KVM: VMX: Ensure that vmx_create_vcpu always returns proper error
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
33 #include "x86.h"
34
35 #include <asm/io.h>
36 #include <asm/desc.h>
37 #include <asm/vmx.h>
38 #include <asm/virtext.h>
39 #include <asm/mce.h>
40 #include <asm/i387.h>
41 #include <asm/xcr.h>
42
43 #include "trace.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 static int __read_mostly bypass_guest_pf = 1;
51 module_param(bypass_guest_pf, bool, S_IRUGO);
52
53 static int __read_mostly enable_vpid = 1;
54 module_param_named(vpid, enable_vpid, bool, 0444);
55
56 static int __read_mostly flexpriority_enabled = 1;
57 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
58
59 static int __read_mostly enable_ept = 1;
60 module_param_named(ept, enable_ept, bool, S_IRUGO);
61
62 static int __read_mostly enable_unrestricted_guest = 1;
63 module_param_named(unrestricted_guest,
64                         enable_unrestricted_guest, bool, S_IRUGO);
65
66 static int __read_mostly emulate_invalid_guest_state = 0;
67 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
68
69 static int __read_mostly vmm_exclusive = 1;
70 module_param(vmm_exclusive, bool, S_IRUGO);
71
72 static int __read_mostly yield_on_hlt = 1;
73 module_param(yield_on_hlt, bool, S_IRUGO);
74
75 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST                           \
76         (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
77 #define KVM_GUEST_CR0_MASK                                              \
78         (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
79 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST                         \
80         (X86_CR0_WP | X86_CR0_NE)
81 #define KVM_VM_CR0_ALWAYS_ON                                            \
82         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
83 #define KVM_CR4_GUEST_OWNED_BITS                                      \
84         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
85          | X86_CR4_OSXMMEXCPT)
86
87 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
88 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
89
90 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
91
92 /*
93  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
94  * ple_gap:    upper bound on the amount of time between two successive
95  *             executions of PAUSE in a loop. Also indicate if ple enabled.
96  *             According to test, this time is usually smaller than 128 cycles.
97  * ple_window: upper bound on the amount of time a guest is allowed to execute
98  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
99  *             less than 2^12 cycles
100  * Time is measured based on a counter that runs at the same rate as the TSC,
101  * refer SDM volume 3b section 21.6.13 & 22.1.3.
102  */
103 #define KVM_VMX_DEFAULT_PLE_GAP    128
104 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
105 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
106 module_param(ple_gap, int, S_IRUGO);
107
108 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
109 module_param(ple_window, int, S_IRUGO);
110
111 #define NR_AUTOLOAD_MSRS 1
112
113 struct vmcs {
114         u32 revision_id;
115         u32 abort;
116         char data[0];
117 };
118
119 struct shared_msr_entry {
120         unsigned index;
121         u64 data;
122         u64 mask;
123 };
124
125 struct vcpu_vmx {
126         struct kvm_vcpu       vcpu;
127         struct list_head      local_vcpus_link;
128         unsigned long         host_rsp;
129         int                   launched;
130         u8                    fail;
131         u8                    cpl;
132         bool                  nmi_known_unmasked;
133         u32                   exit_intr_info;
134         u32                   idt_vectoring_info;
135         ulong                 rflags;
136         struct shared_msr_entry *guest_msrs;
137         int                   nmsrs;
138         int                   save_nmsrs;
139 #ifdef CONFIG_X86_64
140         u64                   msr_host_kernel_gs_base;
141         u64                   msr_guest_kernel_gs_base;
142 #endif
143         struct vmcs          *vmcs;
144         struct msr_autoload {
145                 unsigned nr;
146                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
147                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
148         } msr_autoload;
149         struct {
150                 int           loaded;
151                 u16           fs_sel, gs_sel, ldt_sel;
152                 int           gs_ldt_reload_needed;
153                 int           fs_reload_needed;
154         } host_state;
155         struct {
156                 int vm86_active;
157                 ulong save_rflags;
158                 struct kvm_save_segment {
159                         u16 selector;
160                         unsigned long base;
161                         u32 limit;
162                         u32 ar;
163                 } tr, es, ds, fs, gs;
164         } rmode;
165         int vpid;
166         bool emulation_required;
167
168         /* Support for vnmi-less CPUs */
169         int soft_vnmi_blocked;
170         ktime_t entry_time;
171         s64 vnmi_blocked_time;
172         u32 exit_reason;
