68075318648974b0d56c6f64ad296dd253ca26c6
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24
25 #include <linux/module.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/kernel.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
36 #include <asm/desc.h>
37 #include <asm/debugreg.h>
38 #include <asm/kvm_para.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #define __ex(x) __kvm_handle_fault_on_reboot(x)
44
45 MODULE_AUTHOR("Qumranet");
46 MODULE_LICENSE("GPL");
47
48 static const struct x86_cpu_id svm_cpu_id[] = {
49         X86_FEATURE_MATCH(X86_FEATURE_SVM),
50         {}
51 };
52 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
53
54 #define IOPM_ALLOC_ORDER 2
55 #define MSRPM_ALLOC_ORDER 1
56
57 #define SEG_TYPE_LDT 2
58 #define SEG_TYPE_BUSY_TSS16 3
59
60 #define SVM_FEATURE_NPT            (1 <<  0)
61 #define SVM_FEATURE_LBRV           (1 <<  1)
62 #define SVM_FEATURE_SVML           (1 <<  2)
63 #define SVM_FEATURE_NRIP           (1 <<  3)
64 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
65 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
66 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
67 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
68 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
69
70 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
71 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
72 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
73
74 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
75
76 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
77 #define TSC_RATIO_MIN           0x0000000000000001ULL
78 #define TSC_RATIO_MAX           0x000000ffffffffffULL
79
80 static bool erratum_383_found __read_mostly;
81
82 static const u32 host_save_user_msrs[] = {
83 #ifdef CONFIG_X86_64
84         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
85         MSR_FS_BASE,
86 #endif
87         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
88 };
89
90 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
91
92 struct kvm_vcpu;
93
94 struct nested_state {
95         struct vmcb *hsave;
96         u64 hsave_msr;
97         u64 vm_cr_msr;
98         u64 vmcb;
99
100         /* These are the merged vectors */
101         u32 *msrpm;
102
103         /* gpa pointers to the real vectors */
104         u64 vmcb_msrpm;
105         u64 vmcb_iopm;
106
107         /* A VMEXIT is required but not yet emulated */
108         bool exit_required;
109
110         /* cache for intercepts of the guest */
111         u32 intercept_cr;
112         u32 intercept_dr;
113         u32 intercept_exceptions;
114         u64 intercept;
115
116         /* Nested Paging related state */
117         u64 nested_cr3;
118 };
119
120 #define MSRPM_OFFSETS   16
121 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
122
123 /*
124  * Set osvw_len to higher value when updated Revision Guides
125  * are published and we know what the new status bits are
126  */
127 static uint64_t osvw_len = 4, osvw_status;
128
129 struct vcpu_svm {
130         struct kvm_vcpu vcpu;
131         struct vmcb *vmcb;
132         unsigned long vmcb_pa;
133         struct svm_cpu_data *svm_data;
134         uint64_t asid_generation;
135         uint64_t sysenter_esp;
136         uint64_t sysenter_eip;
137
138         u64 next_rip;
139
140         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
141         struct {
142                 u16 fs;
143                 u16 gs;
144                 u16 ldt;
145                 u64 gs_base;
146         } host;
147
148         u32 *msrpm;
149
150         ulong nmi_iret_rip;
151
152         struct nested_state nested;
153
154         bool nmi_singlestep;
155
156         unsigned int3_injected;
157         unsigned long int3_rip;
158         u32 apf_reason;
159
160         u64  tsc_ratio;
161 };
162
163 static DEFINE_PER_CPU(u64, current_tsc_ratio);
164 #define TSC_RATIO_DEFAULT       0x0100000000ULL
165
166 #define MSR_INVALID                     0xffffffffU
167
168 static const struct svm_direct_access_msrs {
169         u32 index;   /* Index of the MSR */
170         bool always; /* True if intercept is always on */
171 } direct_access_msrs[] = {
172         { .index = MSR_STAR,                            .always = true  },
173         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
174 #ifdef CONFIG_X86_64
175         { .index = MSR_GS_BASE,                         .always = true  },
176         { .index = MSR_FS_BASE,                         .always = true  },
177         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
178         { .index = MSR_LSTAR,                           .always = true  },
179         { .index = MSR_CSTAR,                           .always = true  },
180         { .index = MSR_SYSCALL_MASK,                    .always = true  },
181 #endif
182         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
183         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
184         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
185         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
186         { .index = MSR_INVALID,                         .always = false },
187 };
188
189 /* enable NPT for AMD64 and X86 with PAE */
190 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
191 static bool npt_enabled = true;
192 #else
193 static bool npt_enabled;
194 #endif
195
196 /* allow nested paging (virtualized MMU) for all guests */
197 static int npt = true;
198 module_param(npt, int, S_IRUGO);
199
200 /* allow nested virtualization in KVM/SVM */
201 static int nested = true;
202 module_param(nested, int, S_IRUGO);
203
204 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
205 static void svm_complete_interrupts(struct vcpu_svm *svm);
206
207 static int nested_svm_exit_handled(struct vcpu_svm *svm);
208 static int nested_svm_intercept(struct vcpu_svm *svm);
209 static int nested_svm_vmexit(struct vcpu_svm *svm);
210 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
211                                       bool has_error_code, u32 error_code);
212 static u64 __scale_tsc(u64 ratio, u64 tsc);
213
214 enum {
215         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
216                             pause filter count */
217         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
218         VMCB_ASID,       /* ASID */
219         VMCB_INTR,       /* int_ctl, int_vector */
220         VMCB_NPT,        /* npt_en, nCR3, gPAT */
221         VMCB_CR,         /* CR0, CR3, CR4, EFER */
222         VMCB_DR,         /* DR6, DR7 */
223         VMCB_DT,         /* GDT, IDT */
224         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
225         VMCB_CR2,        /* CR2 only */
226         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
227         VMCB_DIRTY_MAX,
228 };
229
230 /* TPR and CR2 are always written before VMRUN */
231 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
232
233 static inline void mark_all_dirty(struct vmcb *vmcb)
234 {
235         vmcb->control.clean = 0;
236 }
237
238 static inline void mark_all_clean(struct vmcb *vmcb)
239 {
240         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
241                                & ~VMCB_ALWAYS_DIRTY_MASK;
242 }
243
244 static inline void mark_dirty(struct vmcb *vmcb, int bit)
245 {
246         vmcb->control.clean &= ~(1 << bit);
247 }
248
249 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
250 {
251         return container_of(vcpu, struct vcpu_svm, vcpu);
252 }
253
254 static void recalc_intercepts(struct vcpu_svm *svm)
255 {
256         struct vmcb_control_area *c, *h;
257         struct nested_state *g;
258
259         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
260
261         if (!is_guest_mode(&svm->vcpu))
262                 return;
263
264         c = &svm->vmcb->control;
265         h = &svm->nested.hsave->control;
266         g = &svm->nested;
267
268         c->intercept_cr = h->intercept_cr | g->intercept_cr;
269         c->intercept_dr = h->intercept_dr | g->intercept_dr;
270         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
271         c->intercept = h->intercept | g->intercept;
272 }
273
274 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
275 {
276         if (is_guest_mode(&svm->vcpu))
277                 return svm->nested.hsave;
278         else
279                 return svm->vmcb;
280 }
281
282 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
283 {
284         struct vmcb *vmcb = get_host_vmcb(svm);
285
286         vmcb->control.intercept_cr |= (1U << bit);
287
288         recalc_intercepts(svm);
289 }
290
291 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
292 {
293         struct vmcb *vmcb = get_host_vmcb(svm);
294
295         vmcb->control.intercept_cr &= ~(1U << bit);
296
297         recalc_intercepts(svm);
298 }
299
300 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
301 {
302         struct vmcb *vmcb = get_host_vmcb(svm);
303
304         return vmcb->control.intercept_cr & (1U << bit);
305 }
306
307 static inline void set_dr_intercepts(struct vcpu_svm *svm)
308 {
309         struct vmcb *vmcb = get_host_vmcb(svm);
310
311         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
312                 | (1 << INTERCEPT_DR1_READ)
313                 | (1 << INTERCEPT_DR2_READ)
314                 | (1 << INTERCEPT_DR3_READ)
315                 | (1 << INTERCEPT_DR4_READ)
316                 | (1 << INTERCEPT_DR5_READ)
317                 | (1 << INTERCEPT_DR6_READ)
318                 | (1 << INTERCEPT_DR7_READ)
319                 | (1 << INTERCEPT_DR0_WRITE)
320                 | (1 << INTERCEPT_DR1_WRITE)
321                 | (1 << INTERCEPT_DR2_WRITE)
322                 | (1 << INTERCEPT_DR3_WRITE)
323                 | (1 << INTERCEPT_DR4_WRITE)
324                 | (1 << INTERCEPT_DR5_WRITE)
325                 | (1 << INTERCEPT_DR6_WRITE)
326                 | (1 << INTERCEPT_DR7_WRITE);
327
328         recalc_intercepts(svm);
329 }
330
331 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
332 {
333         struct vmcb *vmcb = get_host_vmcb(svm);
334
335         vmcb->control.intercept_dr = 0;
336
337         recalc_intercepts(svm);
338 }
339
340 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
341 {
342         struct vmcb *vmcb = get_host_vmcb(svm);
343
344         vmcb->control.intercept_exceptions |= (1U << bit);
345
346         recalc_intercepts(svm);
347 }
348
349 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
350 {
351         struct vmcb *vmcb = get_host_vmcb(svm);
352
353         vmcb->control.intercept_exceptions &= ~(1U << bit);
354
355         recalc_intercepts(svm);
356 }
357
358 static inline void set_intercept(struct vcpu_svm *svm, int bit)
359 {
360         struct vmcb *vmcb = get_host_vmcb(svm);
361
362         vmcb->control.intercept |= (1ULL << bit);
363
364         recalc_intercepts(svm);
365 }
366
367 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
368 {
369         struct vmcb *vmcb = get_host_vmcb(svm);
370
371         vmcb->control.intercept &= ~(1ULL << bit);
372
373         recalc_intercepts(svm);
374 }
375
376 static inline void enable_gif(struct vcpu_svm *svm)
377 {
378         svm->vcpu.arch.hflags |= HF_GIF_MASK;
379 }
380
381 static inline void disable_gif(struct vcpu_svm *svm)
382 {
383         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
384 }
385
386 static inline bool gif_set(struct vcpu_svm *svm)
387 {
388         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
389 }
390
391 static unsigned long iopm_base;
392
393 struct kvm_ldttss_desc {
394         u16 limit0;
395         u16 base0;
396         unsigned base1:8, type:5, dpl:2, p:1;
397         unsigned limit1:4, zero0:3, g:1, base2:8;
398         u32 base3;
399         u32 zero1;
400 } __attribute__((packed));
401
402 struct svm_cpu_data {
403         int cpu;
404
405         u64 asid_generation;
406         u32 max_asid;
407         u32 next_asid;
408         struct kvm_ldttss_desc *tss_desc;
409
410         struct page *save_area;
411 };
412
413 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
414
415 struct svm_init_data {
416         int cpu;
417         int r;
418 };
419
420 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
421
422 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
423 #define MSRS_RANGE_SIZE 2048
424 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
425
426 static u32 svm_msrpm_offset(u32 msr)
427 {
428         u32 offset;
429         int i;
430
431         for (i = 0; i < NUM_MSR_MAPS; i++) {
432                 if (msr < msrpm_ranges[i] ||
433                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
434                         continue;
435
436                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
437                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
438
439                 /* Now we have the u8 offset - but need the u32 offset */
440                 return offset / 4;
441         }
442
443         /* MSR not in any range */
444         return MSR_INVALID;
445 }
446
447 #define MAX_INST_SIZE 15
448
449 static inline void clgi(void)
450 {
451         asm volatile (__ex(SVM_CLGI));
452 }
453
454 static inline void stgi(void)
455 {
456         asm volatile (__ex(SVM_STGI));
457 }
458
459 static inline void invlpga(unsigned long addr, u32 asid)
460 {
461         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
462 }
463
464 static int get_npt_level(void)
465 {
466 #ifdef CONFIG_X86_64
467         return PT64_ROOT_LEVEL;
468 #else
469         return PT32E_ROOT_LEVEL;
470 #endif
471 }
472
473 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
474 {
475         vcpu->arch.efer = efer;
476         if (!npt_enabled && !(efer & EFER_LMA))
477                 efer &= ~EFER_LME;
478
479         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
480         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
481 }
482
483 static int is_external_interrupt(u32 info)
484 {
485         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
486         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
487 }
488
489 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
490 {
491         struct vcpu_svm *svm = to_svm(vcpu);
492         u32 ret = 0;
493
494         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
495                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
496         return ret;
497 }
498
499 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
500 {
501         struct vcpu_svm *svm = to_svm(vcpu);
502
503         if (mask == 0)
504                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
505         else
506                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
507
508 }
509
510 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
511 {
512         struct vcpu_svm *svm = to_svm(vcpu);
513
514         if (svm->vmcb->control.next_rip != 0)
515                 svm->next_rip = svm->vmcb->control.next_rip;
516
517         if (!svm->next_rip) {
518                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
519                                 EMULATE_DONE)
520                         printk(KERN_DEBUG "%s: NOP\n", __func__);
521                 return;
522         }
523         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
524                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
525                        __func__, kvm_rip_read(vcpu), svm->next_rip);
526
527         kvm_rip_write(vcpu, svm->next_rip);
528         svm_set_interrupt_shadow(vcpu, 0);
529 }
530
531 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
532                                 bool has_error_code, u32 error_code,
533                                 bool reinject)
534 {
535         struct vcpu_svm *svm = to_svm(vcpu);
536
537         /*
538          * If we are within a nested VM we'd better #VMEXIT and let the guest
539          * handle the exception
540          */
541         if (!reinject &&
542             nested_svm_check_exception(svm, nr, has_error_code, error_code))
543                 return;
544
545         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
546                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
547
548                 /*
549                  * For guest debugging where we have to reinject #BP if some
550                  * INT3 is guest-owned:
551                  * Emulate nRIP by moving RIP forward. Will fail if injection
552                  * raises a fault that is not intercepted. Still better than
553                  * failing in all cases.
554                  */
555                 skip_emulated_instruction(&svm->vcpu);
556                 rip = kvm_rip_read(&svm->vcpu);
557                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
558                 svm->int3_injected = rip - old_rip;
559         }
560
561         svm->vmcb->control.event_inj = nr
562                 | SVM_EVTINJ_VALID
563                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
564                 | SVM_EVTINJ_TYPE_EXEPT;
565         svm->vmcb->control.event_inj_err = error_code;
566 }
567
568 static void svm_init_erratum_383(void)
569 {
570         u32 low, high;
571         int err;
572         u64 val;
573
574         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
575                 return;
576
577         /* Use _safe variants to not break nested virtualization */
578         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
579         if (err)
580                 return;
581
582         val |= (1ULL << 47);
583
584         low  = lower_32_bits(val);
585         high = upper_32_bits(val);
586
587         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
588
589         erratum_383_found = true;
590 }
591
592 static void svm_init_osvw(struct kvm_vcpu *vcpu)
593 {
594         /*
595          * Guests should see errata 400 and 415 as fixed (assuming that
596          * HLT and IO instructions are intercepted).
597          */
598         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
599         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
600
601         /*
602          * By increasing VCPU's osvw.length to 3 we are telling the guest that
603          * all osvw.status bits inside that length, including bit 0 (which is
604          * reserved for erratum 298), are valid. However, if host processor's
605          * osvw_len is 0 then osvw_status[0] carries no information. We need to
606          * be conservative here and therefore we tell the guest that erratum 298
607          * is present (because we really don't know).
