KVM: nVMX: Copy VMCS12 to processor-specific shadow vmcs
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include "kvm_cache_regs.h"
35 #include "x86.h"
36
37 #include <asm/io.h>
38 #include <asm/desc.h>
39 #include <asm/vmx.h>
40 #include <asm/virtext.h>
41 #include <asm/mce.h>
42 #include <asm/i387.h>
43 #include <asm/xcr.h>
44 #include <asm/perf_event.h>
45 #include <asm/kexec.h>
46
47 #include "trace.h"
48
49 #define __ex(x) __kvm_handle_fault_on_reboot(x)
50 #define __ex_clear(x, reg) \
51         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
52
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
55
56 static const struct x86_cpu_id vmx_cpu_id[] = {
57         X86_FEATURE_MATCH(X86_FEATURE_VMX),
58         {}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
61
62 static bool __read_mostly enable_vpid = 1;
63 module_param_named(vpid, enable_vpid, bool, 0444);
64
65 static bool __read_mostly flexpriority_enabled = 1;
66 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
67
68 static bool __read_mostly enable_ept = 1;
69 module_param_named(ept, enable_ept, bool, S_IRUGO);
70
71 static bool __read_mostly enable_unrestricted_guest = 1;
72 module_param_named(unrestricted_guest,
73                         enable_unrestricted_guest, bool, S_IRUGO);
74
75 static bool __read_mostly enable_ept_ad_bits = 1;
76 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
77
78 static bool __read_mostly emulate_invalid_guest_state = true;
79 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
80
81 static bool __read_mostly vmm_exclusive = 1;
82 module_param(vmm_exclusive, bool, S_IRUGO);
83
84 static bool __read_mostly fasteoi = 1;
85 module_param(fasteoi, bool, S_IRUGO);
86
87 static bool __read_mostly enable_apicv = 1;
88 module_param(enable_apicv, bool, S_IRUGO);
89
90 static bool __read_mostly enable_shadow_vmcs = 1;
91 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
92 /*
93  * If nested=1, nested virtualization is supported, i.e., guests may use
94  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
95  * use VMX instructions.
96  */
97 static bool __read_mostly nested = 0;
98 module_param(nested, bool, S_IRUGO);
99
100 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
101 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
102 #define KVM_VM_CR0_ALWAYS_ON                                            \
103         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
104 #define KVM_CR4_GUEST_OWNED_BITS                                      \
105         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
106          | X86_CR4_OSXMMEXCPT)
107
108 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
109 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
110
111 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
112
113 /*
114  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
115  * ple_gap:    upper bound on the amount of time between two successive
116  *             executions of PAUSE in a loop. Also indicate if ple enabled.
117  *             According to test, this time is usually smaller than 128 cycles.
118  * ple_window: upper bound on the amount of time a guest is allowed to execute
119  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
120  *             less than 2^12 cycles
121  * Time is measured based on a counter that runs at the same rate as the TSC,
122  * refer SDM volume 3b section 21.6.13 & 22.1.3.
123  */
124 #define KVM_VMX_DEFAULT_PLE_GAP    128
125 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
126 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
127 module_param(ple_gap, int, S_IRUGO);
128
129 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
130 module_param(ple_window, int, S_IRUGO);
131
132 extern const ulong vmx_return;
133
134 #define NR_AUTOLOAD_MSRS 8
135 #define VMCS02_POOL_SIZE 1
136
137 struct vmcs {
138         u32 revision_id;
139         u32 abort;
140         char data[0];
141 };
142
143 /*
144  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
145  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
146  * loaded on this CPU (so we can clear them if the CPU goes down).
147  */
148 struct loaded_vmcs {
149         struct vmcs *vmcs;
150         int cpu;
151         int launched;
152         struct list_head loaded_vmcss_on_cpu_link;
153 };
154
155 struct shared_msr_entry {
156         unsigned index;
157         u64 data;
158         u64 mask;
159 };
160
161 /*
162  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
163  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
164  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
165  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
166  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
167  * More than one of these structures may exist, if L1 runs multiple L2 guests.
168  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
169  * underlying hardware which will be used to run L2.
170  * This structure is packed to ensure that its layout is identical across
171  * machines (necessary for live migration).
172  * If there are changes in this struct, VMCS12_REVISION must be changed.
173  */
174 typedef u64 natural_width;
175 struct __packed vmcs12 {
176         /* According to the Intel spec, a VMCS region must start with the
177          * following two fields. Then follow implementation-specific data.
178          */
179         u32 revision_id;
180         u32 abort;
181
182         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
183         u32 padding[7]; /* room for future expansion */
184
185         u64 io_bitmap_a;
186         u64 io_bitmap_b;
187         u64 msr_bitmap;
188         u64 vm_exit_msr_store_addr;
189         u64 vm_exit_msr_load_addr;
190         u64 vm_entry_msr_load_addr;
191         u64 tsc_offset;
192         u64 virtual_apic_page_addr;
193         u64 apic_access_addr;
194         u64 ept_pointer;
195         u64 guest_physical_address;
196         u64 vmcs_link_pointer;
197         u64 guest_ia32_debugctl;
198         u64 guest_ia32_pat;
199         u64 guest_ia32_efer;
200         u64 guest_ia32_perf_global_ctrl;
201         u64 guest_pdptr0;
202         u64 guest_pdptr1;
203         u64 guest_pdptr2;
204         u64 guest_pdptr3;
205         u64 host_ia32_pat;
206         u64 host_ia32_efer;
207         u64 host_ia32_perf_global_ctrl;
208         u64 padding64[8]; /* room for future expansion */
209         /*
210          * To allow migration of L1 (complete with its L2 guests) between
211          * machines of different natural widths (32 or 64 bit), we cannot have
212          * unsigned long fields with no explict size. We use u64 (aliased
213          * natural_width) instead. Luckily, x86 is little-endian.
214          */
215         natural_width cr0_guest_host_mask;
216         natural_width cr4_guest_host_mask;
217         natural_width cr0_read_shadow;
218         natural_width cr4_read_shadow;
219         natural_width cr3_target_value0;
220         natural_width cr3_target_value1;
221         natural_width cr3_target_value2;
222         natural_width cr3_target_value3;
223         natural_width exit_qualification;
224         natural_width guest_linear_address;
225         natural_width guest_cr0;
226         natural_width guest_cr3;
227         natural_width guest_cr4;
228         natural_width guest_es_base;
229         natural_width guest_cs_base;
230         natural_width guest_ss_base;
231         natural_width guest_ds_base;
232         natural_width guest_fs_base;
233         natural_width guest_gs_base;
234         natural_width guest_ldtr_base;
235         natural_width guest_tr_base;
236         natural_width guest_gdtr_base;
237         natural_width guest_idtr_base;
238         natural_width guest_dr7;
239         natural_width guest_rsp;
240         natural_width guest_rip;
241         natural_width guest_rflags;
242         natural_width guest_pending_dbg_exceptions;
243         natural_width guest_sysenter_esp;
244         natural_width guest_sysenter_eip;
245         natural_width host_cr0;
246         natural_width host_cr3;
247         natural_width host_cr4;
248         natural_width host_fs_base;
249         natural_width host_gs_base;
250         natural_width host_tr_base;
251         natural_width host_gdtr_base;
252         natural_width host_idtr_base;
253         natural_width host_ia32_sysenter_esp;
254         natural_width host_ia32_sysenter_eip;
255         natural_width host_rsp;
256         natural_width host_rip;
257         natural_width paddingl[8]; /* room for future expansion */
258         u32 pin_based_vm_exec_control;
259         u32 cpu_based_vm_exec_control;
260         u32 exception_bitmap;
261         u32 page_fault_error_code_mask;
262         u32 page_fault_error_code_match;
263         u32 cr3_target_count;
264         u32 vm_exit_controls;
265         u32 vm_exit_msr_store_count;
266         u32 vm_exit_msr_load_count;
267         u32 vm_entry_controls;
268         u32 vm_entry_msr_load_count;
269         u32 vm_entry_intr_info_field;
270         u32 vm_entry_exception_error_code;
271         u32 vm_entry_instruction_len;
272         u32 tpr_threshold;
273         u32 secondary_vm_exec_control;
274         u32 vm_instruction_error;
275         u32 vm_exit_reason;
276         u32 vm_exit_intr_info;
277         u32 vm_exit_intr_error_code;
278         u32 idt_vectoring_info_field;
279         u32 idt_vectoring_error_code;
280         u32 vm_exit_instruction_len;
281         u32 vmx_instruction_info;
282         u32 guest_es_limit;
283         u32 guest_cs_limit;
284         u32 guest_ss_limit;
285         u32 guest_ds_limit;
286         u32 guest_fs_limit;
287         u32 guest_gs_limit;
288         u32 guest_ldtr_limit;
289         u32 guest_tr_limit;
290         u32 guest_gdtr_limit;
291         u32 guest_idtr_limit;
292         u32 guest_es_ar_bytes;
293         u32 guest_cs_ar_bytes;
294         u32 guest_ss_ar_bytes;
295         u32 guest_ds_ar_bytes;
296         u32 guest_fs_ar_bytes;
297         u32 guest_gs_ar_bytes;
298         u32 guest_ldtr_ar_bytes;
299         u32 guest_tr_ar_bytes;
300         u32 guest_interruptibility_info;
301         u32 guest_activity_state;
302         u32 guest_sysenter_cs;
303         u32 host_ia32_sysenter_cs;
304         u32 vmx_preemption_timer_value;
305         u32 padding32[7]; /* room for future expansion */
306         u16 virtual_processor_id;
307         u16 guest_es_selector;
308         u16 guest_cs_selector;
309         u16 guest_ss_selector;
310         u16 guest_ds_selector;
311         u16 guest_fs_selector;
312         u16 guest_gs_selector;
313         u16 guest_ldtr_selector;
314         u16 guest_tr_selector;
315         u16 host_es_selector;
316         u16 host_cs_selector;
317         u16 host_ss_selector;
318         u16 host_ds_selector;
319         u16 host_fs_selector;
320         u16 host_gs_selector;
321         u16 host_tr_selector;
322 };
323
324 /*
325  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
326  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
327  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
328  */
329 #define VMCS12_REVISION 0x11e57ed0
330
331 /*
332  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
333  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
334  * current implementation, 4K are reserved to avoid future complications.
335  */
336 #define VMCS12_SIZE 0x1000
337
338 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
339 struct vmcs02_list {
340         struct list_head list;
341         gpa_t vmptr;
342         struct loaded_vmcs vmcs02;
343 };
344
345 /*
346  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
347  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
348  */
349 struct nested_vmx {
350         /* Has the level1 guest done vmxon? */
351         bool vmxon;
352
353         /* The guest-physical address of the current VMCS L1 keeps for L2 */
354         gpa_t current_vmptr;
355         /* The host-usable pointer to the above */
356         struct page *current_vmcs12_page;
357         struct vmcs12 *current_vmcs12;
358         struct vmcs *current_shadow_vmcs;
359
360         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
361         struct list_head vmcs02_pool;
362         int vmcs02_num;
363         u64 vmcs01_tsc_offset;
364         /* L2 must run next, and mustn't decide to exit to L1. */
365         bool nested_run_pending;
366         /*
367          * Guest pages referred to in vmcs02 with host-physical pointers, so
368          * we must keep them pinned while L2 runs.
369          */
370         struct page *apic_access_page;
371 };
372
373 #define POSTED_INTR_ON  0
374 /* Posted-Interrupt Descriptor */
375 struct pi_desc {
376         u32 pir[8];     /* Posted interrupt requested */
377         u32 control;    /* bit 0 of control is outstanding notification bit */
378         u32 rsvd[7];
379 } __aligned(64);
380
381 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
382 {
383         return test_and_set_bit(POSTED_INTR_ON,
384                         (unsigned long *)&pi_desc->control);
385 }
386
387 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
388 {
389         return test_and_clear_bit(POSTED_INTR_ON,
390                         (unsigned long *)&pi_desc->control);
391 }
392
393 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
394 {
395         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
396 }
397
398 struct vcpu_vmx {
399         struct kvm_vcpu       vcpu;
400         unsigned long         host_rsp;
401         u8                    fail;
402         u8                    cpl;
403         bool                  nmi_known_unmasked;
404         u32                   exit_intr_info;
405         u32                   idt_vectoring_info;
406         ulong                 rflags;
407         struct shared_msr_entry *guest_msrs;
408         int                   nmsrs;
409         int                   save_nmsrs;
410         unsigned long         host_idt_base;
411 #ifdef CONFIG_X86_64
412         u64                   msr_host_kernel_gs_base;
413         u64                   msr_guest_kernel_gs_base;
414 #endif
415         /*
416          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
417          * non-nested (L1) guest, it always points to vmcs01. For a nested
418          * guest (L2), it points to a different VMCS.
419          */
420         struct loaded_vmcs    vmcs01;
421         struct loaded_vmcs   *loaded_vmcs;
422         bool                  __launched; /* temporary, used in vmx_vcpu_run */
423         struct msr_autoload {
424                 unsigned nr;
425                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
426                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
427         } msr_autoload;
428         struct {
429                 int           loaded;
430                 u16           fs_sel, gs_sel, ldt_sel;
431 #ifdef CONFIG_X86_64
432                 u16           ds_sel, es_sel;
433 #endif
434                 int           gs_ldt_reload_needed;
435                 int           fs_reload_needed;
436         } host_state;
437         struct {
438                 int vm86_active;
439                 ulong save_rflags;
440                 struct kvm_segment segs[8];
441         } rmode;
442         struct {
443                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
444                 struct kvm_save_segment {
445                         u16 selector;
446                         unsigned long base;
447                         u32 limit;
448                         u32 ar;
449                 } seg[8];
450         } segment_cache;
451         int vpid;
452         bool emulation_required;
453
454         /* Support for vnmi-less CPUs */
455         int soft_vnmi_blocked;
456         ktime_t entry_time;
457         s64 vnmi_blocked_time;
458         u32 exit_reason;
459
460         bool rdtscp_enabled;
461
462         /* Posted interrupt descriptor */
463         struct pi_desc pi_desc;
464
465         /* Support for a guest hypervisor (nested VMX) */
466         struct nested_vmx nested;
467 };
468
469 enum segment_cache_field {
470         SEG_FIELD_SEL = 0,
471         SEG_FIELD_BASE = 1,
472         SEG_FIELD_LIMIT = 2,
473         SEG_FIELD_AR = 3,
474
475         SEG_FIELD_NR = 4
476 };
477
478 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
479 {
480         return container_of(vcpu, struct vcpu_vmx, vcpu);
481 }
482
483 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
484 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
485 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
486                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
487
488
489 static const unsigned long shadow_read_only_fields[] = {
490         /*
491          * We do NOT shadow fields that are modified when L0
492          * traps and emulates any vmx instruction (e.g. VMPTRLD,
493          * VMXON...) executed by L1.
494          * For example, VM_INSTRUCTION_ERROR is read
495          * by L1 if a vmx instruction fails (part of the error path).
496          * Note the code assumes this logic. If for some reason
497          * we start shadowing these fields then we need to
498          * force a shadow sync when L0 emulates vmx instructions
499          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
500          * by nested_vmx_failValid)
501          */
502         VM_EXIT_REASON,
503         VM_EXIT_INTR_INFO,
504         VM_EXIT_INSTRUCTION_LEN,
505         IDT_VECTORING_INFO_FIELD,
506         IDT_VECTORING_ERROR_CODE,
507         VM_EXIT_INTR_ERROR_CODE,
508         EXIT_QUALIFICATION,
509         GUEST_LINEAR_ADDRESS,
510         GUEST_PHYSICAL_ADDRESS
511 };
512 static const int max_shadow_read_only_fields =
513         ARRAY_SIZE(shadow_read_only_fields);
514
515 static const unsigned long shadow_read_write_fields[] = {
516         GUEST_RIP,
517         GUEST_RSP,
518         GUEST_CR0,
519         GUEST_CR3,
520         GUEST_CR4,
521         GUEST_INTERRUPTIBILITY_INFO,
522         GUEST_RFLAGS,
523         GUEST_CS_SELECTOR,
524         GUEST_CS_AR_BYTES,
525         GUEST_CS_LIMIT,
526         GUEST_CS_BASE,
527         GUEST_ES_BASE,
528         CR0_GUEST_HOST_MASK,
529         CR0_READ_SHADOW,
530         CR4_READ_SHADOW,
531         TSC_OFFSET,
532         EXCEPTION_BITMAP,
533         CPU_BASED_VM_EXEC_CONTROL,
534         VM_ENTRY_EXCEPTION_ERROR_CODE,
535         VM_ENTRY_INTR_INFO_FIELD,
536         VM_ENTRY_INSTRUCTION_LEN,
537         VM_ENTRY_EXCEPTION_ERROR_CODE,
538         HOST_FS_BASE,
539         HOST_GS_BASE,
540         HOST_FS_SELECTOR,
541         HOST_GS_SELECTOR
542 };
543 static const int max_shadow_read_write_fields =
544         ARRAY_SIZE(shadow_read_write_fields);
545
546 static const unsigned short vmcs_field_to_offset_table[] = {
547         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
548         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
549         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
550         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
551         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
552         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
553         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
554         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
555         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
556         FIELD(HOST_ES_SELECTOR, host_es_selector),
557         FIELD(HOST_CS_SELECTOR, host_cs_selector),
558         FIELD(HOST_SS_SELECTOR, host_ss_selector),
559         FIELD(HOST_DS_SELECTOR, host_ds_selector),
560         FIELD(HOST_FS_SELECTOR, host_fs_selector),
561         FIELD(HOST_GS_SELECTOR, host_gs_selector),
562         FIELD(HOST_TR_SELECTOR, host_tr_selector),
563         FIELD64(IO_BITMAP_A, io_bitmap_a),
564         FIELD64(IO_BITMAP_B, io_bitmap_b),
565         FIELD64(MSR_BITMAP, msr_bitmap),
566         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
567         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
568         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
569         FIELD64(TSC_OFFSET, tsc_offset),
570         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
571         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
572         FIELD64(EPT_POINTER, ept_pointer),
573         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
574         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
575         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
576         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
577         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
578         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
579         FIELD64(GUEST_PDPTR0, guest_pdptr0),
580         FIELD64(GUEST_PDPTR1, guest_pdptr1),
581         FIELD64(GUEST_PDPTR2, guest_pdptr2),
582         FIELD64(GUEST_PDPTR3, guest_pdptr3),
583         FIELD64(HOST_IA32_PAT, host_ia32_pat),
584         FIELD64(HOST_IA32_EFER, host_ia32_efer),
585         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
586         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
587         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
588         FIELD(EXCEPTION_BITMAP, exception_bitmap),
589         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
590         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
591         FIELD(CR3_TARGET_COUNT, cr3_target_count),
592         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
593         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
594         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
595         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
596         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
597         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
598         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
599         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
600         FIELD(TPR_THRESHOLD, tpr_threshold),
601         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
602         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
603         FIELD(VM_EXIT_REASON, vm_exit_reason),
604         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
605         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
606         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
607         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
608         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
609         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
610         FIELD(GUEST_ES_LIMIT, guest_es_limit),
611         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
612         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
613         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
614         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
615         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
616         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
617         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
618         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
619         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
620         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
621         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
622         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
623         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
624         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
625         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
626         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
627         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
628         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
629         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
630         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
631         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
632         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
633         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
634         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
635         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
636         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
637         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
638         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
639         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
640         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
641         FIELD(EXIT_QUALIFICATION, exit_qualification),
642         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
643         FIELD(GUEST_CR0, guest_cr0),
644         FIELD(GUEST_CR3, guest_cr3),
645         FIELD(GUEST_CR4, guest_cr4),
646         FIELD(GUEST_ES_BASE, guest_es_base),
647         FIELD(GUEST_CS_BASE, guest_cs_base),
648         FIELD(GUEST_SS_BASE, guest_ss_base),
649         FIELD(GUEST_DS_BASE, guest_ds_base),
650         FIELD(GUEST_FS_BASE, guest_fs_base),
651         FIELD(GUEST_GS_BASE, guest_gs_base),
652         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
653         FIELD(GUEST_TR_BASE, guest_tr_base),
654         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
655         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
656         FIELD(GUEST_DR7, guest_dr7),
657         FIELD(GUEST_RSP, guest_rsp),
658         FIELD(GUEST_RIP, guest_rip),
659         FIELD(GUEST_RFLAGS, guest_rflags),
660         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
661         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
662         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
663         FIELD(HOST_CR0, host_cr0),
664         FIELD(HOST_CR3, host_cr3),
665         FIELD(HOST_CR4, host_cr4),
666         FIELD(HOST_FS_BASE, host_fs_base),
667         FIELD(HOST_GS_BASE, host_gs_base),
668         FIELD(HOST_TR_BASE, host_tr_base),
669         FIELD(HOST_GDTR_BASE, host_gdtr_base),
670         FIELD(HOST_IDTR_BASE, host_idtr_base),
671         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
672         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
673         FIELD(HOST_RSP, host_rsp),
674         FIELD(HOST_RIP, host_rip),
675 };
676 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
677
678 static inline short vmcs_field_to_offset(unsigned long field)
679 {
680         if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
681                 return -1;
682         return vmcs_field_to_offset_table[field];
683 }
684
685 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
686 {
687         return to_vmx(vcpu)->nested.current_vmcs12;
688 }
689
690 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
691 {
692         struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
693         if (is_error_page(page))
694                 return NULL;
695
696         return page;
697 }
698
699 static void nested_release_page(struct page *page)
700 {
701         kvm_release_page_dirty(page);
702 }
703
704 static void nested_release_page_clean(struct page *page)
705 {
706         kvm_release_page_clean(page);
707 }
708
709 static u64 construct_eptp(unsigned long root_hpa);
710 static void kvm_cpu_vmxon(u64 addr);
711 static void kvm_cpu_vmxoff(void);
712 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
713 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
714 static void vmx_set_segment(struct kvm_vcpu *vcpu,
715                             struct kvm_segment *var, int seg);
716 static void vmx_get_segment(struct kvm_vcpu *vcpu,
717                             struct kvm_segment *var, int seg);
718 static bool guest_state_valid(struct kvm_vcpu *vcpu);
719 static u32 vmx_segment_access_rights(struct kvm_segment *var);
720 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
721 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
722 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
723
724 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
725 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
726 /*
727  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
728  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
729  */
730 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
731 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
732
733 static unsigned long *vmx_io_bitmap_a;
734 static unsigned long *vmx_io_bitmap_b;
735 static unsigned long *vmx_msr_bitmap_legacy;
736 static unsigned long *vmx_msr_bitmap_longmode;
737 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
738 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
739 static unsigned long *vmx_vmread_bitmap;
740 static unsigned long *vmx_vmwrite_bitmap;
741
742 static bool cpu_has_load_ia32_efer;
743 static bool cpu_has_load_perf_global_ctrl;
744
745 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
746 static DEFINE_SPINLOCK(vmx_vpid_lock);
747
748 static struct vmcs_config {
749         int size;
750         int order;
751         u32 revision_id;
752         u32 pin_based_exec_ctrl;
753         u32 cpu_based_exec_ctrl;
754         u32 cpu_based_2nd_exec_ctrl;
755         u32 vmexit_ctrl;
756         u32 vmentry_ctrl;
757 } vmcs_config;
758
759 static struct vmx_capability {
760         u32 ept;
761         u32 vpid;
762 } vmx_capability;
763
764 #define VMX_SEGMENT_FIELD(seg)                                  \
765         [VCPU_SREG_##seg] = {                                   \
766                 .selector = GUEST_##seg##_SELECTOR,             \
767                 .base = GUEST_##seg##_BASE,                     \
768                 .limit = GUEST_##seg##_LIMIT,                   \
769                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
770         }
771
772 static const struct kvm_vmx_segment_field {
773         unsigned selector;
774         unsigned base;
775         unsigned limit;
776         unsigned ar_bytes;
777 } kvm_vmx_segment_fields[] = {
778         VMX_SEGMENT_FIELD(CS),
779         VMX_SEGMENT_FIELD(DS),
780         VMX_SEGMENT_FIELD(ES),
781         VMX_SEGMENT_FIELD(FS),
782         VMX_SEGMENT_FIELD(GS),
783         VMX_SEGMENT_FIELD(SS),
784         VMX_SEGMENT_FIELD(TR),
785         VMX_SEGMENT_FIELD(LDTR),
786 };
787
788 static u64 host_efer;
789
790 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
791
792 /*
793  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
794  * away by decrementing the array size.
795  */
796 static const u32 vmx_msr_index[] = {
797 #ifdef CONFIG_X86_64
798         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
799 #endif
800         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
801 };
802 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
803
804 static inline bool is_page_fault(u32 intr_info)
805 {
806         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
807                              INTR_INFO_VALID_MASK)) ==
808                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
809 }
810
811 static inline bool is_no_device(u32 intr_info)
812 {
813         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
814                              INTR_INFO_VALID_MASK)) ==
815                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
816 }
817
818 static inline bool is_invalid_opcode(u32 intr_info)
819 {
820         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
821                              INTR_INFO_VALID_MASK)) ==
822                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
823 }
824
825 static inline bool is_external_interrupt(u32 intr_info)
826 {
827         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
828                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
829 }
830
831 static inline bool is_machine_check(u32 intr_info)
832 {
833         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
834                              INTR_INFO_VALID_MASK)) ==
835                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
836 }
837
838 static inline bool cpu_has_vmx_msr_bitmap(void)
839 {
840         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
841 }
842
843 static inline bool cpu_has_vmx_tpr_shadow(void)
844 {
845         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
846 }
847
848 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
849 {
850         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
851 }
852
853 static inline bool cpu_has_secondary_exec_ctrls(void)
854 {
855         return vmcs_config.cpu_based_exec_ctrl &
856                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
857 }
858
859 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
860 {
861         return vmcs_config.cpu_based_2nd_exec_ctrl &
862                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
863 }
864
865 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
866 {
867         return vmcs_config.cpu_based_2nd_exec_ctrl &
868                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
869 }
870
871 static inline bool cpu_has_vmx_apic_register_virt(void)
872 {
873         return vmcs_config.cpu_based_2nd_exec_ctrl &
874                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
875 }
876
877 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
878 {
879         return vmcs_config.cpu_based_2nd_exec_ctrl &
880                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
881 }
882
883 static inline bool cpu_has_vmx_posted_intr(void)
884 {
885         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
886 }
887
888 static inline bool cpu_has_vmx_apicv(void)
889 {
890         return cpu_has_vmx_apic_register_virt() &&
891                 cpu_has_vmx_virtual_intr_delivery() &&
892                 cpu_has_vmx_posted_intr();
893 }
894
895 static inline bool cpu_has_vmx_flexpriority(void)
896 {
897         return cpu_has_vmx_tpr_shadow() &&
898                 cpu_has_vmx_virtualize_apic_accesses();
899 }
900
901 static inline bool cpu_has_vmx_ept_execute_only(void)
902 {
903         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
904 }
905
906 static inline bool cpu_has_vmx_eptp_uncacheable(void)
907 {
908         return vmx_capability.ept & VMX_EPTP_UC_BIT;
909 }
910
911 static inline bool cpu_has_vmx_eptp_writeback(void)
912 {
913         return vmx_capability.ept & VMX_EPTP_WB_BIT;
914 }
915
916 static inline bool cpu_has_vmx_ept_2m_page(void)
917 {
918         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
919 }
920
921 static inline bool cpu_has_vmx_ept_1g_page(void)
922 {
923         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
924 }
925
926 static inline bool cpu_has_vmx_ept_4levels(void)
927 {
928         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
929 }
930
931 static inline bool cpu_has_vmx_ept_ad_bits(void)
932 {
933         return vmx_capability.ept & VMX_EPT_AD_BIT;
934 }
935
936 static inline bool cpu_has_vmx_invept_context(void)
937 {
938         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
939 }
940
941 static inline bool cpu_has_vmx_invept_global(void)
942 {
943         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
944 }
945
946 static inline bool cpu_has_vmx_invvpid_single(void)
947 {
948         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
949 }
950
951 static inline bool cpu_has_vmx_invvpid_global(void)
952 {
953         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
954 }
955
956 static inline bool cpu_has_vmx_ept(void)
957 {
958         return vmcs_config.cpu_based_2nd_exec_ctrl &
959                 SECONDARY_EXEC_ENABLE_EPT;
960 }
961
962 static inline bool cpu_has_vmx_unrestricted_guest(void)
963 {
964         return vmcs_config.cpu_based_2nd_exec_ctrl &
965                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
966 }
967
968 static inline bool cpu_has_vmx_ple(void)
969 {
970         return vmcs_config.cpu_based_2nd_exec_ctrl &
971                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
972 }
973
974 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
975 {
976         return flexpriority_enabled && irqchip_in_kernel(kvm);
977 }
978
979 static inline bool cpu_has_vmx_vpid(void)
980 {
981         return vmcs_config.cpu_based_2nd_exec_ctrl &
982                 SECONDARY_EXEC_ENABLE_VPID;
983 }
984
985 static inline bool cpu_has_vmx_rdtscp(void)
986 {
987         return vmcs_config.cpu_based_2nd_exec_ctrl &
988                 SECONDARY_EXEC_RDTSCP;
989 }
990
991 static inline bool cpu_has_vmx_invpcid(void)
992 {
993         return vmcs_config.cpu_based_2nd_exec_ctrl &
994                 SECONDARY_EXEC_ENABLE_INVPCID;
995 }
996
997 static inline bool cpu_has_virtual_nmis(void)
998 {
999         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1000 }
1001
1002 static inline bool cpu_has_vmx_wbinvd_exit(void)
1003 {
1004         return vmcs_config.cpu_based_2nd_exec_ctrl &
1005                 SECONDARY_EXEC_WBINVD_EXITING;
1006 }
1007
1008 static inline bool cpu_has_vmx_shadow_vmcs(void)
1009 {
1010         u64 vmx_msr;
1011         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1012         /* check if the cpu supports writing r/o exit information fields */
1013         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1014                 return false;
1015
1016         return vmcs_config.cpu_based_2nd_exec_ctrl &
1017                 SECONDARY_EXEC_SHADOW_VMCS;
1018 }
1019
1020 static inline bool report_flexpriority(void)
1021 {
1022         return flexpriority_enabled;
1023 }
1024
1025 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1026 {
1027         return vmcs12->cpu_based_vm_exec_control & bit;
1028 }
1029
1030 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1031 {
1032         return (vmcs12->cpu_based_vm_exec_control &
1033                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1034                 (vmcs12->secondary_vm_exec_control & bit);
1035 }
1036
1037 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
1038         struct kvm_vcpu *vcpu)
1039 {
1040         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1041 }
1042
1043 static inline bool is_exception(u32 intr_info)
1044 {
1045         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1046                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1047 }
1048
1049 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
1050 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1051                         struct vmcs12 *vmcs12,
1052                         u32 reason, unsigned long qualification);
1053
1054 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1055 {
1056         int i;
1057
1058         for (i = 0; i < vmx->nmsrs; ++i)
1059                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1060                         return i;
1061         return -1;
1062 }
1063
1064 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1065 {
1066     struct {
1067         u64 vpid : 16;
1068         u64 rsvd : 48;
1069         u64 gva;
1070     } operand = { vpid, 0, gva };
1071
1072     asm volatile (__ex(ASM_VMX_INVVPID)
1073                   /* CF==1 or ZF==1 --> rc = -1 */
1074                   "; ja 1f ; ud2 ; 1:"
1075                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1076 }
1077
1078 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1079 {
1080         struct {
1081                 u64 eptp, gpa;
1082         } operand = {eptp, gpa};
1083
1084         asm volatile (__ex(ASM_VMX_INVEPT)
1085                         /* CF==1 or ZF==1 --> rc = -1 */
1086                         "; ja 1f ; ud2 ; 1:\n"
1087                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1088 }
1089
1090 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1091 {
1092         int i;
1093
1094         i = __find_msr_index(vmx, msr);
1095         if (i >= 0)
1096                 return &vmx->guest_msrs[i];
1097         return NULL;
1098 }
1099
1100 static void vmcs_clear(struct vmcs *vmcs)
1101 {
1102         u64 phys_addr = __pa(vmcs);
1103         u8 error;
1104
1105         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1106                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1107                       : "cc", "memory");
1108         if (error)
1109                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1110                        vmcs, phys_addr);
1111 }
1112
1113 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1114 {
1115         vmcs_clear(loaded_vmcs->vmcs);
1116         loaded_vmcs->cpu = -1;
1117         loaded_vmcs->launched = 0;
1118 }
1119
1120 static void vmcs_load(struct vmcs *vmcs)
1121 {
1122         u64 phys_addr = __pa(vmcs);
1123         u8 error;
1124
1125         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1126                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1127                         : "cc", "memory");
1128         if (error)
1129                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1130                        vmcs, phys_addr);
1131 }
1132
1133 #ifdef CONFIG_KEXEC
1134 /*
1135  * This bitmap is used to indicate whether the vmclear
1136  * operation is enabled on all cpus. All disabled by
1137  * default.