173
174         bool rdtscp_enabled;
175 };
176
177 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
178 {
179         return container_of(vcpu, struct vcpu_vmx, vcpu);
180 }
181
182 static u64 construct_eptp(unsigned long root_hpa);
183 static void kvm_cpu_vmxon(u64 addr);
184 static void kvm_cpu_vmxoff(void);
185 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
186 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
187
188 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
189 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
190 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
191 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
192
193 static unsigned long *vmx_io_bitmap_a;
194 static unsigned long *vmx_io_bitmap_b;
195 static unsigned long *vmx_msr_bitmap_legacy;
196 static unsigned long *vmx_msr_bitmap_longmode;
197
198 static bool cpu_has_load_ia32_efer;
199
200 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
201 static DEFINE_SPINLOCK(vmx_vpid_lock);
202
203 static struct vmcs_config {
204         int size;
205         int order;
206         u32 revision_id;
207         u32 pin_based_exec_ctrl;
208         u32 cpu_based_exec_ctrl;
209         u32 cpu_based_2nd_exec_ctrl;
210         u32 vmexit_ctrl;
211         u32 vmentry_ctrl;
212 } vmcs_config;
213
214 static struct vmx_capability {
215         u32 ept;
216         u32 vpid;
217 } vmx_capability;
218
219 #define VMX_SEGMENT_FIELD(seg)                                  \
220         [VCPU_SREG_##seg] = {                                   \
221                 .selector = GUEST_##seg##_SELECTOR,             \
222                 .base = GUEST_##seg##_BASE,                     \
223                 .limit = GUEST_##seg##_LIMIT,                   \
224                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
225         }
226
227 static struct kvm_vmx_segment_field {
228         unsigned selector;
229         unsigned base;
230         unsigned limit;
231         unsigned ar_bytes;
232 } kvm_vmx_segment_fields[] = {
233         VMX_SEGMENT_FIELD(CS),
234         VMX_SEGMENT_FIELD(DS),
235         VMX_SEGMENT_FIELD(ES),
236         VMX_SEGMENT_FIELD(FS),
237         VMX_SEGMENT_FIELD(GS),
238         VMX_SEGMENT_FIELD(SS),
239         VMX_SEGMENT_FIELD(TR),
240         VMX_SEGMENT_FIELD(LDTR),
241 };
242
243 static u64 host_efer;
244
245 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
246
247 /*
248  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
249  * away by decrementing the array size.
250  */
251 static const u32 vmx_msr_index[] = {
252 #ifdef CONFIG_X86_64
253         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
254 #endif
255         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
256 };
257 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
258
259 static inline bool is_page_fault(u32 intr_info)
260 {
261         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
262                              INTR_INFO_VALID_MASK)) ==
263                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
264 }
265
266 static inline bool is_no_device(u32 intr_info)
267 {
268         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
269                              INTR_INFO_VALID_MASK)) ==
270                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
271 }
272
273 static inline bool is_invalid_opcode(u32 intr_info)
274 {
275         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
276                              INTR_INFO_VALID_MASK)) ==
277                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
278 }
279
280 static inline bool is_external_interrupt(u32 intr_info)
281 {
282         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
283                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
284 }
285
286 static inline bool is_machine_check(u32 intr_info)
287 {
288         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
289                              INTR_INFO_VALID_MASK)) ==
290                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
291 }
292
293 static inline bool cpu_has_vmx_msr_bitmap(void)
294 {
295         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
296 }
297
298 static inline bool cpu_has_vmx_tpr_shadow(void)
299 {
300         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
301 }
302
303 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
304 {
305         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
306 }
307
308 static inline bool cpu_has_secondary_exec_ctrls(void)
309 {
310         return vmcs_config.cpu_based_exec_ctrl &
311                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
312 }
313
314 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
315 {
316         return vmcs_config.cpu_based_2nd_exec_ctrl &
317                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
318 }
319
320 static inline bool cpu_has_vmx_flexpriority(void)
321 {
322         return cpu_has_vmx_tpr_shadow() &&
323                 cpu_has_vmx_virtualize_apic_accesses();
324 }
325
326 static inline bool cpu_has_vmx_ept_execute_only(void)
327 {
328         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
329 }
330
331 static inline bool cpu_has_vmx_eptp_uncacheable(void)