608          */
609         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
610                 vcpu->arch.osvw.status |= 1;
611 }
612
613 static int has_svm(void)
614 {
615         const char *msg;
616
617         if (!cpu_has_svm(&msg)) {
618                 printk(KERN_INFO "has_svm: %s\n", msg);
619                 return 0;
620         }
621
622         return 1;
623 }
624
625 static void svm_hardware_disable(void)
626 {
627         /* Make sure we clean up behind us */
628         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
629                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
630
631         cpu_svm_disable();
632
633         amd_pmu_disable_virt();
634 }
635
636 static int svm_hardware_enable(void)
637 {
638
639         struct svm_cpu_data *sd;
640         uint64_t efer;
641         struct desc_ptr gdt_descr;
642         struct desc_struct *gdt;
643         int me = raw_smp_processor_id();
644
645         rdmsrl(MSR_EFER, efer);
646         if (efer & EFER_SVME)
647                 return -EBUSY;
648
649         if (!has_svm()) {
650                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
651                 return -EINVAL;
652         }
653         sd = per_cpu(svm_data, me);
654         if (!sd) {
655                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
656                 return -EINVAL;
657         }
658
659         sd->asid_generation = 1;
660         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
661         sd->next_asid = sd->max_asid + 1;
662
663         native_store_gdt(&gdt_descr);
664         gdt = (struct desc_struct *)gdt_descr.address;
665         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
666
667         wrmsrl(MSR_EFER, efer | EFER_SVME);
668
669         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
670
671         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
672                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
673                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
674         }
675
676
677         /*
678          * Get OSVW bits.
679          *
680          * Note that it is possible to have a system with mixed processor
681          * revisions and therefore different OSVW bits. If bits are not the same
682          * on different processors then choose the worst case (i.e. if erratum
683          * is present on one processor and not on another then assume that the
684          * erratum is present everywhere).
685          */
686         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
687                 uint64_t len, status = 0;
688                 int err;
689
690                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
691                 if (!err)
692                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
693                                                       &err);
694
695                 if (err)
696                         osvw_status = osvw_len = 0;
697                 else {
698                         if (len < osvw_len)
699                                 osvw_len = len;
700                         osvw_status |= status;
701                         osvw_status &= (1ULL << osvw_len) - 1;
702                 }
703         } else
704                 osvw_status = osvw_len = 0;
705
706         svm_init_erratum_383();
707
708         amd_pmu_enable_virt();
709
710         return 0;
711 }
712
713 static void svm_cpu_uninit(int cpu)
714 {
715         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
716
717         if (!sd)
718                 return;
719
720         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
721         __free_page(sd->save_area);
722         kfree(sd);
723 }
724
725 static int svm_cpu_init(int cpu)
726 {
727         struct svm_cpu_data *sd;
728         int r;
729
730         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
731         if (!sd)
732                 return -ENOMEM;
733         sd->cpu = cpu;
734         sd->save_area = alloc_page(GFP_KERNEL);
735         r = -ENOMEM;
736         if (!sd->save_area)
737                 goto err_1;
738
739         per_cpu(svm_data, cpu) = sd;
740
741         return 0;
742
743 err_1:
744         kfree(sd);
745         return r;
746
747 }
748
749 static bool valid_msr_intercept(u32 index)
750 {
751         int i;
752
753         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
754                 if (direct_access_msrs[i].index == index)
755                         return true;
756
757         return false;
758 }
759
760 static void set_msr_interception(u32 *msrpm, unsigned msr,
761                                  int read, int write)
762 {
763         u8 bit_read, bit_write;
764         unsigned long tmp;
765         u32 offset;
766
767         /*
768          * If this warning triggers extend the direct_access_msrs list at the
769          * beginning of the file
770          */
771         WARN_ON(!valid_msr_intercept(msr));
772
773         offset    = svm_msrpm_offset(msr);
774         bit_read  = 2 * (msr & 0x0f);
775         bit_write = 2 * (msr & 0x0f) + 1;
776         tmp       = msrpm[offset];
777
778         BUG_ON(offset == MSR_INVALID);
779
780         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
781         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
782
783         msrpm[offset] = tmp;
784 }
785
786 static void svm_vcpu_init_msrpm(u32 *msrpm)
787 {
788         int i;
789
790         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
791
792         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
793                 if (!direct_access_msrs[i].always)
794                         continue;
795
796                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
797         }
798 }
799
800 static void add_msr_offset(u32 offset)
801 {
802         int i;
803
804         for (i = 0; i < MSRPM_OFFSETS; ++i) {
805
806                 /* Offset already in list? */
807                 if (msrpm_offsets[i] == offset)
808                         return;
809
810                 /* Slot used by another offset? */
811                 if (msrpm_offsets[i] != MSR_INVALID)
812                         continue;
813
814                 /* Add offset to list */
815                 msrpm_offsets[i] = offset;
816
817                 return;
818         }
819
820         /*
821          * If this BUG triggers the msrpm_offsets table has an overflow. Just
822          * increase MSRPM_OFFSETS in this case.
823          */
824         BUG();
825 }
826
827 static void init_msrpm_offsets(void)
828 {
829         int i;
830
831         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
832
833         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
834                 u32 offset;
835
836                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
837                 BUG_ON(offset == MSR_INVALID);
838
839                 add_msr_offset(offset);
840         }
841 }
842
843 static void svm_enable_lbrv(struct vcpu_svm *svm)
844 {
845         u32 *msrpm = svm->msrpm;
846
847         svm->vmcb->control.lbr_ctl = 1;
848         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
849         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
850         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
851         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
852 }
853
854 static void svm_disable_lbrv(struct vcpu_svm *svm)
855 {
856         u32 *msrpm = svm->msrpm;
857
858         svm->vmcb->control.lbr_ctl = 0;
859         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
860         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
861         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
862         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
863 }
864
865 static __init int svm_hardware_setup(void)
866 {
867         int cpu;
868         struct page *iopm_pages;
869         void *iopm_va;
870         int r;
871
872         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
873
874         if (!iopm_pages)
875                 return -ENOMEM;
876
877         iopm_va = page_address(iopm_pages);
878         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
879         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
880
881         init_msrpm_offsets();
882
883         if (boot_cpu_has(X86_FEATURE_NX))
884                 kvm_enable_efer_bits(EFER_NX);
885
886         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
887                 kvm_enable_efer_bits(EFER_FFXSR);
888
889         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
890                 u64 max;
891
892                 kvm_has_tsc_control = true;
893
894                 /*
895                  * Make sure the user can only configure tsc_khz values that
896                  * fit into a signed integer.
897                  * A min value is not calculated needed because it will always
898                  * be 1 on all machines and a value of 0 is used to disable
899                  * tsc-scaling for the vcpu.
900                  */
901                 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
902
903                 kvm_max_guest_tsc_khz = max;
904         }
905
906         if (nested) {
907                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
908                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
909         }
910
911         for_each_possible_cpu(cpu) {
912                 r = svm_cpu_init(cpu);
913                 if (r)
914                         goto err;
915         }
916
917         if (!boot_cpu_has(X86_FEATURE_NPT))
918                 npt_enabled = false;
919
920         if (npt_enabled && !npt) {
921                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
922                 npt_enabled = false;
923         }
924
925         if (npt_enabled) {
926                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
927                 kvm_enable_tdp();
928         } else
929                 kvm_disable_tdp();
930
931         return 0;
932
933 err:
934         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
935         iopm_base = 0;
936         return r;
937 }
938
939 static __exit void svm_hardware_unsetup(void)
940 {
941         int cpu;
942
943         for_each_possible_cpu(cpu)
944                 svm_cpu_uninit(cpu);
945
946         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
947         iopm_base = 0;
948 }
949
950 static void init_seg(struct vmcb_seg *seg)
951 {
952         seg->selector = 0;
953         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
954                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
955         seg->limit = 0xffff;
956         seg->base = 0;
957 }
958
959 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
960 {
961         seg->selector = 0;
962         seg->attrib = SVM_SELECTOR_P_MASK | type;
963         seg->limit = 0xffff;
964         seg->base = 0;
965 }
966
967 static u64 __scale_tsc(u64 ratio, u64 tsc)
968 {
969         u64 mult, frac, _tsc;
970
971         mult  = ratio >> 32;
972         frac  = ratio & ((1ULL << 32) - 1);
973
974         _tsc  = tsc;
975         _tsc *= mult;
976         _tsc += (tsc >> 32) * frac;
977         _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
978
979         return _tsc;
980 }
981
982 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
983 {
984         struct vcpu_svm *svm = to_svm(vcpu);
985         u64 _tsc = tsc;
986
987         if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
988                 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
989
990         return _tsc;
991 }
992
993 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
994 {
995         struct vcpu_svm *svm = to_svm(vcpu);
996         u64 ratio;
997         u64 khz;
998
999         /* Guest TSC same frequency as host TSC? */
1000         if (!scale) {
1001                 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1002                 return;
1003         }
1004
1005         /* TSC scaling supported? */
1006         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1007                 if (user_tsc_khz > tsc_khz) {
1008                         vcpu->arch.tsc_catchup = 1;
1009                         vcpu->arch.tsc_always_catchup = 1;
1010                 } else
1011                         WARN(1, "user requested TSC rate below hardware speed\n");
1012                 return;
1013         }
1014
1015         khz = user_tsc_khz;
1016
1017         /* TSC scaling required  - calculate ratio */
1018         ratio = khz << 32;
1019         do_div(ratio, tsc_khz);
1020
1021         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1022                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1023                                 user_tsc_khz);
1024                 return;
1025         }
1026         svm->tsc_ratio             = ratio;
1027 }
1028
1029 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1030 {
1031         struct vcpu_svm *svm = to_svm(vcpu);
1032
1033         return svm->vmcb->control.tsc_offset;
1034 }
1035
1036 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1037 {
1038         struct vcpu_svm *svm = to_svm(vcpu);
1039         u64 g_tsc_offset = 0;
1040
1041         if (is_guest_mode(vcpu)) {
1042                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1043                                svm->nested.hsave->control.tsc_offset;
1044                 svm->nested.hsave->control.tsc_offset = offset;
1045         } else
1046                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1047                                            svm->vmcb->control.tsc_offset,
1048                                            offset);
1049
1050         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1051
1052         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1053 }
1054
1055 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1056 {
1057         struct vcpu_svm *svm = to_svm(vcpu);
1058
1059         if (host) {
1060                 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1061                         WARN_ON(adjustment < 0);
1062                 adjustment = svm_scale_tsc(vcpu, (u64)adjustment);
1063         }
1064
1065         svm->vmcb->control.tsc_offset += adjustment;
1066         if (is_guest_mode(vcpu))
1067                 svm->nested.hsave->control.tsc_offset += adjustment;
1068         else
1069                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1070                                      svm->vmcb->control.tsc_offset - adjustment,
1071                                      svm->vmcb->control.tsc_offset);
1072
1073         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1074 }
1075
1076 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1077 {
1078         u64 tsc;
1079
1080         tsc = svm_scale_tsc(vcpu, native_read_tsc());
1081
1082         return target_tsc - tsc;
1083 }
1084
1085 static void init_vmcb(struct vcpu_svm *svm, bool init_event)
1086 {
1087         struct vmcb_control_area *control = &svm->vmcb->control;
1088         struct vmcb_save_area *save = &svm->vmcb->save;
1089
1090         svm->vcpu.fpu_active = 1;
1091         svm->vcpu.arch.hflags = 0;
1092
1093         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1094         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1095         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1096         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1097         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1098         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1099         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1100
1101         set_dr_intercepts(svm);
1102
1103         set_exception_intercept(svm, PF_VECTOR);
1104         set_exception_intercept(svm, UD_VECTOR);
1105         set_exception_intercept(svm, MC_VECTOR);
1106
1107         set_intercept(svm, INTERCEPT_INTR);
1108         set_intercept(svm, INTERCEPT_NMI);
1109         set_intercept(svm, INTERCEPT_SMI);
1110         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1111         set_intercept(svm, INTERCEPT_RDPMC);
1112         set_intercept(svm, INTERCEPT_CPUID);
1113         set_intercept(svm, INTERCEPT_INVD);
1114         set_intercept(svm, INTERCEPT_HLT);
1115         set_intercept(svm, INTERCEPT_INVLPG);
1116         set_intercept(svm, INTERCEPT_INVLPGA);
1117         set_intercept(svm, INTERCEPT_IOIO_PROT);
1118         set_intercept(svm, INTERCEPT_MSR_PROT);
1119         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1120         set_intercept(svm, INTERCEPT_SHUTDOWN);
1121         set_intercept(svm, INTERCEPT_VMRUN);
1122         set_intercept(svm, INTERCEPT_VMMCALL);
1123         set_intercept(svm, INTERCEPT_VMLOAD);
1124         set_intercept(svm, INTERCEPT_VMSAVE);
1125         set_intercept(svm, INTERCEPT_STGI);
1126         set_intercept(svm, INTERCEPT_CLGI);
1127         set_intercept(svm, INTERCEPT_SKINIT);
1128         set_intercept(svm, INTERCEPT_WBINVD);
1129         set_intercept(svm, INTERCEPT_MONITOR);
1130         set_intercept(svm, INTERCEPT_MWAIT);
1131         set_intercept(svm, INTERCEPT_XSETBV);
1132
1133         control->iopm_base_pa = iopm_base;
1134         control->msrpm_base_pa = __pa(svm->msrpm);
1135         control->int_ctl = V_INTR_MASKING_MASK;
1136
1137         init_seg(&save->es);
1138         init_seg(&save->ss);
1139         init_seg(&save->ds);
1140         init_seg(&save->fs);
1141         init_seg(&save->gs);
1142
1143         save->cs.selector = 0xf000;
1144         save->cs.base = 0xffff0000;
1145         /* Executable/Readable Code Segment */
1146         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1147                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1148         save->cs.limit = 0xffff;
1149
1150         save->gdtr.limit = 0xffff;
1151         save->idtr.limit = 0xffff;
1152
1153         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1154         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1155
1156         if (!init_event)
1157                 svm_set_efer(&svm->vcpu, 0);
1158         save->dr6 = 0xffff0ff0;
1159         kvm_set_rflags(&svm->vcpu, 2);
1160         save->rip = 0x0000fff0;
1161         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1162
1163         /*
1164          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1165          * It also updates the guest-visible cr0 value.