1138  */
1139 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1140
1141 static inline void crash_enable_local_vmclear(int cpu)
1142 {
1143         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1144 }
1145
1146 static inline void crash_disable_local_vmclear(int cpu)
1147 {
1148         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1149 }
1150
1151 static inline int crash_local_vmclear_enabled(int cpu)
1152 {
1153         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1154 }
1155
1156 static void crash_vmclear_local_loaded_vmcss(void)
1157 {
1158         int cpu = raw_smp_processor_id();
1159         struct loaded_vmcs *v;
1160
1161         if (!crash_local_vmclear_enabled(cpu))
1162                 return;
1163
1164         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1165                             loaded_vmcss_on_cpu_link)
1166                 vmcs_clear(v->vmcs);
1167 }
1168 #else
1169 static inline void crash_enable_local_vmclear(int cpu) { }
1170 static inline void crash_disable_local_vmclear(int cpu) { }
1171 #endif /* CONFIG_KEXEC */
1172
1173 static void __loaded_vmcs_clear(void *arg)
1174 {
1175         struct loaded_vmcs *loaded_vmcs = arg;
1176         int cpu = raw_smp_processor_id();
1177
1178         if (loaded_vmcs->cpu != cpu)
1179                 return; /* vcpu migration can race with cpu offline */
1180         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1181                 per_cpu(current_vmcs, cpu) = NULL;
1182         crash_disable_local_vmclear(cpu);
1183         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1184
1185         /*
1186          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1187          * is before setting loaded_vmcs->vcpu to -1 which is done in
1188          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1189          * then adds the vmcs into percpu list before it is deleted.
1190          */
1191         smp_wmb();
1192
1193         loaded_vmcs_init(loaded_vmcs);
1194         crash_enable_local_vmclear(cpu);
1195 }
1196
1197 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1198 {
1199         int cpu = loaded_vmcs->cpu;
1200
1201         if (cpu != -1)
1202                 smp_call_function_single(cpu,
1203                          __loaded_vmcs_clear, loaded_vmcs, 1);
1204 }
1205
1206 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1207 {
1208         if (vmx->vpid == 0)
1209                 return;
1210
1211         if (cpu_has_vmx_invvpid_single())
1212                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1213 }
1214
1215 static inline void vpid_sync_vcpu_global(void)
1216 {
1217         if (cpu_has_vmx_invvpid_global())
1218                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1219 }
1220
1221 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1222 {
1223         if (cpu_has_vmx_invvpid_single())
1224                 vpid_sync_vcpu_single(vmx);
1225         else
1226                 vpid_sync_vcpu_global();
1227 }
1228
1229 static inline void ept_sync_global(void)
1230 {
1231         if (cpu_has_vmx_invept_global())
1232                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1233 }
1234
1235 static inline void ept_sync_context(u64 eptp)
1236 {
1237         if (enable_ept) {
1238                 if (cpu_has_vmx_invept_context())
1239                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1240                 else
1241                         ept_sync_global();
1242         }
1243 }
1244
1245 static __always_inline unsigned long vmcs_readl(unsigned long field)
1246 {
1247         unsigned long value;
1248
1249         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1250                       : "=a"(value) : "d"(field) : "cc");
1251         return value;
1252 }
1253
1254 static __always_inline u16 vmcs_read16(unsigned long field)
1255 {
1256         return vmcs_readl(field);
1257 }
1258
1259 static __always_inline u32 vmcs_read32(unsigned long field)
1260 {
1261         return vmcs_readl(field);
1262 }
1263
1264 static __always_inline u64 vmcs_read64(unsigned long field)
1265 {
1266 #ifdef CONFIG_X86_64
1267         return vmcs_readl(field);
1268 #else
1269         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1270 #endif
1271 }
1272
1273 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1274 {
1275         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1276                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1277         dump_stack();
1278 }
1279
1280 static void vmcs_writel(unsigned long field, unsigned long value)
1281 {
1282         u8 error;
1283
1284         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1285                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1286         if (unlikely(error))
1287                 vmwrite_error(field, value);
1288 }
1289
1290 static void vmcs_write16(unsigned long field, u16 value)
1291 {
1292         vmcs_writel(field, value);
1293 }
1294
1295 static void vmcs_write32(unsigned long field, u32 value)
1296 {
1297         vmcs_writel(field, value);
1298 }
1299
1300 static void vmcs_write64(unsigned long field, u64 value)
1301 {
1302         vmcs_writel(field, value);
1303 #ifndef CONFIG_X86_64
1304         asm volatile ("");
1305         vmcs_writel(field+1, value >> 32);
1306 #endif
1307 }
1308
1309 static void vmcs_clear_bits(unsigned long field, u32 mask)
1310 {
1311         vmcs_writel(field, vmcs_readl(field) & ~mask);
1312 }
1313
1314 static void vmcs_set_bits(unsigned long field, u32 mask)
1315 {
1316         vmcs_writel(field, vmcs_readl(field) | mask);
1317 }
1318
1319 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1320 {
1321         vmx->segment_cache.bitmask = 0;
1322 }
1323
1324 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1325                                        unsigned field)
1326 {
1327         bool ret;
1328         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1329
1330         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1331                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1332                 vmx->segment_cache.bitmask = 0;
1333         }
1334         ret = vmx->segment_cache.bitmask & mask;
1335         vmx->segment_cache.bitmask |= mask;
1336         return ret;
1337 }
1338
1339 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1340 {
1341         u16 *p = &vmx->segment_cache.seg[seg].selector;
1342
1343         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1344                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1345         return *p;
1346 }
1347
1348 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1349 {
1350         ulong *p = &vmx->segment_cache.seg[seg].base;
1351
1352         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1353                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1354         return *p;
1355 }
1356
1357 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1358 {
1359         u32 *p = &vmx->segment_cache.seg[seg].limit;
1360
1361         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1362                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1363         return *p;
1364 }
1365
1366 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1367 {
1368         u32 *p = &vmx->segment_cache.seg[seg].ar;
1369
1370         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1371                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1372         return *p;
1373 }
1374
1375 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1376 {
1377         u32 eb;
1378
1379         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1380              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1381         if ((vcpu->guest_debug &
1382              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1383             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1384                 eb |= 1u << BP_VECTOR;
1385         if (to_vmx(vcpu)->rmode.vm86_active)
1386                 eb = ~0;
1387         if (enable_ept)
1388                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1389         if (vcpu->fpu_active)
1390                 eb &= ~(1u << NM_VECTOR);
1391
1392         /* When we are running a nested L2 guest and L1 specified for it a
1393          * certain exception bitmap, we must trap the same exceptions and pass
1394          * them to L1. When running L2, we will only handle the exceptions
1395          * specified above if L1 did not want them.
1396          */
1397         if (is_guest_mode(vcpu))
1398                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1399
1400         vmcs_write32(EXCEPTION_BITMAP, eb);
1401 }
1402
1403 static void clear_atomic_switch_msr_special(unsigned long entry,
1404                 unsigned long exit)
1405 {
1406         vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1407         vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1408 }
1409
1410 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1411 {
1412         unsigned i;
1413         struct msr_autoload *m = &vmx->msr_autoload;
1414
1415         switch (msr) {
1416         case MSR_EFER:
1417                 if (cpu_has_load_ia32_efer) {
1418                         clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1419                                         VM_EXIT_LOAD_IA32_EFER);
1420                         return;
1421                 }
1422                 break;
1423         case MSR_CORE_PERF_GLOBAL_CTRL:
1424                 if (cpu_has_load_perf_global_ctrl) {
1425                         clear_atomic_switch_msr_special(
1426                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1427                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1428                         return;
1429                 }
1430                 break;
1431         }
1432
1433         for (i = 0; i < m->nr; ++i)
1434                 if (m->guest[i].index == msr)
1435                         break;
1436
1437         if (i == m->nr)
1438                 return;
1439         --m->nr;
1440         m->guest[i] = m->guest[m->nr];
1441         m->host[i] = m->host[m->nr];
1442         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1443         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1444 }
1445
1446 static void add_atomic_switch_msr_special(unsigned long entry,
1447                 unsigned long exit, unsigned long guest_val_vmcs,
1448                 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1449 {
1450         vmcs_write64(guest_val_vmcs, guest_val);
1451         vmcs_write64(host_val_vmcs, host_val);
1452         vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1453         vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1454 }
1455
1456 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1457                                   u64 guest_val, u64 host_val)
1458 {
1459         unsigned i;
1460         struct msr_autoload *m = &vmx->msr_autoload;
1461
1462         switch (msr) {
1463         case MSR_EFER:
1464                 if (cpu_has_load_ia32_efer) {
1465                         add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1466                                         VM_EXIT_LOAD_IA32_EFER,
1467                                         GUEST_IA32_EFER,
1468                                         HOST_IA32_EFER,
1469                                         guest_val, host_val);
1470                         return;
1471                 }
1472                 break;
1473         case MSR_CORE_PERF_GLOBAL_CTRL:
1474                 if (cpu_has_load_perf_global_ctrl) {
1475                         add_atomic_switch_msr_special(
1476                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1477                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1478                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1479                                         HOST_IA32_PERF_GLOBAL_CTRL,
1480                                         guest_val, host_val);
1481                         return;
1482                 }
1483                 break;
1484         }
1485
1486         for (i = 0; i < m->nr; ++i)
1487                 if (m->guest[i].index == msr)
1488                         break;
1489
1490         if (i == NR_AUTOLOAD_MSRS) {
1491                 printk_once(KERN_WARNING"Not enough mst switch entries. "
1492                                 "Can't add msr %x\n", msr);
1493                 return;
1494         } else if (i == m->nr) {
1495                 ++m->nr;
1496                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1497                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1498         }
1499
1500         m->guest[i].index = msr;
1501         m->guest[i].value = guest_val;
1502         m->host[i].index = msr;
1503         m->host[i].value = host_val;
1504 }
1505
1506 static void reload_tss(void)
1507 {
1508         /*
1509          * VT restores TR but not its size.  Useless.
1510          */
1511         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1512         struct desc_struct *descs;
1513
1514         descs = (void *)gdt->address;
1515         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1516         load_TR_desc();
1517 }
1518
1519 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1520 {
1521         u64 guest_efer;
1522         u64 ignore_bits;
1523
1524         guest_efer = vmx->vcpu.arch.efer;
1525
1526         /*
1527          * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1528          * outside long mode
1529          */
1530         ignore_bits = EFER_NX | EFER_SCE;
1531 #ifdef CONFIG_X86_64
1532         ignore_bits |= EFER_LMA | EFER_LME;
1533         /* SCE is meaningful only in long mode on Intel */
1534         if (guest_efer & EFER_LMA)
1535                 ignore_bits &= ~(u64)EFER_SCE;
1536 #endif
1537         guest_efer &= ~ignore_bits;
1538         guest_efer |= host_efer & ignore_bits;
1539         vmx->guest_msrs[efer_offset].data = guest_efer;
1540         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1541
1542         clear_atomic_switch_msr(vmx, MSR_EFER);
1543         /* On ept, can't emulate nx, and must switch nx atomically */
1544         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1545                 guest_efer = vmx->vcpu.arch.efer;
1546                 if (!(guest_efer & EFER_LMA))
1547                         guest_efer &= ~EFER_LME;
1548                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1549                 return false;
1550         }
1551
1552         return true;
1553 }
1554
1555 static unsigned long segment_base(u16 selector)
1556 {
1557         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1558         struct desc_struct *d;
1559         unsigned long table_base;
1560         unsigned long v;
1561
1562         if (!(selector & ~3))
1563                 return 0;
1564
1565         table_base = gdt->address;
1566
1567         if (selector & 4) {           /* from ldt */
1568                 u16 ldt_selector = kvm_read_ldt();
1569
1570                 if (!(ldt_selector & ~3))
1571                         return 0;
1572
1573                 table_base = segment_base(ldt_selector);
1574         }
1575         d = (struct desc_struct *)(table_base + (selector & ~7));
1576         v = get_desc_base(d);
1577 #ifdef CONFIG_X86_64
1578        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1579                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1580 #endif
1581         return v;
1582 }
1583
1584 static inline unsigned long kvm_read_tr_base(void)
1585 {
1586         u16 tr;
1587         asm("str %0" : "=g"(tr));
1588         return segment_base(tr);
1589 }
1590
1591 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1592 {
1593         struct vcpu_vmx *vmx = to_vmx(vcpu);
1594         int i;
1595
1596         if (vmx->host_state.loaded)
1597                 return;
1598
1599         vmx->host_state.loaded = 1;
1600         /*
1601          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1602          * allow segment selectors with cpl > 0 or ti == 1.
1603          */
1604         vmx->host_state.ldt_sel = kvm_read_ldt();
1605         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1606         savesegment(fs, vmx->host_state.fs_sel);
1607         if (!(vmx->host_state.fs_sel & 7)) {
1608                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1609                 vmx->host_state.fs_reload_needed = 0;
1610         } else {
1611                 vmcs_write16(HOST_FS_SELECTOR, 0);
1612                 vmx->host_state.fs_reload_needed = 1;
1613         }
1614         savesegment(gs, vmx->host_state.gs_sel);
1615         if (!(vmx->host_state.gs_sel & 7))
1616                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1617         else {
1618                 vmcs_write16(HOST_GS_SELECTOR, 0);
1619                 vmx->host_state.gs_ldt_reload_needed = 1;
1620         }
1621
1622 #ifdef CONFIG_X86_64
1623         savesegment(ds, vmx->host_state.ds_sel);
1624         savesegment(es, vmx->host_state.es_sel);
1625 #endif
1626
1627 #ifdef CONFIG_X86_64
1628         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1629         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1630 #else
1631         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1632         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1633 #endif
1634
1635 #ifdef CONFIG_X86_64
1636         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1637         if (is_long_mode(&vmx->vcpu))
1638                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1639 #endif
1640         for (i = 0; i < vmx->save_nmsrs; ++i)
1641                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1642                                    vmx->guest_msrs[i].data,
1643                                    vmx->guest_msrs[i].mask);
1644 }
1645
1646 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1647 {
1648         if (!vmx->host_state.loaded)
1649                 return;
1650
1651         ++vmx->vcpu.stat.host_state_reload;
1652         vmx->host_state.loaded = 0;
1653 #ifdef CONFIG_X86_64
1654         if (is_long_mode(&vmx->vcpu))
1655                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1656 #endif
1657         if (vmx->host_state.gs_ldt_reload_needed) {
1658                 kvm_load_ldt(vmx->host_state.ldt_sel);
1659 #ifdef CONFIG_X86_64
1660                 load_gs_index(vmx->host_state.gs_sel);
1661 #else
1662                 loadsegment(gs, vmx->host_state.gs_sel);
1663 #endif
1664         }
1665         if (vmx->host_state.fs_reload_needed)
1666                 loadsegment(fs, vmx->host_state.fs_sel);
1667 #ifdef CONFIG_X86_64
1668         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1669                 loadsegment(ds, vmx->host_state.ds_sel);
1670                 loadsegment(es, vmx->host_state.es_sel);
1671         }
1672 #endif
1673         reload_tss();
1674 #ifdef CONFIG_X86_64
1675         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1676 #endif
1677         /*
1678          * If the FPU is not active (through the host task or
1679          * the guest vcpu), then restore the cr0.TS bit.
1680          */
1681         if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1682                 stts();
1683         load_gdt(&__get_cpu_var(host_gdt));
1684 }
1685
1686 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1687 {
1688         preempt_disable();
1689         __vmx_load_host_state(vmx);
1690         preempt_enable();
1691 }
1692
1693 /*
1694  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1695  * vcpu mutex is already taken.
1696  */
1697 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1698 {
1699         struct vcpu_vmx *vmx = to_vmx(vcpu);
1700         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1701
1702         if (!vmm_exclusive)
1703                 kvm_cpu_vmxon(phys_addr);
1704         else if (vmx->loaded_vmcs->cpu != cpu)
1705                 loaded_vmcs_clear(vmx->loaded_vmcs);
1706
1707         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1708                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1709                 vmcs_load(vmx->loaded_vmcs->vmcs);
1710         }
1711
1712         if (vmx->loaded_vmcs->cpu != cpu) {
1713                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1714                 unsigned long sysenter_esp;
1715
1716                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1717                 local_irq_disable();
1718                 crash_disable_local_vmclear(cpu);
1719
1720                 /*
1721                  * Read loaded_vmcs->cpu should be before fetching
1722                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1723                  * See the comments in __loaded_vmcs_clear().
1724                  */
1725                 smp_rmb();
1726
1727                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1728                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1729                 crash_enable_local_vmclear(cpu);
1730                 local_irq_enable();
1731
1732                 /*
1733                  * Linux uses per-cpu TSS and GDT, so set these when switching
1734                  * processors.
1735                  */
1736                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1737                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1738
1739                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1740                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1741                 vmx->loaded_vmcs->cpu = cpu;
1742         }
1743 }
1744
1745 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1746 {
1747         __vmx_load_host_state(to_vmx(vcpu));
1748         if (!vmm_exclusive) {
1749                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1750                 vcpu->cpu = -1;
1751                 kvm_cpu_vmxoff();
1752         }
1753 }
1754
1755 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1756 {
1757         ulong cr0;
1758
1759         if (vcpu->fpu_active)
1760                 return;
1761         vcpu->fpu_active = 1;
1762         cr0 = vmcs_readl(GUEST_CR0);
1763         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1764         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1765         vmcs_writel(GUEST_CR0, cr0);
1766         update_exception_bitmap(vcpu);
1767         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1768         if (is_guest_mode(vcpu))
1769                 vcpu->arch.cr0_guest_owned_bits &=
1770                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1771         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1772 }
1773
1774 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1775
1776 /*
1777  * Return the cr0 value that a nested guest would read. This is a combination
1778  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1779  * its hypervisor (cr0_read_shadow).
1780  */
1781 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1782 {
1783         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1784                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1785 }
1786 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1787 {
1788         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1789                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1790 }
1791
1792 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1793 {
1794         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1795          * set this *before* calling this function.
1796          */
1797         vmx_decache_cr0_guest_bits(vcpu);
1798         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1799         update_exception_bitmap(vcpu);
1800         vcpu->arch.cr0_guest_owned_bits = 0;
1801         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1802         if (is_guest_mode(vcpu)) {
1803                 /*
1804                  * L1's specified read shadow might not contain the TS bit,
1805                  * so now that we turned on shadowing of this bit, we need to
1806                  * set this bit of the shadow. Like in nested_vmx_run we need
1807                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1808                  * up-to-date here because we just decached cr0.TS (and we'll
1809                  * only update vmcs12->guest_cr0 on nested exit).
1810                  */
1811                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1812                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1813                         (vcpu->arch.cr0 & X86_CR0_TS);
1814                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1815         } else
1816                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1817 }
1818
1819 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1820 {
1821         unsigned long rflags, save_rflags;
1822
1823         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1824                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1825                 rflags = vmcs_readl(GUEST_RFLAGS);
1826                 if (to_vmx(vcpu)->rmode.vm86_active) {
1827                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1828                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1829                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1830                 }
1831                 to_vmx(vcpu)->rflags = rflags;
1832         }
1833         return to_vmx(vcpu)->rflags;
1834 }
1835
1836 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1837 {
1838         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1839         to_vmx(vcpu)->rflags = rflags;
1840         if (to_vmx(vcpu)->rmode.vm86_active) {
1841                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1842                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1843         }
1844         vmcs_writel(GUEST_RFLAGS, rflags);
1845 }
1846
1847 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1848 {
1849         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1850         int ret = 0;
1851
1852         if (interruptibility & GUEST_INTR_STATE_STI)
1853                 ret |= KVM_X86_SHADOW_INT_STI;
1854         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1855                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1856
1857         return ret & mask;
1858 }
1859
1860 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1861 {
1862         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1863         u32 interruptibility = interruptibility_old;
1864
1865         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1866
1867         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1868                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1869         else if (mask & KVM_X86_SHADOW_INT_STI)
1870                 interruptibility |= GUEST_INTR_STATE_STI;
1871
1872         if ((interruptibility != interruptibility_old))
1873                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1874 }
1875
1876 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1877 {
1878         unsigned long rip;
1879
1880         rip = kvm_rip_read(vcpu);
1881         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1882         kvm_rip_write(vcpu, rip);
1883
1884         /* skipping an emulated instruction also counts */
1885         vmx_set_interrupt_shadow(vcpu, 0);
1886 }
1887
1888 /*
1889  * KVM wants to inject page-faults which it got to the guest. This function
1890  * checks whether in a nested guest, we need to inject them to L1 or L2.
1891  * This function assumes it is called with the exit reason in vmcs02 being
1892  * a #PF exception (this is the only case in which KVM injects a #PF when L2
1893  * is running).
1894  */
1895 static int nested_pf_handled(struct kvm_vcpu *vcpu)
1896 {
1897         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1898
1899         /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1900         if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
1901                 return 0;
1902
1903         nested_vmx_vmexit(vcpu);
1904         return 1;
1905 }
1906
1907 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1908                                 bool has_error_code, u32 error_code,
1909                                 bool reinject)
1910 {
1911         struct vcpu_vmx *vmx = to_vmx(vcpu);
1912         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1913
1914         if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1915                 nested_pf_handled(vcpu))
1916                 return;
1917
1918         if (has_error_code) {
1919                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1920                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1921         }
1922
1923         if (vmx->rmode.vm86_active) {
1924                 int inc_eip = 0;
1925                 if (kvm_exception_is_soft(nr))
1926                         inc_eip = vcpu->arch.event_exit_inst_len;
1927                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1928                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1929                 return;
1930         }
1931
1932         if (kvm_exception_is_soft(nr)) {
1933                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1934                              vmx->vcpu.arch.event_exit_inst_len);
1935                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1936         } else
1937                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1938
1939         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1940 }
1941
1942 static bool vmx_rdtscp_supported(void)
1943 {
1944         return cpu_has_vmx_rdtscp();
1945 }
1946
1947 static bool vmx_invpcid_supported(void)
1948 {
1949         return cpu_has_vmx_invpcid() && enable_ept;
1950 }
1951
1952 /*
1953  * Swap MSR entry in host/guest MSR entry array.
1954  */
1955 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1956 {
1957         struct shared_msr_entry tmp;
1958
1959         tmp = vmx->guest_msrs[to];
1960         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1961         vmx->guest_msrs[from] = tmp;
1962 }
1963
1964 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
1965 {
1966         unsigned long *msr_bitmap;
1967
1968         if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
1969                 if (is_long_mode(vcpu))
1970                         msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
1971                 else
1972                         msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
1973         } else {
1974                 if (is_long_mode(vcpu))
1975                         msr_bitmap = vmx_msr_bitmap_longmode;
1976                 else
1977                         msr_bitmap = vmx_msr_bitmap_legacy;
1978         }
1979
1980         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1981 }
1982
1983 /*
1984  * Set up the vmcs to automatically save and restore system
1985  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1986  * mode, as fiddling with msrs is very expensive.
1987  */
1988 static void setup_msrs(struct vcpu_vmx *vmx)
1989 {
1990         int save_nmsrs, index;
1991
1992         save_nmsrs = 0;
1993 #ifdef CONFIG_X86_64
1994         if (is_long_mode(&vmx->vcpu)) {
1995                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1996                 if (index >= 0)
1997                         move_msr_up(vmx, index, save_nmsrs++);
1998                 index = __find_msr_index(vmx, MSR_LSTAR);
1999                 if (index >= 0)
2000                         move_msr_up(vmx, index, save_nmsrs++);
2001                 index = __find_msr_index(vmx, MSR_CSTAR);
2002                 if (index >= 0)
2003                         move_msr_up(vmx, index, save_nmsrs++);
2004                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2005                 if (index >= 0 && vmx->rdtscp_enabled)
2006                         move_msr_up(vmx, index, save_nmsrs++);
2007                 /*
2008                  * MSR_STAR is only needed on long mode guests, and only
2009                  * if efer.sce is enabled.
2010                  */
2011                 index = __find_msr_index(vmx, MSR_STAR);
2012                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2013                         move_msr_up(vmx, index, save_nmsrs++);
2014         }
2015 #endif
2016         index = __find_msr_index(vmx, MSR_EFER);
2017         if (index >= 0 && update_transition_efer(vmx, index))
2018                 move_msr_up(vmx, index, save_nmsrs++);
2019
2020         vmx->save_nmsrs = save_nmsrs;
2021
2022         if (cpu_has_vmx_msr_bitmap())
2023                 vmx_set_msr_bitmap(&vmx->vcpu);
2024 }
2025
2026 /*
2027  * reads and returns guest's timestamp counter "register"
2028  * guest_tsc = host_tsc + tsc_offset    -- 21.3
2029  */
2030 static u64 guest_read_tsc(void)
2031 {
2032         u64 host_tsc, tsc_offset;
2033
2034         rdtscll(host_tsc);
2035         tsc_offset = vmcs_read64(TSC_OFFSET);
2036         return host_tsc + tsc_offset;
2037 }
2038
2039 /*
2040  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2041  * counter, even if a nested guest (L2) is currently running.
2042  */
2043 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2044 {
2045         u64 tsc_offset;
2046
2047         tsc_offset = is_guest_mode(vcpu) ?
2048                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2049                 vmcs_read64(TSC_OFFSET);
2050         return host_tsc + tsc_offset;
2051 }
2052
2053 /*
2054  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2055  * software catchup for faster rates on slower CPUs.
2056  */
2057 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2058 {
2059         if (!scale)
2060                 return;
2061
2062         if (user_tsc_khz > tsc_khz) {
2063                 vcpu->arch.tsc_catchup = 1;
2064                 vcpu->arch.tsc_always_catchup = 1;
2065         } else
2066                 WARN(1, "user requested TSC rate below hardware speed\n");
2067 }
2068
2069 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2070 {
2071         return vmcs_read64(TSC_OFFSET);
2072 }
2073
2074 /*
2075  * writes 'offset' into guest's timestamp counter offset register
2076  */
2077 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2078 {
2079         if (is_guest_mode(vcpu)) {
2080                 /*
2081                  * We're here if L1 chose not to trap WRMSR to TSC. According
2082                  * to the spec, this should set L1's TSC; The offset that L1
2083                  * set for L2 remains unchanged, and still needs to be added
2084                  * to the newly set TSC to get L2's TSC.
