kvm, &vm_list, vm_list) {
4773                 int idx;
4774                 LIST_HEAD(invalid_list);
4775
4776                 /*
4777                  * Never scan more than sc->nr_to_scan VM instances.
4778                  * Will not hit this condition practically since we do not try
4779                  * to shrink more than one VM and it is very unlikely to see
4780                  * !n_used_mmu_pages so many times.
4781                  */
4782                 if (!nr_to_scan--)
4783                         break;
4784                 /*
4785                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4786                  * here. We may skip a VM instance errorneosly, but we do not
4787                  * want to shrink a VM that only started to populate its MMU
4788                  * anyway.
4789                  */
4790                 if (!kvm->arch.n_used_mmu_pages &&
4791                       !kvm_has_zapped_obsolete_pages(kvm))
4792                         continue;
4793
4794                 idx = srcu_read_lock(&kvm->srcu);
4795                 spin_lock(&kvm->mmu_lock);
4796
4797                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4798                         kvm_mmu_commit_zap_page(kvm,
4799                               &kvm->arch.zapped_obsolete_pages);
4800                         goto unlock;
4801                 }
4802
4803                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4804                         freed++;
4805                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4806
4807 unlock:
4808                 spin_unlock(&kvm->mmu_lock);
4809                 srcu_read_unlock(&kvm->srcu, idx);
4810
4811                 /*
4812                  * unfair on small ones
4813                  * per-vm shrinkers cry out
4814                  * sadness comes quickly
4815                  */
4816                 list_move_tail(&kvm->vm_list, &vm_list);
4817                 break;
4818         }
4819
4820         spin_unlock(&kvm_lock);
4821         return freed;
4822 }
4823
4824 static unsigned long
4825 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4826 {
4827         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4828 }
4829
4830 static struct shrinker mmu_shrinker = {
4831         .count_objects = mmu_shrink_count,
4832         .scan_objects = mmu_shrink_scan,
4833         .seeks = DEFAULT_SEEKS * 10,
4834 };
4835
4836 static void mmu_destroy_caches(void)
4837 {
4838         if (pte_list_desc_cache)
4839                 kmem_cache_destroy(pte_list_desc_cache);
4840         if (mmu_page_header_cache)
4841                 kmem_cache_destroy(mmu_page_header_cache);
4842 }
4843
4844 int kvm_mmu_module_init(void)
4845 {
4846         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4847                                             sizeof(struct pte_list_desc),
4848                                             0, 0, NULL);
4849         if (!pte_list_desc_cache)
4850                 goto nomem;
4851
4852         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4853                                                   sizeof(struct kvm_mmu_page),
4854                                                   0, 0, NULL);
4855         if (!mmu_page_header_cache)
4856                 goto nomem;
4857
4858         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4859                 goto nomem;
4860
4861         register_shrinker(&mmu_shrinker);
4862
4863         return 0;
4864
4865 nomem:
4866         mmu_destroy_caches();
4867         return -ENOMEM;
4868 }
4869
4870 /*
4871  * Caculate mmu pages needed for kvm.
4872  */
4873 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4874 {
4875         unsigned int nr_mmu_pages;
4876         unsigned int  nr_pages = 0;
4877         struct kvm_memslots *slots;
4878         struct kvm_memory_slot *memslot;
4879
4880         slots = kvm_memslots(kvm);
4881
4882         kvm_for_each_memslot(memslot, slots)
4883                 nr_pages += memslot->npages;
4884
4885         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4886         nr_mmu_pages = max(nr_mmu_pages,
4887                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4888
4889         return nr_mmu_pages;
4890 }
4891
4892 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4893 {
4894         struct kvm_shadow_walk_iterator iterator;
4895         u64 spte;
4896         int nr_sptes = 0;
4897
4898         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4899                 return nr_sptes;
4900
4901         walk_shadow_page_lockless_begin(vcpu);
4902         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4903                 sptes[iterator.level-1] = spte;
4904                 nr_sptes++;
4905                 if (!is_shadow_present_pte(spte))
4906                         break;
4907         }
4908         walk_shadow_page_lockless_end(vcpu);
4909
4910         return nr_sptes;
4911 }
4912 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4913
4914 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4915 {
4916         kvm_mmu_unload(vcpu);
4917         free_mmu_pages(vcpu);
4918         mmu_free_memory_caches(vcpu);
4919 }
4920
4921 void kvm_mmu_module_exit(void)
4922 {
4923         mmu_destroy_caches();
4924         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4925         unregister_shrinker(&mmu_shrinker);
4926         mmu_audit_disable();
4927 }