1166          */
1167         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1168
1169         save->cr4 = X86_CR4_PAE;
1170         /* rdx = ?? */
1171
1172         if (npt_enabled) {
1173                 /* Setup VMCB for Nested Paging */
1174                 control->nested_ctl = 1;
1175                 clr_intercept(svm, INTERCEPT_INVLPG);
1176                 clr_exception_intercept(svm, PF_VECTOR);
1177                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1178                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1179                 save->g_pat = svm->vcpu.arch.pat;
1180                 save->cr3 = 0;
1181                 save->cr4 = 0;
1182         }
1183         svm->asid_generation = 0;
1184
1185         svm->nested.vmcb = 0;
1186         svm->vcpu.arch.hflags = 0;
1187
1188         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1189                 control->pause_filter_count = 3000;
1190                 set_intercept(svm, INTERCEPT_PAUSE);
1191         }
1192
1193         mark_all_dirty(svm->vmcb);
1194
1195         enable_gif(svm);
1196 }
1197
1198 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1199 {
1200         struct vcpu_svm *svm = to_svm(vcpu);
1201         u32 dummy;
1202         u32 eax = 1;
1203
1204         if (!init_event) {
1205                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1206                                            MSR_IA32_APICBASE_ENABLE;
1207                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1208                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1209         }
1210         init_vmcb(svm, init_event);
1211
1212         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1213         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1214 }
1215
1216 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1217 {
1218         struct vcpu_svm *svm;
1219         struct page *page;
1220         struct page *msrpm_pages;
1221         struct page *hsave_page;
1222         struct page *nested_msrpm_pages;
1223         int err;
1224
1225         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1226         if (!svm) {
1227                 err = -ENOMEM;
1228                 goto out;
1229         }
1230
1231         svm->tsc_ratio = TSC_RATIO_DEFAULT;
1232
1233         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1234         if (err)
1235                 goto free_svm;
1236
1237         err = -ENOMEM;
1238         page = alloc_page(GFP_KERNEL);
1239         if (!page)
1240                 goto uninit;
1241
1242         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1243         if (!msrpm_pages)
1244                 goto free_page1;
1245
1246         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1247         if (!nested_msrpm_pages)
1248                 goto free_page2;
1249
1250         hsave_page = alloc_page(GFP_KERNEL);
1251         if (!hsave_page)
1252                 goto free_page3;
1253
1254         svm->nested.hsave = page_address(hsave_page);
1255
1256         svm->msrpm = page_address(msrpm_pages);
1257         svm_vcpu_init_msrpm(svm->msrpm);
1258
1259         svm->nested.msrpm = page_address(nested_msrpm_pages);
1260         svm_vcpu_init_msrpm(svm->nested.msrpm);
1261
1262         svm->vmcb = page_address(page);
1263         clear_page(svm->vmcb);
1264         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1265         svm->asid_generation = 0;
1266         init_vmcb(svm, false);
1267
1268         svm_init_osvw(&svm->vcpu);
1269
1270         return &svm->vcpu;
1271
1272 free_page3:
1273         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1274 free_page2:
1275         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1276 free_page1:
1277         __free_page(page);
1278 uninit:
1279         kvm_vcpu_uninit(&svm->vcpu);
1280 free_svm:
1281         kmem_cache_free(kvm_vcpu_cache, svm);
1282 out:
1283         return ERR_PTR(err);
1284 }
1285
1286 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1287 {
1288         struct vcpu_svm *svm = to_svm(vcpu);
1289
1290         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1291         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1292         __free_page(virt_to_page(svm->nested.hsave));
1293         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1294         kvm_vcpu_uninit(vcpu);
1295         kmem_cache_free(kvm_vcpu_cache, svm);
1296 }
1297
1298 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1299 {
1300         struct vcpu_svm *svm = to_svm(vcpu);
1301         int i;
1302
1303         if (unlikely(cpu != vcpu->cpu)) {
1304                 svm->asid_generation = 0;
1305                 mark_all_dirty(svm->vmcb);
1306         }
1307
1308 #ifdef CONFIG_X86_64
1309         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1310 #endif
1311         savesegment(fs, svm->host.fs);
1312         savesegment(gs, svm->host.gs);
1313         svm->host.ldt = kvm_read_ldt();
1314
1315         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1316                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1317
1318         if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1319             svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1320                 __this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
1321                 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1322         }
1323 }
1324
1325 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1326 {
1327         struct vcpu_svm *svm = to_svm(vcpu);
1328         int i;
1329
1330         ++vcpu->stat.host_state_reload;
1331         kvm_load_ldt(svm->host.ldt);
1332 #ifdef CONFIG_X86_64
1333         loadsegment(fs, svm->host.fs);
1334         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1335         load_gs_index(svm->host.gs);
1336 #else
1337 #ifdef CONFIG_X86_32_LAZY_GS
1338         loadsegment(gs, svm->host.gs);
1339 #endif
1340 #endif
1341         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1342                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1343 }
1344
1345 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1346 {
1347         return to_svm(vcpu)->vmcb->save.rflags;
1348 }
1349
1350 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1351 {
1352        /*
1353         * Any change of EFLAGS.VM is accompained by a reload of SS
1354         * (caused by either a task switch or an inter-privilege IRET),
1355         * so we do not need to update the CPL here.
1356         */
1357         to_svm(vcpu)->vmcb->save.rflags = rflags;
1358 }
1359
1360 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1361 {
1362         switch (reg) {
1363         case VCPU_EXREG_PDPTR:
1364                 BUG_ON(!npt_enabled);
1365                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1366                 break;
1367         default:
1368                 BUG();
1369         }
1370 }
1371
1372 static void svm_set_vintr(struct vcpu_svm *svm)
1373 {
1374         set_intercept(svm, INTERCEPT_VINTR);
1375 }
1376
1377 static void svm_clear_vintr(struct vcpu_svm *svm)
1378 {
1379         clr_intercept(svm, INTERCEPT_VINTR);
1380 }
1381
1382 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1383 {
1384         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1385
1386         switch (seg) {
1387         case VCPU_SREG_CS: return &save->cs;
1388         case VCPU_SREG_DS: return &save->ds;
1389         case VCPU_SREG_ES: return &save->es;
1390         case VCPU_SREG_FS: return &save->fs;
1391         case VCPU_SREG_GS: return &save->gs;
1392         case VCPU_SREG_SS: return &save->ss;
1393         case VCPU_SREG_TR: return &save->tr;
1394         case VCPU_SREG_LDTR: return &save->ldtr;
1395         }
1396         BUG();
1397         return NULL;
1398 }
1399
1400 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1401 {
1402         struct vmcb_seg *s = svm_seg(vcpu, seg);
1403
1404         return s->base;
1405 }
1406
1407 static void svm_get_segment(struct kvm_vcpu *vcpu,
1408                             struct kvm_segment *var, int seg)
1409 {
1410         struct vmcb_seg *s = svm_seg(vcpu, seg);
1411
1412         var->base = s->base;
1413         var->limit = s->limit;
1414         var->selector = s->selector;
1415         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1416         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1417         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1418         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1419         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1420         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1421         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1422
1423         /*
1424          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1425          * However, the SVM spec states that the G bit is not observed by the
1426          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1427          * So let's synthesize a legal G bit for all segments, this helps
1428          * running KVM nested. It also helps cross-vendor migration, because
1429          * Intel's vmentry has a check on the 'G' bit.
1430          */
1431         var->g = s->limit > 0xfffff;
1432
1433         /*
1434          * AMD's VMCB does not have an explicit unusable field, so emulate it
1435          * for cross vendor migration purposes by "not present"
1436          */
1437         var->unusable = !var->present || (var->type == 0);
1438
1439         switch (seg) {
1440         case VCPU_SREG_TR:
1441                 /*
1442                  * Work around a bug where the busy flag in the tr selector
1443                  * isn't exposed
1444                  */
1445                 var->type |= 0x2;
1446                 break;
1447         case VCPU_SREG_DS:
1448         case VCPU_SREG_ES:
1449         case VCPU_SREG_FS:
1450         case VCPU_SREG_GS:
1451                 /*
1452                  * The accessed bit must always be set in the segment
1453                  * descriptor cache, although it can be cleared in the
1454                  * descriptor, the cached bit always remains at 1. Since
1455                  * Intel has a check on this, set it here to support
1456                  * cross-vendor migration.
1457                  */
1458                 if (!var->unusable)
1459                         var->type |= 0x1;
1460                 break;
1461         case VCPU_SREG_SS:
1462                 /*
1463                  * On AMD CPUs sometimes the DB bit in the segment
1464                  * descriptor is left as 1, although the whole segment has
1465                  * been made unusable. Clear it here to pass an Intel VMX
1466                  * entry check when cross vendor migrating.
1467                  */
1468                 if (var->unusable)
1469                         var->db = 0;
1470                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1471                 break;
1472         }
1473 }
1474
1475 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1476 {
1477         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1478
1479         return save->cpl;
1480 }
1481
1482 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1483 {
1484         struct vcpu_svm *svm = to_svm(vcpu);
1485
1486         dt->size = svm->vmcb->save.idtr.limit;
1487         dt->address = svm->vmcb->save.idtr.base;
1488 }
1489
1490 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1491 {
1492         struct vcpu_svm *svm = to_svm(vcpu);
1493
1494         svm->vmcb->save.idtr.limit = dt->size;
1495         svm->vmcb->save.idtr.base = dt->address ;
1496         mark_dirty(svm->vmcb, VMCB_DT);
1497 }
1498
1499 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1500 {
1501         struct vcpu_svm *svm = to_svm(vcpu);
1502
1503         dt->size = svm->vmcb->save.gdtr.limit;
1504         dt->address = svm->vmcb->save.gdtr.base;
1505 }
1506
1507 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1508 {
1509         struct vcpu_svm *svm = to_svm(vcpu);
1510
1511         svm->vmcb->save.gdtr.limit = dt->size;
1512         svm->vmcb->save.gdtr.base = dt->address ;
1513         mark_dirty(svm->vmcb, VMCB_DT);
1514 }
1515
1516 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1517 {
1518 }
1519
1520 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1521 {
1522 }
1523
1524 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1525 {
1526 }
1527
1528 static void update_cr0_intercept(struct vcpu_svm *svm)
1529 {
1530         ulong gcr0 = svm->vcpu.arch.cr0;
1531         u64 *hcr0 = &svm->vmcb->save.cr0;
1532
1533         if (!svm->vcpu.fpu_active)
1534                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1535         else
1536                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1537                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1538
1539         mark_dirty(svm->vmcb, VMCB_CR);
1540
1541         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1542                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1543                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1544         } else {
1545                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1546                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1547         }
1548 }
1549
1550 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1551 {
1552         struct vcpu_svm *svm = to_svm(vcpu);
1553
1554 #ifdef CONFIG_X86_64
1555         if (vcpu->arch.efer & EFER_LME) {
1556                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1557                         vcpu->arch.efer |= EFER_LMA;
1558                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1559                 }
1560
1561                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1562                         vcpu->arch.efer &= ~EFER_LMA;
1563                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1564                 }
1565         }
1566 #endif
1567         vcpu->arch.cr0 = cr0;
1568
1569         if (!npt_enabled)
1570                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1571
1572         if (!vcpu->fpu_active)
1573                 cr0 |= X86_CR0_TS;
1574         /*
1575          * re-enable caching here because the QEMU bios
1576          * does not do it - this results in some delay at
1577          * reboot
1578          */
1579         if (!(vcpu->kvm->arch.disabled_quirks & KVM_QUIRK_CD_NW_CLEARED))
1580                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1581         svm->vmcb->save.cr0 = cr0;
1582         mark_dirty(svm->vmcb, VMCB_CR);
1583         update_cr0_intercept(svm);
1584 }
1585
1586 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1587 {
1588         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1589         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1590
1591         if (cr4 & X86_CR4_VMXE)
1592                 return 1;
1593
1594         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1595                 svm_flush_tlb(vcpu);
1596
1597         vcpu->arch.cr4 = cr4;
1598         if (!npt_enabled)
1599                 cr4 |= X86_CR4_PAE;
1600         cr4 |= host_cr4_mce;
1601         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1602         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1603         return 0;
1604 }
1605
1606 static void svm_set_segment(struct kvm_vcpu *vcpu,
1607                             struct kvm_segment *var, int seg)
1608 {
1609         struct vcpu_svm *svm = to_svm(vcpu);
1610         struct vmcb_seg *s = svm_seg(vcpu, seg);
1611
1612         s->base = var->base;
1613         s->limit = var->limit;
1614         s->selector = var->selector;
1615         if (var->unusable)
1616                 s->attrib = 0;
1617         else {
1618                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1619                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1620                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1621                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1622                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1623                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1624                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1625                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1626         }
1627
1628         /*
1629          * This is always accurate, except if SYSRET returned to a segment
1630          * with SS.DPL != 3.  Intel does not have this quirk, and always
1631          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1632          * would entail passing the CPL to userspace and back.
1633          */
1634         if (seg == VCPU_SREG_SS)
1635                 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1636
1637         mark_dirty(svm->vmcb, VMCB_SEG);
1638 }
1639
1640 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1641 {
1642         struct vcpu_svm *svm = to_svm(vcpu);
1643
1644         clr_exception_intercept(svm, DB_VECTOR);
1645         clr_exception_intercept(svm, BP_VECTOR);
1646
1647         if (svm->nmi_singlestep)
1648                 set_exception_intercept(svm, DB_VECTOR);
1649
1650         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1651                 if (vcpu->guest_debug &
1652                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1653                         set_exception_intercept(svm, DB_VECTOR);
1654                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1655                         set_exception_intercept(svm, BP_VECTOR);
1656         } else
1657                 vcpu->guest_debug = 0;
1658 }
1659
1660 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1661 {
1662         if (sd->next_asid > sd->max_asid) {
1663                 ++sd->asid_generation;
1664                 sd->next_asid = 1;
1665                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1666         }
1667
1668         svm->asid_generation = sd->asid_generation;
1669         svm->vmcb->control.asid = sd->next_asid++;
1670
1671         mark_dirty(svm->vmcb, VMCB_ASID);
1672 }
1673
1674 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1675 {
1676         return to_svm(vcpu)->vmcb->save.dr6;
1677 }
1678
1679 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1680 {
1681         struct vcpu_svm *svm = to_svm(vcpu);
1682
1683         svm->vmcb->save.dr6 = value;
1684         mark_dirty(svm->vmcb, VMCB_DR);
1685 }
1686
1687 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1688 {
1689         struct vcpu_svm *svm = to_svm(vcpu);
1690
1691         get_debugreg(vcpu->arch.db[0], 0);
1692         get_debugreg(vcpu->arch.db[1], 1);
1693         get_debugreg(vcpu->arch.db[2], 2);
1694         get_debugreg(vcpu->arch.db[3], 3);
1695         vcpu->arch.dr6 = svm_get_dr6(vcpu);
1696         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1697
1698         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1699         set_dr_intercepts(svm);
1700 }
1701
1702 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1703 {
1704         struct vcpu_svm *svm = to_svm(vcpu);
1705
1706         svm->vmcb->save.dr7 = value;
1707         mark_dirty(svm->vmcb, VMCB_DR);
1708 }
1709
1710 static int pf_interception(struct vcpu_svm *svm)
1711 {
1712         u64 fault_address = svm->vmcb->control.exit_info_2;
1713         u32 error_code;
1714         int r = 1;
1715
1716         switch (svm->apf_reason) {
1717         default:
1718                 error_code = svm->vmcb->control.exit_info_1;
1719
1720                 trace_kvm_page_fault(fault_address, error_code);
1721                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1722                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1723                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1724                         svm->vmcb->control.insn_bytes,
1725                         svm->vmcb->control.insn_len);
1726                 break;
1727         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1728                 svm->apf_reason = 0;
1729                 local_irq_disable();
1730                 kvm_async_pf_task_wait(fault_address);
1731                 local_irq_enable();
1732                 break;
1733         case KVM_PV_REASON_PAGE_READY:
1734                 svm->apf_reason = 0;
1735                 local_irq_disable();
1736                 kvm_async_pf_task_wake(fault_address);
1737                 local_irq_enable();
1738                 break;
1739         }
1740         return r;
1741 }
1742
1743 static int db_interception(struct vcpu_svm *svm)
1744 {
1745         struct kvm_run *kvm_run = svm->vcpu.run;
1746
1747         if (!(svm->vcpu.guest_debug &
1748               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1749                 !svm->nmi_singlestep) {
1750                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1751                 return 1;
1752         }
1753
1754         if (svm->nmi_singlestep) {
1755                 svm->nmi_singlestep = false;
1756                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1757                         svm->vmcb->save.rflags &=
1758                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1759                 update_db_bp_intercept(&svm->vcpu);
1760         }
1761
1762         if (svm->vcpu.guest_debug &
1763             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1764                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1765                 kvm_run->debug.arch.pc =
1766                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1767                 kvm_run->debug.arch.exception = DB_VECTOR;
1768                 return 0;
1769         }
1770
1771         return 1;
1772 }
1773
1774 static int bp_interception(struct vcpu_svm *svm)
1775 {
1776         struct kvm_run *kvm_run = svm->vcpu.run;
1777
1778         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1779         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1780         kvm_run->debug.arch.exception = BP_VECTOR;
1781         return 0;
1782 }
1783
1784 static int ud_interception(struct vcpu_svm *svm)
1785 {
1786         int er;
1787
1788         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1789         if (er != EMULATE_DONE)
1790                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1791         return 1;
1792 }
1793
1794 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1795 {
1796         struct vcpu_svm *svm = to_svm(vcpu);
1797
1798         clr_exception_intercept(svm, NM_VECTOR);
1799
1800         svm->vcpu.fpu_active = 1;
1801         update_cr0_intercept(svm);
1802 }
1803
1804 static int nm_interception(struct vcpu_svm *svm)
1805 {
1806         svm_fpu_activate(&svm->vcpu);
1807         return 1;
1808 }
1809
1810 static bool is_erratum_383(void)
1811 {
1812         int err, i;
1813         u64 value;
1814
1815         if (!erratum_383_found)
1816                 return false;
1817
1818         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1819         if (err)
1820                 return false;
1821
1822         /* Bit 62 may or may not be set for this mce */
1823         value &= ~(1ULL << 62);
1824
1825         if (value != 0xb600000000010015ULL)
1826                 return false;
1827
1828         /* Clear MCi_STATUS registers */
1829         for (i = 0; i < 6; ++i)
1830                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1831
1832         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1833         if (!err) {
1834                 u32 low, high;
1835
1836                 value &= ~(1ULL << 2);
1837                 low    = lower_32_bits(value);
1838                 high   = upper_32_bits(value);
1839
1840                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1841         }
1842
1843         /* Flush tlb to evict multi-match entries */
1844         __flush_tlb_all();
1845
1846         return true;
1847 }
1848
1849 static void svm_handle_mce(struct vcpu_svm *svm)
1850 {
1851         if (is_erratum_383()) {
1852                 /*
1853                  * Erratum 383 triggered. Guest state is corrupt so kill the
1854                  * guest.