2085                  */
2086                 struct vmcs12 *vmcs12;
2087                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2088                 /* recalculate vmcs02.TSC_OFFSET: */
2089                 vmcs12 = get_vmcs12(vcpu);
2090                 vmcs_write64(TSC_OFFSET, offset +
2091                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2092                          vmcs12->tsc_offset : 0));
2093         } else {
2094                 vmcs_write64(TSC_OFFSET, offset);
2095         }
2096 }
2097
2098 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2099 {
2100         u64 offset = vmcs_read64(TSC_OFFSET);
2101         vmcs_write64(TSC_OFFSET, offset + adjustment);
2102         if (is_guest_mode(vcpu)) {
2103                 /* Even when running L2, the adjustment needs to apply to L1 */
2104                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2105         }
2106 }
2107
2108 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2109 {
2110         return target_tsc - native_read_tsc();
2111 }
2112
2113 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2114 {
2115         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2116         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2117 }
2118
2119 /*
2120  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2121  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2122  * all guests if the "nested" module option is off, and can also be disabled
2123  * for a single guest by disabling its VMX cpuid bit.
2124  */
2125 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2126 {
2127         return nested && guest_cpuid_has_vmx(vcpu);
2128 }
2129
2130 /*
2131  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2132  * returned for the various VMX controls MSRs when nested VMX is enabled.
2133  * The same values should also be used to verify that vmcs12 control fields are
2134  * valid during nested entry from L1 to L2.
2135  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2136  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2137  * bit in the high half is on if the corresponding bit in the control field
2138  * may be on. See also vmx_control_verify().
2139  * TODO: allow these variables to be modified (downgraded) by module options
2140  * or other means.
2141  */
2142 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2143 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2144 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2145 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2146 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2147 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2148 static __init void nested_vmx_setup_ctls_msrs(void)
2149 {
2150         /*
2151          * Note that as a general rule, the high half of the MSRs (bits in
2152          * the control fields which may be 1) should be initialized by the
2153          * intersection of the underlying hardware's MSR (i.e., features which
2154          * can be supported) and the list of features we want to expose -
2155          * because they are known to be properly supported in our code.
2156          * Also, usually, the low half of the MSRs (bits which must be 1) can
2157          * be set to 0, meaning that L1 may turn off any of these bits. The
2158          * reason is that if one of these bits is necessary, it will appear
2159          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2160          * fields of vmcs01 and vmcs02, will turn these bits off - and
2161          * nested_vmx_exit_handled() will not pass related exits to L1.
2162          * These rules have exceptions below.
2163          */
2164
2165         /* pin-based controls */
2166         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2167               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2168         /*
2169          * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2170          * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2171          */
2172         nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2173         nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2174                 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
2175                 PIN_BASED_VMX_PREEMPTION_TIMER;
2176         nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2177
2178         /*
2179          * Exit controls
2180          * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2181          * 17 must be 1.
2182          */
2183         nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2184         /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
2185 #ifdef CONFIG_X86_64
2186         nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
2187 #else
2188         nested_vmx_exit_ctls_high = 0;
2189 #endif
2190         nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2191
2192         /* entry controls */
2193         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2194                 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2195         /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2196         nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2197         nested_vmx_entry_ctls_high &=
2198                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
2199         nested_vmx_entry_ctls_high |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2200
2201         /* cpu-based controls */
2202         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2203                 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2204         nested_vmx_procbased_ctls_low = 0;
2205         nested_vmx_procbased_ctls_high &=
2206                 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2207                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2208                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2209                 CPU_BASED_CR3_STORE_EXITING |
2210 #ifdef CONFIG_X86_64
2211                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2212 #endif
2213                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2214                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2215                 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2216                 CPU_BASED_PAUSE_EXITING |
2217                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2218         /*
2219          * We can allow some features even when not supported by the
2220          * hardware. For example, L1 can specify an MSR bitmap - and we
2221          * can use it to avoid exits to L1 - even when L0 runs L2
2222          * without MSR bitmaps.
2223          */
2224         nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2225
2226         /* secondary cpu-based controls */
2227         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2228                 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2229         nested_vmx_secondary_ctls_low = 0;
2230         nested_vmx_secondary_ctls_high &=
2231                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2232                 SECONDARY_EXEC_WBINVD_EXITING;
2233
2234         /* miscellaneous data */
2235         rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2236         nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
2237                 VMX_MISC_SAVE_EFER_LMA;
2238         nested_vmx_misc_high = 0;
2239 }
2240
2241 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2242 {
2243         /*
2244          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2245          */
2246         return ((control & high) | low) == control;
2247 }
2248
2249 static inline u64 vmx_control_msr(u32 low, u32 high)
2250 {
2251         return low | ((u64)high << 32);
2252 }
2253
2254 /*
2255  * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2256  * also let it use VMX-specific MSRs.
2257  * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2258  * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2259  * like all other MSRs).
2260  */
2261 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2262 {
2263         if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2264                      msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2265                 /*
2266                  * According to the spec, processors which do not support VMX
2267                  * should throw a #GP(0) when VMX capability MSRs are read.
2268                  */
2269                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2270                 return 1;
2271         }
2272
2273         switch (msr_index) {
2274         case MSR_IA32_FEATURE_CONTROL:
2275                 *pdata = 0;
2276                 break;
2277         case MSR_IA32_VMX_BASIC:
2278                 /*
2279                  * This MSR reports some information about VMX support. We
2280                  * should return information about the VMX we emulate for the
2281                  * guest, and the VMCS structure we give it - not about the
2282                  * VMX support of the underlying hardware.
2283                  */
2284                 *pdata = VMCS12_REVISION |
2285                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2286                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2287                 break;
2288         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2289         case MSR_IA32_VMX_PINBASED_CTLS:
2290                 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2291                                         nested_vmx_pinbased_ctls_high);
2292                 break;
2293         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2294         case MSR_IA32_VMX_PROCBASED_CTLS:
2295                 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2296                                         nested_vmx_procbased_ctls_high);
2297                 break;
2298         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2299         case MSR_IA32_VMX_EXIT_CTLS:
2300                 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2301                                         nested_vmx_exit_ctls_high);
2302                 break;
2303         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2304         case MSR_IA32_VMX_ENTRY_CTLS:
2305                 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2306                                         nested_vmx_entry_ctls_high);
2307                 break;
2308         case MSR_IA32_VMX_MISC:
2309                 *pdata = vmx_control_msr(nested_vmx_misc_low,
2310                                          nested_vmx_misc_high);
2311                 break;
2312         /*
2313          * These MSRs specify bits which the guest must keep fixed (on or off)
2314          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2315          * We picked the standard core2 setting.
2316          */
2317 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2318 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2319         case MSR_IA32_VMX_CR0_FIXED0:
2320                 *pdata = VMXON_CR0_ALWAYSON;
2321                 break;
2322         case MSR_IA32_VMX_CR0_FIXED1:
2323                 *pdata = -1ULL;
2324                 break;
2325         case MSR_IA32_VMX_CR4_FIXED0:
2326                 *pdata = VMXON_CR4_ALWAYSON;
2327                 break;
2328         case MSR_IA32_VMX_CR4_FIXED1:
2329                 *pdata = -1ULL;
2330                 break;
2331         case MSR_IA32_VMX_VMCS_ENUM:
2332                 *pdata = 0x1f;
2333                 break;
2334         case MSR_IA32_VMX_PROCBASED_CTLS2:
2335                 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2336                                         nested_vmx_secondary_ctls_high);
2337                 break;
2338         case MSR_IA32_VMX_EPT_VPID_CAP:
2339                 /* Currently, no nested ept or nested vpid */
2340                 *pdata = 0;
2341                 break;
2342         default:
2343                 return 0;
2344         }
2345
2346         return 1;
2347 }
2348
2349 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2350 {
2351         if (!nested_vmx_allowed(vcpu))
2352                 return 0;
2353
2354         if (msr_index == MSR_IA32_FEATURE_CONTROL)
2355                 /* TODO: the right thing. */
2356                 return 1;
2357         /*
2358          * No need to treat VMX capability MSRs specially: If we don't handle
2359          * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2360          */
2361         return 0;
2362 }
2363
2364 /*
2365  * Reads an msr value (of 'msr_index') into 'pdata'.
2366  * Returns 0 on success, non-0 otherwise.
2367  * Assumes vcpu_load() was already called.
2368  */
2369 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2370 {
2371         u64 data;
2372         struct shared_msr_entry *msr;
2373
2374         if (!pdata) {
2375                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2376                 return -EINVAL;
2377         }
2378
2379         switch (msr_index) {
2380 #ifdef CONFIG_X86_64
2381         case MSR_FS_BASE:
2382                 data = vmcs_readl(GUEST_FS_BASE);
2383                 break;
2384         case MSR_GS_BASE:
2385                 data = vmcs_readl(GUEST_GS_BASE);
2386                 break;
2387         case MSR_KERNEL_GS_BASE:
2388                 vmx_load_host_state(to_vmx(vcpu));
2389                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2390                 break;
2391 #endif
2392         case MSR_EFER:
2393                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2394         case MSR_IA32_TSC:
2395                 data = guest_read_tsc();
2396                 break;
2397         case MSR_IA32_SYSENTER_CS:
2398                 data = vmcs_read32(GUEST_SYSENTER_CS);
2399                 break;
2400         case MSR_IA32_SYSENTER_EIP:
2401                 data = vmcs_readl(GUEST_SYSENTER_EIP);
2402                 break;
2403         case MSR_IA32_SYSENTER_ESP:
2404                 data = vmcs_readl(GUEST_SYSENTER_ESP);
2405                 break;
2406         case MSR_TSC_AUX:
2407                 if (!to_vmx(vcpu)->rdtscp_enabled)
2408                         return 1;
2409                 /* Otherwise falls through */
2410         default:
2411                 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2412                         return 0;
2413                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2414                 if (msr) {
2415                         data = msr->data;
2416                         break;
2417                 }
2418                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2419         }
2420
2421         *pdata = data;
2422         return 0;
2423 }
2424
2425 /*
2426  * Writes msr value into into the appropriate "register".
2427  * Returns 0 on success, non-0 otherwise.
2428  * Assumes vcpu_load() was already called.
2429  */
2430 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2431 {
2432         struct vcpu_vmx *vmx = to_vmx(vcpu);
2433         struct shared_msr_entry *msr;
2434         int ret = 0;
2435         u32 msr_index = msr_info->index;
2436         u64 data = msr_info->data;
2437
2438         switch (msr_index) {
2439         case MSR_EFER:
2440                 ret = kvm_set_msr_common(vcpu, msr_info);
2441                 break;
2442 #ifdef CONFIG_X86_64
2443         case MSR_FS_BASE:
2444                 vmx_segment_cache_clear(vmx);
2445                 vmcs_writel(GUEST_FS_BASE, data);
2446                 break;
2447         case MSR_GS_BASE:
2448                 vmx_segment_cache_clear(vmx);
2449                 vmcs_writel(GUEST_GS_BASE, data);
2450                 break;
2451         case MSR_KERNEL_GS_BASE:
2452                 vmx_load_host_state(vmx);
2453                 vmx->msr_guest_kernel_gs_base = data;
2454                 break;
2455 #endif
2456         case MSR_IA32_SYSENTER_CS:
2457                 vmcs_write32(GUEST_SYSENTER_CS, data);
2458                 break;
2459         case MSR_IA32_SYSENTER_EIP:
2460                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2461                 break;
2462         case MSR_IA32_SYSENTER_ESP:
2463                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2464                 break;
2465         case MSR_IA32_TSC:
2466                 kvm_write_tsc(vcpu, msr_info);
2467                 break;
2468         case MSR_IA32_CR_PAT:
2469                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2470                         vmcs_write64(GUEST_IA32_PAT, data);
2471                         vcpu->arch.pat = data;
2472                         break;
2473                 }
2474                 ret = kvm_set_msr_common(vcpu, msr_info);
2475                 break;
2476         case MSR_IA32_TSC_ADJUST:
2477                 ret = kvm_set_msr_common(vcpu, msr_info);
2478                 break;
2479         case MSR_TSC_AUX:
2480                 if (!vmx->rdtscp_enabled)
2481                         return 1;
2482                 /* Check reserved bit, higher 32 bits should be zero */
2483                 if ((data >> 32) != 0)
2484                         return 1;
2485                 /* Otherwise falls through */
2486         default:
2487                 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2488                         break;
2489                 msr = find_msr_entry(vmx, msr_index);
2490                 if (msr) {
2491                         msr->data = data;
2492                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2493                                 preempt_disable();
2494                                 kvm_set_shared_msr(msr->index, msr->data,
2495                                                    msr->mask);
2496                                 preempt_enable();
2497                         }
2498                         break;
2499                 }
2500                 ret = kvm_set_msr_common(vcpu, msr_info);
2501         }
2502
2503         return ret;
2504 }
2505
2506 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2507 {
2508         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2509         switch (reg) {
2510         case VCPU_REGS_RSP:
2511                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2512                 break;
2513         case VCPU_REGS_RIP:
2514                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2515                 break;
2516         case VCPU_EXREG_PDPTR:
2517                 if (enable_ept)
2518                         ept_save_pdptrs(vcpu);
2519                 break;
2520         default:
2521                 break;
2522         }
2523 }
2524
2525 static __init int cpu_has_kvm_support(void)
2526 {
2527         return cpu_has_vmx();
2528 }
2529
2530 static __init int vmx_disabled_by_bios(void)
2531 {
2532         u64 msr;
2533
2534         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2535         if (msr & FEATURE_CONTROL_LOCKED) {
2536                 /* launched w/ TXT and VMX disabled */
2537                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2538                         && tboot_enabled())
2539                         return 1;
2540                 /* launched w/o TXT and VMX only enabled w/ TXT */
2541                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2542                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2543                         && !tboot_enabled()) {
2544                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2545                                 "activate TXT before enabling KVM\n");
2546                         return 1;
2547                 }
2548                 /* launched w/o TXT and VMX disabled */
2549                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2550                         && !tboot_enabled())
2551                         return 1;
2552         }
2553
2554         return 0;
2555 }
2556
2557 static void kvm_cpu_vmxon(u64 addr)
2558 {
2559         asm volatile (ASM_VMX_VMXON_RAX
2560                         : : "a"(&addr), "m"(addr)
2561                         : "memory", "cc");
2562 }
2563
2564 static int hardware_enable(void *garbage)
2565 {
2566         int cpu = raw_smp_processor_id();
2567         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2568         u64 old, test_bits;
2569
2570         if (read_cr4() & X86_CR4_VMXE)
2571                 return -EBUSY;
2572
2573         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2574
2575         /*
2576          * Now we can enable the vmclear operation in kdump
2577          * since the loaded_vmcss_on_cpu list on this cpu
2578          * has been initialized.
2579          *
2580          * Though the cpu is not in VMX operation now, there
2581          * is no problem to enable the vmclear operation
2582          * for the loaded_vmcss_on_cpu list is empty!
2583          */
2584         crash_enable_local_vmclear(cpu);
2585
2586         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2587
2588         test_bits = FEATURE_CONTROL_LOCKED;
2589         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2590         if (tboot_enabled())
2591                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2592
2593         if ((old & test_bits) != test_bits) {
2594                 /* enable and lock */
2595                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2596         }
2597         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2598
2599         if (vmm_exclusive) {
2600                 kvm_cpu_vmxon(phys_addr);
2601                 ept_sync_global();
2602         }
2603
2604         store_gdt(&__get_cpu_var(host_gdt));
2605
2606         return 0;
2607 }
2608
2609 static void vmclear_local_loaded_vmcss(void)
2610 {
2611         int cpu = raw_smp_processor_id();
2612         struct loaded_vmcs *v, *n;
2613
2614         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2615                                  loaded_vmcss_on_cpu_link)
2616                 __loaded_vmcs_clear(v);
2617 }
2618
2619
2620 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2621  * tricks.
2622  */
2623 static void kvm_cpu_vmxoff(void)
2624 {
2625         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2626 }
2627
2628 static void hardware_disable(void *garbage)
2629 {
2630         if (vmm_exclusive) {
2631                 vmclear_local_loaded_vmcss();
2632                 kvm_cpu_vmxoff();
2633         }
2634         write_cr4(read_cr4() & ~X86_CR4_VMXE);
2635 }
2636
2637 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2638                                       u32 msr, u32 *result)
2639 {
2640         u32 vmx_msr_low, vmx_msr_high;
2641         u32 ctl = ctl_min | ctl_opt;
2642
2643         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2644
2645         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2646         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2647
2648         /* Ensure minimum (required) set of control bits are supported. */
2649         if (ctl_min & ~ctl)
2650                 return -EIO;
2651
2652         *result = ctl;
2653         return 0;
2654 }
2655
2656 static __init bool allow_1_setting(u32 msr, u32 ctl)
2657 {
2658         u32 vmx_msr_low, vmx_msr_high;
2659
2660         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2661         return vmx_msr_high & ctl;
2662 }
2663
2664 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2665 {
2666         u32 vmx_msr_low, vmx_msr_high;
2667         u32 min, opt, min2, opt2;
2668         u32 _pin_based_exec_control = 0;
2669         u32 _cpu_based_exec_control = 0;
2670         u32 _cpu_based_2nd_exec_control = 0;
2671         u32 _vmexit_control = 0;
2672         u32 _vmentry_control = 0;
2673
2674         min = CPU_BASED_HLT_EXITING |
2675 #ifdef CONFIG_X86_64
2676               CPU_BASED_CR8_LOAD_EXITING |
2677               CPU_BASED_CR8_STORE_EXITING |
2678 #endif
2679               CPU_BASED_CR3_LOAD_EXITING |
2680               CPU_BASED_CR3_STORE_EXITING |
2681               CPU_BASED_USE_IO_BITMAPS |
2682               CPU_BASED_MOV_DR_EXITING |
2683               CPU_BASED_USE_TSC_OFFSETING |
2684               CPU_BASED_MWAIT_EXITING |
2685               CPU_BASED_MONITOR_EXITING |
2686               CPU_BASED_INVLPG_EXITING |
2687               CPU_BASED_RDPMC_EXITING;
2688
2689         opt = CPU_BASED_TPR_SHADOW |
2690               CPU_BASED_USE_MSR_BITMAPS |
2691               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2692         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2693                                 &_cpu_based_exec_control) < 0)
2694                 return -EIO;
2695 #ifdef CONFIG_X86_64
2696         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2697                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2698                                            ~CPU_BASED_CR8_STORE_EXITING;
2699 #endif
2700         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2701                 min2 = 0;
2702                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2703                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2704                         SECONDARY_EXEC_WBINVD_EXITING |
2705                         SECONDARY_EXEC_ENABLE_VPID |
2706                         SECONDARY_EXEC_ENABLE_EPT |
2707                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2708                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2709                         SECONDARY_EXEC_RDTSCP |
2710                         SECONDARY_EXEC_ENABLE_INVPCID |
2711                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2712                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2713                         SECONDARY_EXEC_SHADOW_VMCS;
2714                 if (adjust_vmx_controls(min2, opt2,
2715                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2716                                         &_cpu_based_2nd_exec_control) < 0)
2717                         return -EIO;
2718         }
2719 #ifndef CONFIG_X86_64
2720         if (!(_cpu_based_2nd_exec_control &
2721                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2722                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2723 #endif
2724
2725         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2726                 _cpu_based_2nd_exec_control &= ~(
2727                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2728                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2729                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2730
2731         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2732                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2733                    enabled */
2734                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2735                                              CPU_BASED_CR3_STORE_EXITING |
2736                                              CPU_BASED_INVLPG_EXITING);
2737                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2738                       vmx_capability.ept, vmx_capability.vpid);
2739         }
2740
2741         min = 0;
2742 #ifdef CONFIG_X86_64
2743         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2744 #endif
2745         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2746                 VM_EXIT_ACK_INTR_ON_EXIT;
2747         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2748                                 &_vmexit_control) < 0)
2749                 return -EIO;
2750
2751         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2752         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2753         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2754                                 &_pin_based_exec_control) < 0)
2755                 return -EIO;
2756
2757         if (!(_cpu_based_2nd_exec_control &
2758                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2759                 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2760                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2761
2762         min = 0;
2763         opt = VM_ENTRY_LOAD_IA32_PAT;
2764         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2765                                 &_vmentry_control) < 0)
2766                 return -EIO;
2767
2768         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2769
2770         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2771         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2772                 return -EIO;
2773
2774 #ifdef CONFIG_X86_64
2775         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2776         if (vmx_msr_high & (1u<<16))
2777                 return -EIO;
2778 #endif
2779
2780         /* Require Write-Back (WB) memory type for VMCS accesses. */
2781         if (((vmx_msr_high >> 18) & 15) != 6)
2782                 return -EIO;
2783
2784         vmcs_conf->size = vmx_msr_high & 0x1fff;
2785         vmcs_conf->order = get_order(vmcs_config.size);
2786         vmcs_conf->revision_id = vmx_msr_low;
2787
2788         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2789         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2790         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2791         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2792         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2793
2794         cpu_has_load_ia32_efer =
2795                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2796                                 VM_ENTRY_LOAD_IA32_EFER)
2797                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2798                                    VM_EXIT_LOAD_IA32_EFER);
2799
2800         cpu_has_load_perf_global_ctrl =
2801                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2802                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2803                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2804                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2805
2806         /*
2807          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2808          * but due to arrata below it can't be used. Workaround is to use
2809          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2810          *
2811          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2812          *
2813          * AAK155             (model 26)
2814          * AAP115             (model 30)
2815          * AAT100             (model 37)
2816          * BC86,AAY89,BD102   (model 44)
2817          * BA97               (model 46)
2818          *
2819          */
2820         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2821                 switch (boot_cpu_data.x86_model) {
2822                 case 26:
2823                 case 30:
2824                 case 37:
2825                 case 44:
2826                 case 46:
2827                         cpu_has_load_perf_global_ctrl = false;
2828                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2829                                         "does not work properly. Using workaround\n");
2830                         break;
2831                 default:
2832                         break;
2833                 }
2834         }
2835
2836         return 0;
2837 }
2838
2839 static struct vmcs *alloc_vmcs_cpu(int cpu)
2840 {
2841         int node = cpu_to_node(cpu);
2842         struct page *pages;
2843         struct vmcs *vmcs;
2844
2845         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2846         if (!pages)
2847                 return NULL;
2848         vmcs = page_address(pages);
2849         memset(vmcs, 0, vmcs_config.size);
2850         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2851         return vmcs;
2852 }
2853
2854 static struct vmcs *alloc_vmcs(void)
2855 {
2856         return alloc_vmcs_cpu(raw_smp_processor_id());
2857 }
2858
2859 static void free_vmcs(struct vmcs *vmcs)
2860 {
2861         free_pages((unsigned long)vmcs, vmcs_config.order);
2862 }
2863
2864 /*
2865  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2866  */
2867 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2868 {
2869         if (!loaded_vmcs->vmcs)
2870                 return;
2871         loaded_vmcs_clear(loaded_vmcs);
2872         free_vmcs(loaded_vmcs->vmcs);
2873         loaded_vmcs->vmcs = NULL;
2874 }
2875
2876 static void free_kvm_area(void)
2877 {
2878         int cpu;
2879
2880         for_each_possible_cpu(cpu) {
2881                 free_vmcs(per_cpu(vmxarea, cpu));
2882                 per_cpu(vmxarea, cpu) = NULL;
2883         }
2884 }
2885
2886 static __init int alloc_kvm_area(void)
2887 {
2888         int cpu;
2889
2890         for_each_possible_cpu(cpu) {
2891                 struct vmcs *vmcs;
2892
2893                 vmcs = alloc_vmcs_cpu(cpu);
2894                 if (!vmcs) {
2895                         free_kvm_area();
2896                         return -ENOMEM;
2897                 }
2898
2899                 per_cpu(vmxarea, cpu) = vmcs;
2900         }
2901         return 0;
2902 }
2903
2904 static __init int hardware_setup(void)
2905 {
2906         if (setup_vmcs_config(&vmcs_config) < 0)
2907                 return -EIO;
2908
2909         if (boot_cpu_has(X86_FEATURE_NX))
2910                 kvm_enable_efer_bits(EFER_NX);
2911
2912         if (!cpu_has_vmx_vpid())
2913                 enable_vpid = 0;
2914         if (!cpu_has_vmx_shadow_vmcs())
2915                 enable_shadow_vmcs = 0;
2916
2917         if (!cpu_has_vmx_ept() ||
2918             !cpu_has_vmx_ept_4levels()) {
2919                 enable_ept = 0;
2920                 enable_unrestricted_guest = 0;
2921                 enable_ept_ad_bits = 0;
2922         }
2923
2924         if (!cpu_has_vmx_ept_ad_bits())
2925                 enable_ept_ad_bits = 0;
2926
2927         if (!cpu_has_vmx_unrestricted_guest())
2928                 enable_unrestricted_guest = 0;
2929
2930         if (!cpu_has_vmx_flexpriority())
2931                 flexpriority_enabled = 0;
2932
2933         if (!cpu_has_vmx_tpr_shadow())
2934                 kvm_x86_ops->update_cr8_intercept = NULL;
2935
2936         if (enable_ept && !cpu_has_vmx_ept_2m_page())
2937                 kvm_disable_largepages();
2938
2939         if (!cpu_has_vmx_ple())
2940                 ple_gap = 0;
2941
2942         if (!cpu_has_vmx_apicv())
2943                 enable_apicv = 0;
2944
2945         if (enable_apicv)
2946                 kvm_x86_ops->update_cr8_intercept = NULL;
2947         else {
2948                 kvm_x86_ops->hwapic_irr_update = NULL;
2949                 kvm_x86_ops->deliver_posted_interrupt = NULL;
2950                 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
2951         }
2952
2953         if (nested)
2954                 nested_vmx_setup_ctls_msrs();
2955
2956         return alloc_kvm_area();
2957 }
2958
2959 static __exit void hardware_unsetup(void)
2960 {
2961         free_kvm_area();
2962 }
2963
2964 static bool emulation_required(struct kvm_vcpu *vcpu)
2965 {
2966         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2967 }
2968
2969 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2970                 struct kvm_segment *save)
2971 {
2972         if (!emulate_invalid_guest_state) {
2973                 /*
2974                  * CS and SS RPL should be equal during guest entry according
2975                  * to VMX spec, but in reality it is not always so. Since vcpu
2976                  * is in the middle of the transition from real mode to
2977                  * protected mode it is safe to assume that RPL 0 is a good
2978                  * default value.
2979                  */
2980                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2981                         save->selector &= ~SELECTOR_RPL_MASK;
2982                 save->dpl = save->selector & SELECTOR_RPL_MASK;
2983                 save->s = 1;
2984         }
2985         vmx_set_segment(vcpu, save, seg);
2986 }
2987
2988 static void enter_pmode(struct kvm_vcpu *vcpu)
2989 {
2990         unsigned long flags;
2991         struct vcpu_vmx *vmx = to_vmx(vcpu);
2992
2993         /*
2994          * Update real mode segment cache. It may be not up-to-date if sement
2995          * register was written while vcpu was in a guest mode.
2996          */
2997         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2998         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2999         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3000         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3001         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3002         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3003
3004         vmx->rmode.vm86_active = 0;
3005
3006         vmx_segment_cache_clear(vmx);
3007
3008         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3009
3010         flags = vmcs_readl(GUEST_RFLAGS);
3011         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3012         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3013         vmcs_writel(GUEST_RFLAGS, flags);
3014
3015         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3016                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3017
3018         update_exception_bitmap(vcpu);
3019
3020         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3021         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3022         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3023         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3024         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3025         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3026
3027         /* CPL is always 0 when CPU enters protected mode */
3028         __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3029         vmx->cpl = 0;
3030 }
3031
3032 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3033 {
3034         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3035         struct kvm_segment var = *save;
3036
3037         var.dpl = 0x3;
3038         if (seg == VCPU_SREG_CS)
3039                 var.type = 0x3;
3040
3041         if (!emulate_invalid_guest_state) {
3042                 var.selector = var.base >> 4;
3043                 var.base = var.base & 0xffff0;
3044                 var.limit = 0xffff;
3045                 var.g = 0;
3046                 var.db = 0;
3047                 var.present = 1;
3048                 var.s = 1;
3049                 var.l = 0;
3050                 var.unusable = 0;
3051                 var.type = 0x3;
3052                 var.avl = 0;
3053                 if (save->base & 0xf)
3054                         printk_once(KERN_WARNING "kvm: segment base is not "
3055                                         "paragraph aligned when entering "
3056                                         "protected mode (seg=%d)", seg);
3057         }
3058
3059         vmcs_write16(sf->selector, var.selector);
3060         vmcs_write32(sf->base, var.base);
3061         vmcs_write32(sf->limit, var.limit);
3062         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3063 }
3064
3065 static void enter_rmode(struct kvm_vcpu *vcpu)
3066 {
3067         unsigned long flags;
3068         struct vcpu_vmx *vmx = to_vmx(vcpu);
3069
3070         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3071         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3072         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3073         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3074         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3075         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3076         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3077
3078         vmx->rmode.vm86_active = 1;
3079
3080         /*
3081          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3082          * vcpu. Warn the user that an update is overdue.