332 {
333         return vmx_capability.ept & VMX_EPTP_UC_BIT;
334 }
335
336 static inline bool cpu_has_vmx_eptp_writeback(void)
337 {
338         return vmx_capability.ept & VMX_EPTP_WB_BIT;
339 }
340
341 static inline bool cpu_has_vmx_ept_2m_page(void)
342 {
343         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
344 }
345
346 static inline bool cpu_has_vmx_ept_1g_page(void)
347 {
348         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
349 }
350
351 static inline bool cpu_has_vmx_ept_4levels(void)
352 {
353         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
354 }
355
356 static inline bool cpu_has_vmx_invept_individual_addr(void)
357 {
358         return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
359 }
360
361 static inline bool cpu_has_vmx_invept_context(void)
362 {
363         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
364 }
365
366 static inline bool cpu_has_vmx_invept_global(void)
367 {
368         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
369 }
370
371 static inline bool cpu_has_vmx_invvpid_single(void)
372 {
373         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
374 }
375
376 static inline bool cpu_has_vmx_invvpid_global(void)
377 {
378         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
379 }
380
381 static inline bool cpu_has_vmx_ept(void)
382 {
383         return vmcs_config.cpu_based_2nd_exec_ctrl &
384                 SECONDARY_EXEC_ENABLE_EPT;
385 }
386
387 static inline bool cpu_has_vmx_unrestricted_guest(void)
388 {
389         return vmcs_config.cpu_based_2nd_exec_ctrl &
390                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
391 }
392
393 static inline bool cpu_has_vmx_ple(void)
394 {
395         return vmcs_config.cpu_based_2nd_exec_ctrl &
396                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
397 }
398
399 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
400 {
401         return flexpriority_enabled && irqchip_in_kernel(kvm);
402 }
403
404 static inline bool cpu_has_vmx_vpid(void)
405 {
406         return vmcs_config.cpu_based_2nd_exec_ctrl &
407                 SECONDARY_EXEC_ENABLE_VPID;
408 }
409
410 static inline bool cpu_has_vmx_rdtscp(void)
411 {
412         return vmcs_config.cpu_based_2nd_exec_ctrl &
413                 SECONDARY_EXEC_RDTSCP;
414 }
415
416 static inline bool cpu_has_virtual_nmis(void)
417 {
418         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
419 }
420
421 static inline bool cpu_has_vmx_wbinvd_exit(void)
422 {
423         return vmcs_config.cpu_based_2nd_exec_ctrl &
424                 SECONDARY_EXEC_WBINVD_EXITING;
425 }
426
427 static inline bool report_flexpriority(void)
428 {
429         return flexpriority_enabled;
430 }
431
432 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
433 {
434         int i;
435
436         for (i = 0; i < vmx->nmsrs; ++i)
437                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
438                         return i;
439         return -1;
440 }
441
442 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
443 {
444     struct {
445         u64 vpid : 16;
446         u64 rsvd : 48;
447         u64 gva;
448     } operand = { vpid, 0, gva };
449
450     asm volatile (__ex(ASM_VMX_INVVPID)
451                   /* CF==1 or ZF==1 --> rc = -1 */
452                   "; ja 1f ; ud2 ; 1:"
453                   : : "a"(&operand), "c"(ext) : "cc", "memory");
454 }
455
456 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
457 {
458         struct {
459                 u64 eptp, gpa;
460         } operand = {eptp, gpa};
461
462         asm volatile (__ex(ASM_VMX_INVEPT)
463                         /* CF==1 or ZF==1 --> rc = -1 */
464                         "; ja 1f ; ud2 ; 1:\n"
465                         : : "a" (&operand), "c" (ext) : "cc", "memory");
466 }
467
468 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
469 {
470         int i;
471
472         i = __find_msr_index(vmx, msr);
473         if (i >= 0)
474                 return &vmx->guest_msrs[i];
475         return NULL;
476 }
477
478 static void vmcs_clear(struct vmcs *vmcs)
479 {
480         u64 phys_addr = __pa(vmcs);
481         u8 error;
482
483         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
484                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
485                       : "cc", "memory");
486         if (error)
487                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
488                        vmcs, phys_addr);
489 }
490
491 static void vmcs_load(struct vmcs *vmcs)
492 {
493         u64 phys_addr = __pa(vmcs);
494         u8 error;
495
496         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
497                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
498                         : "cc", "memory");
499         if (error)
500                 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
501                        vmcs, phys_addr);
502 }
503
504 static void __vcpu_clear(void *arg)
505 {
506         struct vcpu_vmx *vmx = arg;
507         int cpu = raw_smp_processor_id();
508
509         if (vmx->vcpu.cpu == cpu)
510                 vmcs_clear(vmx->vmcs);
511         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