1855                  */
1856                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1857
1858                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1859
1860                 return;
1861         }
1862
1863         /*
1864          * On an #MC intercept the MCE handler is not called automatically in
1865          * the host. So do it by hand here.
1866          */
1867         asm volatile (
1868                 "int $0x12\n");
1869         /* not sure if we ever come back to this point */
1870
1871         return;
1872 }
1873
1874 static int mc_interception(struct vcpu_svm *svm)
1875 {
1876         return 1;
1877 }
1878
1879 static int shutdown_interception(struct vcpu_svm *svm)
1880 {
1881         struct kvm_run *kvm_run = svm->vcpu.run;
1882
1883         /*
1884          * VMCB is undefined after a SHUTDOWN intercept
1885          * so reinitialize it.
1886          */
1887         clear_page(svm->vmcb);
1888         init_vmcb(svm, false);
1889
1890         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1891         return 0;
1892 }
1893
1894 static int io_interception(struct vcpu_svm *svm)
1895 {
1896         struct kvm_vcpu *vcpu = &svm->vcpu;
1897         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1898         int size, in, string;
1899         unsigned port;
1900
1901         ++svm->vcpu.stat.io_exits;
1902         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1903         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1904         if (string || in)
1905                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1906
1907         port = io_info >> 16;
1908         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1909         svm->next_rip = svm->vmcb->control.exit_info_2;
1910         skip_emulated_instruction(&svm->vcpu);
1911
1912         return kvm_fast_pio_out(vcpu, size, port);
1913 }
1914
1915 static int nmi_interception(struct vcpu_svm *svm)
1916 {
1917         return 1;
1918 }
1919
1920 static int intr_interception(struct vcpu_svm *svm)
1921 {
1922         ++svm->vcpu.stat.irq_exits;
1923         return 1;
1924 }
1925
1926 static int nop_on_interception(struct vcpu_svm *svm)
1927 {
1928         return 1;
1929 }
1930
1931 static int halt_interception(struct vcpu_svm *svm)
1932 {
1933         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1934         return kvm_emulate_halt(&svm->vcpu);
1935 }
1936
1937 static int vmmcall_interception(struct vcpu_svm *svm)
1938 {
1939         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1940         kvm_emulate_hypercall(&svm->vcpu);
1941         return 1;
1942 }
1943
1944 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1945 {
1946         struct vcpu_svm *svm = to_svm(vcpu);
1947
1948         return svm->nested.nested_cr3;
1949 }
1950
1951 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1952 {
1953         struct vcpu_svm *svm = to_svm(vcpu);
1954         u64 cr3 = svm->nested.nested_cr3;
1955         u64 pdpte;
1956         int ret;
1957
1958         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
1959                                        offset_in_page(cr3) + index * 8, 8);
1960         if (ret)
1961                 return 0;
1962         return pdpte;
1963 }
1964
1965 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1966                                    unsigned long root)
1967 {
1968         struct vcpu_svm *svm = to_svm(vcpu);
1969
1970         svm->vmcb->control.nested_cr3 = root;
1971         mark_dirty(svm->vmcb, VMCB_NPT);
1972         svm_flush_tlb(vcpu);
1973 }
1974
1975 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1976                                        struct x86_exception *fault)
1977 {
1978         struct vcpu_svm *svm = to_svm(vcpu);
1979
1980         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
1981                 /*
1982                  * TODO: track the cause of the nested page fault, and
1983                  * correctly fill in the high bits of exit_info_1.
1984                  */
1985                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1986                 svm->vmcb->control.exit_code_hi = 0;
1987                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
1988                 svm->vmcb->control.exit_info_2 = fault->address;
1989         }
1990
1991         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
1992         svm->vmcb->control.exit_info_1 |= fault->error_code;
1993
1994         /*
1995          * The present bit is always zero for page structure faults on real
1996          * hardware.
1997          */
1998         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
1999                 svm->vmcb->control.exit_info_1 &= ~1;
2000
2001         nested_svm_vmexit(svm);
2002 }
2003
2004 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2005 {
2006         WARN_ON(mmu_is_nested(vcpu));
2007         kvm_init_shadow_mmu(vcpu);
2008         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2009         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2010         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2011         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2012         vcpu->arch.mmu.shadow_root_level = get_npt_level();
2013         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2014 }
2015
2016 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2017 {
2018         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2019 }
2020
2021 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2022 {
2023         if (!(svm->vcpu.arch.efer & EFER_SVME)
2024             || !is_paging(&svm->vcpu)) {
2025                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2026                 return 1;
2027         }
2028
2029         if (svm->vmcb->save.cpl) {
2030                 kvm_inject_gp(&svm->vcpu, 0);
2031                 return 1;
2032         }
2033
2034        return 0;
2035 }
2036
2037 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2038                                       bool has_error_code, u32 error_code)
2039 {
2040         int vmexit;
2041
2042         if (!is_guest_mode(&svm->vcpu))
2043                 return 0;
2044
2045         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2046         svm->vmcb->control.exit_code_hi = 0;
2047         svm->vmcb->control.exit_info_1 = error_code;
2048         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2049
2050         vmexit = nested_svm_intercept(svm);
2051         if (vmexit == NESTED_EXIT_DONE)
2052                 svm->nested.exit_required = true;
2053
2054         return vmexit;
2055 }
2056
2057 /* This function returns true if it is save to enable the irq window */
2058 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2059 {
2060         if (!is_guest_mode(&svm->vcpu))
2061                 return true;
2062
2063         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2064                 return true;
2065
2066         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2067                 return false;
2068
2069         /*
2070          * if vmexit was already requested (by intercepted exception
2071          * for instance) do not overwrite it with "external interrupt"
2072          * vmexit.
2073          */
2074         if (svm->nested.exit_required)
2075                 return false;
2076
2077         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2078         svm->vmcb->control.exit_info_1 = 0;
2079         svm->vmcb->control.exit_info_2 = 0;
2080
2081         if (svm->nested.intercept & 1ULL) {
2082                 /*
2083                  * The #vmexit can't be emulated here directly because this
2084                  * code path runs with irqs and preemption disabled. A
2085                  * #vmexit emulation might sleep. Only signal request for
2086                  * the #vmexit here.
2087                  */
2088                 svm->nested.exit_required = true;
2089                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2090                 return false;
2091         }
2092
2093         return true;
2094 }
2095
2096 /* This function returns true if it is save to enable the nmi window */
2097 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2098 {
2099         if (!is_guest_mode(&svm->vcpu))
2100                 return true;
2101
2102         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2103                 return true;
2104
2105         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2106         svm->nested.exit_required = true;
2107
2108         return false;
2109 }
2110
2111 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2112 {
2113         struct page *page;
2114
2115         might_sleep();
2116
2117         page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2118         if (is_error_page(page))
2119                 goto error;
2120
2121         *_page = page;
2122
2123         return kmap(page);
2124
2125 error:
2126         kvm_inject_gp(&svm->vcpu, 0);
2127
2128         return NULL;
2129 }
2130
2131 static void nested_svm_unmap(struct page *page)
2132 {
2133         kunmap(page);
2134         kvm_release_page_dirty(page);
2135 }
2136
2137 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2138 {
2139         unsigned port, size, iopm_len;
2140         u16 val, mask;
2141         u8 start_bit;
2142         u64 gpa;
2143
2144         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2145                 return NESTED_EXIT_HOST;
2146
2147         port = svm->vmcb->control.exit_info_1 >> 16;
2148         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2149                 SVM_IOIO_SIZE_SHIFT;
2150         gpa  = svm->nested.vmcb_iopm + (port / 8);
2151         start_bit = port % 8;
2152         iopm_len = (start_bit + size > 8) ? 2 : 1;
2153         mask = (0xf >> (4 - size)) << start_bit;
2154         val = 0;
2155
2156         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2157                 return NESTED_EXIT_DONE;
2158
2159         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2160 }
2161
2162 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2163 {
2164         u32 offset, msr, value;
2165         int write, mask;
2166
2167         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2168                 return NESTED_EXIT_HOST;
2169
2170         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2171         offset = svm_msrpm_offset(msr);
2172         write  = svm->vmcb->control.exit_info_1 & 1;
2173         mask   = 1 << ((2 * (msr & 0xf)) + write);
2174
2175         if (offset == MSR_INVALID)
2176                 return NESTED_EXIT_DONE;
2177
2178         /* Offset is in 32 bit units but need in 8 bit units */
2179         offset *= 4;
2180
2181         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2182                 return NESTED_EXIT_DONE;
2183
2184         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2185 }
2186
2187 static int nested_svm_exit_special(struct vcpu_svm *svm)
2188 {
2189         u32 exit_code = svm->vmcb->control.exit_code;
2190
2191         switch (exit_code) {
2192         case SVM_EXIT_INTR:
2193         case SVM_EXIT_NMI:
2194         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2195                 return NESTED_EXIT_HOST;
2196         case SVM_EXIT_NPF:
2197                 /* For now we are always handling NPFs when using them */
2198                 if (npt_enabled)
2199                         return NESTED_EXIT_HOST;
2200                 break;
2201         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2202                 /* When we're shadowing, trap PFs, but not async PF */
2203                 if (!npt_enabled && svm->apf_reason == 0)
2204                         return NESTED_EXIT_HOST;
2205                 break;
2206         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2207                 nm_interception(svm);
2208                 break;
2209         default:
2210                 break;
2211         }
2212
2213         return NESTED_EXIT_CONTINUE;
2214 }
2215
2216 /*
2217  * If this function returns true, this #vmexit was already handled
2218  */
2219 static int nested_svm_intercept(struct vcpu_svm *svm)
2220 {
2221         u32 exit_code = svm->vmcb->control.exit_code;
2222         int vmexit = NESTED_EXIT_HOST;
2223
2224         switch (exit_code) {
2225         case SVM_EXIT_MSR:
2226                 vmexit = nested_svm_exit_handled_msr(svm);
2227                 break;
2228         case SVM_EXIT_IOIO:
2229                 vmexit = nested_svm_intercept_ioio(svm);
2230                 break;
2231         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2232                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2233                 if (svm->nested.intercept_cr & bit)
2234                         vmexit = NESTED_EXIT_DONE;
2235                 break;
2236         }
2237         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2238                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2239                 if (svm->nested.intercept_dr & bit)
2240                         vmexit = NESTED_EXIT_DONE;
2241                 break;
2242         }
2243         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2244                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2245                 if (svm->nested.intercept_exceptions & excp_bits)
2246                         vmexit = NESTED_EXIT_DONE;
2247                 /* async page fault always cause vmexit */
2248                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2249                          svm->apf_reason != 0)
2250                         vmexit = NESTED_EXIT_DONE;
2251                 break;
2252         }
2253         case SVM_EXIT_ERR: {
2254                 vmexit = NESTED_EXIT_DONE;
2255                 break;
2256         }
2257         default: {
2258                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2259                 if (svm->nested.intercept & exit_bits)
2260                         vmexit = NESTED_EXIT_DONE;
2261         }
2262         }
2263
2264         return vmexit;
2265 }
2266
2267 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2268 {
2269         int vmexit;
2270
2271         vmexit = nested_svm_intercept(svm);
2272
2273         if (vmexit == NESTED_EXIT_DONE)
2274                 nested_svm_vmexit(svm);
2275
2276         return vmexit;
2277 }
2278
2279 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2280 {
2281         struct vmcb_control_area *dst  = &dst_vmcb->control;
2282         struct vmcb_control_area *from = &from_vmcb->control;
2283
2284         dst->intercept_cr         = from->intercept_cr;
2285         dst->intercept_dr         = from->intercept_dr;
2286         dst->intercept_exceptions = from->intercept_exceptions;
2287         dst->intercept            = from->intercept;
2288         dst->iopm_base_pa         = from->iopm_base_pa;
2289         dst->msrpm_base_pa        = from->msrpm_base_pa;
2290         dst->tsc_offset           = from->tsc_offset;
2291         dst->asid                 = from->asid;
2292         dst->tlb_ctl              = from->tlb_ctl;
2293         dst->int_ctl              = from->int_ctl;
2294         dst->int_vector           = from->int_vector;
2295         dst->int_state            = from->int_state;
2296         dst->exit_code            = from->exit_code;
2297         dst->exit_code_hi         = from->exit_code_hi;
2298         dst->exit_info_1          = from->exit_info_1;
2299         dst->exit_info_2          = from->exit_info_2;
2300         dst->exit_int_info        = from->exit_int_info;
2301         dst->exit_int_info_err    = from->exit_int_info_err;
2302         dst->nested_ctl           = from->nested_ctl;
2303         dst->event_inj            = from->event_inj;
2304         dst->event_inj_err        = from->event_inj_err;
2305         dst->nested_cr3           = from->nested_cr3;
2306         dst->lbr_ctl              = from->lbr_ctl;
2307 }
2308
2309 static int nested_svm_vmexit(struct vcpu_svm *svm)
2310 {
2311         struct vmcb *nested_vmcb;
2312         struct vmcb *hsave = svm->nested.hsave;
2313         struct vmcb *vmcb = svm->vmcb;
2314         struct page *page;
2315
2316         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2317                                        vmcb->control.exit_info_1,
2318                                        vmcb->control.exit_info_2,
2319                                        vmcb->control.exit_int_info,
2320                                        vmcb->control.exit_int_info_err,
2321                                        KVM_ISA_SVM);
2322
2323         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2324         if (!nested_vmcb)
2325                 return 1;
2326
2327         /* Exit Guest-Mode */
2328         leave_guest_mode(&svm->vcpu);
2329         svm->nested.vmcb = 0;
2330
2331         /* Give the current vmcb to the guest */
2332         disable_gif(svm);
2333
2334         nested_vmcb->save.es     = vmcb->save.es;
2335         nested_vmcb->save.cs     = vmcb->save.cs;
2336         nested_vmcb->save.ss     = vmcb->save.ss;
2337         nested_vmcb->save.ds     = vmcb->save.ds;
2338         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2339         nested_vmcb->save.idtr   = vmcb->save.idtr;
2340         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2341         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2342         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2343         nested_vmcb->save.cr2    = vmcb->save.cr2;
2344         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2345         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2346         nested_vmcb->save.rip    = vmcb->save.rip;
2347         nested_vmcb->save.rsp    = vmcb->save.rsp;
2348         nested_vmcb->save.rax    = vmcb->save.rax;
2349         nested_vmcb->save.dr7    = vmcb->save.dr7;
2350         nested_vmcb->save.dr6    = vmcb->save.dr6;
2351         nested_vmcb->save.cpl    = vmcb->save.cpl;
2352
2353         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2354         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2355         nested_vmcb->control.int_state         = vmcb->control.int_state;
2356         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2357         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2358         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2359         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2360         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2361         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2362         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2363
2364         /*
2365          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2366          * to make sure that we do not lose injected events. So check event_inj
2367          * here and copy it to exit_int_info if it is valid.