3083          */
3084         if (!vcpu->kvm->arch.tss_addr)
3085                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3086                              "called before entering vcpu\n");
3087
3088         vmx_segment_cache_clear(vmx);
3089
3090         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3091         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3092         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3093
3094         flags = vmcs_readl(GUEST_RFLAGS);
3095         vmx->rmode.save_rflags = flags;
3096
3097         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3098
3099         vmcs_writel(GUEST_RFLAGS, flags);
3100         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3101         update_exception_bitmap(vcpu);
3102
3103         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3104         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3105         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3106         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3107         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3108         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3109
3110         kvm_mmu_reset_context(vcpu);
3111 }
3112
3113 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3114 {
3115         struct vcpu_vmx *vmx = to_vmx(vcpu);
3116         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3117
3118         if (!msr)
3119                 return;
3120
3121         /*
3122          * Force kernel_gs_base reloading before EFER changes, as control
3123          * of this msr depends on is_long_mode().
3124          */
3125         vmx_load_host_state(to_vmx(vcpu));
3126         vcpu->arch.efer = efer;
3127         if (efer & EFER_LMA) {
3128                 vmcs_write32(VM_ENTRY_CONTROLS,
3129                              vmcs_read32(VM_ENTRY_CONTROLS) |
3130                              VM_ENTRY_IA32E_MODE);
3131                 msr->data = efer;
3132         } else {
3133                 vmcs_write32(VM_ENTRY_CONTROLS,
3134                              vmcs_read32(VM_ENTRY_CONTROLS) &
3135                              ~VM_ENTRY_IA32E_MODE);
3136
3137                 msr->data = efer & ~EFER_LME;
3138         }
3139         setup_msrs(vmx);
3140 }
3141
3142 #ifdef CONFIG_X86_64
3143
3144 static void enter_lmode(struct kvm_vcpu *vcpu)
3145 {
3146         u32 guest_tr_ar;
3147
3148         vmx_segment_cache_clear(to_vmx(vcpu));
3149
3150         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3151         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3152                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3153                                      __func__);
3154                 vmcs_write32(GUEST_TR_AR_BYTES,
3155                              (guest_tr_ar & ~AR_TYPE_MASK)
3156                              | AR_TYPE_BUSY_64_TSS);
3157         }
3158         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3159 }
3160
3161 static void exit_lmode(struct kvm_vcpu *vcpu)
3162 {
3163         vmcs_write32(VM_ENTRY_CONTROLS,
3164                      vmcs_read32(VM_ENTRY_CONTROLS)
3165                      & ~VM_ENTRY_IA32E_MODE);
3166         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3167 }
3168
3169 #endif
3170
3171 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3172 {
3173         vpid_sync_context(to_vmx(vcpu));
3174         if (enable_ept) {
3175                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3176                         return;
3177                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3178         }
3179 }
3180
3181 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3182 {
3183         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3184
3185         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3186         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3187 }
3188
3189 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3190 {
3191         if (enable_ept && is_paging(vcpu))
3192                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3193         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3194 }
3195
3196 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3197 {
3198         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3199
3200         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3201         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3202 }
3203
3204 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3205 {
3206         if (!test_bit(VCPU_EXREG_PDPTR,
3207                       (unsigned long *)&vcpu->arch.regs_dirty))
3208                 return;
3209
3210         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3211                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
3212                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
3213                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
3214                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
3215         }
3216 }
3217
3218 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3219 {
3220         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3221                 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3222                 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3223                 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3224                 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3225         }
3226
3227         __set_bit(VCPU_EXREG_PDPTR,
3228                   (unsigned long *)&vcpu->arch.regs_avail);
3229         __set_bit(VCPU_EXREG_PDPTR,
3230                   (unsigned long *)&vcpu->arch.regs_dirty);
3231 }
3232
3233 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3234
3235 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3236                                         unsigned long cr0,
3237                                         struct kvm_vcpu *vcpu)
3238 {
3239         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3240                 vmx_decache_cr3(vcpu);
3241         if (!(cr0 & X86_CR0_PG)) {
3242                 /* From paging/starting to nonpaging */
3243                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3244                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3245                              (CPU_BASED_CR3_LOAD_EXITING |
3246                               CPU_BASED_CR3_STORE_EXITING));
3247                 vcpu->arch.cr0 = cr0;
3248                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3249         } else if (!is_paging(vcpu)) {
3250                 /* From nonpaging to paging */
3251                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3252                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3253                              ~(CPU_BASED_CR3_LOAD_EXITING |
3254                                CPU_BASED_CR3_STORE_EXITING));
3255                 vcpu->arch.cr0 = cr0;
3256                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3257         }
3258
3259         if (!(cr0 & X86_CR0_WP))
3260                 *hw_cr0 &= ~X86_CR0_WP;
3261 }
3262
3263 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3264 {
3265         struct vcpu_vmx *vmx = to_vmx(vcpu);
3266         unsigned long hw_cr0;
3267
3268         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3269         if (enable_unrestricted_guest)
3270                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3271         else {
3272                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3273
3274                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3275                         enter_pmode(vcpu);
3276
3277                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3278                         enter_rmode(vcpu);
3279         }
3280
3281 #ifdef CONFIG_X86_64
3282         if (vcpu->arch.efer & EFER_LME) {
3283                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3284                         enter_lmode(vcpu);
3285                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3286                         exit_lmode(vcpu);
3287         }
3288 #endif
3289
3290         if (enable_ept)
3291                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3292
3293         if (!vcpu->fpu_active)
3294                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3295
3296         vmcs_writel(CR0_READ_SHADOW, cr0);
3297         vmcs_writel(GUEST_CR0, hw_cr0);
3298         vcpu->arch.cr0 = cr0;
3299
3300         /* depends on vcpu->arch.cr0 to be set to a new value */
3301         vmx->emulation_required = emulation_required(vcpu);
3302 }
3303
3304 static u64 construct_eptp(unsigned long root_hpa)
3305 {
3306         u64 eptp;
3307
3308         /* TODO write the value reading from MSR */
3309         eptp = VMX_EPT_DEFAULT_MT |
3310                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3311         if (enable_ept_ad_bits)
3312                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3313         eptp |= (root_hpa & PAGE_MASK);
3314
3315         return eptp;
3316 }
3317
3318 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3319 {
3320         unsigned long guest_cr3;
3321         u64 eptp;
3322
3323         guest_cr3 = cr3;
3324         if (enable_ept) {
3325                 eptp = construct_eptp(cr3);
3326                 vmcs_write64(EPT_POINTER, eptp);
3327                 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3328                         vcpu->kvm->arch.ept_identity_map_addr;
3329                 ept_load_pdptrs(vcpu);
3330         }
3331
3332         vmx_flush_tlb(vcpu);
3333         vmcs_writel(GUEST_CR3, guest_cr3);
3334 }
3335
3336 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3337 {
3338         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3339                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3340
3341         if (cr4 & X86_CR4_VMXE) {
3342                 /*
3343                  * To use VMXON (and later other VMX instructions), a guest
3344                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3345                  * So basically the check on whether to allow nested VMX
3346                  * is here.
3347                  */
3348                 if (!nested_vmx_allowed(vcpu))
3349                         return 1;
3350         }
3351         if (to_vmx(vcpu)->nested.vmxon &&
3352             ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3353                 return 1;
3354
3355         vcpu->arch.cr4 = cr4;
3356         if (enable_ept) {
3357                 if (!is_paging(vcpu)) {
3358                         hw_cr4 &= ~X86_CR4_PAE;
3359                         hw_cr4 |= X86_CR4_PSE;
3360                         /*
3361                          * SMEP is disabled if CPU is in non-paging mode in
3362                          * hardware. However KVM always uses paging mode to
3363                          * emulate guest non-paging mode with TDP.
3364                          * To emulate this behavior, SMEP needs to be manually
3365                          * disabled when guest switches to non-paging mode.
3366                          */
3367                         hw_cr4 &= ~X86_CR4_SMEP;
3368                 } else if (!(cr4 & X86_CR4_PAE)) {
3369                         hw_cr4 &= ~X86_CR4_PAE;
3370                 }
3371         }
3372
3373         vmcs_writel(CR4_READ_SHADOW, cr4);
3374         vmcs_writel(GUEST_CR4, hw_cr4);
3375         return 0;
3376 }
3377
3378 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3379                             struct kvm_segment *var, int seg)
3380 {
3381         struct vcpu_vmx *vmx = to_vmx(vcpu);
3382         u32 ar;
3383
3384         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3385                 *var = vmx->rmode.segs[seg];
3386                 if (seg == VCPU_SREG_TR
3387                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3388                         return;
3389                 var->base = vmx_read_guest_seg_base(vmx, seg);
3390                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3391                 return;
3392         }
3393         var->base = vmx_read_guest_seg_base(vmx, seg);
3394         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3395         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3396         ar = vmx_read_guest_seg_ar(vmx, seg);
3397         var->type = ar & 15;
3398         var->s = (ar >> 4) & 1;
3399         var->dpl = (ar >> 5) & 3;
3400         var->present = (ar >> 7) & 1;
3401         var->avl = (ar >> 12) & 1;
3402         var->l = (ar >> 13) & 1;
3403         var->db = (ar >> 14) & 1;
3404         var->g = (ar >> 15) & 1;
3405         var->unusable = (ar >> 16) & 1;
3406 }
3407
3408 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3409 {
3410         struct kvm_segment s;
3411
3412         if (to_vmx(vcpu)->rmode.vm86_active) {
3413                 vmx_get_segment(vcpu, &s, seg);
3414                 return s.base;
3415         }
3416         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3417 }
3418
3419 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3420 {
3421         struct vcpu_vmx *vmx = to_vmx(vcpu);
3422
3423         if (!is_protmode(vcpu))
3424                 return 0;
3425
3426         if (!is_long_mode(vcpu)
3427             && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3428                 return 3;
3429
3430         if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3431                 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3432                 vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
3433         }
3434
3435         return vmx->cpl;
3436 }
3437
3438
3439 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3440 {
3441         u32 ar;
3442
3443         if (var->unusable || !var->present)
3444                 ar = 1 << 16;
3445         else {
3446                 ar = var->type & 15;
3447                 ar |= (var->s & 1) << 4;
3448                 ar |= (var->dpl & 3) << 5;
3449                 ar |= (var->present & 1) << 7;
3450                 ar |= (var->avl & 1) << 12;
3451                 ar |= (var->l & 1) << 13;
3452                 ar |= (var->db & 1) << 14;
3453                 ar |= (var->g & 1) << 15;
3454         }
3455
3456         return ar;
3457 }
3458
3459 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3460                             struct kvm_segment *var, int seg)
3461 {
3462         struct vcpu_vmx *vmx = to_vmx(vcpu);
3463         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3464
3465         vmx_segment_cache_clear(vmx);
3466         if (seg == VCPU_SREG_CS)
3467                 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3468
3469         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3470                 vmx->rmode.segs[seg] = *var;
3471                 if (seg == VCPU_SREG_TR)
3472                         vmcs_write16(sf->selector, var->selector);
3473                 else if (var->s)
3474                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3475                 goto out;
3476         }
3477
3478         vmcs_writel(sf->base, var->base);
3479         vmcs_write32(sf->limit, var->limit);
3480         vmcs_write16(sf->selector, var->selector);
3481
3482         /*
3483          *   Fix the "Accessed" bit in AR field of segment registers for older
3484          * qemu binaries.
3485          *   IA32 arch specifies that at the time of processor reset the
3486          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3487          * is setting it to 0 in the userland code. This causes invalid guest
3488          * state vmexit when "unrestricted guest" mode is turned on.
3489          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3490          * tree. Newer qemu binaries with that qemu fix would not need this
3491          * kvm hack.
3492          */
3493         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3494                 var->type |= 0x1; /* Accessed */
3495
3496         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3497
3498 out:
3499         vmx->emulation_required |= emulation_required(vcpu);
3500 }
3501
3502 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3503 {
3504         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3505
3506         *db = (ar >> 14) & 1;
3507         *l = (ar >> 13) & 1;
3508 }
3509
3510 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3511 {
3512         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3513         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3514 }
3515
3516 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3517 {
3518         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3519         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3520 }
3521
3522 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3523 {
3524         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3525         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3526 }
3527
3528 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3529 {
3530         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3531         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3532 }
3533
3534 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3535 {
3536         struct kvm_segment var;
3537         u32 ar;
3538
3539         vmx_get_segment(vcpu, &var, seg);
3540         var.dpl = 0x3;
3541         if (seg == VCPU_SREG_CS)
3542                 var.type = 0x3;
3543         ar = vmx_segment_access_rights(&var);
3544
3545         if (var.base != (var.selector << 4))
3546                 return false;
3547         if (var.limit != 0xffff)
3548                 return false;
3549         if (ar != 0xf3)
3550                 return false;
3551
3552         return true;
3553 }
3554
3555 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3556 {
3557         struct kvm_segment cs;
3558         unsigned int cs_rpl;
3559
3560         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3561         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3562
3563         if (cs.unusable)
3564                 return false;
3565         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3566                 return false;
3567         if (!cs.s)
3568                 return false;
3569         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3570                 if (cs.dpl > cs_rpl)
3571                         return false;
3572         } else {
3573                 if (cs.dpl != cs_rpl)
3574                         return false;
3575         }
3576         if (!cs.present)
3577                 return false;
3578
3579         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3580         return true;
3581 }
3582
3583 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3584 {
3585         struct kvm_segment ss;
3586         unsigned int ss_rpl;
3587
3588         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3589         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3590
3591         if (ss.unusable)
3592                 return true;
3593         if (ss.type != 3 && ss.type != 7)
3594                 return false;
3595         if (!ss.s)
3596                 return false;
3597         if (ss.dpl != ss_rpl) /* DPL != RPL */
3598                 return false;
3599         if (!ss.present)
3600                 return false;
3601
3602         return true;
3603 }
3604
3605 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3606 {
3607         struct kvm_segment var;
3608         unsigned int rpl;
3609
3610         vmx_get_segment(vcpu, &var, seg);
3611         rpl = var.selector & SELECTOR_RPL_MASK;
3612
3613         if (var.unusable)
3614                 return true;
3615         if (!var.s)
3616                 return false;
3617         if (!var.present)
3618                 return false;
3619         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3620                 if (var.dpl < rpl) /* DPL < RPL */
3621                         return false;
3622         }
3623
3624         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3625          * rights flags
3626          */
3627         return true;
3628 }
3629
3630 static bool tr_valid(struct kvm_vcpu *vcpu)
3631 {
3632         struct kvm_segment tr;
3633
3634         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3635
3636         if (tr.unusable)
3637                 return false;
3638         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
3639                 return false;
3640         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3641                 return false;
3642         if (!tr.present)
3643                 return false;
3644
3645         return true;
3646 }
3647
3648 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3649 {
3650         struct kvm_segment ldtr;
3651
3652         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3653
3654         if (ldtr.unusable)
3655                 return true;
3656         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
3657                 return false;
3658         if (ldtr.type != 2)
3659                 return false;
3660         if (!ldtr.present)
3661                 return false;
3662
3663         return true;
3664 }
3665
3666 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3667 {
3668         struct kvm_segment cs, ss;
3669
3670         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3671         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3672
3673         return ((cs.selector & SELECTOR_RPL_MASK) ==
3674                  (ss.selector & SELECTOR_RPL_MASK));
3675 }
3676
3677 /*
3678  * Check if guest state is valid. Returns true if valid, false if
3679  * not.
3680  * We assume that registers are always usable
3681  */
3682 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3683 {
3684         if (enable_unrestricted_guest)
3685                 return true;
3686
3687         /* real mode guest state checks */
3688         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3689                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3690                         return false;
3691                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3692                         return false;
3693                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3694                         return false;
3695                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3696                         return false;
3697                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3698                         return false;
3699                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3700                         return false;
3701         } else {
3702         /* protected mode guest state checks */
3703                 if (!cs_ss_rpl_check(vcpu))
3704                         return false;
3705                 if (!code_segment_valid(vcpu))
3706                         return false;
3707                 if (!stack_segment_valid(vcpu))
3708                         return false;
3709                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3710                         return false;
3711                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3712                         return false;
3713                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3714                         return false;
3715                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3716                         return false;
3717                 if (!tr_valid(vcpu))
3718                         return false;
3719                 if (!ldtr_valid(vcpu))
3720                         return false;
3721         }
3722         /* TODO:
3723          * - Add checks on RIP
3724          * - Add checks on RFLAGS
3725          */
3726
3727         return true;
3728 }
3729
3730 static int init_rmode_tss(struct kvm *kvm)
3731 {
3732         gfn_t fn;
3733         u16 data = 0;
3734         int r, idx, ret = 0;
3735
3736         idx = srcu_read_lock(&kvm->srcu);
3737         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3738         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3739         if (r < 0)
3740                 goto out;
3741         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3742         r = kvm_write_guest_page(kvm, fn++, &data,
3743                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3744         if (r < 0)
3745                 goto out;
3746         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3747         if (r < 0)
3748                 goto out;
3749         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3750         if (r < 0)
3751                 goto out;
3752         data = ~0;
3753         r = kvm_write_guest_page(kvm, fn, &data,
3754                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3755                                  sizeof(u8));
3756         if (r < 0)
3757                 goto out;
3758
3759         ret = 1;
3760 out:
3761         srcu_read_unlock(&kvm->srcu, idx);
3762         return ret;
3763 }
3764
3765 static int init_rmode_identity_map(struct kvm *kvm)
3766 {
3767         int i, idx, r, ret;
3768         pfn_t identity_map_pfn;
3769         u32 tmp;
3770
3771         if (!enable_ept)
3772                 return 1;
3773         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3774                 printk(KERN_ERR "EPT: identity-mapping pagetable "
3775                         "haven't been allocated!\n");
3776                 return 0;
3777         }
3778         if (likely(kvm->arch.ept_identity_pagetable_done))
3779                 return 1;
3780         ret = 0;
3781         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3782         idx = srcu_read_lock(&kvm->srcu);
3783         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3784         if (r < 0)
3785                 goto out;
3786         /* Set up identity-mapping pagetable for EPT in real mode */
3787         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3788                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3789                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3790                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3791                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3792                 if (r < 0)
3793                         goto out;
3794         }
3795         kvm->arch.ept_identity_pagetable_done = true;
3796         ret = 1;
3797 out:
3798         srcu_read_unlock(&kvm->srcu, idx);
3799         return ret;
3800 }
3801
3802 static void seg_setup(int seg)
3803 {
3804         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3805         unsigned int ar;
3806
3807         vmcs_write16(sf->selector, 0);
3808         vmcs_writel(sf->base, 0);
3809         vmcs_write32(sf->limit, 0xffff);
3810         ar = 0x93;
3811         if (seg == VCPU_SREG_CS)
3812                 ar |= 0x08; /* code segment */
3813
3814         vmcs_write32(sf->ar_bytes, ar);
3815 }
3816
3817 static int alloc_apic_access_page(struct kvm *kvm)
3818 {
3819         struct page *page;
3820         struct kvm_userspace_memory_region kvm_userspace_mem;
3821         int r = 0;
3822
3823         mutex_lock(&kvm->slots_lock);
3824         if (kvm->arch.apic_access_page)
3825                 goto out;
3826         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3827         kvm_userspace_mem.flags = 0;
3828         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3829         kvm_userspace_mem.memory_size = PAGE_SIZE;
3830         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3831         if (r)
3832                 goto out;
3833
3834         page = gfn_to_page(kvm, 0xfee00);
3835         if (is_error_page(page)) {
3836                 r = -EFAULT;
3837                 goto out;
3838         }
3839
3840         kvm->arch.apic_access_page = page;
3841 out:
3842         mutex_unlock(&kvm->slots_lock);
3843         return r;
3844 }
3845
3846 static int alloc_identity_pagetable(struct kvm *kvm)
3847 {
3848         struct page *page;
3849         struct kvm_userspace_memory_region kvm_userspace_mem;
3850         int r = 0;
3851
3852         mutex_lock(&kvm->slots_lock);
3853         if (kvm->arch.ept_identity_pagetable)
3854                 goto out;
3855         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3856         kvm_userspace_mem.flags = 0;
3857         kvm_userspace_mem.guest_phys_addr =
3858                 kvm->arch.ept_identity_map_addr;
3859         kvm_userspace_mem.memory_size = PAGE_SIZE;
3860         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3861         if (r)
3862                 goto out;
3863
3864         page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3865         if (is_error_page(page)) {
3866                 r = -EFAULT;
3867                 goto out;
3868         }
3869
3870         kvm->arch.ept_identity_pagetable = page;
3871 out:
3872         mutex_unlock(&kvm->slots_lock);
3873         return r;
3874 }
3875
3876 static void allocate_vpid(struct vcpu_vmx *vmx)
3877 {
3878         int vpid;
3879
3880         vmx->vpid = 0;
3881         if (!enable_vpid)
3882                 return;
3883         spin_lock(&vmx_vpid_lock);
3884         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3885         if (vpid < VMX_NR_VPIDS) {
3886                 vmx->vpid = vpid;
3887                 __set_bit(vpid, vmx_vpid_bitmap);
3888         }
3889         spin_unlock(&vmx_vpid_lock);
3890 }
3891
3892 static void free_vpid(struct vcpu_vmx *vmx)
3893 {
3894         if (!enable_vpid)
3895                 return;
3896         spin_lock(&vmx_vpid_lock);
3897         if (vmx->vpid != 0)
3898                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3899         spin_unlock(&vmx_vpid_lock);
3900 }
3901
3902 #define MSR_TYPE_R      1
3903 #define MSR_TYPE_W      2
3904 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3905                                                 u32 msr, int type)
3906 {
3907         int f = sizeof(unsigned long);
3908
3909         if (!cpu_has_vmx_msr_bitmap())
3910                 return;
3911
3912         /*
3913          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3914          * have the write-low and read-high bitmap offsets the wrong way round.
3915          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3916          */
3917         if (msr <= 0x1fff) {
3918                 if (type & MSR_TYPE_R)
3919                         /* read-low */
3920                         __clear_bit(msr, msr_bitmap + 0x000 / f);
3921
3922                 if (type & MSR_TYPE_W)
3923                         /* write-low */
3924                         __clear_bit(msr, msr_bitmap + 0x800 / f);
3925
3926         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3927                 msr &= 0x1fff;
3928                 if (type & MSR_TYPE_R)
3929                         /* read-high */
3930                         __clear_bit(msr, msr_bitmap + 0x400 / f);
3931
3932                 if (type & MSR_TYPE_W)
3933                         /* write-high */
3934                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
3935
3936         }
3937 }
3938
3939 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3940                                                 u32 msr, int type)
3941 {
3942         int f = sizeof(unsigned long);
3943
3944         if (!cpu_has_vmx_msr_bitmap())
3945                 return;
3946
3947         /*
3948          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3949          * have the write-low and read-high bitmap offsets the wrong way round.
3950          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3951          */
3952         if (msr <= 0x1fff) {
3953                 if (type & MSR_TYPE_R)
3954                         /* read-low */
3955                         __set_bit(msr, msr_bitmap + 0x000 / f);
3956
3957                 if (type & MSR_TYPE_W)
3958                         /* write-low */
3959                         __set_bit(msr, msr_bitmap + 0x800 / f);
3960
3961         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3962                 msr &= 0x1fff;
3963                 if (type & MSR_TYPE_R)
3964                         /* read-high */
3965                         __set_bit(msr, msr_bitmap + 0x400 / f);
3966
3967                 if (type & MSR_TYPE_W)
3968                         /* write-high */
3969                         __set_bit(msr, msr_bitmap + 0xc00 / f);
3970
3971         }
3972 }
3973
3974 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3975 {
3976         if (!longmode_only)
3977                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
3978                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
3979         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
3980                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
3981 }
3982
3983 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
3984 {
3985         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
3986                         msr, MSR_TYPE_R);
3987         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
3988                         msr, MSR_TYPE_R);
3989 }
3990
3991 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
3992 {
3993         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
3994                         msr, MSR_TYPE_R);
3995         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
3996                         msr, MSR_TYPE_R);
3997 }
3998
3999 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4000 {
4001         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4002                         msr, MSR_TYPE_W);
4003         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4004                         msr, MSR_TYPE_W);
4005 }
4006
4007 static int vmx_vm_has_apicv(struct kvm *kvm)
4008 {
4009         return enable_apicv && irqchip_in_kernel(kvm);
4010 }
4011
4012 /*
4013  * Send interrupt to vcpu via posted interrupt way.
4014  * 1. If target vcpu is running(non-root mode), send posted interrupt
4015  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4016  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4017  * interrupt from PIR in next vmentry.
4018  */
4019 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4020 {
4021         struct vcpu_vmx *vmx = to_vmx(vcpu);
4022         int r;
4023
4024         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4025                 return;
4026
4027         r = pi_test_and_set_on(&vmx->pi_desc);
4028         kvm_make_request(KVM_REQ_EVENT, vcpu);
4029 #ifdef CONFIG_SMP
4030         if (!r && (vcpu->mode == IN_GUEST_MODE))
4031                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4032                                 POSTED_INTR_VECTOR);
4033         else
4034 #endif
4035                 kvm_vcpu_kick(vcpu);
4036 }
4037
4038 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4039 {
4040         struct vcpu_vmx *vmx = to_vmx(vcpu);
4041
4042         if (!pi_test_and_clear_on(&vmx->pi_desc))
4043                 return;
4044
4045         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4046 }
4047
4048 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4049 {
4050         return;
4051 }
4052
4053 /*
4054  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4055  * will not change in the lifetime of the guest.
4056  * Note that host-state that does change is set elsewhere. E.g., host-state
4057  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4058  */
4059 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4060 {
4061         u32 low32, high32;
4062         unsigned long tmpl;
4063         struct desc_ptr dt;
4064
4065         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4066         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
4067         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4068
4069         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4070 #ifdef CONFIG_X86_64
4071         /*
4072          * Load null selectors, so we can avoid reloading them in
4073          * __vmx_load_host_state(), in case userspace uses the null selectors
4074          * too (the expected case).
4075          */
4076         vmcs_write16(HOST_DS_SELECTOR, 0);
4077         vmcs_write16(HOST_ES_SELECTOR, 0);
4078 #else
4079         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4080         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4081 #endif
4082         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4083         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4084
4085         native_store_idt(&dt);
4086         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4087         vmx->host_idt_base = dt.address;
4088
4089         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4090
4091         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4092         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4093         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4094         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4095
4096         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4097                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4098                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4099         }
4100 }
4101
4102 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4103 {
4104         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4105         if (enable_ept)
4106                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4107         if (is_guest_mode(&vmx->vcpu))
4108                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4109                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4110         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4111 }
4112
4113 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4114 {
4115         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4116
4117         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4118                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4119         return pin_based_exec_ctrl;
4120 }
4121
4122 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4123 {
4124         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4125         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4126                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4127 #ifdef CONFIG_X86_64
4128                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4129                                 CPU_BASED_CR8_LOAD_EXITING;
4130 #endif
4131         }
4132         if (!enable_ept)
4133                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4134                                 CPU_BASED_CR3_LOAD_EXITING  |
4135                                 CPU_BASED_INVLPG_EXITING;
4136         return exec_control;
4137 }
4138
4139 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4140 {
4141         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4142         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4143                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4144         if (vmx->vpid == 0)
4145                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4146         if (!enable_ept) {
4147                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4148                 enable_unrestricted_guest = 0;
4149                 /* Enable INVPCID for non-ept guests may cause performance regression. */
4150                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4151         }
4152         if (!enable_unrestricted_guest)
4153                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4154         if (!ple_gap)
4155                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4156         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4157                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4158                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4159         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4160         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4161            (handle_vmptrld).
4162            We can NOT enable shadow_vmcs here because we don't have yet
4163            a current VMCS12
4164         */
4165         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4166         return exec_control;
4167 }
4168
4169 static void ept_set_mmio_spte_mask(void)
4170 {
4171         /*
4172          * EPT Misconfigurations can be generated if the value of bits 2:0
4173          * of an EPT paging-structure entry is 110b (write/execute).
4174          * Also, magic bits (0xffull << 49) is set to quickly identify mmio
4175          * spte.
4176          */
4177         kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
4178 }
4179
4180 /*
4181  * Sets up the vmcs for emulated real mode.
