2 * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4 * Copyright 2015 Red Hat, Inc. and/or its affiliates.
7 * Avi Kivity <avi@redhat.com>
8 * Gleb Natapov <gleb@redhat.com>
9 * Wei Huang <wei@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2. See
12 * the COPYING file in the top-level directory.
16 #include <linux/types.h>
17 #include <linux/kvm_host.h>
18 #include <linux/perf_event.h>
19 #include <asm/perf_event.h>
26 * - Each perf counter is defined as "struct kvm_pmc";
27 * - There are two types of perf counters: general purpose (gp) and fixed.
28 * gp counters are stored in gp_counters[] and fixed counters are stored
29 * in fixed_counters[] respectively. Both of them are part of "struct
31 * - pmu.c understands the difference between gp counters and fixed counters.
32 * However AMD doesn't support fixed-counters;
33 * - There are three types of index to access perf counters (PMC):
34 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
35 * has MSR_K7_PERFCTRn.
36 * 2. MSR Index (named idx): This normally is used by RDPMC instruction.
37 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
38 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
39 * that it also supports fixed counters. idx can be used to as index to
40 * gp and fixed counters.
41 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU
42 * code. Each pmc, stored in kvm_pmc.idx field, is unique across
43 * all perf counters (both gp and fixed). The mapping relationship
44 * between pmc and perf counters is as the following:
45 * * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters
46 * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
47 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters
50 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
52 struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
53 struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
55 kvm_pmu_deliver_pmi(vcpu);
58 static void kvm_perf_overflow(struct perf_event *perf_event,
59 struct perf_sample_data *data,
62 struct kvm_pmc *pmc = perf_event->overflow_handler_context;
63 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
65 if (!test_and_set_bit(pmc->idx,
66 (unsigned long *)&pmu->reprogram_pmi)) {
67 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
68 kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
72 static void kvm_perf_overflow_intr(struct perf_event *perf_event,
73 struct perf_sample_data *data,
76 struct kvm_pmc *pmc = perf_event->overflow_handler_context;
77 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
79 if (!test_and_set_bit(pmc->idx,
80 (unsigned long *)&pmu->reprogram_pmi)) {
81 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
82 kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
85 * Inject PMI. If vcpu was in a guest mode during NMI PMI
86 * can be ejected on a guest mode re-entry. Otherwise we can't
87 * be sure that vcpu wasn't executing hlt instruction at the
88 * time of vmexit and is not going to re-enter guest mode until
89 * woken up. So we should wake it, but this is impossible from
90 * NMI context. Do it from irq work instead.
92 if (!kvm_is_in_guest())
93 irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
95 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
99 static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type,
100 unsigned config, bool exclude_user,
101 bool exclude_kernel, bool intr,
102 bool in_tx, bool in_tx_cp)
104 struct perf_event *event;
105 struct perf_event_attr attr = {
107 .size = sizeof(attr),
109 .exclude_idle = true,
111 .exclude_user = exclude_user,
112 .exclude_kernel = exclude_kernel,
117 attr.config |= HSW_IN_TX;
119 attr.config |= HSW_IN_TX_CHECKPOINTED;
121 attr.sample_period = (-pmc->counter) & pmc_bitmask(pmc);
123 event = perf_event_create_kernel_counter(&attr, -1, current,
124 intr ? kvm_perf_overflow_intr :
125 kvm_perf_overflow, pmc);
127 printk_once("kvm_pmu: event creation failed %ld\n",
132 pmc->perf_event = event;
133 clear_bit(pmc->idx, (unsigned long*)&pmc_to_pmu(pmc)->reprogram_pmi);
136 void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
138 unsigned config, type = PERF_TYPE_RAW;
139 u8 event_select, unit_mask;
141 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
142 printk_once("kvm pmu: pin control bit is ignored\n");
144 pmc->eventsel = eventsel;
146 pmc_stop_counter(pmc);
148 if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc))
151 event_select = eventsel & ARCH_PERFMON_EVENTSEL_EVENT;
152 unit_mask = (eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
154 if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE |
155 ARCH_PERFMON_EVENTSEL_INV |
156 ARCH_PERFMON_EVENTSEL_CMASK |
158 HSW_IN_TX_CHECKPOINTED))) {
159 config = kvm_x86_ops->pmu_ops->find_arch_event(pmc_to_pmu(pmc),
162 if (config != PERF_COUNT_HW_MAX)
163 type = PERF_TYPE_HARDWARE;
166 if (type == PERF_TYPE_RAW)
167 config = eventsel & X86_RAW_EVENT_MASK;
169 pmc_reprogram_counter(pmc, type, config,
170 !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
171 !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
172 eventsel & ARCH_PERFMON_EVENTSEL_INT,
173 (eventsel & HSW_IN_TX),
174 (eventsel & HSW_IN_TX_CHECKPOINTED));
176 EXPORT_SYMBOL_GPL(reprogram_gp_counter);
178 void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx)
180 unsigned en_field = ctrl & 0x3;
181 bool pmi = ctrl & 0x8;
183 pmc_stop_counter(pmc);
185 if (!en_field || !pmc_is_enabled(pmc))
188 pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE,
189 kvm_x86_ops->pmu_ops->find_fixed_event(idx),
190 !(en_field & 0x2), /* exclude user */
191 !(en_field & 0x1), /* exclude kernel */
194 EXPORT_SYMBOL_GPL(reprogram_fixed_counter);
196 void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx)
198 struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx);
204 reprogram_gp_counter(pmc, pmc->eventsel);
206 int idx = pmc_idx - INTEL_PMC_IDX_FIXED;
207 u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx);
209 reprogram_fixed_counter(pmc, ctrl, idx);
212 EXPORT_SYMBOL_GPL(reprogram_counter);
214 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
216 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
220 bitmask = pmu->reprogram_pmi;
222 for_each_set_bit(bit, (unsigned long *)&bitmask, X86_PMC_IDX_MAX) {
223 struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, bit);
225 if (unlikely(!pmc || !pmc->perf_event)) {
226 clear_bit(bit, (unsigned long *)&pmu->reprogram_pmi);
230 reprogram_counter(pmu, bit);
234 /* check if idx is a valid index to access PMU */
235 int kvm_pmu_is_valid_msr_idx(struct kvm_vcpu *vcpu, unsigned idx)
237 return kvm_x86_ops->pmu_ops->is_valid_msr_idx(vcpu, idx);
240 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
242 bool fast_mode = idx & (1u << 31);
246 pmc = kvm_x86_ops->pmu_ops->msr_idx_to_pmc(vcpu, idx);
250 ctr_val = pmc_read_counter(pmc);
252 ctr_val = (u32)ctr_val;
258 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
261 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
264 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
266 return kvm_x86_ops->pmu_ops->is_valid_msr(vcpu, msr);
269 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
271 return kvm_x86_ops->pmu_ops->get_msr(vcpu, msr, data);
274 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
276 return kvm_x86_ops->pmu_ops->set_msr(vcpu, msr_info);
279 /* refresh PMU settings. This function generally is called when underlying
280 * settings are changed (such as changes of PMU CPUID by guest VMs), which
281 * should rarely happen.
283 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
285 kvm_x86_ops->pmu_ops->refresh(vcpu);
288 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
290 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
292 irq_work_sync(&pmu->irq_work);
293 kvm_x86_ops->pmu_ops->reset(vcpu);
296 void kvm_pmu_init(struct kvm_vcpu *vcpu)
298 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
300 memset(pmu, 0, sizeof(*pmu));
301 kvm_x86_ops->pmu_ops->init(vcpu);
302 init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
303 kvm_pmu_refresh(vcpu);
306 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)