2368          * Exit_int_info and event_inj can't be both valid because the case
2369          * below only happens on a VMRUN instruction intercept which has
2370          * no valid exit_int_info set.
2371          */
2372         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2373                 struct vmcb_control_area *nc = &nested_vmcb->control;
2374
2375                 nc->exit_int_info     = vmcb->control.event_inj;
2376                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2377         }
2378
2379         nested_vmcb->control.tlb_ctl           = 0;
2380         nested_vmcb->control.event_inj         = 0;
2381         nested_vmcb->control.event_inj_err     = 0;
2382
2383         /* We always set V_INTR_MASKING and remember the old value in hflags */
2384         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2385                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2386
2387         /* Restore the original control entries */
2388         copy_vmcb_control_area(vmcb, hsave);
2389
2390         kvm_clear_exception_queue(&svm->vcpu);
2391         kvm_clear_interrupt_queue(&svm->vcpu);
2392
2393         svm->nested.nested_cr3 = 0;
2394
2395         /* Restore selected save entries */
2396         svm->vmcb->save.es = hsave->save.es;
2397         svm->vmcb->save.cs = hsave->save.cs;
2398         svm->vmcb->save.ss = hsave->save.ss;
2399         svm->vmcb->save.ds = hsave->save.ds;
2400         svm->vmcb->save.gdtr = hsave->save.gdtr;
2401         svm->vmcb->save.idtr = hsave->save.idtr;
2402         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2403         svm_set_efer(&svm->vcpu, hsave->save.efer);
2404         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2405         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2406         if (npt_enabled) {
2407                 svm->vmcb->save.cr3 = hsave->save.cr3;
2408                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2409         } else {
2410                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2411         }
2412         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2413         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2414         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2415         svm->vmcb->save.dr7 = 0;
2416         svm->vmcb->save.cpl = 0;
2417         svm->vmcb->control.exit_int_info = 0;
2418
2419         mark_all_dirty(svm->vmcb);
2420
2421         nested_svm_unmap(page);
2422
2423         nested_svm_uninit_mmu_context(&svm->vcpu);
2424         kvm_mmu_reset_context(&svm->vcpu);
2425         kvm_mmu_load(&svm->vcpu);
2426
2427         return 0;
2428 }
2429
2430 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2431 {
2432         /*
2433          * This function merges the msr permission bitmaps of kvm and the
2434          * nested vmcb. It is optimized in that it only merges the parts where
2435          * the kvm msr permission bitmap may contain zero bits
2436          */
2437         int i;
2438
2439         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2440                 return true;
2441
2442         for (i = 0; i < MSRPM_OFFSETS; i++) {
2443                 u32 value, p;
2444                 u64 offset;
2445
2446                 if (msrpm_offsets[i] == 0xffffffff)
2447                         break;
2448
2449                 p      = msrpm_offsets[i];
2450                 offset = svm->nested.vmcb_msrpm + (p * 4);
2451
2452                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2453                         return false;
2454
2455                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2456         }
2457
2458         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2459
2460         return true;
2461 }
2462
2463 static bool nested_vmcb_checks(struct vmcb *vmcb)
2464 {
2465         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2466                 return false;
2467
2468         if (vmcb->control.asid == 0)
2469                 return false;
2470
2471         if (vmcb->control.nested_ctl && !npt_enabled)
2472                 return false;
2473
2474         return true;
2475 }
2476
2477 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2478 {
2479         struct vmcb *nested_vmcb;
2480         struct vmcb *hsave = svm->nested.hsave;
2481         struct vmcb *vmcb = svm->vmcb;
2482         struct page *page;
2483         u64 vmcb_gpa;
2484
2485         vmcb_gpa = svm->vmcb->save.rax;
2486
2487         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2488         if (!nested_vmcb)
2489                 return false;
2490
2491         if (!nested_vmcb_checks(nested_vmcb)) {
2492                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2493                 nested_vmcb->control.exit_code_hi = 0;
2494                 nested_vmcb->control.exit_info_1  = 0;
2495                 nested_vmcb->control.exit_info_2  = 0;
2496
2497                 nested_svm_unmap(page);
2498
2499                 return false;
2500         }
2501
2502         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2503                                nested_vmcb->save.rip,
2504                                nested_vmcb->control.int_ctl,
2505                                nested_vmcb->control.event_inj,
2506                                nested_vmcb->control.nested_ctl);
2507
2508         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2509                                     nested_vmcb->control.intercept_cr >> 16,
2510                                     nested_vmcb->control.intercept_exceptions,
2511                                     nested_vmcb->control.intercept);
2512
2513         /* Clear internal status */
2514         kvm_clear_exception_queue(&svm->vcpu);
2515         kvm_clear_interrupt_queue(&svm->vcpu);
2516
2517         /*
2518          * Save the old vmcb, so we don't need to pick what we save, but can
2519          * restore everything when a VMEXIT occurs
2520          */
2521         hsave->save.es     = vmcb->save.es;
2522         hsave->save.cs     = vmcb->save.cs;
2523         hsave->save.ss     = vmcb->save.ss;
2524         hsave->save.ds     = vmcb->save.ds;
2525         hsave->save.gdtr   = vmcb->save.gdtr;
2526         hsave->save.idtr   = vmcb->save.idtr;
2527         hsave->save.efer   = svm->vcpu.arch.efer;
2528         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2529         hsave->save.cr4    = svm->vcpu.arch.cr4;
2530         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2531         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2532         hsave->save.rsp    = vmcb->save.rsp;
2533         hsave->save.rax    = vmcb->save.rax;
2534         if (npt_enabled)
2535                 hsave->save.cr3    = vmcb->save.cr3;
2536         else
2537                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2538
2539         copy_vmcb_control_area(hsave, vmcb);
2540
2541         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2542                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2543         else
2544                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2545
2546         if (nested_vmcb->control.nested_ctl) {
2547                 kvm_mmu_unload(&svm->vcpu);
2548                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2549                 nested_svm_init_mmu_context(&svm->vcpu);
2550         }
2551
2552         /* Load the nested guest state */
2553         svm->vmcb->save.es = nested_vmcb->save.es;
2554         svm->vmcb->save.cs = nested_vmcb->save.cs;
2555         svm->vmcb->save.ss = nested_vmcb->save.ss;
2556         svm->vmcb->save.ds = nested_vmcb->save.ds;
2557         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2558         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2559         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2560         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2561         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2562         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2563         if (npt_enabled) {
2564                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2565                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2566         } else
2567                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2568
2569         /* Guest paging mode is active - reset mmu */
2570         kvm_mmu_reset_context(&svm->vcpu);
2571
2572         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2573         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2574         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2575         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2576
2577         /* In case we don't even reach vcpu_run, the fields are not updated */
2578         svm->vmcb->save.rax = nested_vmcb->save.rax;
2579         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2580         svm->vmcb->save.rip = nested_vmcb->save.rip;
2581         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2582         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2583         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2584
2585         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2586         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2587
2588         /* cache intercepts */
2589         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2590         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2591         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2592         svm->nested.intercept            = nested_vmcb->control.intercept;
2593
2594         svm_flush_tlb(&svm->vcpu);
2595         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2596         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2597                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2598         else
2599                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2600
2601         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2602                 /* We only want the cr8 intercept bits of the guest */
2603                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2604                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2605         }
2606
2607         /* We don't want to see VMMCALLs from a nested guest */
2608         clr_intercept(svm, INTERCEPT_VMMCALL);
2609
2610         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2611         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2612         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2613         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2614         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2615         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2616
2617         nested_svm_unmap(page);
2618
2619         /* Enter Guest-Mode */
2620         enter_guest_mode(&svm->vcpu);
2621
2622         /*
2623          * Merge guest and host intercepts - must be called  with vcpu in
2624          * guest-mode to take affect here
2625          */
2626         recalc_intercepts(svm);
2627
2628         svm->nested.vmcb = vmcb_gpa;
2629
2630         enable_gif(svm);
2631
2632         mark_all_dirty(svm->vmcb);
2633
2634         return true;
2635 }
2636
2637 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2638 {
2639         to_vmcb->save.fs = from_vmcb->save.fs;
2640         to_vmcb->save.gs = from_vmcb->save.gs;
2641         to_vmcb->save.tr = from_vmcb->save.tr;
2642         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2643         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2644         to_vmcb->save.star = from_vmcb->save.star;
2645         to_vmcb->save.lstar = from_vmcb->save.lstar;
2646         to_vmcb->save.cstar = from_vmcb->save.cstar;
2647         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2648         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2649         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2650         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2651 }
2652
2653 static int vmload_interception(struct vcpu_svm *svm)
2654 {
2655         struct vmcb *nested_vmcb;
2656         struct page *page;
2657
2658         if (nested_svm_check_permissions(svm))
2659                 return 1;
2660
2661         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2662         if (!nested_vmcb)
2663                 return 1;
2664
2665         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2666         skip_emulated_instruction(&svm->vcpu);
2667
2668         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2669         nested_svm_unmap(page);
2670
2671         return 1;
2672 }
2673
2674 static int vmsave_interception(struct vcpu_svm *svm)
2675 {
2676         struct vmcb *nested_vmcb;
2677         struct page *page;
2678
2679         if (nested_svm_check_permissions(svm))
2680                 return 1;
2681
2682         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2683         if (!nested_vmcb)
2684                 return 1;
2685
2686         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2687         skip_emulated_instruction(&svm->vcpu);
2688
2689         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2690         nested_svm_unmap(page);
2691
2692         return 1;
2693 }
2694
2695 static int vmrun_interception(struct vcpu_svm *svm)
2696 {
2697         if (nested_svm_check_permissions(svm))
2698                 return 1;
2699
2700         /* Save rip after vmrun instruction */
2701         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2702
2703         if (!nested_svm_vmrun(svm))
2704                 return 1;
2705
2706         if (!nested_svm_vmrun_msrpm(svm))
2707                 goto failed;
2708
2709         return 1;
2710
2711 failed:
2712
2713         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2714         svm->vmcb->control.exit_code_hi = 0;
2715         svm->vmcb->control.exit_info_1  = 0;
2716         svm->vmcb->control.exit_info_2  = 0;
2717
2718         nested_svm_vmexit(svm);
2719
2720         return 1;
2721 }
2722
2723 static int stgi_interception(struct vcpu_svm *svm)
2724 {
2725         if (nested_svm_check_permissions(svm))
2726                 return 1;
2727
2728         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2729         skip_emulated_instruction(&svm->vcpu);
2730         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2731
2732         enable_gif(svm);
2733
2734         return 1;
2735 }
2736
2737 static int clgi_interception(struct vcpu_svm *svm)
2738 {
2739         if (nested_svm_check_permissions(svm))
2740                 return 1;
2741
2742         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2743         skip_emulated_instruction(&svm->vcpu);
2744
2745         disable_gif(svm);
2746
2747         /* After a CLGI no interrupts should come */
2748         svm_clear_vintr(svm);
2749         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2750
2751         mark_dirty(svm->vmcb, VMCB_INTR);
2752
2753         return 1;
2754 }
2755
2756 static int invlpga_interception(struct vcpu_svm *svm)
2757 {
2758         struct kvm_vcpu *vcpu = &svm->vcpu;
2759
2760         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2761                           kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2762
2763         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2764         kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2765
2766         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2767         skip_emulated_instruction(&svm->vcpu);
2768         return 1;
2769 }
2770
2771 static int skinit_interception(struct vcpu_svm *svm)
2772 {
2773         trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2774
2775         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2776         return 1;
2777 }
2778
2779 static int wbinvd_interception(struct vcpu_svm *svm)
2780 {
2781         kvm_emulate_wbinvd(&svm->vcpu);
2782         return 1;
2783 }
2784
2785 static int xsetbv_interception(struct vcpu_svm *svm)
2786 {
2787         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2788         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2789
2790         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2791                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2792                 skip_emulated_instruction(&svm->vcpu);
2793         }
2794
2795         return 1;
2796 }
2797
2798 static int task_switch_interception(struct vcpu_svm *svm)
2799 {
2800         u16 tss_selector;
2801         int reason;
2802         int int_type = svm->vmcb->control.exit_int_info &
2803                 SVM_EXITINTINFO_TYPE_MASK;
2804         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2805         uint32_t type =
2806                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2807         uint32_t idt_v =
2808                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2809         bool has_error_code = false;
2810         u32 error_code = 0;
2811
2812         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2813
2814         if (svm->vmcb->control.exit_info_2 &
2815             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2816                 reason = TASK_SWITCH_IRET;
2817         else if (svm->vmcb->control.exit_info_2 &
2818                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2819                 reason = TASK_SWITCH_JMP;
2820         else if (idt_v)
2821                 reason = TASK_SWITCH_GATE;
2822         else
2823                 reason = TASK_SWITCH_CALL;
2824
2825         if (reason == TASK_SWITCH_GATE) {
2826                 switch (type) {
2827                 case SVM_EXITINTINFO_TYPE_NMI:
2828                         svm->vcpu.arch.nmi_injected = false;
2829                         break;
2830                 case SVM_EXITINTINFO_TYPE_EXEPT:
2831                         if (svm->vmcb->control.exit_info_2 &
2832                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2833                                 has_error_code = true;
2834                                 error_code =
2835                                         (u32)svm->vmcb->control.exit_info_2;
2836                         }
2837                         kvm_clear_exception_queue(&svm->vcpu);
2838                         break;
2839                 case SVM_EXITINTINFO_TYPE_INTR:
2840                         kvm_clear_interrupt_queue(&svm->vcpu);
2841                         break;
2842                 default:
2843                         break;
2844                 }
2845         }
2846
2847         if (reason != TASK_SWITCH_GATE ||
2848             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2849             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2850              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2851                 skip_emulated_instruction(&svm->vcpu);
2852
2853         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2854                 int_vec = -1;
2855
2856         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2857                                 has_error_code, error_code) == EMULATE_FAIL) {
2858                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2859                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2860                 svm->vcpu.run->internal.ndata = 0;
2861                 return 0;
2862         }
2863         return 1;
2864 }
2865
2866 static int cpuid_interception(struct vcpu_svm *svm)
2867 {
2868         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2869         kvm_emulate_cpuid(&svm->vcpu);
2870         return 1;
2871 }
2872
2873 static int iret_interception(struct vcpu_svm *svm)
2874 {
2875         ++svm->vcpu.stat.nmi_window_exits;
2876         clr_intercept(svm, INTERCEPT_IRET);
2877         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2878         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2879         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2880         return 1;
2881 }
2882
2883 static int invlpg_interception(struct vcpu_svm *svm)
2884 {
2885         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2886                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2887
2888         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2889         skip_emulated_instruction(&svm->vcpu);
2890         return 1;
2891 }
2892
2893 static int emulate_on_interception(struct vcpu_svm *svm)
2894 {
2895         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2896 }
2897
2898 static int rdpmc_interception(struct vcpu_svm *svm)
2899 {
2900         int err;
2901
2902         if (!static_cpu_has(X86_FEATURE_NRIPS))
2903                 return emulate_on_interception(svm);
2904
2905         err = kvm_rdpmc(&svm->vcpu);
2906         kvm_complete_insn_gp(&svm->vcpu, err);
2907
2908         return 1;
2909 }
2910
2911 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2912                                             unsigned long val)
2913 {
2914         unsigned long cr0 = svm->vcpu.arch.cr0;
2915         bool ret = false;
2916         u64 intercept;
2917
2918         intercept = svm->nested.intercept;
2919
2920         if (!is_guest_mode(&svm->vcpu) ||
2921             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2922                 return false;
2923
2924         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2925         val &= ~SVM_CR0_SELECTIVE_MASK;
2926
2927         if (cr0 ^ val) {
2928                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2929                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2930         }
2931
2932         return ret;
2933 }
2934
2935 #define CR_VALID (1ULL << 63)
2936
2937 static int cr_interception(struct vcpu_svm *svm)
2938 {
2939         int reg, cr;
2940         unsigned long val;
2941         int err;
2942
2943         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2944                 return emulate_on_interception(svm);
2945
2946         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2947                 return emulate_on_interception(svm);
2948
2949         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2950         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2951                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2952         else
2953                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2954
2955         err = 0;
2956         if (cr >= 16) { /* mov to cr */
2957                 cr -= 16;
2958                 val = kvm_register_read(&svm->vcpu, reg);
2959                 switch (cr) {
2960                 case 0:
2961                         if (!check_selective_cr0_intercepted(svm, val))
2962                                 err = kvm_set_cr0(&svm->vcpu, val);
2963                         else
2964                                 return 1;
2965
2966                         break;
2967                 case 3:
2968                         err = kvm_set_cr3(&svm->vcpu, val);
2969                         break;
2970                 case 4:
2971                         err = kvm_set_cr4(&svm->vcpu, val);
2972                         break;
2973                 case 8:
2974                         err = kvm_set_cr8(&svm->vcpu, val);
2975                         break;
2976                 default:
2977                         WARN(1, "unhandled write to CR%d", cr);
2978                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2979                         return 1;
2980                 }
2981         } else { /* mov from cr */
2982                 switch (cr) {
2983                 case 0:
2984                         val = kvm_read_cr0(&svm->vcpu);
2985                         break;
2986                 case 2:
2987                         val = svm->vcpu.arch.cr2;
2988                         break;
2989                 case 3:
2990                         val = kvm_read_cr3(&svm->vcpu);
2991                         break;
2992                 case 4:
2993                         val = kvm_read_cr4(&svm->vcpu);
2994                         break;
2995                 case 8:
2996                         val = kvm_get_cr8(&svm->vcpu);
2997                         break;
2998                 default:
2999                         WARN(1, "unhandled read from CR%d", cr);
3000                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3001                         return 1;
3002                 }
3003                 kvm_register_write(&svm->vcpu, reg, val);
3004         }
3005         kvm_complete_insn_gp(&svm->vcpu, err);
3006
3007         return 1;
3008 }
3009
3010 static int dr_interception(struct vcpu_svm *svm)
3011 {
3012         int reg, dr;
3013         unsigned long val;
3014
3015         if (svm->vcpu.guest_debug == 0) {
3016                 /*
3017                  * No more DR vmexits; force a reload of the debug registers
3018                  * and reenter on this instruction.  The next vmexit will
3019                  * retrieve the full state of the debug registers.