4182  */
4183 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4184 {
4185 #ifdef CONFIG_X86_64
4186         unsigned long a;
4187 #endif
4188         int i;
4189
4190         /* I/O */
4191         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4192         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4193
4194         if (enable_shadow_vmcs) {
4195                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4196                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4197         }
4198         if (cpu_has_vmx_msr_bitmap())
4199                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4200
4201         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4202
4203         /* Control */
4204         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4205
4206         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4207
4208         if (cpu_has_secondary_exec_ctrls()) {
4209                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4210                                 vmx_secondary_exec_control(vmx));
4211         }
4212
4213         if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4214                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4215                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4216                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4217                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4218
4219                 vmcs_write16(GUEST_INTR_STATUS, 0);
4220
4221                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4222                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4223         }
4224
4225         if (ple_gap) {
4226                 vmcs_write32(PLE_GAP, ple_gap);
4227                 vmcs_write32(PLE_WINDOW, ple_window);
4228         }
4229
4230         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4231         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4232         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4233
4234         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4235         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4236         vmx_set_constant_host_state(vmx);
4237 #ifdef CONFIG_X86_64
4238         rdmsrl(MSR_FS_BASE, a);
4239         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4240         rdmsrl(MSR_GS_BASE, a);
4241         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4242 #else
4243         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4244         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4245 #endif
4246
4247         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4248         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4249         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4250         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4251         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4252
4253         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4254                 u32 msr_low, msr_high;
4255                 u64 host_pat;
4256                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4257                 host_pat = msr_low | ((u64) msr_high << 32);
4258                 /* Write the default value follow host pat */
4259                 vmcs_write64(GUEST_IA32_PAT, host_pat);
4260                 /* Keep arch.pat sync with GUEST_IA32_PAT */
4261                 vmx->vcpu.arch.pat = host_pat;
4262         }
4263
4264         for (i = 0; i < NR_VMX_MSR; ++i) {
4265                 u32 index = vmx_msr_index[i];
4266                 u32 data_low, data_high;
4267                 int j = vmx->nmsrs;
4268
4269                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4270                         continue;
4271                 if (wrmsr_safe(index, data_low, data_high) < 0)
4272                         continue;
4273                 vmx->guest_msrs[j].index = i;
4274                 vmx->guest_msrs[j].data = 0;
4275                 vmx->guest_msrs[j].mask = -1ull;
4276                 ++vmx->nmsrs;
4277         }
4278
4279         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
4280
4281         /* 22.2.1, 20.8.1 */
4282         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
4283
4284         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4285         set_cr4_guest_host_mask(vmx);
4286
4287         return 0;
4288 }
4289
4290 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4291 {
4292         struct vcpu_vmx *vmx = to_vmx(vcpu);
4293         u64 msr;
4294
4295         vmx->rmode.vm86_active = 0;
4296
4297         vmx->soft_vnmi_blocked = 0;
4298
4299         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4300         kvm_set_cr8(&vmx->vcpu, 0);
4301         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
4302         if (kvm_vcpu_is_bsp(&vmx->vcpu))
4303                 msr |= MSR_IA32_APICBASE_BSP;
4304         kvm_set_apic_base(&vmx->vcpu, msr);
4305
4306         vmx_segment_cache_clear(vmx);
4307
4308         seg_setup(VCPU_SREG_CS);
4309         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4310         vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4311
4312         seg_setup(VCPU_SREG_DS);
4313         seg_setup(VCPU_SREG_ES);
4314         seg_setup(VCPU_SREG_FS);
4315         seg_setup(VCPU_SREG_GS);
4316         seg_setup(VCPU_SREG_SS);
4317
4318         vmcs_write16(GUEST_TR_SELECTOR, 0);
4319         vmcs_writel(GUEST_TR_BASE, 0);
4320         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4321         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4322
4323         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4324         vmcs_writel(GUEST_LDTR_BASE, 0);
4325         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4326         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4327
4328         vmcs_write32(GUEST_SYSENTER_CS, 0);
4329         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4330         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4331
4332         vmcs_writel(GUEST_RFLAGS, 0x02);
4333         kvm_rip_write(vcpu, 0xfff0);
4334
4335         vmcs_writel(GUEST_GDTR_BASE, 0);
4336         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4337
4338         vmcs_writel(GUEST_IDTR_BASE, 0);
4339         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4340
4341         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4342         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4343         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4344
4345         /* Special registers */
4346         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4347
4348         setup_msrs(vmx);
4349
4350         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4351
4352         if (cpu_has_vmx_tpr_shadow()) {
4353                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4354                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4355                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4356                                      __pa(vmx->vcpu.arch.apic->regs));
4357                 vmcs_write32(TPR_THRESHOLD, 0);
4358         }
4359
4360         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4361                 vmcs_write64(APIC_ACCESS_ADDR,
4362                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4363
4364         if (vmx_vm_has_apicv(vcpu->kvm))
4365                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4366
4367         if (vmx->vpid != 0)
4368                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4369
4370         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4371         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4372         vmx_set_cr4(&vmx->vcpu, 0);
4373         vmx_set_efer(&vmx->vcpu, 0);
4374         vmx_fpu_activate(&vmx->vcpu);
4375         update_exception_bitmap(&vmx->vcpu);
4376
4377         vpid_sync_context(vmx);
4378 }
4379
4380 /*
4381  * In nested virtualization, check if L1 asked to exit on external interrupts.
4382  * For most existing hypervisors, this will always return true.
4383  */
4384 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4385 {
4386         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4387                 PIN_BASED_EXT_INTR_MASK;
4388 }
4389
4390 static void enable_irq_window(struct kvm_vcpu *vcpu)
4391 {
4392         u32 cpu_based_vm_exec_control;
4393         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4394                 /*
4395                  * We get here if vmx_interrupt_allowed() said we can't
4396                  * inject to L1 now because L2 must run. Ask L2 to exit
4397                  * right after entry, so we can inject to L1 more promptly.
4398                  */
4399                 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
4400                 return;
4401         }
4402
4403         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4404         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4405         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4406 }
4407
4408 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4409 {
4410         u32 cpu_based_vm_exec_control;
4411
4412         if (!cpu_has_virtual_nmis()) {
4413                 enable_irq_window(vcpu);
4414                 return;
4415         }
4416
4417         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4418                 enable_irq_window(vcpu);
4419                 return;
4420         }
4421         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4422         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4423         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4424 }
4425
4426 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4427 {
4428         struct vcpu_vmx *vmx = to_vmx(vcpu);
4429         uint32_t intr;
4430         int irq = vcpu->arch.interrupt.nr;
4431
4432         trace_kvm_inj_virq(irq);
4433
4434         ++vcpu->stat.irq_injections;
4435         if (vmx->rmode.vm86_active) {
4436                 int inc_eip = 0;
4437                 if (vcpu->arch.interrupt.soft)
4438                         inc_eip = vcpu->arch.event_exit_inst_len;
4439                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4440                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4441                 return;
4442         }
4443         intr = irq | INTR_INFO_VALID_MASK;
4444         if (vcpu->arch.interrupt.soft) {
4445                 intr |= INTR_TYPE_SOFT_INTR;
4446                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4447                              vmx->vcpu.arch.event_exit_inst_len);
4448         } else
4449                 intr |= INTR_TYPE_EXT_INTR;
4450         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4451 }
4452
4453 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4454 {
4455         struct vcpu_vmx *vmx = to_vmx(vcpu);
4456
4457         if (is_guest_mode(vcpu))
4458                 return;
4459
4460         if (!cpu_has_virtual_nmis()) {
4461                 /*
4462                  * Tracking the NMI-blocked state in software is built upon
4463                  * finding the next open IRQ window. This, in turn, depends on
4464                  * well-behaving guests: They have to keep IRQs disabled at
4465                  * least as long as the NMI handler runs. Otherwise we may
4466                  * cause NMI nesting, maybe breaking the guest. But as this is
4467                  * highly unlikely, we can live with the residual risk.
4468                  */
4469                 vmx->soft_vnmi_blocked = 1;
4470                 vmx->vnmi_blocked_time = 0;
4471         }
4472
4473         ++vcpu->stat.nmi_injections;
4474         vmx->nmi_known_unmasked = false;
4475         if (vmx->rmode.vm86_active) {
4476                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4477                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4478                 return;
4479         }
4480         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4481                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4482 }
4483
4484 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4485 {
4486         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4487                 return 0;
4488
4489         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4490                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4491                    | GUEST_INTR_STATE_NMI));
4492 }
4493
4494 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4495 {
4496         if (!cpu_has_virtual_nmis())
4497                 return to_vmx(vcpu)->soft_vnmi_blocked;
4498         if (to_vmx(vcpu)->nmi_known_unmasked)
4499                 return false;
4500         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4501 }
4502
4503 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4504 {
4505         struct vcpu_vmx *vmx = to_vmx(vcpu);
4506
4507         if (!cpu_has_virtual_nmis()) {
4508                 if (vmx->soft_vnmi_blocked != masked) {
4509                         vmx->soft_vnmi_blocked = masked;
4510                         vmx->vnmi_blocked_time = 0;
4511                 }
4512         } else {
4513                 vmx->nmi_known_unmasked = !masked;
4514                 if (masked)
4515                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4516                                       GUEST_INTR_STATE_NMI);
4517                 else
4518                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4519                                         GUEST_INTR_STATE_NMI);
4520         }
4521 }
4522
4523 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4524 {
4525         if (is_guest_mode(vcpu)) {
4526                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4527
4528                 if (to_vmx(vcpu)->nested.nested_run_pending)
4529                         return 0;
4530                 if (nested_exit_on_intr(vcpu)) {
4531                         nested_vmx_vmexit(vcpu);
4532                         vmcs12->vm_exit_reason =
4533                                 EXIT_REASON_EXTERNAL_INTERRUPT;
4534                         vmcs12->vm_exit_intr_info = 0;
4535                         /*
4536                          * fall through to normal code, but now in L1, not L2
4537                          */
4538                 }
4539         }
4540
4541         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4542                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4543                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4544 }
4545
4546 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4547 {
4548         int ret;
4549         struct kvm_userspace_memory_region tss_mem = {
4550                 .slot = TSS_PRIVATE_MEMSLOT,
4551                 .guest_phys_addr = addr,
4552                 .memory_size = PAGE_SIZE * 3,
4553                 .flags = 0,
4554         };
4555
4556         ret = kvm_set_memory_region(kvm, &tss_mem);
4557         if (ret)
4558                 return ret;
4559         kvm->arch.tss_addr = addr;
4560         if (!init_rmode_tss(kvm))
4561                 return  -ENOMEM;
4562
4563         return 0;
4564 }
4565
4566 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4567 {
4568         switch (vec) {
4569         case BP_VECTOR:
4570                 /*
4571                  * Update instruction length as we may reinject the exception
4572                  * from user space while in guest debugging mode.
4573                  */
4574                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4575                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4576                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4577                         return false;
4578                 /* fall through */
4579         case DB_VECTOR:
4580                 if (vcpu->guest_debug &
4581                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4582                         return false;
4583                 /* fall through */
4584         case DE_VECTOR:
4585         case OF_VECTOR:
4586         case BR_VECTOR:
4587         case UD_VECTOR:
4588         case DF_VECTOR:
4589         case SS_VECTOR:
4590         case GP_VECTOR:
4591         case MF_VECTOR:
4592                 return true;
4593         break;
4594         }
4595         return false;
4596 }
4597
4598 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4599                                   int vec, u32 err_code)
4600 {
4601         /*
4602          * Instruction with address size override prefix opcode 0x67
4603          * Cause the #SS fault with 0 error code in VM86 mode.
4604          */
4605         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4606                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4607                         if (vcpu->arch.halt_request) {
4608                                 vcpu->arch.halt_request = 0;
4609                                 return kvm_emulate_halt(vcpu);
4610                         }
4611                         return 1;
4612                 }
4613                 return 0;
4614         }
4615
4616         /*
4617          * Forward all other exceptions that are valid in real mode.
4618          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4619          *        the required debugging infrastructure rework.
4620          */
4621         kvm_queue_exception(vcpu, vec);
4622         return 1;
4623 }
4624
4625 /*
4626  * Trigger machine check on the host. We assume all the MSRs are already set up
4627  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4628  * We pass a fake environment to the machine check handler because we want
4629  * the guest to be always treated like user space, no matter what context
4630  * it used internally.
4631  */
4632 static void kvm_machine_check(void)
4633 {
4634 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4635         struct pt_regs regs = {
4636                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4637                 .flags = X86_EFLAGS_IF,
4638         };
4639
4640         do_machine_check(&regs, 0);
4641 #endif
4642 }
4643
4644 static int handle_machine_check(struct kvm_vcpu *vcpu)
4645 {
4646         /* already handled by vcpu_run */
4647         return 1;
4648 }
4649
4650 static int handle_exception(struct kvm_vcpu *vcpu)
4651 {
4652         struct vcpu_vmx *vmx = to_vmx(vcpu);
4653         struct kvm_run *kvm_run = vcpu->run;
4654         u32 intr_info, ex_no, error_code;
4655         unsigned long cr2, rip, dr6;
4656         u32 vect_info;
4657         enum emulation_result er;
4658
4659         vect_info = vmx->idt_vectoring_info;
4660         intr_info = vmx->exit_intr_info;
4661
4662         if (is_machine_check(intr_info))
4663                 return handle_machine_check(vcpu);
4664
4665         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4666                 return 1;  /* already handled by vmx_vcpu_run() */
4667
4668         if (is_no_device(intr_info)) {
4669                 vmx_fpu_activate(vcpu);
4670                 return 1;
4671         }
4672
4673         if (is_invalid_opcode(intr_info)) {
4674                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4675                 if (er != EMULATE_DONE)
4676                         kvm_queue_exception(vcpu, UD_VECTOR);
4677                 return 1;
4678         }
4679
4680         error_code = 0;
4681         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4682                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4683
4684         /*
4685          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4686          * MMIO, it is better to report an internal error.
4687          * See the comments in vmx_handle_exit.
4688          */
4689         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4690             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4691                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4692                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4693                 vcpu->run->internal.ndata = 2;
4694                 vcpu->run->internal.data[0] = vect_info;
4695                 vcpu->run->internal.data[1] = intr_info;
4696                 return 0;
4697         }
4698
4699         if (is_page_fault(intr_info)) {
4700                 /* EPT won't cause page fault directly */
4701                 BUG_ON(enable_ept);
4702                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4703                 trace_kvm_page_fault(cr2, error_code);
4704
4705                 if (kvm_event_needs_reinjection(vcpu))
4706                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
4707                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4708         }
4709
4710         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4711
4712         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4713                 return handle_rmode_exception(vcpu, ex_no, error_code);
4714
4715         switch (ex_no) {
4716         case DB_VECTOR:
4717                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4718                 if (!(vcpu->guest_debug &
4719                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4720                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4721                         kvm_queue_exception(vcpu, DB_VECTOR);
4722                         return 1;
4723                 }
4724                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4725                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4726                 /* fall through */
4727         case BP_VECTOR:
4728                 /*
4729                  * Update instruction length as we may reinject #BP from
4730                  * user space while in guest debugging mode. Reading it for
4731                  * #DB as well causes no harm, it is not used in that case.
4732                  */
4733                 vmx->vcpu.arch.event_exit_inst_len =
4734                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4735                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4736                 rip = kvm_rip_read(vcpu);
4737                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4738                 kvm_run->debug.arch.exception = ex_no;
4739                 break;
4740         default:
4741                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4742                 kvm_run->ex.exception = ex_no;
4743                 kvm_run->ex.error_code = error_code;
4744                 break;
4745         }
4746         return 0;
4747 }
4748
4749 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4750 {
4751         ++vcpu->stat.irq_exits;
4752         return 1;
4753 }
4754
4755 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4756 {
4757         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4758         return 0;
4759 }
4760
4761 static int handle_io(struct kvm_vcpu *vcpu)
4762 {
4763         unsigned long exit_qualification;
4764         int size, in, string;
4765         unsigned port;
4766
4767         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4768         string = (exit_qualification & 16) != 0;
4769         in = (exit_qualification & 8) != 0;
4770
4771         ++vcpu->stat.io_exits;
4772
4773         if (string || in)
4774                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4775
4776         port = exit_qualification >> 16;
4777         size = (exit_qualification & 7) + 1;
4778         skip_emulated_instruction(vcpu);
4779
4780         return kvm_fast_pio_out(vcpu, size, port);
4781 }
4782
4783 static void
4784 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4785 {
4786         /*
4787          * Patch in the VMCALL instruction:
4788          */
4789         hypercall[0] = 0x0f;
4790         hypercall[1] = 0x01;
4791         hypercall[2] = 0xc1;
4792 }
4793
4794 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4795 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4796 {
4797         if (is_guest_mode(vcpu)) {
4798                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4799                 unsigned long orig_val = val;
4800
4801                 /*
4802                  * We get here when L2 changed cr0 in a way that did not change
4803                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4804                  * but did change L0 shadowed bits. So we first calculate the
4805                  * effective cr0 value that L1 would like to write into the
4806                  * hardware. It consists of the L2-owned bits from the new
4807                  * value combined with the L1-owned bits from L1's guest_cr0.
4808                  */
4809                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4810                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4811
4812                 /* TODO: will have to take unrestricted guest mode into
4813                  * account */
4814                 if ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON)
4815                         return 1;
4816
4817                 if (kvm_set_cr0(vcpu, val))
4818                         return 1;
4819                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4820                 return 0;
4821         } else {
4822                 if (to_vmx(vcpu)->nested.vmxon &&
4823                     ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4824                         return 1;
4825                 return kvm_set_cr0(vcpu, val);
4826         }
4827 }
4828
4829 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4830 {
4831         if (is_guest_mode(vcpu)) {
4832                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4833                 unsigned long orig_val = val;
4834
4835                 /* analogously to handle_set_cr0 */
4836                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4837                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4838                 if (kvm_set_cr4(vcpu, val))
4839                         return 1;
4840                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4841                 return 0;
4842         } else
4843                 return kvm_set_cr4(vcpu, val);
4844 }
4845
4846 /* called to set cr0 as approriate for clts instruction exit. */
4847 static void handle_clts(struct kvm_vcpu *vcpu)
4848 {
4849         if (is_guest_mode(vcpu)) {
4850                 /*
4851                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4852                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4853                  * just pretend it's off (also in arch.cr0 for fpu_activate).
4854                  */
4855                 vmcs_writel(CR0_READ_SHADOW,
4856                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4857                 vcpu->arch.cr0 &= ~X86_CR0_TS;
4858         } else
4859                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4860 }
4861
4862 static int handle_cr(struct kvm_vcpu *vcpu)
4863 {
4864         unsigned long exit_qualification, val;
4865         int cr;
4866         int reg;
4867         int err;
4868
4869         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4870         cr = exit_qualification & 15;
4871         reg = (exit_qualification >> 8) & 15;
4872         switch ((exit_qualification >> 4) & 3) {
4873         case 0: /* mov to cr */
4874                 val = kvm_register_read(vcpu, reg);
4875                 trace_kvm_cr_write(cr, val);
4876                 switch (cr) {
4877                 case 0:
4878                         err = handle_set_cr0(vcpu, val);
4879                         kvm_complete_insn_gp(vcpu, err);
4880                         return 1;
4881                 case 3:
4882                         err = kvm_set_cr3(vcpu, val);
4883                         kvm_complete_insn_gp(vcpu, err);
4884                         return 1;
4885                 case 4:
4886                         err = handle_set_cr4(vcpu, val);
4887                         kvm_complete_insn_gp(vcpu, err);
4888                         return 1;
4889                 case 8: {
4890                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4891                                 u8 cr8 = kvm_register_read(vcpu, reg);
4892                                 err = kvm_set_cr8(vcpu, cr8);
4893                                 kvm_complete_insn_gp(vcpu, err);
4894                                 if (irqchip_in_kernel(vcpu->kvm))
4895                                         return 1;
4896                                 if (cr8_prev <= cr8)
4897                                         return 1;
4898                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4899                                 return 0;
4900                         }
4901                 }
4902                 break;
4903         case 2: /* clts */
4904                 handle_clts(vcpu);
4905                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4906                 skip_emulated_instruction(vcpu);
4907                 vmx_fpu_activate(vcpu);
4908                 return 1;
4909         case 1: /*mov from cr*/
4910                 switch (cr) {
4911                 case 3:
4912                         val = kvm_read_cr3(vcpu);
4913                         kvm_register_write(vcpu, reg, val);
4914                         trace_kvm_cr_read(cr, val);
4915                         skip_emulated_instruction(vcpu);
4916                         return 1;
4917                 case 8:
4918                         val = kvm_get_cr8(vcpu);
4919                         kvm_register_write(vcpu, reg, val);
4920                         trace_kvm_cr_read(cr, val);
4921                         skip_emulated_instruction(vcpu);
4922                         return 1;
4923                 }
4924                 break;
4925         case 3: /* lmsw */
4926                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4927                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4928                 kvm_lmsw(vcpu, val);
4929
4930                 skip_emulated_instruction(vcpu);
4931                 return 1;
4932         default:
4933                 break;
4934         }
4935         vcpu->run->exit_reason = 0;
4936         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4937                (int)(exit_qualification >> 4) & 3, cr);
4938         return 0;
4939 }
4940
4941 static int handle_dr(struct kvm_vcpu *vcpu)
4942 {
4943         unsigned long exit_qualification;
4944         int dr, reg;
4945
4946         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4947         if (!kvm_require_cpl(vcpu, 0))
4948                 return 1;
4949         dr = vmcs_readl(GUEST_DR7);
4950         if (dr & DR7_GD) {
4951                 /*
4952                  * As the vm-exit takes precedence over the debug trap, we
4953                  * need to emulate the latter, either for the host or the
4954                  * guest debugging itself.
4955                  */
4956                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4957                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4958                         vcpu->run->debug.arch.dr7 = dr;
4959                         vcpu->run->debug.arch.pc =
4960                                 vmcs_readl(GUEST_CS_BASE) +
4961                                 vmcs_readl(GUEST_RIP);
4962                         vcpu->run->debug.arch.exception = DB_VECTOR;
4963                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4964                         return 0;
4965                 } else {
4966                         vcpu->arch.dr7 &= ~DR7_GD;
4967                         vcpu->arch.dr6 |= DR6_BD;
4968                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4969                         kvm_queue_exception(vcpu, DB_VECTOR);
4970                         return 1;
4971                 }
4972         }
4973
4974         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4975         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4976         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4977         if (exit_qualification & TYPE_MOV_FROM_DR) {
4978                 unsigned long val;
4979                 if (!kvm_get_dr(vcpu, dr, &val))
4980                         kvm_register_write(vcpu, reg, val);
4981         } else
4982                 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
4983         skip_emulated_instruction(vcpu);
4984         return 1;
4985 }
4986
4987 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4988 {
4989         vmcs_writel(GUEST_DR7, val);
4990 }
4991
4992 static int handle_cpuid(struct kvm_vcpu *vcpu)
4993 {
4994         kvm_emulate_cpuid(vcpu);
4995         return 1;
4996 }
4997
4998 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4999 {
5000         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5001         u64 data;
5002
5003         if (vmx_get_msr(vcpu, ecx, &data)) {
5004                 trace_kvm_msr_read_ex(ecx);
5005                 kvm_inject_gp(vcpu, 0);
5006                 return 1;
5007         }
5008
5009         trace_kvm_msr_read(ecx, data);
5010
5011         /* FIXME: handling of bits 32:63 of rax, rdx */
5012         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5013         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5014         skip_emulated_instruction(vcpu);
5015         return 1;
5016 }
5017
5018 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5019 {
5020         struct msr_data msr;
5021         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5022         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5023                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5024
5025         msr.data = data;
5026         msr.index = ecx;
5027         msr.host_initiated = false;
5028         if (vmx_set_msr(vcpu, &msr) != 0) {
5029                 trace_kvm_msr_write_ex(ecx, data);
5030                 kvm_inject_gp(vcpu, 0);
5031                 return 1;
5032         }
5033
5034         trace_kvm_msr_write(ecx, data);
5035         skip_emulated_instruction(vcpu);
5036         return 1;
5037 }
5038
5039 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5040 {
5041         kvm_make_request(KVM_REQ_EVENT, vcpu);
5042         return 1;
5043 }
5044
5045 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5046 {
5047         u32 cpu_based_vm_exec_control;
5048
5049         /* clear pending irq */
5050         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5051         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5052         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5053
5054         kvm_make_request(KVM_REQ_EVENT, vcpu);
5055
5056         ++vcpu->stat.irq_window_exits;
5057
5058         /*
5059          * If the user space waits to inject interrupts, exit as soon as
5060          * possible
5061          */
5062         if (!irqchip_in_kernel(vcpu->kvm) &&
5063             vcpu->run->request_interrupt_window &&
5064             !kvm_cpu_has_interrupt(vcpu)) {
5065                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5066                 return 0;
5067         }
5068         return 1;
5069 }
5070
5071 static int handle_halt(struct kvm_vcpu *vcpu)
5072 {
5073         skip_emulated_instruction(vcpu);
5074         return kvm_emulate_halt(vcpu);
5075 }
5076
5077 static int handle_vmcall(struct kvm_vcpu *vcpu)
5078 {
5079         skip_emulated_instruction(vcpu);
5080         kvm_emulate_hypercall(vcpu);
5081         return 1;
5082 }
5083
5084 static int handle_invd(struct kvm_vcpu *vcpu)
5085 {
5086         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5087 }
5088
5089 static int handle_invlpg(struct kvm_vcpu *vcpu)
5090 {
5091         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5092
5093         kvm_mmu_invlpg(vcpu, exit_qualification);
5094         skip_emulated_instruction(vcpu);
5095         return 1;
5096 }
5097
5098 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5099 {
5100         int err;
5101
5102         err = kvm_rdpmc(vcpu);
5103         kvm_complete_insn_gp(vcpu, err);
5104
5105         return 1;
5106 }
5107
5108 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5109 {
5110         skip_emulated_instruction(vcpu);
5111         kvm_emulate_wbinvd(vcpu);
5112         return 1;
5113 }
5114
5115 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5116 {
5117         u64 new_bv = kvm_read_edx_eax(vcpu);
5118         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5119
5120         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5121                 skip_emulated_instruction(vcpu);
5122         return 1;
5123 }
5124
5125 static int handle_apic_access(struct kvm_vcpu *vcpu)
5126 {
5127         if (likely(fasteoi)) {
5128                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5129                 int access_type, offset;
5130
5131                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5132                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5133                 /*
5134                  * Sane guest uses MOV to write EOI, with written value
5135                  * not cared. So make a short-circuit here by avoiding
5136                  * heavy instruction emulation.
5137                  */
5138                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5139                     (offset == APIC_EOI)) {
5140                         kvm_lapic_set_eoi(vcpu);
5141                         skip_emulated_instruction(vcpu);
5142                         return 1;
5143                 }
5144         }
5145         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5146 }
5147
5148 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5149 {
5150         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5151         int vector = exit_qualification & 0xff;
5152
5153         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5154         kvm_apic_set_eoi_accelerated(vcpu, vector);
5155         return 1;
5156 }
5157
5158 static int handle_apic_write(struct kvm_vcpu *vcpu)
5159 {
5160         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5161         u32 offset = exit_qualification & 0xfff;
5162
5163         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5164         kvm_apic_write_nodecode(vcpu, offset);
5165         return 1;
5166 }
5167
5168 static int handle_task_switch(struct kvm_vcpu *vcpu)
5169 {
5170         struct vcpu_vmx *vmx = to_vmx(vcpu);
5171         unsigned long exit_qualification;
5172         bool has_error_code = false;
5173         u32 error_code = 0;
5174         u16 tss_selector;
5175         int reason, type, idt_v, idt_index;
5176
5177         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5178         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5179         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5180
5181         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5182
5183         reason = (u32)exit_qualification >> 30;
5184         if (reason == TASK_SWITCH_GATE && idt_v) {
5185                 switch (type) {
5186                 case INTR_TYPE_NMI_INTR:
5187                         vcpu->arch.nmi_injected = false;
5188                         vmx_set_nmi_mask(vcpu, true);
5189                         break;
5190                 case INTR_TYPE_EXT_INTR:
5191                 case INTR_TYPE_SOFT_INTR:
5192                         kvm_clear_interrupt_queue(vcpu);
5193                         break;
5194                 case INTR_TYPE_HARD_EXCEPTION:
5195                         if (vmx->idt_vectoring_info &
5196                             VECTORING_INFO_DELIVER_CODE_MASK) {
5197                                 has_error_code = true;
5198                                 error_code =
5199                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5200                         }
5201                         /* fall through */
5202                 case INTR_TYPE_SOFT_EXCEPTION:
5203                         kvm_clear_exception_queue(vcpu);
5204                         break;
5205                 default:
5206                         break;
5207                 }
5208         }
5209         tss_selector = exit_qualification;
5210
5211         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5212                        type != INTR_TYPE_EXT_INTR &&
5213                        type != INTR_TYPE_NMI_INTR))
5214                 skip_emulated_instruction(vcpu);
5215
5216         if (kvm_task_switch(vcpu, tss_selector,
5217                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5218                             has_error_code, error_code) == EMULATE_FAIL) {
5219                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5220                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5221                 vcpu->run->internal.ndata = 0;
5222                 return 0;
5223         }
5224
5225         /* clear all local breakpoint enable flags */
5226         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
5227
5228         /*
5229          * TODO: What about debug traps on tss switch?
5230          *       Are we supposed to inject them and update dr6?