3020                  */
3021                 clr_dr_intercepts(svm);
3022                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3023                 return 1;
3024         }
3025
3026         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3027                 return emulate_on_interception(svm);
3028
3029         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3030         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3031
3032         if (dr >= 16) { /* mov to DRn */
3033                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3034                         return 1;
3035                 val = kvm_register_read(&svm->vcpu, reg);
3036                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3037         } else {
3038                 if (!kvm_require_dr(&svm->vcpu, dr))
3039                         return 1;
3040                 kvm_get_dr(&svm->vcpu, dr, &val);
3041                 kvm_register_write(&svm->vcpu, reg, val);
3042         }
3043
3044         skip_emulated_instruction(&svm->vcpu);
3045
3046         return 1;
3047 }
3048
3049 static int cr8_write_interception(struct vcpu_svm *svm)
3050 {
3051         struct kvm_run *kvm_run = svm->vcpu.run;
3052         int r;
3053
3054         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3055         /* instruction emulation calls kvm_set_cr8() */
3056         r = cr_interception(svm);
3057         if (irqchip_in_kernel(svm->vcpu.kvm))
3058                 return r;
3059         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3060                 return r;
3061         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3062         return 0;
3063 }
3064
3065 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3066 {
3067         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3068         return vmcb->control.tsc_offset +
3069                 svm_scale_tsc(vcpu, host_tsc);
3070 }
3071
3072 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3073 {
3074         struct vcpu_svm *svm = to_svm(vcpu);
3075
3076         switch (msr_info->index) {
3077         case MSR_IA32_TSC: {
3078                 msr_info->data = svm->vmcb->control.tsc_offset +
3079                         svm_scale_tsc(vcpu, native_read_tsc());
3080
3081                 break;
3082         }
3083         case MSR_STAR:
3084                 msr_info->data = svm->vmcb->save.star;
3085                 break;
3086 #ifdef CONFIG_X86_64
3087         case MSR_LSTAR:
3088                 msr_info->data = svm->vmcb->save.lstar;
3089                 break;
3090         case MSR_CSTAR:
3091                 msr_info->data = svm->vmcb->save.cstar;
3092                 break;
3093         case MSR_KERNEL_GS_BASE:
3094                 msr_info->data = svm->vmcb->save.kernel_gs_base;
3095                 break;
3096         case MSR_SYSCALL_MASK:
3097                 msr_info->data = svm->vmcb->save.sfmask;
3098                 break;
3099 #endif
3100         case MSR_IA32_SYSENTER_CS:
3101                 msr_info->data = svm->vmcb->save.sysenter_cs;
3102                 break;
3103         case MSR_IA32_SYSENTER_EIP:
3104                 msr_info->data = svm->sysenter_eip;
3105                 break;
3106         case MSR_IA32_SYSENTER_ESP:
3107                 msr_info->data = svm->sysenter_esp;
3108                 break;
3109         /*
3110          * Nobody will change the following 5 values in the VMCB so we can
3111          * safely return them on rdmsr. They will always be 0 until LBRV is
3112          * implemented.
3113          */
3114         case MSR_IA32_DEBUGCTLMSR:
3115                 msr_info->data = svm->vmcb->save.dbgctl;
3116                 break;
3117         case MSR_IA32_LASTBRANCHFROMIP:
3118                 msr_info->data = svm->vmcb->save.br_from;
3119                 break;
3120         case MSR_IA32_LASTBRANCHTOIP:
3121                 msr_info->data = svm->vmcb->save.br_to;
3122                 break;
3123         case MSR_IA32_LASTINTFROMIP:
3124                 msr_info->data = svm->vmcb->save.last_excp_from;
3125                 break;
3126         case MSR_IA32_LASTINTTOIP:
3127                 msr_info->data = svm->vmcb->save.last_excp_to;
3128                 break;
3129         case MSR_VM_HSAVE_PA:
3130                 msr_info->data = svm->nested.hsave_msr;
3131                 break;
3132         case MSR_VM_CR:
3133                 msr_info->data = svm->nested.vm_cr_msr;
3134                 break;
3135         case MSR_IA32_UCODE_REV:
3136                 msr_info->data = 0x01000065;
3137                 break;
3138         default:
3139                 return kvm_get_msr_common(vcpu, msr_info);
3140         }
3141         return 0;
3142 }
3143
3144 static int rdmsr_interception(struct vcpu_svm *svm)
3145 {
3146         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3147         struct msr_data msr_info;
3148
3149         msr_info.index = ecx;
3150         msr_info.host_initiated = false;
3151         if (svm_get_msr(&svm->vcpu, &msr_info)) {
3152                 trace_kvm_msr_read_ex(ecx);
3153                 kvm_inject_gp(&svm->vcpu, 0);
3154         } else {
3155                 trace_kvm_msr_read(ecx, msr_info.data);
3156
3157                 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3158                                    msr_info.data & 0xffffffff);
3159                 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3160                                    msr_info.data >> 32);
3161                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3162                 skip_emulated_instruction(&svm->vcpu);
3163         }
3164         return 1;
3165 }
3166
3167 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3168 {
3169         struct vcpu_svm *svm = to_svm(vcpu);
3170         int svm_dis, chg_mask;
3171
3172         if (data & ~SVM_VM_CR_VALID_MASK)
3173                 return 1;
3174
3175         chg_mask = SVM_VM_CR_VALID_MASK;
3176
3177         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3178                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3179
3180         svm->nested.vm_cr_msr &= ~chg_mask;
3181         svm->nested.vm_cr_msr |= (data & chg_mask);
3182
3183         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3184
3185         /* check for svm_disable while efer.svme is set */
3186         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3187                 return 1;
3188
3189         return 0;
3190 }
3191
3192 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3193 {
3194         struct vcpu_svm *svm = to_svm(vcpu);
3195
3196         u32 ecx = msr->index;
3197         u64 data = msr->data;
3198         switch (ecx) {
3199         case MSR_IA32_TSC:
3200                 kvm_write_tsc(vcpu, msr);
3201                 break;
3202         case MSR_STAR:
3203                 svm->vmcb->save.star = data;
3204                 break;
3205 #ifdef CONFIG_X86_64
3206         case MSR_LSTAR:
3207                 svm->vmcb->save.lstar = data;
3208                 break;
3209         case MSR_CSTAR:
3210                 svm->vmcb->save.cstar = data;
3211                 break;
3212         case MSR_KERNEL_GS_BASE:
3213                 svm->vmcb->save.kernel_gs_base = data;
3214                 break;
3215         case MSR_SYSCALL_MASK:
3216                 svm->vmcb->save.sfmask = data;
3217                 break;
3218 #endif
3219         case MSR_IA32_SYSENTER_CS:
3220                 svm->vmcb->save.sysenter_cs = data;
3221                 break;
3222         case MSR_IA32_SYSENTER_EIP:
3223                 svm->sysenter_eip = data;
3224                 svm->vmcb->save.sysenter_eip = data;
3225                 break;
3226         case MSR_IA32_SYSENTER_ESP:
3227                 svm->sysenter_esp = data;
3228                 svm->vmcb->save.sysenter_esp = data;
3229                 break;
3230         case MSR_IA32_DEBUGCTLMSR:
3231                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3232                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3233                                     __func__, data);
3234                         break;
3235                 }
3236                 if (data & DEBUGCTL_RESERVED_BITS)
3237                         return 1;
3238
3239                 svm->vmcb->save.dbgctl = data;
3240                 mark_dirty(svm->vmcb, VMCB_LBR);
3241                 if (data & (1ULL<<0))
3242                         svm_enable_lbrv(svm);
3243                 else
3244                         svm_disable_lbrv(svm);
3245                 break;
3246         case MSR_VM_HSAVE_PA:
3247                 svm->nested.hsave_msr = data;
3248                 break;
3249         case MSR_VM_CR:
3250                 return svm_set_vm_cr(vcpu, data);
3251         case MSR_VM_IGNNE:
3252                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3253                 break;
3254         default:
3255                 return kvm_set_msr_common(vcpu, msr);
3256         }
3257         return 0;
3258 }
3259
3260 static int wrmsr_interception(struct vcpu_svm *svm)
3261 {
3262         struct msr_data msr;
3263         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3264         u64 data = kvm_read_edx_eax(&svm->vcpu);
3265
3266         msr.data = data;
3267         msr.index = ecx;
3268         msr.host_initiated = false;
3269
3270         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3271         if (kvm_set_msr(&svm->vcpu, &msr)) {
3272                 trace_kvm_msr_write_ex(ecx, data);
3273                 kvm_inject_gp(&svm->vcpu, 0);
3274         } else {
3275                 trace_kvm_msr_write(ecx, data);
3276                 skip_emulated_instruction(&svm->vcpu);
3277         }
3278         return 1;
3279 }
3280
3281 static int msr_interception(struct vcpu_svm *svm)
3282 {
3283         if (svm->vmcb->control.exit_info_1)
3284                 return wrmsr_interception(svm);
3285         else
3286                 return rdmsr_interception(svm);
3287 }
3288
3289 static int interrupt_window_interception(struct vcpu_svm *svm)
3290 {
3291         struct kvm_run *kvm_run = svm->vcpu.run;
3292
3293         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3294         svm_clear_vintr(svm);
3295         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3296         mark_dirty(svm->vmcb, VMCB_INTR);
3297         ++svm->vcpu.stat.irq_window_exits;
3298         /*
3299          * If the user space waits to inject interrupts, exit as soon as
3300          * possible
3301          */
3302         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3303             kvm_run->request_interrupt_window &&
3304             !kvm_cpu_has_interrupt(&svm->vcpu)) {
3305                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3306                 return 0;
3307         }
3308
3309         return 1;
3310 }
3311
3312 static int pause_interception(struct vcpu_svm *svm)
3313 {
3314         kvm_vcpu_on_spin(&(svm->vcpu));
3315         return 1;
3316 }
3317
3318 static int nop_interception(struct vcpu_svm *svm)
3319 {
3320         skip_emulated_instruction(&(svm->vcpu));
3321         return 1;
3322 }
3323
3324 static int monitor_interception(struct vcpu_svm *svm)
3325 {
3326         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3327         return nop_interception(svm);
3328 }
3329
3330 static int mwait_interception(struct vcpu_svm *svm)
3331 {
3332         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3333         return nop_interception(svm);
3334 }
3335
3336 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3337         [SVM_EXIT_READ_CR0]                     = cr_interception,
3338         [SVM_EXIT_READ_CR3]                     = cr_interception,
3339         [SVM_EXIT_READ_CR4]                     = cr_interception,
3340         [SVM_EXIT_READ_CR8]                     = cr_interception,
3341         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3342         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3343         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3344         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3345         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3346         [SVM_EXIT_READ_DR0]                     = dr_interception,
3347         [SVM_EXIT_READ_DR1]                     = dr_interception,
3348         [SVM_EXIT_READ_DR2]                     = dr_interception,
3349         [SVM_EXIT_READ_DR3]                     = dr_interception,
3350         [SVM_EXIT_READ_DR4]                     = dr_interception,
3351         [SVM_EXIT_READ_DR5]                     = dr_interception,
3352         [SVM_EXIT_READ_DR6]                     = dr_interception,
3353         [SVM_EXIT_READ_DR7]                     = dr_interception,
3354         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3355         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3356         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3357         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3358         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3359         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3360         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3361         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3362         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3363         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3364         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3365         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3366         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3367         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3368         [SVM_EXIT_INTR]                         = intr_interception,
3369         [SVM_EXIT_NMI]                          = nmi_interception,
3370         [SVM_EXIT_SMI]                          = nop_on_interception,
3371         [SVM_EXIT_INIT]                         = nop_on_interception,
3372         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3373         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3374         [SVM_EXIT_CPUID]                        = cpuid_interception,
3375         [SVM_EXIT_IRET]                         = iret_interception,
3376         [SVM_EXIT_INVD]                         = emulate_on_interception,
3377         [SVM_EXIT_PAUSE]                        = pause_interception,
3378         [SVM_EXIT_HLT]                          = halt_interception,
3379         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3380         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3381         [SVM_EXIT_IOIO]                         = io_interception,
3382         [SVM_EXIT_MSR]                          = msr_interception,
3383         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3384         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3385         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3386         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3387         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3388         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3389         [SVM_EXIT_STGI]                         = stgi_interception,
3390         [SVM_EXIT_CLGI]                         = clgi_interception,
3391         [SVM_EXIT_SKINIT]                       = skinit_interception,
3392         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
3393         [SVM_EXIT_MONITOR]                      = monitor_interception,
3394         [SVM_EXIT_MWAIT]                        = mwait_interception,
3395         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3396         [SVM_EXIT_NPF]                          = pf_interception,
3397         [SVM_EXIT_RSM]                          = emulate_on_interception,
3398 };
3399
3400 static void dump_vmcb(struct kvm_vcpu *vcpu)
3401 {
3402         struct vcpu_svm *svm = to_svm(vcpu);
3403         struct vmcb_control_area *control = &svm->vmcb->control;
3404         struct vmcb_save_area *save = &svm->vmcb->save;
3405
3406         pr_err("VMCB Control Area:\n");
3407         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3408         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3409         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3410         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3411         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3412         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3413         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3414         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3415         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3416         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3417         pr_err("%-20s%d\n", "asid:", control->asid);
3418         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3419         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3420         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3421         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3422         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3423         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3424         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3425         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3426         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3427         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3428         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3429         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3430         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3431         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3432         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3433         pr_err("VMCB State Save Area:\n");