5231          */
5232
5233         return 1;
5234 }
5235
5236 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5237 {
5238         unsigned long exit_qualification;
5239         gpa_t gpa;
5240         u32 error_code;
5241         int gla_validity;
5242
5243         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5244
5245         gla_validity = (exit_qualification >> 7) & 0x3;
5246         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5247                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5248                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5249                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5250                         vmcs_readl(GUEST_LINEAR_ADDRESS));
5251                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5252                         (long unsigned int)exit_qualification);
5253                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5254                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5255                 return 0;
5256         }
5257
5258         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5259         trace_kvm_page_fault(gpa, exit_qualification);
5260
5261         /* It is a write fault? */
5262         error_code = exit_qualification & (1U << 1);
5263         /* ept page table is present? */
5264         error_code |= (exit_qualification >> 3) & 0x1;
5265
5266         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5267 }
5268
5269 static u64 ept_rsvd_mask(u64 spte, int level)
5270 {
5271         int i;
5272         u64 mask = 0;
5273
5274         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5275                 mask |= (1ULL << i);
5276
5277         if (level > 2)
5278                 /* bits 7:3 reserved */
5279                 mask |= 0xf8;
5280         else if (level == 2) {
5281                 if (spte & (1ULL << 7))
5282                         /* 2MB ref, bits 20:12 reserved */
5283                         mask |= 0x1ff000;
5284                 else
5285                         /* bits 6:3 reserved */
5286                         mask |= 0x78;
5287         }
5288
5289         return mask;
5290 }
5291
5292 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5293                                        int level)
5294 {
5295         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5296
5297         /* 010b (write-only) */
5298         WARN_ON((spte & 0x7) == 0x2);
5299
5300         /* 110b (write/execute) */
5301         WARN_ON((spte & 0x7) == 0x6);
5302
5303         /* 100b (execute-only) and value not supported by logical processor */
5304         if (!cpu_has_vmx_ept_execute_only())
5305                 WARN_ON((spte & 0x7) == 0x4);
5306
5307         /* not 000b */
5308         if ((spte & 0x7)) {
5309                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5310
5311                 if (rsvd_bits != 0) {
5312                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5313                                          __func__, rsvd_bits);
5314                         WARN_ON(1);
5315                 }
5316
5317                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5318                         u64 ept_mem_type = (spte & 0x38) >> 3;
5319
5320                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
5321                             ept_mem_type == 7) {
5322                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5323                                                 __func__, ept_mem_type);
5324                                 WARN_ON(1);
5325                         }
5326                 }
5327         }
5328 }
5329
5330 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5331 {
5332         u64 sptes[4];
5333         int nr_sptes, i, ret;
5334         gpa_t gpa;
5335
5336         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5337
5338         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5339         if (likely(ret == 1))
5340                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5341                                               EMULATE_DONE;
5342         if (unlikely(!ret))
5343                 return 1;
5344
5345         /* It is the real ept misconfig */
5346         printk(KERN_ERR "EPT: Misconfiguration.\n");
5347         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5348
5349         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5350
5351         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5352                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5353
5354         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5355         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5356
5357         return 0;
5358 }
5359
5360 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5361 {
5362         u32 cpu_based_vm_exec_control;
5363
5364         /* clear pending NMI */
5365         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5366         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5367         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5368         ++vcpu->stat.nmi_window_exits;
5369         kvm_make_request(KVM_REQ_EVENT, vcpu);
5370
5371         return 1;
5372 }
5373
5374 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5375 {
5376         struct vcpu_vmx *vmx = to_vmx(vcpu);
5377         enum emulation_result err = EMULATE_DONE;
5378         int ret = 1;
5379         u32 cpu_exec_ctrl;
5380         bool intr_window_requested;
5381         unsigned count = 130;
5382
5383         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5384         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5385
5386         while (!guest_state_valid(vcpu) && count-- != 0) {
5387                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5388                         return handle_interrupt_window(&vmx->vcpu);
5389
5390                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5391                         return 1;
5392
5393                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5394
5395                 if (err == EMULATE_DO_MMIO) {
5396                         ret = 0;
5397                         goto out;
5398                 }
5399
5400                 if (err != EMULATE_DONE) {
5401                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5402                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5403                         vcpu->run->internal.ndata = 0;
5404                         return 0;
5405                 }
5406
5407                 if (signal_pending(current))
5408                         goto out;
5409                 if (need_resched())
5410                         schedule();
5411         }
5412
5413         vmx->emulation_required = emulation_required(vcpu);
5414 out:
5415         return ret;
5416 }
5417
5418 /*
5419  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5420  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5421  */
5422 static int handle_pause(struct kvm_vcpu *vcpu)
5423 {
5424         skip_emulated_instruction(vcpu);
5425         kvm_vcpu_on_spin(vcpu);
5426
5427         return 1;
5428 }
5429
5430 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5431 {
5432         kvm_queue_exception(vcpu, UD_VECTOR);
5433         return 1;
5434 }
5435
5436 /*
5437  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5438  * We could reuse a single VMCS for all the L2 guests, but we also want the
5439  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5440  * allows keeping them loaded on the processor, and in the future will allow
5441  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5442  * every entry if they never change.
5443  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5444  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5445  *
5446  * The following functions allocate and free a vmcs02 in this pool.
5447  */
5448
5449 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5450 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5451 {
5452         struct vmcs02_list *item;
5453         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5454                 if (item->vmptr == vmx->nested.current_vmptr) {
5455                         list_move(&item->list, &vmx->nested.vmcs02_pool);
5456                         return &item->vmcs02;
5457                 }
5458
5459         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5460                 /* Recycle the least recently used VMCS. */
5461                 item = list_entry(vmx->nested.vmcs02_pool.prev,
5462                         struct vmcs02_list, list);
5463                 item->vmptr = vmx->nested.current_vmptr;
5464                 list_move(&item->list, &vmx->nested.vmcs02_pool);
5465                 return &item->vmcs02;
5466         }
5467
5468         /* Create a new VMCS */
5469         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5470         if (!item)
5471                 return NULL;
5472         item->vmcs02.vmcs = alloc_vmcs();
5473         if (!item->vmcs02.vmcs) {
5474                 kfree(item);
5475                 return NULL;
5476         }
5477         loaded_vmcs_init(&item->vmcs02);
5478         item->vmptr = vmx->nested.current_vmptr;
5479         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5480         vmx->nested.vmcs02_num++;
5481         return &item->vmcs02;
5482 }
5483
5484 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5485 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5486 {
5487         struct vmcs02_list *item;
5488         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5489                 if (item->vmptr == vmptr) {
5490                         free_loaded_vmcs(&item->vmcs02);
5491                         list_del(&item->list);
5492                         kfree(item);
5493                         vmx->nested.vmcs02_num--;
5494                         return;
5495                 }
5496 }
5497
5498 /*
5499  * Free all VMCSs saved for this vcpu, except the one pointed by
5500  * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5501  * currently used, if running L2), and vmcs01 when running L2.
5502  */
5503 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5504 {
5505         struct vmcs02_list *item, *n;
5506         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5507                 if (vmx->loaded_vmcs != &item->vmcs02)
5508                         free_loaded_vmcs(&item->vmcs02);
5509                 list_del(&item->list);
5510                 kfree(item);
5511         }
5512         vmx->nested.vmcs02_num = 0;
5513
5514         if (vmx->loaded_vmcs != &vmx->vmcs01)
5515                 free_loaded_vmcs(&vmx->vmcs01);
5516 }
5517
5518 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5519                                  u32 vm_instruction_error);
5520
5521 /*
5522  * Emulate the VMXON instruction.
5523  * Currently, we just remember that VMX is active, and do not save or even
5524  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5525  * do not currently need to store anything in that guest-allocated memory
5526  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5527  * argument is different from the VMXON pointer (which the spec says they do).
5528  */
5529 static int handle_vmon(struct kvm_vcpu *vcpu)
5530 {
5531         struct kvm_segment cs;
5532         struct vcpu_vmx *vmx = to_vmx(vcpu);
5533         struct vmcs *shadow_vmcs;
5534
5535         /* The Intel VMX Instruction Reference lists a bunch of bits that
5536          * are prerequisite to running VMXON, most notably cr4.VMXE must be
5537          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5538          * Otherwise, we should fail with #UD. We test these now:
5539          */
5540         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5541             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5542             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5543                 kvm_queue_exception(vcpu, UD_VECTOR);
5544                 return 1;
5545         }
5546
5547         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5548         if (is_long_mode(vcpu) && !cs.l) {
5549                 kvm_queue_exception(vcpu, UD_VECTOR);
5550                 return 1;
5551         }
5552
5553         if (vmx_get_cpl(vcpu)) {
5554                 kvm_inject_gp(vcpu, 0);
5555                 return 1;
5556         }
5557         if (vmx->nested.vmxon) {
5558                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5559                 skip_emulated_instruction(vcpu);
5560                 return 1;
5561         }
5562         if (enable_shadow_vmcs) {
5563                 shadow_vmcs = alloc_vmcs();
5564                 if (!shadow_vmcs)
5565                         return -ENOMEM;
5566                 /* mark vmcs as shadow */
5567                 shadow_vmcs->revision_id |= (1u << 31);
5568                 /* init shadow vmcs */
5569                 vmcs_clear(shadow_vmcs);
5570                 vmx->nested.current_shadow_vmcs = shadow_vmcs;
5571         }
5572
5573         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5574         vmx->nested.vmcs02_num = 0;
5575
5576         vmx->nested.vmxon = true;
5577
5578         skip_emulated_instruction(vcpu);
5579         return 1;
5580 }
5581
5582 /*
5583  * Intel's VMX Instruction Reference specifies a common set of prerequisites
5584  * for running VMX instructions (except VMXON, whose prerequisites are
5585  * slightly different). It also specifies what exception to inject otherwise.
5586  */
5587 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5588 {
5589         struct kvm_segment cs;
5590         struct vcpu_vmx *vmx = to_vmx(vcpu);
5591
5592         if (!vmx->nested.vmxon) {
5593                 kvm_queue_exception(vcpu, UD_VECTOR);
5594                 return 0;
5595         }
5596
5597         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5598         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5599             (is_long_mode(vcpu) && !cs.l)) {
5600                 kvm_queue_exception(vcpu, UD_VECTOR);
5601                 return 0;
5602         }
5603
5604         if (vmx_get_cpl(vcpu)) {
5605                 kvm_inject_gp(vcpu, 0);
5606                 return 0;
5607         }
5608
5609         return 1;
5610 }
5611
5612 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
5613 {
5614         kunmap(vmx->nested.current_vmcs12_page);
5615         nested_release_page(vmx->nested.current_vmcs12_page);
5616 }
5617
5618 /*
5619  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5620  * just stops using VMX.
5621  */
5622 static void free_nested(struct vcpu_vmx *vmx)
5623 {
5624         if (!vmx->nested.vmxon)
5625                 return;
5626         vmx->nested.vmxon = false;
5627         if (vmx->nested.current_vmptr != -1ull) {
5628                 nested_release_vmcs12(vmx);
5629                 vmx->nested.current_vmptr = -1ull;
5630                 vmx->nested.current_vmcs12 = NULL;
5631         }
5632         if (enable_shadow_vmcs)
5633                 free_vmcs(vmx->nested.current_shadow_vmcs);
5634         /* Unpin physical memory we referred to in current vmcs02 */
5635         if (vmx->nested.apic_access_page) {
5636                 nested_release_page(vmx->nested.apic_access_page);
5637                 vmx->nested.apic_access_page = 0;
5638         }
5639
5640         nested_free_all_saved_vmcss(vmx);
5641 }
5642
5643 /* Emulate the VMXOFF instruction */
5644 static int handle_vmoff(struct kvm_vcpu *vcpu)
5645 {
5646         if (!nested_vmx_check_permission(vcpu))
5647                 return 1;
5648         free_nested(to_vmx(vcpu));
5649         skip_emulated_instruction(vcpu);
5650         return 1;
5651 }
5652
5653 /*
5654  * Decode the memory-address operand of a vmx instruction, as recorded on an
5655  * exit caused by such an instruction (run by a guest hypervisor).
5656  * On success, returns 0. When the operand is invalid, returns 1 and throws
5657  * #UD or #GP.
5658  */
5659 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5660                                  unsigned long exit_qualification,
5661                                  u32 vmx_instruction_info, gva_t *ret)
5662 {
5663         /*
5664          * According to Vol. 3B, "Information for VM Exits Due to Instruction
5665          * Execution", on an exit, vmx_instruction_info holds most of the
5666          * addressing components of the operand. Only the displacement part
5667          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5668          * For how an actual address is calculated from all these components,
5669          * refer to Vol. 1, "Operand Addressing".
5670          */
5671         int  scaling = vmx_instruction_info & 3;
5672         int  addr_size = (vmx_instruction_info >> 7) & 7;
5673         bool is_reg = vmx_instruction_info & (1u << 10);
5674         int  seg_reg = (vmx_instruction_info >> 15) & 7;
5675         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5676         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5677         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5678         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5679
5680         if (is_reg) {
5681                 kvm_queue_exception(vcpu, UD_VECTOR);
5682                 return 1;
5683         }
5684
5685         /* Addr = segment_base + offset */
5686         /* offset = base + [index * scale] + displacement */
5687         *ret = vmx_get_segment_base(vcpu, seg_reg);
5688         if (base_is_valid)
5689                 *ret += kvm_register_read(vcpu, base_reg);
5690         if (index_is_valid)
5691                 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5692         *ret += exit_qualification; /* holds the displacement */
5693
5694         if (addr_size == 1) /* 32 bit */
5695                 *ret &= 0xffffffff;
5696
5697         /*
5698          * TODO: throw #GP (and return 1) in various cases that the VM*
5699          * instructions require it - e.g., offset beyond segment limit,
5700          * unusable or unreadable/unwritable segment, non-canonical 64-bit
5701          * address, and so on. Currently these are not checked.
5702          */
5703         return 0;
5704 }
5705
5706 /*
5707  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5708  * set the success or error code of an emulated VMX instruction, as specified
5709  * by Vol 2B, VMX Instruction Reference, "Conventions".
5710  */
5711 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5712 {
5713         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5714                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5715                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5716 }
5717
5718 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5719 {
5720         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5721                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5722                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5723                         | X86_EFLAGS_CF);
5724 }
5725
5726 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5727                                         u32 vm_instruction_error)
5728 {
5729         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5730                 /*
5731                  * failValid writes the error number to the current VMCS, which
5732                  * can't be done there isn't a current VMCS.
5733                  */
5734                 nested_vmx_failInvalid(vcpu);
5735                 return;
5736         }
5737         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5738                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5739                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5740                         | X86_EFLAGS_ZF);
5741         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5742 }
5743
5744 /* Emulate the VMCLEAR instruction */
5745 static int handle_vmclear(struct kvm_vcpu *vcpu)
5746 {
5747         struct vcpu_vmx *vmx = to_vmx(vcpu);
5748         gva_t gva;
5749         gpa_t vmptr;
5750         struct vmcs12 *vmcs12;
5751         struct page *page;
5752         struct x86_exception e;
5753
5754         if (!nested_vmx_check_permission(vcpu))
5755                 return 1;
5756
5757         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5758                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5759                 return 1;
5760
5761         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5762                                 sizeof(vmptr), &e)) {
5763                 kvm_inject_page_fault(vcpu, &e);
5764                 return 1;
5765         }
5766
5767         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5768                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5769                 skip_emulated_instruction(vcpu);
5770                 return 1;
5771         }
5772
5773         if (vmptr == vmx->nested.current_vmptr) {
5774                 nested_release_vmcs12(vmx);
5775                 vmx->nested.current_vmptr = -1ull;
5776                 vmx->nested.current_vmcs12 = NULL;
5777         }
5778
5779         page = nested_get_page(vcpu, vmptr);
5780         if (page == NULL) {
5781                 /*
5782                  * For accurate processor emulation, VMCLEAR beyond available
5783                  * physical memory should do nothing at all. However, it is
5784                  * possible that a nested vmx bug, not a guest hypervisor bug,
5785                  * resulted in this case, so let's shut down before doing any
5786                  * more damage:
5787                  */
5788                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5789                 return 1;
5790         }
5791         vmcs12 = kmap(page);
5792         vmcs12->launch_state = 0;
5793         kunmap(page);
5794         nested_release_page(page);
5795
5796         nested_free_vmcs02(vmx, vmptr);
5797
5798         skip_emulated_instruction(vcpu);
5799         nested_vmx_succeed(vcpu);
5800         return 1;
5801 }
5802
5803 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5804
5805 /* Emulate the VMLAUNCH instruction */
5806 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5807 {
5808         return nested_vmx_run(vcpu, true);
5809 }
5810
5811 /* Emulate the VMRESUME instruction */
5812 static int handle_vmresume(struct kvm_vcpu *vcpu)
5813 {
5814
5815         return nested_vmx_run(vcpu, false);
5816 }
5817
5818 enum vmcs_field_type {
5819         VMCS_FIELD_TYPE_U16 = 0,
5820         VMCS_FIELD_TYPE_U64 = 1,
5821         VMCS_FIELD_TYPE_U32 = 2,
5822         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5823 };
5824
5825 static inline int vmcs_field_type(unsigned long field)
5826 {
5827         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
5828                 return VMCS_FIELD_TYPE_U32;
5829         return (field >> 13) & 0x3 ;
5830 }
5831
5832 static inline int vmcs_field_readonly(unsigned long field)
5833 {
5834         return (((field >> 10) & 0x3) == 1);
5835 }
5836
5837 /*
5838  * Read a vmcs12 field. Since these can have varying lengths and we return
5839  * one type, we chose the biggest type (u64) and zero-extend the return value
5840  * to that size. Note that the caller, handle_vmread, might need to use only
5841  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5842  * 64-bit fields are to be returned).
5843  */
5844 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5845                                         unsigned long field, u64 *ret)
5846 {
5847         short offset = vmcs_field_to_offset(field);
5848         char *p;
5849
5850         if (offset < 0)
5851                 return 0;
5852
5853         p = ((char *)(get_vmcs12(vcpu))) + offset;
5854
5855         switch (vmcs_field_type(field)) {
5856         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5857                 *ret = *((natural_width *)p);
5858                 return 1;
5859         case VMCS_FIELD_TYPE_U16:
5860                 *ret = *((u16 *)p);
5861                 return 1;
5862         case VMCS_FIELD_TYPE_U32:
5863                 *ret = *((u32 *)p);
5864                 return 1;
5865         case VMCS_FIELD_TYPE_U64:
5866                 *ret = *((u64 *)p);
5867                 return 1;
5868         default:
5869                 return 0; /* can never happen. */
5870         }
5871 }
5872
5873
5874 static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
5875                                     unsigned long field, u64 field_value){
5876         short offset = vmcs_field_to_offset(field);
5877         char *p = ((char *) get_vmcs12(vcpu)) + offset;
5878         if (offset < 0)
5879                 return false;
5880
5881         switch (vmcs_field_type(field)) {
5882         case VMCS_FIELD_TYPE_U16:
5883                 *(u16 *)p = field_value;
5884                 return true;
5885         case VMCS_FIELD_TYPE_U32:
5886                 *(u32 *)p = field_value;
5887                 return true;
5888         case VMCS_FIELD_TYPE_U64:
5889                 *(u64 *)p = field_value;
5890                 return true;
5891         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5892                 *(natural_width *)p = field_value;
5893                 return true;
5894         default:
5895                 return false; /* can never happen. */
5896         }
5897
5898 }
5899
5900 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
5901 {
5902         int i;
5903         unsigned long field;
5904         u64 field_value;
5905         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
5906         unsigned long *fields = (unsigned long *)shadow_read_write_fields;
5907         int num_fields = max_shadow_read_write_fields;
5908
5909         vmcs_load(shadow_vmcs);
5910
5911         for (i = 0; i < num_fields; i++) {
5912                 field = fields[i];
5913                 switch (vmcs_field_type(field)) {
5914                 case VMCS_FIELD_TYPE_U16:
5915                         field_value = vmcs_read16(field);
5916                         break;
5917                 case VMCS_FIELD_TYPE_U32:
5918                         field_value = vmcs_read32(field);
5919                         break;
5920                 case VMCS_FIELD_TYPE_U64:
5921                         field_value = vmcs_read64(field);
5922                         break;
5923                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5924                         field_value = vmcs_readl(field);
5925                         break;
5926                 }
5927                 vmcs12_write_any(&vmx->vcpu, field, field_value);
5928         }
5929
5930         vmcs_clear(shadow_vmcs);
5931         vmcs_load(vmx->loaded_vmcs->vmcs);
5932 }
5933
5934 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
5935 {
5936         unsigned long *fields[] = {
5937                 (unsigned long *)shadow_read_write_fields,
5938                 (unsigned long *)shadow_read_only_fields
5939         };
5940         int num_lists =  ARRAY_SIZE(fields);
5941         int max_fields[] = {
5942                 max_shadow_read_write_fields,
5943                 max_shadow_read_only_fields
5944         };
5945         int i, q;
5946         unsigned long field;
5947         u64 field_value = 0;
5948         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
5949
5950         vmcs_load(shadow_vmcs);
5951
5952         for (q = 0; q < num_lists; q++) {
5953                 for (i = 0; i < max_fields[q]; i++) {
5954                         field = fields[q][i];
5955                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
5956
5957                         switch (vmcs_field_type(field)) {
5958                         case VMCS_FIELD_TYPE_U16:
5959                                 vmcs_write16(field, (u16)field_value);
5960                                 break;
5961                         case VMCS_FIELD_TYPE_U32:
5962                                 vmcs_write32(field, (u32)field_value);
5963                                 break;
5964                         case VMCS_FIELD_TYPE_U64:
5965                                 vmcs_write64(field, (u64)field_value);
5966                                 break;
5967                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5968                                 vmcs_writel(field, (long)field_value);
5969                                 break;
5970                         }
5971                 }
5972         }
5973
5974         vmcs_clear(shadow_vmcs);
5975         vmcs_load(vmx->loaded_vmcs->vmcs);
5976 }
5977
5978 /*
5979  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5980  * used before) all generate the same failure when it is missing.
5981  */
5982 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5983 {
5984         struct vcpu_vmx *vmx = to_vmx(vcpu);
5985         if (vmx->nested.current_vmptr == -1ull) {
5986                 nested_vmx_failInvalid(vcpu);
5987                 skip_emulated_instruction(vcpu);
5988                 return 0;
5989         }
5990         return 1;
5991 }
5992
5993 static int handle_vmread(struct kvm_vcpu *vcpu)
5994 {
5995         unsigned long field;
5996         u64 field_value;
5997         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5998         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5999         gva_t gva = 0;
6000
6001         if (!nested_vmx_check_permission(vcpu) ||
6002             !nested_vmx_check_vmcs12(vcpu))
6003                 return 1;
6004
6005         /* Decode instruction info and find the field to read */
6006         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6007         /* Read the field, zero-extended to a u64 field_value */
6008         if (!vmcs12_read_any(vcpu, field, &field_value)) {
6009                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6010                 skip_emulated_instruction(vcpu);
6011                 return 1;
6012         }
6013         /*
6014          * Now copy part of this value to register or memory, as requested.
6015          * Note that the number of bits actually copied is 32 or 64 depending
6016          * on the guest's mode (32 or 64 bit), not on the given field's length.
6017          */
6018         if (vmx_instruction_info & (1u << 10)) {
6019                 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6020                         field_value);
6021         } else {
6022                 if (get_vmx_mem_address(vcpu, exit_qualification,
6023                                 vmx_instruction_info, &gva))
6024                         return 1;
6025                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6026                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6027                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6028         }
6029
6030         nested_vmx_succeed(vcpu);
6031         skip_emulated_instruction(vcpu);
6032         return 1;
6033 }
6034
6035
6036 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6037 {
6038         unsigned long field;
6039         gva_t gva;
6040         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6041         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6042         /* The value to write might be 32 or 64 bits, depending on L1's long
6043          * mode, and eventually we need to write that into a field of several
6044          * possible lengths. The code below first zero-extends the value to 64
6045          * bit (field_value), and then copies only the approriate number of
6046          * bits into the vmcs12 field.
6047          */
6048         u64 field_value = 0;
6049         struct x86_exception e;
6050
6051         if (!nested_vmx_check_permission(vcpu) ||
6052             !nested_vmx_check_vmcs12(vcpu))
6053                 return 1;
6054
6055         if (vmx_instruction_info & (1u << 10))
6056                 field_value = kvm_register_read(vcpu,
6057                         (((vmx_instruction_info) >> 3) & 0xf));
6058         else {
6059                 if (get_vmx_mem_address(vcpu, exit_qualification,
6060                                 vmx_instruction_info, &gva))
6061                         return 1;
6062                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6063                            &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
6064                         kvm_inject_page_fault(vcpu, &e);
6065                         return 1;
6066                 }
6067         }
6068
6069
6070         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6071         if (vmcs_field_readonly(field)) {
6072                 nested_vmx_failValid(vcpu,
6073                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6074                 skip_emulated_instruction(vcpu);
6075                 return 1;
6076         }
6077
6078         if (!vmcs12_write_any(vcpu, field, field_value)) {
6079                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6080                 skip_emulated_instruction(vcpu);
6081                 return 1;
6082         }
6083
6084         nested_vmx_succeed(vcpu);
6085         skip_emulated_instruction(vcpu);
6086         return 1;
6087 }
6088
6089 /* Emulate the VMPTRLD instruction */
6090 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6091 {
6092         struct vcpu_vmx *vmx = to_vmx(vcpu);
6093         gva_t gva;
6094         gpa_t vmptr;
6095         struct x86_exception e;
6096
6097         if (!nested_vmx_check_permission(vcpu))
6098                 return 1;
6099
6100         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6101                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6102                 return 1;
6103
6104         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6105                                 sizeof(vmptr), &e)) {
6106                 kvm_inject_page_fault(vcpu, &e);
6107                 return 1;
6108         }
6109
6110         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
6111                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
6112                 skip_emulated_instruction(vcpu);
6113                 return 1;
6114         }
6115
6116         if (vmx->nested.current_vmptr != vmptr) {
6117                 struct vmcs12 *new_vmcs12;
6118                 struct page *page;
6119                 page = nested_get_page(vcpu, vmptr);
6120                 if (page == NULL) {
6121                         nested_vmx_failInvalid(vcpu);
6122                         skip_emulated_instruction(vcpu);
6123                         return 1;
6124                 }
6125                 new_vmcs12 = kmap(page);
6126                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6127                         kunmap(page);
6128                         nested_release_page_clean(page);
6129                         nested_vmx_failValid(vcpu,
6130                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6131                         skip_emulated_instruction(vcpu);
6132                         return 1;
6133                 }
6134                 if (vmx->nested.current_vmptr != -1ull)
6135                         nested_release_vmcs12(vmx);
6136
6137                 vmx->nested.current_vmptr = vmptr;
6138                 vmx->nested.current_vmcs12 = new_vmcs12;
6139                 vmx->nested.current_vmcs12_page = page;
6140         }
6141
6142         nested_vmx_succeed(vcpu);
6143         skip_emulated_instruction(vcpu);
6144         return 1;
6145 }
6146
6147 /* Emulate the VMPTRST instruction */
6148 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6149 {
6150         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6151         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6152         gva_t vmcs_gva;
6153         struct x86_exception e;
6154
6155         if (!nested_vmx_check_permission(vcpu))
6156                 return 1;
6157
6158         if (get_vmx_mem_address(vcpu, exit_qualification,
6159                         vmx_instruction_info, &vmcs_gva))
6160                 return 1;
6161         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6162         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6163                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
6164                                  sizeof(u64), &e)) {
6165                 kvm_inject_page_fault(vcpu, &e);
6166                 return 1;
6167         }
6168         nested_vmx_succeed(vcpu);
6169         skip_emulated_instruction(vcpu);
6170         return 1;
6171 }
6172
6173 /*
6174  * The exit handlers return 1 if the exit was handled fully and guest execution
6175  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6176  * to be done to userspace and return 0.
6177  */
6178 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6179         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
6180         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6181         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6182         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
6183         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6184         [EXIT_REASON_CR_ACCESS]               = handle_cr,
6185         [EXIT_REASON_DR_ACCESS]               = handle_dr,
6186         [EXIT_REASON_CPUID]                   = handle_cpuid,
6187         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
6188         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
6189         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
6190         [EXIT_REASON_HLT]                     = handle_halt,
6191         [EXIT_REASON_INVD]                    = handle_invd,
6192         [EXIT_REASON_INVLPG]                  = handle_invlpg,
6193         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
6194         [EXIT_REASON_VMCALL]                  = handle_vmcall,
6195         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
6196         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
6197         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
6198         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
6199         [EXIT_REASON_VMREAD]                  = handle_vmread,
6200         [EXIT_REASON_VMRESUME]                = handle_vmresume,
6201         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
6202         [EXIT_REASON_VMOFF]                   = handle_vmoff,
6203         [EXIT_REASON_VMON]                    = handle_vmon,
6204         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6205         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6206         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6207         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6208         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
6209         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
6210         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6211         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6212         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
6213         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6214         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6215         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
6216         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
6217 };
6218
6219 static const int kvm_vmx_max_exit_handlers =
6220         ARRAY_SIZE(kvm_vmx_exit_handlers);
6221
6222 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6223                                        struct vmcs12 *vmcs12)
6224 {
6225         unsigned long exit_qualification;
6226         gpa_t bitmap, last_bitmap;
6227         unsigned int port;
6228         int size;
6229         u8 b;
6230
6231         if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
6232                 return 1;
6233
6234         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6235                 return 0;
6236
6237         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6238
6239         port = exit_qualification >> 16;
6240         size = (exit_qualification & 7) + 1;
6241
6242         last_bitmap = (gpa_t)-1;
6243         b = -1;
6244
6245         while (size > 0) {
6246                 if (port < 0x8000)
6247                         bitmap = vmcs12->io_bitmap_a;
6248                 else if (port < 0x10000)
6249                         bitmap = vmcs12->io_bitmap_b;
6250                 else
6251                         return 1;
6252                 bitmap += (port & 0x7fff) / 8;
6253
6254                 if (last_bitmap != bitmap)
6255                         if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6256                                 return 1;
6257                 if (b & (1 << (port & 7)))
6258                         return 1;
6259
6260                 port++;
6261                 size--;
6262                 last_bitmap = bitmap;
6263         }
6264
6265         return 0;
6266 }
6267
6268 /*
6269  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6270  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6271  * disinterest in the current event (read or write a specific MSR) by using an
6272  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6273  */
6274 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6275         struct vmcs12 *vmcs12, u32 exit_reason)
6276 {
6277         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6278         gpa_t bitmap;
6279
6280         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6281                 return 1;
6282
6283         /*
6284          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6285          * for the four combinations of read/write and low/high MSR numbers.