3434         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3435                "es:",
3436                save->es.selector, save->es.attrib,
3437                save->es.limit, save->es.base);
3438         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3439                "cs:",
3440                save->cs.selector, save->cs.attrib,
3441                save->cs.limit, save->cs.base);
3442         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3443                "ss:",
3444                save->ss.selector, save->ss.attrib,
3445                save->ss.limit, save->ss.base);
3446         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3447                "ds:",
3448                save->ds.selector, save->ds.attrib,
3449                save->ds.limit, save->ds.base);
3450         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3451                "fs:",
3452                save->fs.selector, save->fs.attrib,
3453                save->fs.limit, save->fs.base);
3454         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3455                "gs:",
3456                save->gs.selector, save->gs.attrib,
3457                save->gs.limit, save->gs.base);
3458         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3459                "gdtr:",
3460                save->gdtr.selector, save->gdtr.attrib,
3461                save->gdtr.limit, save->gdtr.base);
3462         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3463                "ldtr:",
3464                save->ldtr.selector, save->ldtr.attrib,
3465                save->ldtr.limit, save->ldtr.base);
3466         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3467                "idtr:",
3468                save->idtr.selector, save->idtr.attrib,
3469                save->idtr.limit, save->idtr.base);
3470         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3471                "tr:",
3472                save->tr.selector, save->tr.attrib,
3473                save->tr.limit, save->tr.base);
3474         pr_err("cpl:            %d                efer:         %016llx\n",
3475                 save->cpl, save->efer);
3476         pr_err("%-15s %016llx %-13s %016llx\n",
3477                "cr0:", save->cr0, "cr2:", save->cr2);
3478         pr_err("%-15s %016llx %-13s %016llx\n",
3479                "cr3:", save->cr3, "cr4:", save->cr4);
3480         pr_err("%-15s %016llx %-13s %016llx\n",
3481                "dr6:", save->dr6, "dr7:", save->dr7);
3482         pr_err("%-15s %016llx %-13s %016llx\n",
3483                "rip:", save->rip, "rflags:", save->rflags);
3484         pr_err("%-15s %016llx %-13s %016llx\n",
3485                "rsp:", save->rsp, "rax:", save->rax);
3486         pr_err("%-15s %016llx %-13s %016llx\n",
3487                "star:", save->star, "lstar:", save->lstar);
3488         pr_err("%-15s %016llx %-13s %016llx\n",
3489                "cstar:", save->cstar, "sfmask:", save->sfmask);
3490         pr_err("%-15s %016llx %-13s %016llx\n",
3491                "kernel_gs_base:", save->kernel_gs_base,
3492                "sysenter_cs:", save->sysenter_cs);
3493         pr_err("%-15s %016llx %-13s %016llx\n",
3494                "sysenter_esp:", save->sysenter_esp,
3495                "sysenter_eip:", save->sysenter_eip);
3496         pr_err("%-15s %016llx %-13s %016llx\n",
3497                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3498         pr_err("%-15s %016llx %-13s %016llx\n",
3499                "br_from:", save->br_from, "br_to:", save->br_to);
3500         pr_err("%-15s %016llx %-13s %016llx\n",
3501                "excp_from:", save->last_excp_from,
3502                "excp_to:", save->last_excp_to);
3503 }
3504
3505 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3506 {
3507         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3508
3509         *info1 = control->exit_info_1;
3510         *info2 = control->exit_info_2;
3511 }
3512
3513 static int handle_exit(struct kvm_vcpu *vcpu)
3514 {
3515         struct vcpu_svm *svm = to_svm(vcpu);
3516         struct kvm_run *kvm_run = vcpu->run;
3517         u32 exit_code = svm->vmcb->control.exit_code;
3518
3519         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3520                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3521         if (npt_enabled)
3522                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3523
3524         if (unlikely(svm->nested.exit_required)) {
3525                 nested_svm_vmexit(svm);
3526                 svm->nested.exit_required = false;
3527
3528                 return 1;
3529         }
3530
3531         if (is_guest_mode(vcpu)) {
3532                 int vmexit;
3533
3534                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3535                                         svm->vmcb->control.exit_info_1,
3536                                         svm->vmcb->control.exit_info_2,
3537                                         svm->vmcb->control.exit_int_info,
3538                                         svm->vmcb->control.exit_int_info_err,
3539                                         KVM_ISA_SVM);
3540
3541                 vmexit = nested_svm_exit_special(svm);
3542
3543                 if (vmexit == NESTED_EXIT_CONTINUE)
3544                         vmexit = nested_svm_exit_handled(svm);
3545
3546                 if (vmexit == NESTED_EXIT_DONE)
3547                         return 1;
3548         }
3549
3550         svm_complete_interrupts(svm);
3551
3552         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3553                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3554                 kvm_run->fail_entry.hardware_entry_failure_reason
3555                         = svm->vmcb->control.exit_code;
3556                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3557                 dump_vmcb(vcpu);
3558                 return 0;
3559         }
3560
3561         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3562             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3563             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3564             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3565                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3566                        "exit_code 0x%x\n",
3567                        __func__, svm->vmcb->control.exit_int_info,
3568                        exit_code);
3569
3570         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3571             || !svm_exit_handlers[exit_code]) {
3572                 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3573                 kvm_queue_exception(vcpu, UD_VECTOR);
3574                 return 1;
3575         }
3576
3577         return svm_exit_handlers[exit_code](svm);
3578 }
3579
3580 static void reload_tss(struct kvm_vcpu *vcpu)
3581 {
3582         int cpu = raw_smp_processor_id();
3583
3584         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3585         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3586         load_TR_desc();
3587 }
3588
3589 static void pre_svm_run(struct vcpu_svm *svm)
3590 {
3591         int cpu = raw_smp_processor_id();
3592
3593         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3594
3595         /* FIXME: handle wraparound of asid_generation */
3596         if (svm->asid_generation != sd->asid_generation)
3597                 new_asid(svm, sd);
3598 }
3599
3600 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3601 {
3602         struct vcpu_svm *svm = to_svm(vcpu);
3603
3604         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3605         vcpu->arch.hflags |= HF_NMI_MASK;
3606         set_intercept(svm, INTERCEPT_IRET);
3607         ++vcpu->stat.nmi_injections;
3608 }
3609
3610 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3611 {
3612         struct vmcb_control_area *control;
3613
3614         control = &svm->vmcb->control;
3615         control->int_vector = irq;
3616         control->int_ctl &= ~V_INTR_PRIO_MASK;
3617         control->int_ctl |= V_IRQ_MASK |
3618                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3619         mark_dirty(svm->vmcb, VMCB_INTR);
3620 }
3621
3622 static void svm_set_irq(struct kvm_vcpu *vcpu)
3623 {
3624         struct vcpu_svm *svm = to_svm(vcpu);
3625
3626         BUG_ON(!(gif_set(svm)));
3627
3628         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3629         ++vcpu->stat.irq_injections;
3630
3631         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3632                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3633 }
3634
3635 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3636 {
3637         struct vcpu_svm *svm = to_svm(vcpu);
3638
3639         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3640                 return;
3641
3642         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3643
3644         if (irr == -1)
3645                 return;
3646
3647         if (tpr >= irr)
3648                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3649 }
3650
3651 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3652 {
3653         return;
3654 }
3655
3656 static int svm_vm_has_apicv(struct kvm *kvm)
3657 {
3658         return 0;
3659 }
3660
3661 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3662 {
3663         return;
3664 }
3665
3666 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3667 {
3668         return;
3669 }
3670
3671 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3672 {
3673         struct vcpu_svm *svm = to_svm(vcpu);
3674         struct vmcb *vmcb = svm->vmcb;
3675         int ret;
3676         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3677               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3678         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3679
3680         return ret;
3681 }
3682
3683 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3684 {
3685         struct vcpu_svm *svm = to_svm(vcpu);
3686
3687         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3688 }
3689
3690 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3691 {
3692         struct vcpu_svm *svm = to_svm(vcpu);
3693
3694         if (masked) {
3695                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3696                 set_intercept(svm, INTERCEPT_IRET);
3697         } else {
3698                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3699                 clr_intercept(svm, INTERCEPT_IRET);
3700         }
3701 }
3702
3703 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3704 {
3705         struct vcpu_svm *svm = to_svm(vcpu);
3706         struct vmcb *vmcb = svm->vmcb;
3707         int ret;
3708
3709         if (!gif_set(svm) ||
3710              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3711                 return 0;
3712
3713         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3714
3715         if (is_guest_mode(vcpu))
3716                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3717
3718         return ret;
3719 }
3720
3721 static void enable_irq_window(struct kvm_vcpu *vcpu)
3722 {
3723         struct vcpu_svm *svm = to_svm(vcpu);
3724
3725         /*
3726          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3727          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3728          * get that intercept, this function will be called again though and
3729          * we'll get the vintr intercept.
3730          */
3731         if (gif_set(svm) && nested_svm_intr(svm)) {
3732                 svm_set_vintr(svm);
3733                 svm_inject_irq(svm, 0x0);
3734         }
3735 }
3736
3737 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3738 {
3739         struct vcpu_svm *svm = to_svm(vcpu);
3740
3741         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3742             == HF_NMI_MASK)
3743                 return; /* IRET will cause a vm exit */
3744
3745         /*
3746          * Something prevents NMI from been injected. Single step over possible
3747          * problem (IRET or exception injection or interrupt shadow)
3748          */
3749         svm->nmi_singlestep = true;
3750         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3751         update_db_bp_intercept(vcpu);
3752 }
3753
3754 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3755 {
3756         return 0;
3757 }
3758
3759 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3760 {
3761         struct vcpu_svm *svm = to_svm(vcpu);
3762
3763         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3764                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3765         else
3766                 svm->asid_generation--;
3767 }
3768
3769 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3770 {
3771 }
3772
3773 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3774 {
3775         struct vcpu_svm *svm = to_svm(vcpu);
3776
3777         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3778                 return;
3779
3780         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3781                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3782                 kvm_set_cr8(vcpu, cr8);
3783         }
3784 }
3785
3786 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3787 {
3788         struct vcpu_svm *svm = to_svm(vcpu);
3789         u64 cr8;
3790
3791         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3792                 return;
3793
3794         cr8 = kvm_get_cr8(vcpu);
3795         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3796         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3797 }
3798
3799 static void svm_complete_interrupts(struct vcpu_svm *svm)
3800 {
3801         u8 vector;
3802         int type;
3803         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3804         unsigned int3_injected = svm->int3_injected;
3805
3806         svm->int3_injected = 0;
3807
3808         /*
3809          * If we've made progress since setting HF_IRET_MASK, we've
3810          * executed an IRET and can allow NMI injection.
3811          */
3812         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3813             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3814                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3815                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3816         }
3817
3818         svm->vcpu.arch.nmi_injected = false;
3819         kvm_clear_exception_queue(&svm->vcpu);
3820         kvm_clear_interrupt_queue(&svm->vcpu);
3821
3822         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3823                 return;
3824
3825         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3826
3827         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3828         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3829
3830         switch (type) {
3831         case SVM_EXITINTINFO_TYPE_NMI:
3832                 svm->vcpu.arch.nmi_injected = true;
3833                 break;
3834         case SVM_EXITINTINFO_TYPE_EXEPT:
3835                 /*
3836                  * In case of software exceptions, do not reinject the vector,
3837                  * but re-execute the instruction instead. Rewind RIP first
3838                  * if we emulated INT3 before.
3839                  */
3840                 if (kvm_exception_is_soft(vector)) {
3841                         if (vector == BP_VECTOR && int3_injected &&
3842                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3843                                 kvm_rip_write(&svm->vcpu,
3844                                               kvm_rip_read(&svm->vcpu) -
3845                                               int3_injected);
3846                         break;
3847                 }
3848                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3849                         u32 err = svm->vmcb->control.exit_int_info_err;
3850                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3851
3852                 } else
3853                         kvm_requeue_exception(&svm->vcpu, vector);
3854                 break;
3855         case SVM_EXITINTINFO_TYPE_INTR:
3856                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3857                 break;
3858         default:
3859                 break;
3860         }
3861 }
3862
3863 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3864 {
3865         struct vcpu_svm *svm = to_svm(vcpu);
3866         struct vmcb_control_area *control = &svm->vmcb->control;
3867
3868         control->exit_int_info = control->event_inj;
3869         control->exit_int_info_err = control->event_inj_err;
3870         control->event_inj = 0;
3871         svm_complete_interrupts(svm);
3872 }
3873
3874 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3875 {
3876         struct vcpu_svm *svm = to_svm(vcpu);
3877
3878         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3879         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3880         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3881
3882         /*
3883          * A vmexit emulation is required before the vcpu can be executed
3884          * again.