6286          * First we need to figure out which of the four to use:
6287          */
6288         bitmap = vmcs12->msr_bitmap;
6289         if (exit_reason == EXIT_REASON_MSR_WRITE)
6290                 bitmap += 2048;
6291         if (msr_index >= 0xc0000000) {
6292                 msr_index -= 0xc0000000;
6293                 bitmap += 1024;
6294         }
6295
6296         /* Then read the msr_index'th bit from this bitmap: */
6297         if (msr_index < 1024*8) {
6298                 unsigned char b;
6299                 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6300                         return 1;
6301                 return 1 & (b >> (msr_index & 7));
6302         } else
6303                 return 1; /* let L1 handle the wrong parameter */
6304 }
6305
6306 /*
6307  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6308  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6309  * intercept (via guest_host_mask etc.) the current event.
6310  */
6311 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6312         struct vmcs12 *vmcs12)
6313 {
6314         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6315         int cr = exit_qualification & 15;
6316         int reg = (exit_qualification >> 8) & 15;
6317         unsigned long val = kvm_register_read(vcpu, reg);
6318
6319         switch ((exit_qualification >> 4) & 3) {
6320         case 0: /* mov to cr */
6321                 switch (cr) {
6322                 case 0:
6323                         if (vmcs12->cr0_guest_host_mask &
6324                             (val ^ vmcs12->cr0_read_shadow))
6325                                 return 1;
6326                         break;
6327                 case 3:
6328                         if ((vmcs12->cr3_target_count >= 1 &&
6329                                         vmcs12->cr3_target_value0 == val) ||
6330                                 (vmcs12->cr3_target_count >= 2 &&
6331                                         vmcs12->cr3_target_value1 == val) ||
6332                                 (vmcs12->cr3_target_count >= 3 &&
6333                                         vmcs12->cr3_target_value2 == val) ||
6334                                 (vmcs12->cr3_target_count >= 4 &&
6335                                         vmcs12->cr3_target_value3 == val))
6336                                 return 0;
6337                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6338                                 return 1;
6339                         break;
6340                 case 4:
6341                         if (vmcs12->cr4_guest_host_mask &
6342                             (vmcs12->cr4_read_shadow ^ val))
6343                                 return 1;
6344                         break;
6345                 case 8:
6346                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6347                                 return 1;
6348                         break;
6349                 }
6350                 break;
6351         case 2: /* clts */
6352                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6353                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
6354                         return 1;
6355                 break;
6356         case 1: /* mov from cr */
6357                 switch (cr) {
6358                 case 3:
6359                         if (vmcs12->cpu_based_vm_exec_control &
6360                             CPU_BASED_CR3_STORE_EXITING)
6361                                 return 1;
6362                         break;
6363                 case 8:
6364                         if (vmcs12->cpu_based_vm_exec_control &
6365                             CPU_BASED_CR8_STORE_EXITING)
6366                                 return 1;
6367                         break;
6368                 }
6369                 break;
6370         case 3: /* lmsw */
6371                 /*
6372                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6373                  * cr0. Other attempted changes are ignored, with no exit.
6374                  */
6375                 if (vmcs12->cr0_guest_host_mask & 0xe &
6376                     (val ^ vmcs12->cr0_read_shadow))
6377                         return 1;
6378                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6379                     !(vmcs12->cr0_read_shadow & 0x1) &&
6380                     (val & 0x1))
6381                         return 1;
6382                 break;
6383         }
6384         return 0;
6385 }
6386
6387 /*
6388  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6389  * should handle it ourselves in L0 (and then continue L2). Only call this
6390  * when in is_guest_mode (L2).
6391  */
6392 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6393 {
6394         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6395         struct vcpu_vmx *vmx = to_vmx(vcpu);
6396         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6397         u32 exit_reason = vmx->exit_reason;
6398
6399         if (vmx->nested.nested_run_pending)
6400                 return 0;
6401
6402         if (unlikely(vmx->fail)) {
6403                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6404                                     vmcs_read32(VM_INSTRUCTION_ERROR));
6405                 return 1;
6406         }
6407
6408         switch (exit_reason) {
6409         case EXIT_REASON_EXCEPTION_NMI:
6410                 if (!is_exception(intr_info))
6411                         return 0;
6412                 else if (is_page_fault(intr_info))
6413                         return enable_ept;
6414                 return vmcs12->exception_bitmap &
6415                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6416         case EXIT_REASON_EXTERNAL_INTERRUPT:
6417                 return 0;
6418         case EXIT_REASON_TRIPLE_FAULT:
6419                 return 1;
6420         case EXIT_REASON_PENDING_INTERRUPT:
6421                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
6422         case EXIT_REASON_NMI_WINDOW:
6423                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
6424         case EXIT_REASON_TASK_SWITCH:
6425                 return 1;
6426         case EXIT_REASON_CPUID:
6427                 return 1;
6428         case EXIT_REASON_HLT:
6429                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6430         case EXIT_REASON_INVD:
6431                 return 1;
6432         case EXIT_REASON_INVLPG:
6433                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6434         case EXIT_REASON_RDPMC:
6435                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6436         case EXIT_REASON_RDTSC:
6437                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6438         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6439         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6440         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6441         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6442         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6443                 /*
6444                  * VMX instructions trap unconditionally. This allows L1 to
6445                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
6446                  */
6447                 return 1;
6448         case EXIT_REASON_CR_ACCESS:
6449                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6450         case EXIT_REASON_DR_ACCESS:
6451                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6452         case EXIT_REASON_IO_INSTRUCTION:
6453                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6454         case EXIT_REASON_MSR_READ:
6455         case EXIT_REASON_MSR_WRITE:
6456                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6457         case EXIT_REASON_INVALID_STATE:
6458                 return 1;
6459         case EXIT_REASON_MWAIT_INSTRUCTION:
6460                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6461         case EXIT_REASON_MONITOR_INSTRUCTION:
6462                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6463         case EXIT_REASON_PAUSE_INSTRUCTION:
6464                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6465                         nested_cpu_has2(vmcs12,
6466                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6467         case EXIT_REASON_MCE_DURING_VMENTRY:
6468                 return 0;
6469         case EXIT_REASON_TPR_BELOW_THRESHOLD:
6470                 return 1;
6471         case EXIT_REASON_APIC_ACCESS:
6472                 return nested_cpu_has2(vmcs12,
6473                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6474         case EXIT_REASON_EPT_VIOLATION:
6475         case EXIT_REASON_EPT_MISCONFIG:
6476                 return 0;
6477         case EXIT_REASON_PREEMPTION_TIMER:
6478                 return vmcs12->pin_based_vm_exec_control &
6479                         PIN_BASED_VMX_PREEMPTION_TIMER;
6480         case EXIT_REASON_WBINVD:
6481                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6482         case EXIT_REASON_XSETBV:
6483                 return 1;
6484         default:
6485                 return 1;
6486         }
6487 }
6488
6489 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6490 {
6491         *info1 = vmcs_readl(EXIT_QUALIFICATION);
6492         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6493 }
6494
6495 /*
6496  * The guest has exited.  See if we can fix it or if we need userspace
6497  * assistance.
6498  */
6499 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6500 {
6501         struct vcpu_vmx *vmx = to_vmx(vcpu);
6502         u32 exit_reason = vmx->exit_reason;
6503         u32 vectoring_info = vmx->idt_vectoring_info;
6504
6505         /* If guest state is invalid, start emulating */
6506         if (vmx->emulation_required)
6507                 return handle_invalid_guest_state(vcpu);
6508
6509         /*
6510          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
6511          * we did not inject a still-pending event to L1 now because of
6512          * nested_run_pending, we need to re-enable this bit.
6513          */
6514         if (vmx->nested.nested_run_pending)
6515                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6516
6517         if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
6518             exit_reason == EXIT_REASON_VMRESUME))
6519                 vmx->nested.nested_run_pending = 1;
6520         else
6521                 vmx->nested.nested_run_pending = 0;
6522
6523         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6524                 nested_vmx_vmexit(vcpu);
6525                 return 1;
6526         }
6527
6528         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6529                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6530                 vcpu->run->fail_entry.hardware_entry_failure_reason
6531                         = exit_reason;
6532                 return 0;
6533         }
6534
6535         if (unlikely(vmx->fail)) {
6536                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6537                 vcpu->run->fail_entry.hardware_entry_failure_reason
6538                         = vmcs_read32(VM_INSTRUCTION_ERROR);
6539                 return 0;
6540         }
6541
6542         /*
6543          * Note:
6544          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6545          * delivery event since it indicates guest is accessing MMIO.
6546          * The vm-exit can be triggered again after return to guest that
6547          * will cause infinite loop.
6548          */
6549         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6550                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6551                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
6552                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
6553                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6554                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6555                 vcpu->run->internal.ndata = 2;
6556                 vcpu->run->internal.data[0] = vectoring_info;
6557                 vcpu->run->internal.data[1] = exit_reason;
6558                 return 0;
6559         }
6560
6561         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6562             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6563                                         get_vmcs12(vcpu), vcpu)))) {
6564                 if (vmx_interrupt_allowed(vcpu)) {
6565                         vmx->soft_vnmi_blocked = 0;
6566                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
6567                            vcpu->arch.nmi_pending) {
6568                         /*
6569                          * This CPU don't support us in finding the end of an
6570                          * NMI-blocked window if the guest runs with IRQs
6571                          * disabled. So we pull the trigger after 1 s of
6572                          * futile waiting, but inform the user about this.
6573                          */
6574                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6575                                "state on VCPU %d after 1 s timeout\n",
6576                                __func__, vcpu->vcpu_id);
6577                         vmx->soft_vnmi_blocked = 0;
6578                 }
6579         }
6580
6581         if (exit_reason < kvm_vmx_max_exit_handlers
6582             && kvm_vmx_exit_handlers[exit_reason])
6583                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6584         else {
6585                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6586                 vcpu->run->hw.hardware_exit_reason = exit_reason;
6587         }
6588         return 0;
6589 }
6590
6591 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6592 {
6593         if (irr == -1 || tpr < irr) {
6594                 vmcs_write32(TPR_THRESHOLD, 0);
6595                 return;
6596         }
6597
6598         vmcs_write32(TPR_THRESHOLD, irr);
6599 }
6600
6601 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
6602 {
6603         u32 sec_exec_control;
6604
6605         /*
6606          * There is not point to enable virtualize x2apic without enable
6607          * apicv
6608          */
6609         if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6610                                 !vmx_vm_has_apicv(vcpu->kvm))
6611                 return;
6612
6613         if (!vm_need_tpr_shadow(vcpu->kvm))
6614                 return;
6615
6616         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6617
6618         if (set) {
6619                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6620                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6621         } else {
6622                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6623                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6624         }
6625         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
6626
6627         vmx_set_msr_bitmap(vcpu);
6628 }
6629
6630 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
6631 {
6632         u16 status;
6633         u8 old;
6634
6635         if (!vmx_vm_has_apicv(kvm))
6636                 return;
6637
6638         if (isr == -1)
6639                 isr = 0;
6640
6641         status = vmcs_read16(GUEST_INTR_STATUS);
6642         old = status >> 8;
6643         if (isr != old) {
6644                 status &= 0xff;
6645                 status |= isr << 8;
6646                 vmcs_write16(GUEST_INTR_STATUS, status);
6647         }
6648 }
6649
6650 static void vmx_set_rvi(int vector)
6651 {
6652         u16 status;
6653         u8 old;
6654
6655         status = vmcs_read16(GUEST_INTR_STATUS);
6656         old = (u8)status & 0xff;
6657         if ((u8)vector != old) {
6658                 status &= ~0xff;
6659                 status |= (u8)vector;
6660                 vmcs_write16(GUEST_INTR_STATUS, status);
6661         }
6662 }
6663
6664 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6665 {
6666         if (max_irr == -1)
6667                 return;
6668
6669         vmx_set_rvi(max_irr);
6670 }
6671
6672 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6673 {
6674         if (!vmx_vm_has_apicv(vcpu->kvm))
6675                 return;
6676
6677         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6678         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6679         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6680         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6681 }
6682
6683 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6684 {
6685         u32 exit_intr_info;
6686
6687         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6688               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6689                 return;
6690
6691         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6692         exit_intr_info = vmx->exit_intr_info;
6693
6694         /* Handle machine checks before interrupts are enabled */
6695         if (is_machine_check(exit_intr_info))
6696                 kvm_machine_check();
6697
6698         /* We need to handle NMIs before interrupts are enabled */
6699         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
6700             (exit_intr_info & INTR_INFO_VALID_MASK)) {
6701                 kvm_before_handle_nmi(&vmx->vcpu);
6702                 asm("int $2");
6703                 kvm_after_handle_nmi(&vmx->vcpu);
6704         }
6705 }
6706
6707 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
6708 {
6709         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6710
6711         /*
6712          * If external interrupt exists, IF bit is set in rflags/eflags on the
6713          * interrupt stack frame, and interrupt will be enabled on a return
6714          * from interrupt handler.
6715          */
6716         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
6717                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
6718                 unsigned int vector;
6719                 unsigned long entry;
6720                 gate_desc *desc;
6721                 struct vcpu_vmx *vmx = to_vmx(vcpu);
6722 #ifdef CONFIG_X86_64
6723                 unsigned long tmp;
6724 #endif
6725
6726                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
6727                 desc = (gate_desc *)vmx->host_idt_base + vector;
6728                 entry = gate_offset(*desc);
6729                 asm volatile(
6730 #ifdef CONFIG_X86_64
6731                         "mov %%" _ASM_SP ", %[sp]\n\t"
6732                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6733                         "push $%c[ss]\n\t"
6734                         "push %[sp]\n\t"
6735 #endif
6736                         "pushf\n\t"
6737                         "orl $0x200, (%%" _ASM_SP ")\n\t"
6738                         __ASM_SIZE(push) " $%c[cs]\n\t"
6739                         "call *%[entry]\n\t"
6740                         :
6741 #ifdef CONFIG_X86_64
6742                         [sp]"=&r"(tmp)
6743 #endif
6744                         :
6745                         [entry]"r"(entry),
6746                         [ss]"i"(__KERNEL_DS),
6747                         [cs]"i"(__KERNEL_CS)
6748                         );
6749         } else
6750                 local_irq_enable();
6751 }
6752
6753 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6754 {
6755         u32 exit_intr_info;
6756         bool unblock_nmi;
6757         u8 vector;
6758         bool idtv_info_valid;
6759
6760         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6761
6762         if (cpu_has_virtual_nmis()) {
6763                 if (vmx->nmi_known_unmasked)
6764                         return;
6765                 /*
6766                  * Can't use vmx->exit_intr_info since we're not sure what
6767                  * the exit reason is.
6768                  */
6769                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6770                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6771                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6772                 /*
6773                  * SDM 3: 27.7.1.2 (September 2008)
6774                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6775                  * a guest IRET fault.
6776                  * SDM 3: 23.2.2 (September 2008)
6777                  * Bit 12 is undefined in any of the following cases:
6778                  *  If the VM exit sets the valid bit in the IDT-vectoring
6779                  *   information field.
6780                  *  If the VM exit is due to a double fault.
6781                  */
6782                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6783                     vector != DF_VECTOR && !idtv_info_valid)
6784                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6785                                       GUEST_INTR_STATE_NMI);
6786                 else
6787                         vmx->nmi_known_unmasked =
6788                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6789                                   & GUEST_INTR_STATE_NMI);
6790         } else if (unlikely(vmx->soft_vnmi_blocked))
6791                 vmx->vnmi_blocked_time +=
6792                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
6793 }
6794
6795 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6796                                       u32 idt_vectoring_info,
6797                                       int instr_len_field,
6798                                       int error_code_field)
6799 {
6800         u8 vector;
6801         int type;
6802         bool idtv_info_valid;
6803
6804         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6805
6806         vcpu->arch.nmi_injected = false;
6807         kvm_clear_exception_queue(vcpu);
6808         kvm_clear_interrupt_queue(vcpu);
6809
6810         if (!idtv_info_valid)
6811                 return;
6812
6813         kvm_make_request(KVM_REQ_EVENT, vcpu);
6814
6815         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6816         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6817
6818         switch (type) {
6819         case INTR_TYPE_NMI_INTR:
6820                 vcpu->arch.nmi_injected = true;
6821                 /*
6822                  * SDM 3: 27.7.1.2 (September 2008)
6823                  * Clear bit "block by NMI" before VM entry if a NMI
6824                  * delivery faulted.
6825                  */
6826                 vmx_set_nmi_mask(vcpu, false);
6827                 break;
6828         case INTR_TYPE_SOFT_EXCEPTION:
6829                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6830                 /* fall through */
6831         case INTR_TYPE_HARD_EXCEPTION:
6832                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6833                         u32 err = vmcs_read32(error_code_field);
6834                         kvm_queue_exception_e(vcpu, vector, err);
6835                 } else
6836                         kvm_queue_exception(vcpu, vector);
6837                 break;
6838         case INTR_TYPE_SOFT_INTR:
6839                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6840                 /* fall through */
6841         case INTR_TYPE_EXT_INTR:
6842                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6843                 break;
6844         default:
6845                 break;
6846         }
6847 }
6848
6849 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6850 {
6851         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6852                                   VM_EXIT_INSTRUCTION_LEN,
6853                                   IDT_VECTORING_ERROR_CODE);
6854 }
6855
6856 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6857 {
6858         __vmx_complete_interrupts(vcpu,
6859                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6860                                   VM_ENTRY_INSTRUCTION_LEN,
6861                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6862
6863         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6864 }
6865
6866 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6867 {
6868         int i, nr_msrs;
6869         struct perf_guest_switch_msr *msrs;
6870
6871         msrs = perf_guest_get_msrs(&nr_msrs);
6872
6873         if (!msrs)
6874                 return;
6875
6876         for (i = 0; i < nr_msrs; i++)
6877                 if (msrs[i].host == msrs[i].guest)
6878                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6879                 else
6880                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6881                                         msrs[i].host);
6882 }
6883
6884 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6885 {
6886         struct vcpu_vmx *vmx = to_vmx(vcpu);
6887         unsigned long debugctlmsr;
6888
6889         /* Record the guest's net vcpu time for enforced NMI injections. */
6890         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6891                 vmx->entry_time = ktime_get();
6892
6893         /* Don't enter VMX if guest state is invalid, let the exit handler
6894            start emulation until we arrive back to a valid state */
6895         if (vmx->emulation_required)
6896                 return;
6897
6898         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6899                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6900         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6901                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6902
6903         /* When single-stepping over STI and MOV SS, we must clear the
6904          * corresponding interruptibility bits in the guest state. Otherwise
6905          * vmentry fails as it then expects bit 14 (BS) in pending debug
6906          * exceptions being set, but that's not correct for the guest debugging
6907          * case. */
6908         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6909                 vmx_set_interrupt_shadow(vcpu, 0);
6910
6911         atomic_switch_perf_msrs(vmx);
6912         debugctlmsr = get_debugctlmsr();
6913
6914         vmx->__launched = vmx->loaded_vmcs->launched;
6915         asm(
6916                 /* Store host registers */
6917                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
6918                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
6919                 "push %%" _ASM_CX " \n\t"
6920                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
6921                 "je 1f \n\t"
6922                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
6923                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
6924                 "1: \n\t"
6925                 /* Reload cr2 if changed */
6926                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
6927                 "mov %%cr2, %%" _ASM_DX " \n\t"
6928                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
6929                 "je 2f \n\t"
6930                 "mov %%" _ASM_AX", %%cr2 \n\t"
6931                 "2: \n\t"
6932                 /* Check if vmlaunch of vmresume is needed */
6933                 "cmpl $0, %c[launched](%0) \n\t"
6934                 /* Load guest registers.  Don't clobber flags. */
6935                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
6936                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
6937                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
6938                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
6939                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
6940                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
6941 #ifdef CONFIG_X86_64
6942                 "mov %c[r8](%0),  %%r8  \n\t"
6943                 "mov %c[r9](%0),  %%r9  \n\t"
6944                 "mov %c[r10](%0), %%r10 \n\t"
6945                 "mov %c[r11](%0), %%r11 \n\t"
6946                 "mov %c[r12](%0), %%r12 \n\t"
6947                 "mov %c[r13](%0), %%r13 \n\t"
6948                 "mov %c[r14](%0), %%r14 \n\t"
6949                 "mov %c[r15](%0), %%r15 \n\t"
6950 #endif
6951                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
6952
6953                 /* Enter guest mode */
6954                 "jne 1f \n\t"
6955                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
6956                 "jmp 2f \n\t"
6957                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
6958                 "2: "
6959                 /* Save guest registers, load host registers, keep flags */
6960                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
6961                 "pop %0 \n\t"
6962                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
6963                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
6964                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
6965                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
6966                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
6967                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
6968                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
6969 #ifdef CONFIG_X86_64
6970                 "mov %%r8,  %c[r8](%0) \n\t"
6971                 "mov %%r9,  %c[r9](%0) \n\t"
6972                 "mov %%r10, %c[r10](%0) \n\t"
6973                 "mov %%r11, %c[r11](%0) \n\t"
6974                 "mov %%r12, %c[r12](%0) \n\t"
6975                 "mov %%r13, %c[r13](%0) \n\t"
6976                 "mov %%r14, %c[r14](%0) \n\t"
6977                 "mov %%r15, %c[r15](%0) \n\t"
6978 #endif
6979                 "mov %%cr2, %%" _ASM_AX "   \n\t"
6980                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
6981
6982                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
6983                 "setbe %c[fail](%0) \n\t"
6984                 ".pushsection .rodata \n\t"
6985                 ".global vmx_return \n\t"
6986                 "vmx_return: " _ASM_PTR " 2b \n\t"
6987                 ".popsection"
6988               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
6989                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
6990                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
6991                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
6992                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6993                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6994                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6995                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6996                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6997                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6998                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
6999 #ifdef CONFIG_X86_64
7000                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7001                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7002                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7003                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7004                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7005                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7006                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7007                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7008 #endif
7009                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7010                 [wordsize]"i"(sizeof(ulong))
7011               : "cc", "memory"
7012 #ifdef CONFIG_X86_64
7013                 , "rax", "rbx", "rdi", "rsi"
7014                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7015 #else
7016                 , "eax", "ebx", "edi", "esi"
7017 #endif
7018               );
7019
7020         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7021         if (debugctlmsr)
7022                 update_debugctlmsr(debugctlmsr);
7023
7024 #ifndef CONFIG_X86_64
7025         /*
7026          * The sysexit path does not restore ds/es, so we must set them to
7027          * a reasonable value ourselves.
7028          *
7029          * We can't defer this to vmx_load_host_state() since that function
7030          * may be executed in interrupt context, which saves and restore segments
7031          * around it, nullifying its effect.
7032          */
7033         loadsegment(ds, __USER_DS);
7034         loadsegment(es, __USER_DS);
7035 #endif
7036
7037         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7038                                   | (1 << VCPU_EXREG_RFLAGS)
7039                                   | (1 << VCPU_EXREG_CPL)
7040                                   | (1 << VCPU_EXREG_PDPTR)
7041                                   | (1 << VCPU_EXREG_SEGMENTS)
7042                                   | (1 << VCPU_EXREG_CR3));
7043         vcpu->arch.regs_dirty = 0;
7044
7045         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7046
7047         vmx->loaded_vmcs->launched = 1;
7048
7049         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7050         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7051
7052         vmx_complete_atomic_exit(vmx);
7053         vmx_recover_nmi_blocking(vmx);
7054         vmx_complete_interrupts(vmx);
7055 }
7056
7057 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7058 {
7059         struct vcpu_vmx *vmx = to_vmx(vcpu);
7060
7061         free_vpid(vmx);
7062         free_nested(vmx);
7063         free_loaded_vmcs(vmx->loaded_vmcs);
7064         kfree(vmx->guest_msrs);
7065         kvm_vcpu_uninit(vcpu);
7066         kmem_cache_free(kvm_vcpu_cache, vmx);
7067 }
7068
7069 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7070 {
7071         int err;
7072         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7073         int cpu;
7074
7075         if (!vmx)
7076                 return ERR_PTR(-ENOMEM);
7077
7078         allocate_vpid(vmx);
7079
7080         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7081         if (err)
7082                 goto free_vcpu;
7083
7084         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7085         err = -ENOMEM;
7086         if (!vmx->guest_msrs) {
7087                 goto uninit_vcpu;
7088         }
7089
7090         vmx->loaded_vmcs = &vmx->vmcs01;
7091         vmx->loaded_vmcs->vmcs = alloc_vmcs();
7092         if (!vmx->loaded_vmcs->vmcs)
7093                 goto free_msrs;
7094         if (!vmm_exclusive)
7095                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7096         loaded_vmcs_init(vmx->loaded_vmcs);
7097         if (!vmm_exclusive)
7098                 kvm_cpu_vmxoff();
7099
7100         cpu = get_cpu();
7101         vmx_vcpu_load(&vmx->vcpu, cpu);
7102         vmx->vcpu.cpu = cpu;
7103         err = vmx_vcpu_setup(vmx);
7104         vmx_vcpu_put(&vmx->vcpu);
7105         put_cpu();
7106         if (err)
7107                 goto free_vmcs;
7108         if (vm_need_virtualize_apic_accesses(kvm)) {
7109                 err = alloc_apic_access_page(kvm);
7110                 if (err)
7111                         goto free_vmcs;
7112         }
7113
7114         if (enable_ept) {
7115                 if (!kvm->arch.ept_identity_map_addr)
7116                         kvm->arch.ept_identity_map_addr =
7117                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7118                 err = -ENOMEM;
7119                 if (alloc_identity_pagetable(kvm) != 0)
7120                         goto free_vmcs;
7121                 if (!init_rmode_identity_map(kvm))
7122                         goto free_vmcs;
7123         }
7124
7125         vmx->nested.current_vmptr = -1ull;
7126         vmx->nested.current_vmcs12 = NULL;
7127
7128         return &vmx->vcpu;
7129
7130 free_vmcs:
7131         free_loaded_vmcs(vmx->loaded_vmcs);
7132 free_msrs:
7133         kfree(vmx->guest_msrs);
7134 uninit_vcpu:
7135         kvm_vcpu_uninit(&vmx->vcpu);
7136 free_vcpu:
7137         free_vpid(vmx);
7138         kmem_cache_free(kvm_vcpu_cache, vmx);
7139         return ERR_PTR(err);
7140 }
7141
7142 static void __init vmx_check_processor_compat(void *rtn)
7143 {
7144         struct vmcs_config vmcs_conf;
7145
7146         *(int *)rtn = 0;
7147         if (setup_vmcs_config(&vmcs_conf) < 0)
7148                 *(int *)rtn = -EIO;
7149         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7150                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7151                                 smp_processor_id());
7152                 *(int *)rtn = -EIO;
7153         }
7154 }
7155
7156 static int get_ept_level(void)
7157 {
7158         return VMX_EPT_DEFAULT_GAW + 1;
7159 }
7160
7161 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7162 {
7163         u64 ret;
7164
7165         /* For VT-d and EPT combination
7166          * 1. MMIO: always map as UC
7167          * 2. EPT with VT-d:
7168          *   a. VT-d without snooping control feature: can't guarantee the
7169          *      result, try to trust guest.
7170          *   b. VT-d with snooping control feature: snooping control feature of
7171          *      VT-d engine can guarantee the cache correctness. Just set it
7172          *      to WB to keep consistent with host. So the same as item 3.
7173          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7174          *    consistent with host MTRR
7175          */
7176         if (is_mmio)
7177                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7178         else if (vcpu->kvm->arch.iommu_domain &&
7179                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
7180                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7181                       VMX_EPT_MT_EPTE_SHIFT;
7182         else
7183                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7184                         | VMX_EPT_IPAT_BIT;
7185
7186         return ret;
7187 }
7188
7189 static int vmx_get_lpage_level(void)
7190 {
7191         if (enable_ept && !cpu_has_vmx_ept_1g_page())
7192                 return PT_DIRECTORY_LEVEL;
7193         else
7194                 /* For shadow and EPT supported 1GB page */
7195                 return PT_PDPE_LEVEL;
7196 }
7197
7198 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7199 {
7200         struct kvm_cpuid_entry2 *best;
7201         struct vcpu_vmx *vmx = to_vmx(vcpu);
7202         u32 exec_control;
7203
7204         vmx->rdtscp_enabled = false;
7205         if (vmx_rdtscp_supported()) {
7206                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7207                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7208                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7209                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7210                                 vmx->rdtscp_enabled = true;
7211                         else {
7212                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7213                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7214                                                 exec_control);
7215                         }
7216                 }
7217         }
7218
7219         /* Exposing INVPCID only when PCID is exposed */
7220         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7221         if (vmx_invpcid_supported() &&
7222             best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7223             guest_cpuid_has_pcid(vcpu)) {
7224                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7225                 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7226                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7227                              exec_control);
7228         } else {
7229                 if (cpu_has_secondary_exec_ctrls()) {
7230                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7231                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7232                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7233                                      exec_control);
7234                 }
7235                 if (best)
7236                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
7237         }
7238 }
7239
7240 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7241 {
7242         if (func == 1 && nested)
7243                 entry->ecx |= bit(X86_FEATURE_VMX);
7244 }
7245
7246 /*
7247  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7248  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7249  * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7250  * guest in a way that will both be appropriate to L1's requests, and our
7251  * needs. In addition to modifying the active vmcs (which is vmcs02), this
7252  * function also has additional necessary side-effects, like setting various
7253  * vcpu->arch fields.