3885          */
3886         if (unlikely(svm->nested.exit_required))
3887                 return;
3888
3889         pre_svm_run(svm);
3890
3891         sync_lapic_to_cr8(vcpu);
3892
3893         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3894
3895         clgi();
3896
3897         local_irq_enable();
3898
3899         asm volatile (
3900                 "push %%" _ASM_BP "; \n\t"
3901                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3902                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3903                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3904                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3905                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3906                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3907 #ifdef CONFIG_X86_64
3908                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3909                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3910                 "mov %c[r10](%[svm]), %%r10 \n\t"
3911                 "mov %c[r11](%[svm]), %%r11 \n\t"
3912                 "mov %c[r12](%[svm]), %%r12 \n\t"
3913                 "mov %c[r13](%[svm]), %%r13 \n\t"
3914                 "mov %c[r14](%[svm]), %%r14 \n\t"
3915                 "mov %c[r15](%[svm]), %%r15 \n\t"
3916 #endif
3917
3918                 /* Enter guest mode */
3919                 "push %%" _ASM_AX " \n\t"
3920                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3921                 __ex(SVM_VMLOAD) "\n\t"
3922                 __ex(SVM_VMRUN) "\n\t"
3923                 __ex(SVM_VMSAVE) "\n\t"
3924                 "pop %%" _ASM_AX " \n\t"
3925
3926                 /* Save guest registers, load host registers */
3927                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3928                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3929                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3930                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3931                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3932                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3933 #ifdef CONFIG_X86_64
3934                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3935                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3936                 "mov %%r10, %c[r10](%[svm]) \n\t"
3937                 "mov %%r11, %c[r11](%[svm]) \n\t"
3938                 "mov %%r12, %c[r12](%[svm]) \n\t"
3939                 "mov %%r13, %c[r13](%[svm]) \n\t"
3940                 "mov %%r14, %c[r14](%[svm]) \n\t"
3941                 "mov %%r15, %c[r15](%[svm]) \n\t"
3942 #endif
3943                 "pop %%" _ASM_BP
3944                 :
3945                 : [svm]"a"(svm),
3946                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3947                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3948                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3949                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3950                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3951                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3952                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3953 #ifdef CONFIG_X86_64
3954                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3955                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3956                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3957                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3958                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3959                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3960                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3961                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3962 #endif
3963                 : "cc", "memory"
3964 #ifdef CONFIG_X86_64
3965                 , "rbx", "rcx", "rdx", "rsi", "rdi"
3966                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3967 #else
3968                 , "ebx", "ecx", "edx", "esi", "edi"
3969 #endif
3970                 );
3971
3972 #ifdef CONFIG_X86_64
3973         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3974 #else
3975         loadsegment(fs, svm->host.fs);
3976 #ifndef CONFIG_X86_32_LAZY_GS
3977         loadsegment(gs, svm->host.gs);
3978 #endif
3979 #endif
3980
3981         reload_tss(vcpu);
3982
3983         local_irq_disable();
3984
3985         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3986         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3987         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3988         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3989
3990         trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3991
3992         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3993                 kvm_before_handle_nmi(&svm->vcpu);
3994
3995         stgi();
3996
3997         /* Any pending NMI will happen here */
3998
3999         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4000                 kvm_after_handle_nmi(&svm->vcpu);
4001
4002         sync_cr8_to_lapic(vcpu);
4003
4004         svm->next_rip = 0;
4005
4006         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4007
4008         /* if exit due to PF check for async PF */
4009         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4010                 svm->apf_reason = kvm_read_and_reset_pf_reason();
4011
4012         if (npt_enabled) {
4013                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4014                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4015         }
4016
4017         /*
4018          * We need to handle MC intercepts here before the vcpu has a chance to
4019          * change the physical cpu
4020          */
4021         if (unlikely(svm->vmcb->control.exit_code ==
4022                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4023                 svm_handle_mce(svm);
4024
4025         mark_all_clean(svm->vmcb);
4026 }
4027
4028 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4029 {
4030         struct vcpu_svm *svm = to_svm(vcpu);
4031
4032         svm->vmcb->save.cr3 = root;
4033         mark_dirty(svm->vmcb, VMCB_CR);
4034         svm_flush_tlb(vcpu);
4035 }
4036
4037 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4038 {
4039         struct vcpu_svm *svm = to_svm(vcpu);
4040
4041         svm->vmcb->control.nested_cr3 = root;
4042         mark_dirty(svm->vmcb, VMCB_NPT);
4043
4044         /* Also sync guest cr3 here in case we live migrate */
4045         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4046         mark_dirty(svm->vmcb, VMCB_CR);
4047
4048         svm_flush_tlb(vcpu);
4049 }
4050
4051 static int is_disabled(void)
4052 {
4053         u64 vm_cr;
4054
4055         rdmsrl(MSR_VM_CR, vm_cr);
4056         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4057                 return 1;
4058
4059         return 0;
4060 }
4061
4062 static void
4063 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4064 {
4065         /*
4066          * Patch in the VMMCALL instruction:
4067          */
4068         hypercall[0] = 0x0f;
4069         hypercall[1] = 0x01;
4070         hypercall[2] = 0xd9;
4071 }
4072
4073 static void svm_check_processor_compat(void *rtn)
4074 {
4075         *(int *)rtn = 0;
4076 }
4077
4078 static bool svm_cpu_has_accelerated_tpr(void)
4079 {
4080         return false;
4081 }
4082
4083 static bool svm_has_high_real_mode_segbase(void)
4084 {
4085         return true;
4086 }
4087
4088 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4089 {
4090         return 0;
4091 }
4092
4093 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4094 {
4095 }
4096
4097 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4098 {
4099         switch (func) {
4100         case 0x80000001:
4101                 if (nested)
4102                         entry->ecx |= (1 << 2); /* Set SVM bit */
4103                 break;
4104         case 0x8000000A:
4105                 entry->eax = 1; /* SVM revision 1 */
4106                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4107                                    ASID emulation to nested SVM */
4108                 entry->ecx = 0; /* Reserved */
4109                 entry->edx = 0; /* Per default do not support any
4110                                    additional features */
4111
4112                 /* Support next_rip if host supports it */
4113                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4114                         entry->edx |= SVM_FEATURE_NRIP;
4115
4116                 /* Support NPT for the guest if enabled */
4117                 if (npt_enabled)
4118                         entry->edx |= SVM_FEATURE_NPT;
4119
4120                 break;
4121         }
4122 }
4123
4124 static int svm_get_lpage_level(void)
4125 {
4126         return PT_PDPE_LEVEL;
4127 }
4128
4129 static bool svm_rdtscp_supported(void)
4130 {
4131         return false;
4132 }
4133
4134 static bool svm_invpcid_supported(void)
4135 {
4136         return false;
4137 }
4138
4139 static bool svm_mpx_supported(void)
4140 {
4141         return false;
4142 }
4143
4144 static bool svm_xsaves_supported(void)
4145 {
4146         return false;
4147 }
4148
4149 static bool svm_has_wbinvd_exit(void)
4150 {
4151         return true;
4152 }
4153
4154 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4155 {
4156         struct vcpu_svm *svm = to_svm(vcpu);
4157
4158         set_exception_intercept(svm, NM_VECTOR);
4159         update_cr0_intercept(svm);
4160 }
4161
4162 #define PRE_EX(exit)  { .exit_code = (exit), \
4163                         .stage = X86_ICPT_PRE_EXCEPT, }
4164 #define POST_EX(exit) { .exit_code = (exit), \
4165                         .stage = X86_ICPT_POST_EXCEPT, }
4166 #define POST_MEM(exit) { .exit_code = (exit), \
4167                         .stage = X86_ICPT_POST_MEMACCESS, }
4168
4169 static const struct __x86_intercept {
4170         u32 exit_code;
4171         enum x86_intercept_stage stage;
4172 } x86_intercept_map[] = {
4173         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4174         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4175         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4176         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4177         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4178         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4179         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4180         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4181         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4182         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4183         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4184         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4185         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4186         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4187         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4188         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4189         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4190         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4191         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4192         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4193         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4194         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4195         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4196         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4197         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4198         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4199         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4200         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4201         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4202         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4203         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4204         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4205         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4206         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4207         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4208         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4209         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4210         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4211         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4212         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4213         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4214         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4215         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4216         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4217         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4218         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4219 };
4220
4221 #undef PRE_EX
4222 #undef POST_EX
4223 #undef POST_MEM
4224
4225 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4226                                struct x86_instruction_info *info,
4227                                enum x86_intercept_stage stage)
4228 {
4229         struct vcpu_svm *svm = to_svm(vcpu);
4230         int vmexit, ret = X86EMUL_CONTINUE;
4231         struct __x86_intercept icpt_info;
4232         struct vmcb *vmcb = svm->vmcb;
4233
4234         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4235                 goto out;
4236
4237         icpt_info = x86_intercept_map[info->intercept];
4238
4239         if (stage != icpt_info.stage)
4240                 goto out;
4241
4242         switch (icpt_info.exit_code) {
4243         case SVM_EXIT_READ_CR0:
4244                 if (info->intercept == x86_intercept_cr_read)
4245                         icpt_info.exit_code += info->modrm_reg;
4246                 break;
4247         case SVM_EXIT_WRITE_CR0: {
4248                 unsigned long cr0, val;
4249                 u64 intercept;
4250
4251                 if (info->intercept == x86_intercept_cr_write)
4252                         icpt_info.exit_code += info->modrm_reg;
4253
4254                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4255                     info->intercept == x86_intercept_clts)
4256                         break;
4257
4258                 intercept = svm->nested.intercept;
4259
4260                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4261                         break;
4262
4263                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4264                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4265
4266                 if (info->intercept == x86_intercept_lmsw) {
4267                         cr0 &= 0xfUL;
4268                         val &= 0xfUL;
4269                         /* lmsw can't clear PE - catch this here */
4270                         if (cr0 & X86_CR0_PE)
4271                                 val |= X86_CR0_PE;
4272                 }
4273
4274                 if (cr0 ^ val)
4275                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4276
4277                 break;
4278         }
4279         case SVM_EXIT_READ_DR0:
4280         case SVM_EXIT_WRITE_DR0:
4281                 icpt_info.exit_code += info->modrm_reg;
4282                 break;
4283         case SVM_EXIT_MSR:
4284                 if (info->intercept == x86_intercept_wrmsr)
4285                         vmcb->control.exit_info_1 = 1;
4286                 else
4287                         vmcb->control.exit_info_1 = 0;
4288                 break;
4289         case SVM_EXIT_PAUSE:
4290                 /*
4291                  * We get this for NOP only, but pause
4292                  * is rep not, check this here
4293                  */
4294                 if (info->rep_prefix != REPE_PREFIX)
4295                         goto out;
4296         case SVM_EXIT_IOIO: {
4297                 u64 exit_info;
4298                 u32 bytes;
4299
4300                 if (info->intercept == x86_intercept_in ||
4301                     info->intercept == x86_intercept_ins) {
4302                         exit_info = ((info->src_val & 0xffff) << 16) |
4303                                 SVM_IOIO_TYPE_MASK;
4304                         bytes = info->dst_bytes;
4305                 } else {
4306                         exit_info = (info->dst_val & 0xffff) << 16;
4307                         bytes = info->src_bytes;
4308                 }
4309
4310                 if (info->intercept == x86_intercept_outs ||
4311                     info->intercept == x86_intercept_ins)
4312                         exit_info |= SVM_IOIO_STR_MASK;
4313
4314                 if (info->rep_prefix)
4315                         exit_info |= SVM_IOIO_REP_MASK;
4316
4317                 bytes = min(bytes, 4u);
4318
4319                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4320
4321                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4322
4323                 vmcb->control.exit_info_1 = exit_info;
4324                 vmcb->control.exit_info_2 = info->next_rip;
4325
4326                 break;
4327         }
4328         default:
4329                 break;
4330         }
4331
4332         vmcb->control.next_rip  = info->next_rip;
4333         vmcb->control.exit_code = icpt_info.exit_code;
4334         vmexit = nested_svm_exit_handled(svm);
4335
4336         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4337                                            : X86EMUL_CONTINUE;
4338
4339 out:
4340         return ret;
4341 }
4342
4343 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4344 {
4345         local_irq_enable();
4346 }
4347
4348 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4349 {
4350 }
4351
4352 static struct kvm_x86_ops svm_x86_ops = {
4353         .cpu_has_kvm_support = has_svm,
4354         .disabled_by_bios = is_disabled,
4355         .hardware_setup = svm_hardware_setup,
4356         .hardware_unsetup = svm_hardware_unsetup,
4357         .check_processor_compatibility = svm_check_processor_compat,
4358         .hardware_enable = svm_hardware_enable,
4359         .hardware_disable = svm_hardware_disable,
4360         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4361         .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
4362
4363         .vcpu_create = svm_create_vcpu,
4364         .vcpu_free = svm_free_vcpu,
4365         .vcpu_reset = svm_vcpu_reset,
4366
4367         .prepare_guest_switch = svm_prepare_guest_switch,
4368         .vcpu_load = svm_vcpu_load,
4369         .vcpu_put = svm_vcpu_put,
4370
4371         .update_db_bp_intercept = update_db_bp_intercept,
4372         .get_msr = svm_get_msr,
4373         .set_msr = svm_set_msr,
4374         .get_segment_base = svm_get_segment_base,
4375         .get_segment = svm_get_segment,
4376         .set_segment = svm_set_segment,
4377         .get_cpl = svm_get_cpl,
4378         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4379         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4380         .decache_cr3 = svm_decache_cr3,
4381         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4382         .set_cr0 = svm_set_cr0,
4383         .set_cr3 = svm_set_cr3,
4384         .set_cr4 = svm_set_cr4,
4385         .set_efer = svm_set_efer,
4386         .get_idt = svm_get_idt,
4387         .set_idt = svm_set_idt,
4388         .get_gdt = svm_get_gdt,
4389         .set_gdt = svm_set_gdt,
4390         .get_dr6 = svm_get_dr6,
4391         .set_dr6 = svm_set_dr6,
4392         .set_dr7 = svm_set_dr7,
4393         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4394         .cache_reg = svm_cache_reg,
4395         .get_rflags = svm_get_rflags,
4396         .set_rflags = svm_set_rflags,
4397         .fpu_activate = svm_fpu_activate,
4398         .fpu_deactivate = svm_fpu_deactivate,
4399
4400         .tlb_flush = svm_flush_tlb,
4401
4402         .run = svm_vcpu_run,
4403         .handle_exit = handle_exit,
4404         .skip_emulated_instruction = skip_emulated_instruction,
4405         .set_interrupt_shadow = svm_set_interrupt_shadow,
4406         .get_interrupt_shadow = svm_get_interrupt_shadow,
4407         .patch_hypercall = svm_patch_hypercall,
4408         .set_irq = svm_set_irq,
4409         .set_nmi = svm_inject_nmi,
4410         .queue_exception = svm_queue_exception,
4411         .cancel_injection = svm_cancel_injection,
4412         .interrupt_allowed = svm_interrupt_allowed,
4413         .nmi_allowed = svm_nmi_allowed,
4414         .get_nmi_mask = svm_get_nmi_mask,
4415         .set_nmi_mask = svm_set_nmi_mask,
4416         .enable_nmi_window = enable_nmi_window,
4417         .enable_irq_window = enable_irq_window,
4418         .update_cr8_intercept = update_cr8_intercept,
4419         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4420         .vm_has_apicv = svm_vm_has_apicv,
4421         .load_eoi_exitmap = svm_load_eoi_exitmap,
4422         .sync_pir_to_irr = svm_sync_pir_to_irr,
4423
4424         .set_tss_addr = svm_set_tss_addr,
4425         .get_tdp_level = get_npt_level,
4426         .get_mt_mask = svm_get_mt_mask,
4427
4428         .get_exit_info = svm_get_exit_info,
4429
4430         .get_lpage_level = svm_get_lpage_level,
4431
4432         .cpuid_update = svm_cpuid_update,
4433
4434         .rdtscp_supported = svm_rdtscp_supported,
4435         .invpcid_supported = svm_invpcid_supported,
4436         .mpx_supported = svm_mpx_supported,
4437         .xsaves_supported = svm_xsaves_supported,
4438
4439         .set_supported_cpuid = svm_set_supported_cpuid,
4440
4441         .has_wbinvd_exit = svm_has_wbinvd_exit,
4442
4443         .set_tsc_khz = svm_set_tsc_khz,
4444         .read_tsc_offset = svm_read_tsc_offset,
4445         .write_tsc_offset = svm_write_tsc_offset,
4446         .adjust_tsc_offset = svm_adjust_tsc_offset,
4447         .compute_tsc_offset = svm_compute_tsc_offset,
4448         .read_l1_tsc = svm_read_l1_tsc,
4449
4450         .set_tdp_cr3 = set_tdp_cr3,
4451
4452         .check_intercept = svm_check_intercept,
4453         .handle_external_intr = svm_handle_external_intr,
4454
4455         .sched_in = svm_sched_in,
4456 };
4457
4458 static int __init svm_init(void)
4459 {
4460         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4461                         __alignof__(struct vcpu_svm), THIS_MODULE);
4462 }
4463
4464 static void __exit svm_exit(void)
4465 {
4466         kvm_exit();
4467 }
4468
4469 module_init(svm_init)
4470 module_exit(svm_exit)