7254  */
7255 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7256 {
7257         struct vcpu_vmx *vmx = to_vmx(vcpu);
7258         u32 exec_control;
7259
7260         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
7261         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
7262         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
7263         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
7264         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
7265         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
7266         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
7267         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
7268         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
7269         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
7270         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
7271         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
7272         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
7273         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
7274         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
7275         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
7276         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
7277         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
7278         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
7279         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
7280         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
7281         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
7282         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
7283         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
7284         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
7285         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
7286         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
7287         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
7288         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
7289         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
7290         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
7291         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
7292         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
7293         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
7294         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
7295         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
7296
7297         vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
7298         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
7299                 vmcs12->vm_entry_intr_info_field);
7300         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
7301                 vmcs12->vm_entry_exception_error_code);
7302         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
7303                 vmcs12->vm_entry_instruction_len);
7304         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
7305                 vmcs12->guest_interruptibility_info);
7306         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
7307         kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
7308         vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
7309         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
7310                 vmcs12->guest_pending_dbg_exceptions);
7311         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
7312         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
7313
7314         vmcs_write64(VMCS_LINK_POINTER, -1ull);
7315
7316         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
7317                 (vmcs_config.pin_based_exec_ctrl |
7318                  vmcs12->pin_based_vm_exec_control));
7319
7320         if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7321                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
7322                              vmcs12->vmx_preemption_timer_value);
7323
7324         /*
7325          * Whether page-faults are trapped is determined by a combination of
7326          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7327          * If enable_ept, L0 doesn't care about page faults and we should
7328          * set all of these to L1's desires. However, if !enable_ept, L0 does
7329          * care about (at least some) page faults, and because it is not easy
7330          * (if at all possible?) to merge L0 and L1's desires, we simply ask
7331          * to exit on each and every L2 page fault. This is done by setting
7332          * MASK=MATCH=0 and (see below) EB.PF=1.
7333          * Note that below we don't need special code to set EB.PF beyond the
7334          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7335          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7336          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7337          *
7338          * A problem with this approach (when !enable_ept) is that L1 may be
7339          * injected with more page faults than it asked for. This could have
7340          * caused problems, but in practice existing hypervisors don't care.
7341          * To fix this, we will need to emulate the PFEC checking (on the L1
7342          * page tables), using walk_addr(), when injecting PFs to L1.
7343          */
7344         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7345                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7346         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7347                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
7348
7349         if (cpu_has_secondary_exec_ctrls()) {
7350                 u32 exec_control = vmx_secondary_exec_control(vmx);
7351                 if (!vmx->rdtscp_enabled)
7352                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
7353                 /* Take the following fields only from vmcs12 */
7354                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7355                 if (nested_cpu_has(vmcs12,
7356                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7357                         exec_control |= vmcs12->secondary_vm_exec_control;
7358
7359                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7360                         /*
7361                          * Translate L1 physical address to host physical
7362                          * address for vmcs02. Keep the page pinned, so this
7363                          * physical address remains valid. We keep a reference
7364                          * to it so we can release it later.
7365                          */
7366                         if (vmx->nested.apic_access_page) /* shouldn't happen */
7367                                 nested_release_page(vmx->nested.apic_access_page);
7368                         vmx->nested.apic_access_page =
7369                                 nested_get_page(vcpu, vmcs12->apic_access_addr);
7370                         /*
7371                          * If translation failed, no matter: This feature asks
7372                          * to exit when accessing the given address, and if it
7373                          * can never be accessed, this feature won't do
7374                          * anything anyway.
7375                          */
7376                         if (!vmx->nested.apic_access_page)
7377                                 exec_control &=
7378                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7379                         else
7380                                 vmcs_write64(APIC_ACCESS_ADDR,
7381                                   page_to_phys(vmx->nested.apic_access_page));
7382                 }
7383
7384                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7385         }
7386
7387
7388         /*
7389          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7390          * Some constant fields are set here by vmx_set_constant_host_state().
7391          * Other fields are different per CPU, and will be set later when
7392          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7393          */
7394         vmx_set_constant_host_state(vmx);
7395
7396         /*
7397          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7398          * entry, but only if the current (host) sp changed from the value
7399          * we wrote last (vmx->host_rsp). This cache is no longer relevant
7400          * if we switch vmcs, and rather than hold a separate cache per vmcs,
7401          * here we just force the write to happen on entry.
7402          */
7403         vmx->host_rsp = 0;
7404
7405         exec_control = vmx_exec_control(vmx); /* L0's desires */
7406         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7407         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7408         exec_control &= ~CPU_BASED_TPR_SHADOW;
7409         exec_control |= vmcs12->cpu_based_vm_exec_control;
7410         /*
7411          * Merging of IO and MSR bitmaps not currently supported.
7412          * Rather, exit every time.
7413          */
7414         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7415         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7416         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7417
7418         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7419
7420         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7421          * bitwise-or of what L1 wants to trap for L2, and what we want to
7422          * trap. Note that CR0.TS also needs updating - we do this later.
7423          */
7424         update_exception_bitmap(vcpu);
7425         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7426         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7427
7428         /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
7429         vmcs_write32(VM_EXIT_CONTROLS,
7430                 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
7431         vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
7432                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7433
7434         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
7435                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7436         else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7437                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7438
7439
7440         set_cr4_guest_host_mask(vmx);
7441
7442         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
7443                 vmcs_write64(TSC_OFFSET,
7444                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
7445         else
7446                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7447
7448         if (enable_vpid) {
7449                 /*
7450                  * Trivially support vpid by letting L2s share their parent
7451                  * L1's vpid. TODO: move to a more elaborate solution, giving
7452                  * each L2 its own vpid and exposing the vpid feature to L1.
7453                  */
7454                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
7455                 vmx_flush_tlb(vcpu);
7456         }
7457
7458         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
7459                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
7460         if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
7461                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7462         else
7463                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7464         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7465         vmx_set_efer(vcpu, vcpu->arch.efer);
7466
7467         /*
7468          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7469          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7470          * The CR0_READ_SHADOW is what L2 should have expected to read given
7471          * the specifications by L1; It's not enough to take
7472          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7473          * have more bits than L1 expected.
7474          */
7475         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
7476         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
7477
7478         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
7479         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
7480
7481         /* shadow page tables on either EPT or shadow page tables */
7482         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
7483         kvm_mmu_reset_context(vcpu);
7484
7485         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
7486         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
7487 }
7488
7489 /*
7490  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7491  * for running an L2 nested guest.
7492  */
7493 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
7494 {
7495         struct vmcs12 *vmcs12;
7496         struct vcpu_vmx *vmx = to_vmx(vcpu);
7497         int cpu;
7498         struct loaded_vmcs *vmcs02;
7499
7500         if (!nested_vmx_check_permission(vcpu) ||
7501             !nested_vmx_check_vmcs12(vcpu))
7502                 return 1;
7503
7504         skip_emulated_instruction(vcpu);
7505         vmcs12 = get_vmcs12(vcpu);
7506
7507         /*
7508          * The nested entry process starts with enforcing various prerequisites
7509          * on vmcs12 as required by the Intel SDM, and act appropriately when
7510          * they fail: As the SDM explains, some conditions should cause the
7511          * instruction to fail, while others will cause the instruction to seem
7512          * to succeed, but return an EXIT_REASON_INVALID_STATE.
7513          * To speed up the normal (success) code path, we should avoid checking
7514          * for misconfigurations which will anyway be caught by the processor
7515          * when using the merged vmcs02.
7516          */
7517         if (vmcs12->launch_state == launch) {
7518                 nested_vmx_failValid(vcpu,
7519                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7520                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
7521                 return 1;
7522         }
7523
7524         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE) {
7525                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7526                 return 1;
7527         }
7528
7529         if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
7530                         !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
7531                 /*TODO: Also verify bits beyond physical address width are 0*/
7532                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7533                 return 1;
7534         }
7535
7536         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
7537                         !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
7538                 /*TODO: Also verify bits beyond physical address width are 0*/
7539                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7540                 return 1;
7541         }
7542
7543         if (vmcs12->vm_entry_msr_load_count > 0 ||
7544             vmcs12->vm_exit_msr_load_count > 0 ||
7545             vmcs12->vm_exit_msr_store_count > 0) {
7546                 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
7547                                     __func__);
7548                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7549                 return 1;
7550         }
7551
7552         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
7553               nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
7554             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
7555               nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
7556             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
7557               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
7558             !vmx_control_verify(vmcs12->vm_exit_controls,
7559               nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
7560             !vmx_control_verify(vmcs12->vm_entry_controls,
7561               nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
7562         {
7563                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7564                 return 1;
7565         }
7566
7567         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7568             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7569                 nested_vmx_failValid(vcpu,
7570                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7571                 return 1;
7572         }
7573
7574         if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7575             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7576                 nested_vmx_entry_failure(vcpu, vmcs12,
7577                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7578                 return 1;
7579         }
7580         if (vmcs12->vmcs_link_pointer != -1ull) {
7581                 nested_vmx_entry_failure(vcpu, vmcs12,
7582                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
7583                 return 1;
7584         }
7585
7586         /*
7587          * We're finally done with prerequisite checking, and can start with
7588          * the nested entry.
7589          */
7590
7591         vmcs02 = nested_get_current_vmcs02(vmx);
7592         if (!vmcs02)
7593                 return -ENOMEM;
7594
7595         enter_guest_mode(vcpu);
7596
7597         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
7598
7599         cpu = get_cpu();
7600         vmx->loaded_vmcs = vmcs02;
7601         vmx_vcpu_put(vcpu);
7602         vmx_vcpu_load(vcpu, cpu);
7603         vcpu->cpu = cpu;
7604         put_cpu();
7605
7606         vmx_segment_cache_clear(vmx);
7607
7608         vmcs12->launch_state = 1;
7609
7610         prepare_vmcs02(vcpu, vmcs12);
7611
7612         /*
7613          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
7614          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
7615          * returned as far as L1 is concerned. It will only return (and set
7616          * the success flag) when L2 exits (see nested_vmx_vmexit()).
7617          */
7618         return 1;
7619 }
7620
7621 /*
7622  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
7623  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
7624  * This function returns the new value we should put in vmcs12.guest_cr0.
7625  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
7626  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
7627  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
7628  *     didn't trap the bit, because if L1 did, so would L0).
7629  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
7630  *     been modified by L2, and L1 knows it. So just leave the old value of
7631  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
7632  *     isn't relevant, because if L0 traps this bit it can set it to anything.
7633  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
7634  *     changed these bits, and therefore they need to be updated, but L0
7635  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
7636  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
7637  */
7638 static inline unsigned long
7639 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7640 {
7641         return
7642         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
7643         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
7644         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
7645                         vcpu->arch.cr0_guest_owned_bits));
7646 }
7647
7648 static inline unsigned long
7649 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7650 {
7651         return
7652         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
7653         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
7654         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
7655                         vcpu->arch.cr4_guest_owned_bits));
7656 }
7657
7658 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
7659                                        struct vmcs12 *vmcs12)
7660 {
7661         u32 idt_vectoring;
7662         unsigned int nr;
7663
7664         if (vcpu->arch.exception.pending) {
7665                 nr = vcpu->arch.exception.nr;
7666                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
7667
7668                 if (kvm_exception_is_soft(nr)) {
7669                         vmcs12->vm_exit_instruction_len =
7670                                 vcpu->arch.event_exit_inst_len;
7671                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
7672                 } else
7673                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
7674
7675                 if (vcpu->arch.exception.has_error_code) {
7676                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
7677                         vmcs12->idt_vectoring_error_code =
7678                                 vcpu->arch.exception.error_code;
7679                 }
7680
7681                 vmcs12->idt_vectoring_info_field = idt_vectoring;
7682         } else if (vcpu->arch.nmi_pending) {
7683                 vmcs12->idt_vectoring_info_field =
7684                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
7685         } else if (vcpu->arch.interrupt.pending) {
7686                 nr = vcpu->arch.interrupt.nr;
7687                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
7688
7689                 if (vcpu->arch.interrupt.soft) {
7690                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
7691                         vmcs12->vm_entry_instruction_len =
7692                                 vcpu->arch.event_exit_inst_len;
7693                 } else
7694                         idt_vectoring |= INTR_TYPE_EXT_INTR;
7695
7696                 vmcs12->idt_vectoring_info_field = idt_vectoring;
7697         }
7698 }
7699
7700 /*
7701  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
7702  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
7703  * and this function updates it to reflect the changes to the guest state while
7704  * L2 was running (and perhaps made some exits which were handled directly by L0
7705  * without going back to L1), and to reflect the exit reason.
7706  * Note that we do not have to copy here all VMCS fields, just those that
7707  * could have changed by the L2 guest or the exit - i.e., the guest-state and
7708  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
7709  * which already writes to vmcs12 directly.
7710  */
7711 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7712 {
7713         /* update guest state fields: */
7714         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
7715         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
7716
7717         kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
7718         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7719         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
7720         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
7721
7722         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
7723         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
7724         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
7725         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
7726         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
7727         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
7728         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
7729         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
7730         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
7731         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
7732         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
7733         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
7734         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
7735         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
7736         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
7737         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
7738         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
7739         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
7740         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
7741         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
7742         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
7743         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
7744         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
7745         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
7746         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
7747         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
7748         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
7749         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
7750         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
7751         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
7752         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
7753         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
7754         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
7755         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
7756         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
7757         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
7758
7759         vmcs12->guest_interruptibility_info =
7760                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
7761         vmcs12->guest_pending_dbg_exceptions =
7762                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
7763
7764         vmcs12->vm_entry_controls =
7765                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
7766                 (vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_IA32E_MODE);
7767
7768         /* TODO: These cannot have changed unless we have MSR bitmaps and
7769          * the relevant bit asks not to trap the change */
7770         vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
7771         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
7772                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
7773         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
7774         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
7775         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
7776
7777         /* update exit information fields: */
7778
7779         vmcs12->vm_exit_reason  = to_vmx(vcpu)->exit_reason;
7780         vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7781
7782         vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7783         if ((vmcs12->vm_exit_intr_info &
7784              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
7785             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
7786                 vmcs12->vm_exit_intr_error_code =
7787                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
7788         vmcs12->idt_vectoring_info_field = 0;
7789         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
7790         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7791
7792         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
7793                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
7794                  * instead of reading the real value. */
7795                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
7796
7797                 /*
7798                  * Transfer the event that L0 or L1 may wanted to inject into
7799                  * L2 to IDT_VECTORING_INFO_FIELD.
7800                  */
7801                 vmcs12_save_pending_event(vcpu, vmcs12);
7802         }
7803
7804         /*
7805          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
7806          * preserved above and would only end up incorrectly in L1.
7807          */
7808         vcpu->arch.nmi_injected = false;
7809         kvm_clear_exception_queue(vcpu);
7810         kvm_clear_interrupt_queue(vcpu);
7811 }
7812
7813 /*
7814  * A part of what we need to when the nested L2 guest exits and we want to
7815  * run its L1 parent, is to reset L1's guest state to the host state specified
7816  * in vmcs12.
7817  * This function is to be called not only on normal nested exit, but also on
7818  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
7819  * Failures During or After Loading Guest State").
7820  * This function should be called when the active VMCS is L1's (vmcs01).
7821  */
7822 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
7823                                    struct vmcs12 *vmcs12)
7824 {
7825         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
7826                 vcpu->arch.efer = vmcs12->host_ia32_efer;
7827         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
7828                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7829         else
7830                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7831         vmx_set_efer(vcpu, vcpu->arch.efer);
7832
7833         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
7834         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
7835         vmx_set_rflags(vcpu, X86_EFLAGS_BIT1);
7836         /*
7837          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
7838          * actually changed, because it depends on the current state of
7839          * fpu_active (which may have changed).
7840          * Note that vmx_set_cr0 refers to efer set above.
7841          */
7842         kvm_set_cr0(vcpu, vmcs12->host_cr0);
7843         /*
7844          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
7845          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
7846          * but we also need to update cr0_guest_host_mask and exception_bitmap.
7847          */
7848         update_exception_bitmap(vcpu);
7849         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
7850         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7851
7852         /*
7853          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
7854          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
7855          */
7856         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
7857         kvm_set_cr4(vcpu, vmcs12->host_cr4);
7858
7859         /* shadow page tables on either EPT or shadow page tables */
7860         kvm_set_cr3(vcpu, vmcs12->host_cr3);
7861         kvm_mmu_reset_context(vcpu);
7862
7863         if (enable_vpid) {
7864                 /*
7865                  * Trivially support vpid by letting L2s share their parent
7866                  * L1's vpid. TODO: move to a more elaborate solution, giving
7867                  * each L2 its own vpid and exposing the vpid feature to L1.
7868                  */
7869                 vmx_flush_tlb(vcpu);
7870         }
7871
7872
7873         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
7874         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7875         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7876         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7877         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7878         vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7879         vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7880         vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7881         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7882         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7883         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7884         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7885         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7886         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7887         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7888
7889         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7890                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7891         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7892                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7893                         vmcs12->host_ia32_perf_global_ctrl);
7894
7895         kvm_set_dr(vcpu, 7, 0x400);
7896         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
7897 }
7898
7899 /*
7900  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7901  * and modify vmcs12 to make it see what it would expect to see there if
7902  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7903  */
7904 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7905 {
7906         struct vcpu_vmx *vmx = to_vmx(vcpu);
7907         int cpu;
7908         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7909
7910         /* trying to cancel vmlaunch/vmresume is a bug */
7911         WARN_ON_ONCE(vmx->nested.nested_run_pending);
7912
7913         leave_guest_mode(vcpu);
7914         prepare_vmcs12(vcpu, vmcs12);
7915
7916         cpu = get_cpu();
7917         vmx->loaded_vmcs = &vmx->vmcs01;
7918         vmx_vcpu_put(vcpu);
7919         vmx_vcpu_load(vcpu, cpu);
7920         vcpu->cpu = cpu;
7921         put_cpu();
7922
7923         vmx_segment_cache_clear(vmx);
7924
7925         /* if no vmcs02 cache requested, remove the one we used */
7926         if (VMCS02_POOL_SIZE == 0)
7927                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7928
7929         load_vmcs12_host_state(vcpu, vmcs12);
7930
7931         /* Update TSC_OFFSET if TSC was changed while L2 ran */
7932         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7933
7934         /* This is needed for same reason as it was needed in prepare_vmcs02 */
7935         vmx->host_rsp = 0;
7936
7937         /* Unpin physical memory we referred to in vmcs02 */
7938         if (vmx->nested.apic_access_page) {
7939                 nested_release_page(vmx->nested.apic_access_page);
7940                 vmx->nested.apic_access_page = 0;
7941         }
7942
7943         /*
7944          * Exiting from L2 to L1, we're now back to L1 which thinks it just
7945          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7946          * success or failure flag accordingly.
7947          */
7948         if (unlikely(vmx->fail)) {
7949                 vmx->fail = 0;
7950                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7951         } else
7952                 nested_vmx_succeed(vcpu);
7953 }
7954
7955 /*
7956  * L1's failure to enter L2 is a subset of a normal exit, as explained in
7957  * 23.7 "VM-entry failures during or after loading guest state" (this also
7958  * lists the acceptable exit-reason and exit-qualification parameters).
7959  * It should only be called before L2 actually succeeded to run, and when
7960  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7961  */
7962 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7963                         struct vmcs12 *vmcs12,
7964                         u32 reason, unsigned long qualification)
7965 {
7966         load_vmcs12_host_state(vcpu, vmcs12);
7967         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7968         vmcs12->exit_qualification = qualification;
7969         nested_vmx_succeed(vcpu);
7970 }
7971
7972 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7973                                struct x86_instruction_info *info,
7974                                enum x86_intercept_stage stage)
7975 {
7976         return X86EMUL_CONTINUE;
7977 }
7978
7979 static struct kvm_x86_ops vmx_x86_ops = {
7980         .cpu_has_kvm_support = cpu_has_kvm_support,
7981         .disabled_by_bios = vmx_disabled_by_bios,
7982         .hardware_setup = hardware_setup,
7983         .hardware_unsetup = hardware_unsetup,
7984         .check_processor_compatibility = vmx_check_processor_compat,
7985         .hardware_enable = hardware_enable,
7986         .hardware_disable = hardware_disable,
7987         .cpu_has_accelerated_tpr = report_flexpriority,
7988
7989         .vcpu_create = vmx_create_vcpu,
7990         .vcpu_free = vmx_free_vcpu,
7991         .vcpu_reset = vmx_vcpu_reset,
7992
7993         .prepare_guest_switch = vmx_save_host_state,
7994         .vcpu_load = vmx_vcpu_load,
7995         .vcpu_put = vmx_vcpu_put,
7996
7997         .update_db_bp_intercept = update_exception_bitmap,
7998         .get_msr = vmx_get_msr,
7999         .set_msr = vmx_set_msr,
8000         .get_segment_base = vmx_get_segment_base,
8001         .get_segment = vmx_get_segment,
8002         .set_segment = vmx_set_segment,
8003         .get_cpl = vmx_get_cpl,
8004         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8005         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
8006         .decache_cr3 = vmx_decache_cr3,
8007         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
8008         .set_cr0 = vmx_set_cr0,
8009         .set_cr3 = vmx_set_cr3,
8010         .set_cr4 = vmx_set_cr4,
8011         .set_efer = vmx_set_efer,
8012         .get_idt = vmx_get_idt,
8013         .set_idt = vmx_set_idt,
8014         .get_gdt = vmx_get_gdt,
8015         .set_gdt = vmx_set_gdt,
8016         .set_dr7 = vmx_set_dr7,
8017         .cache_reg = vmx_cache_reg,
8018         .get_rflags = vmx_get_rflags,
8019         .set_rflags = vmx_set_rflags,
8020         .fpu_activate = vmx_fpu_activate,
8021         .fpu_deactivate = vmx_fpu_deactivate,
8022
8023         .tlb_flush = vmx_flush_tlb,
8024
8025         .run = vmx_vcpu_run,
8026         .handle_exit = vmx_handle_exit,
8027         .skip_emulated_instruction = skip_emulated_instruction,
8028         .set_interrupt_shadow = vmx_set_interrupt_shadow,
8029         .get_interrupt_shadow = vmx_get_interrupt_shadow,
8030         .patch_hypercall = vmx_patch_hypercall,
8031         .set_irq = vmx_inject_irq,
8032         .set_nmi = vmx_inject_nmi,
8033         .queue_exception = vmx_queue_exception,
8034         .cancel_injection = vmx_cancel_injection,
8035         .interrupt_allowed = vmx_interrupt_allowed,
8036         .nmi_allowed = vmx_nmi_allowed,
8037         .get_nmi_mask = vmx_get_nmi_mask,
8038         .set_nmi_mask = vmx_set_nmi_mask,
8039         .enable_nmi_window = enable_nmi_window,
8040         .enable_irq_window = enable_irq_window,
8041         .update_cr8_intercept = update_cr8_intercept,
8042         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
8043         .vm_has_apicv = vmx_vm_has_apicv,
8044         .load_eoi_exitmap = vmx_load_eoi_exitmap,
8045         .hwapic_irr_update = vmx_hwapic_irr_update,
8046         .hwapic_isr_update = vmx_hwapic_isr_update,
8047         .sync_pir_to_irr = vmx_sync_pir_to_irr,
8048         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
8049
8050         .set_tss_addr = vmx_set_tss_addr,
8051         .get_tdp_level = get_ept_level,
8052         .get_mt_mask = vmx_get_mt_mask,
8053
8054         .get_exit_info = vmx_get_exit_info,
8055
8056         .get_lpage_level = vmx_get_lpage_level,
8057
8058         .cpuid_update = vmx_cpuid_update,
8059
8060         .rdtscp_supported = vmx_rdtscp_supported,
8061         .invpcid_supported = vmx_invpcid_supported,
8062
8063         .set_supported_cpuid = vmx_set_supported_cpuid,
8064
8065         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8066
8067         .set_tsc_khz = vmx_set_tsc_khz,
8068         .read_tsc_offset = vmx_read_tsc_offset,
8069         .write_tsc_offset = vmx_write_tsc_offset,
8070         .adjust_tsc_offset = vmx_adjust_tsc_offset,
8071         .compute_tsc_offset = vmx_compute_tsc_offset,
8072         .read_l1_tsc = vmx_read_l1_tsc,
8073
8074         .set_tdp_cr3 = vmx_set_cr3,
8075
8076         .check_intercept = vmx_check_intercept,
8077         .handle_external_intr = vmx_handle_external_intr,
8078 };
8079
8080 static int __init vmx_init(void)
8081 {
8082         int r, i, msr;
8083
8084         rdmsrl_safe(MSR_EFER, &host_efer);
8085
8086         for (i = 0; i < NR_VMX_MSR; ++i)
8087                 kvm_define_shared_msr(i, vmx_msr_index[i]);
8088
8089         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
8090         if (!vmx_io_bitmap_a)
8091                 return -ENOMEM;
8092
8093         r = -ENOMEM;
8094
8095         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
8096         if (!vmx_io_bitmap_b)
8097                 goto out;
8098
8099         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
8100         if (!vmx_msr_bitmap_legacy)
8101                 goto out1;
8102
8103         vmx_msr_bitmap_legacy_x2apic =
8104                                 (unsigned long *)__get_free_page(GFP_KERNEL);
8105         if (!vmx_msr_bitmap_legacy_x2apic)
8106                 goto out2;
8107
8108         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
8109         if (!vmx_msr_bitmap_longmode)
8110                 goto out3;
8111
8112         vmx_msr_bitmap_longmode_x2apic =
8113                                 (unsigned long *)__get_free_page(GFP_KERNEL);
8114         if (!vmx_msr_bitmap_longmode_x2apic)
8115                 goto out4;
8116         vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8117         if (!vmx_vmread_bitmap)
8118                 goto out5;
8119
8120         vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8121         if (!vmx_vmwrite_bitmap)
8122                 goto out6;
8123
8124         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
8125         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
8126         /* shadowed read/write fields */
8127         for (i = 0; i < max_shadow_read_write_fields; i++) {
8128                 clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
8129                 clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
8130         }
8131         /* shadowed read only fields */
8132         for (i = 0; i < max_shadow_read_only_fields; i++)
8133                 clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
8134
8135         /*
8136          * Allow direct access to the PC debug port (it is often used for I/O
8137          * delays, but the vmexits simply slow things down).
8138          */
8139         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
8140         clear_bit(0x80, vmx_io_bitmap_a);
8141
8142         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
8143
8144         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
8145         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
8146
8147         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8148
8149         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8150                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8151         if (r)
8152                 goto out7;
8153
8154 #ifdef CONFIG_KEXEC
8155         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8156                            crash_vmclear_local_loaded_vmcss);
8157 #endif
8158
8159         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
8160         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
8161         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
8162         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
8163         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
8164         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
8165         memcpy(vmx_msr_bitmap_legacy_x2apic,
8166                         vmx_msr_bitmap_legacy, PAGE_SIZE);
8167         memcpy(vmx_msr_bitmap_longmode_x2apic,
8168                         vmx_msr_bitmap_longmode, PAGE_SIZE);
8169
8170         if (enable_apicv) {
8171                 for (msr = 0x800; msr <= 0x8ff; msr++)
8172                         vmx_disable_intercept_msr_read_x2apic(msr);
8173
8174                 /* According SDM, in x2apic mode, the whole id reg is used.
8175                  * But in KVM, it only use the highest eight bits. Need to
8176                  * intercept it */
8177                 vmx_enable_intercept_msr_read_x2apic(0x802);
8178                 /* TMCCT */
8179                 vmx_enable_intercept_msr_read_x2apic(0x839);
8180                 /* TPR */
8181                 vmx_disable_intercept_msr_write_x2apic(0x808);
8182                 /* EOI */
8183                 vmx_disable_intercept_msr_write_x2apic(0x80b);
8184                 /* SELF-IPI */
8185                 vmx_disable_intercept_msr_write_x2apic(0x83f);
8186         }
8187
8188         if (enable_ept) {
8189                 kvm_mmu_set_mask_ptes(0ull,
8190                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
8191                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
8192                         0ull, VMX_EPT_EXECUTABLE_MASK);
8193                 ept_set_mmio_spte_mask();
8194                 kvm_enable_tdp();
8195         } else
8196                 kvm_disable_tdp();
8197
8198         return 0;
8199
8200 out7:
8201         free_page((unsigned long)vmx_vmwrite_bitmap);
8202 out6:
8203         free_page((unsigned long)vmx_vmread_bitmap);
8204 out5:
8205         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8206 out4:
8207         free_page((unsigned long)vmx_msr_bitmap_longmode);
8208 out3:
8209         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8210 out2:
8211         free_page((unsigned long)vmx_msr_bitmap_legacy);
8212 out1:
8213         free_page((unsigned long)vmx_io_bitmap_b);
8214 out:
8215         free_page((unsigned long)vmx_io_bitmap_a);
8216         return r;
8217 }
8218
8219 static void __exit vmx_exit(void)
8220 {
8221         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8222         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8223         free_page((unsigned long)vmx_msr_bitmap_legacy);
8224         free_page((unsigned long)vmx_msr_bitmap_longmode);
8225         free_page((unsigned long)vmx_io_bitmap_b);
8226         free_page((unsigned long)vmx_io_bitmap_a);
8227         free_page((unsigned long)vmx_vmwrite_bitmap);
8228         free_page((unsigned long)vmx_vmread_bitmap);
8229
8230 #ifdef CONFIG_KEXEC
8231         rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
8232         synchronize_rcu();
8233 #endif
8234
8235         kvm_exit();
8236 }
8237
8238 module_init(vmx_init)
8239 module_exit(vmx_exit)