512                 per_cpu(current_vmcs, cpu) = NULL;
513         list_del(&vmx->local_vcpus_link);
514         vmx->vcpu.cpu = -1;
515         vmx->launched = 0;
516 }
517
518 static void vcpu_clear(struct vcpu_vmx *vmx)
519 {
520         if (vmx->vcpu.cpu == -1)
521                 return;
522         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
523 }
524
525 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
526 {
527         if (vmx->vpid == 0)
528                 return;
529
530         if (cpu_has_vmx_invvpid_single())
531                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
532 }
533
534 static inline void vpid_sync_vcpu_global(void)
535 {
536         if (cpu_has_vmx_invvpid_global())
537                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
538 }
539
540 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
541 {
542         if (cpu_has_vmx_invvpid_single())
543                 vpid_sync_vcpu_single(vmx);
544         else
545                 vpid_sync_vcpu_global();
546 }
547
548 static inline void ept_sync_global(void)
549 {
550         if (cpu_has_vmx_invept_global())
551                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
552 }
553
554 static inline void ept_sync_context(u64 eptp)
555 {
556         if (enable_ept) {
557                 if (cpu_has_vmx_invept_context())
558                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
559                 else
560                         ept_sync_global();
561         }
562 }
563
564 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
565 {
566         if (enable_ept) {
567                 if (cpu_has_vmx_invept_individual_addr())
568                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
569                                         eptp, gpa);
570                 else
571                         ept_sync_context(eptp);
572         }
573 }
574
575 static unsigned long vmcs_readl(unsigned long field)
576 {
577         unsigned long value = 0;
578
579         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
580                       : "+a"(value) : "d"(field) : "cc");
581         return value;
582 }
583
584 static u16 vmcs_read16(unsigned long field)
585 {
586         return vmcs_readl(field);
587 }
588
589 static u32 vmcs_read32(unsigned long field)
590 {
591         return vmcs_readl(field);
592 }
593
594 static u64 vmcs_read64(unsigned long field)
595 {
596 #ifdef CONFIG_X86_64
597         return vmcs_readl(field);
598 #else
599         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
600 #endif
601 }
602
603 static noinline void vmwrite_error(unsigned long field, unsigned long value)
604 {
605         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
606                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
607         dump_stack();
608 }
609
610 static void vmcs_writel(unsigned long field, unsigned long value)
611 {
612         u8 error;
613
614         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
615                        : "=q"(error) : "a"(value), "d"(field) : "cc");
616         if (unlikely(error))
617                 vmwrite_error(field, value);
618 }
619
620 static void vmcs_write16(unsigned long field, u16 value)
621 {
622         vmcs_writel(field, value);
623 }
624
625 static void vmcs_write32(unsigned long field, u32 value)
626 {
627         vmcs_writel(field, value);
628 }
629
630 static void vmcs_write64(unsigned long field, u64 value)
631 {
632         vmcs_writel(field, value);
633 #ifndef CONFIG_X86_64
634         asm volatile ("");
635         vmcs_writel(field+1, value >> 32);
636 #endif
637 }
638
639 static void vmcs_clear_bits(unsigned long field, u32 mask)
640 {
641         vmcs_writel(field, vmcs_readl(field) & ~mask);
642 }
643
644 static void vmcs_set_bits(unsigned long field, u32 mask)
645 {
646         vmcs_writel(field, vmcs_readl(field) | mask);
647 }
648
649 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
650 {
651         u32 eb;
652
653         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
654              (1u << NM_VECTOR) | (1u << DB_VECTOR);
655         if ((vcpu->guest_debug &
656              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
657             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
658                 eb |= 1u << BP_VECTOR;
659         if (to_vmx(vcpu)->rmode.vm86_active)
660                 eb = ~0;
661         if (enable_ept)
662                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
663         if (vcpu->fpu_active)
664                 eb &= ~(1u << NM_VECTOR);
665         vmcs_write32(EXCEPTION_BITMAP, eb);
666 }
667
668 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
669 {
670         unsigned i;
671         struct msr_autoload *m = &vmx->msr_autoload;
672
673         if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
674                 vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
675                 vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
676                 return;
677         }
678
679         for (i = 0; i < m->nr; ++i)
680                 if (m->guest[i].index == msr)
681                         break;
682
683         if (i == m->nr)
684                 return;
685         --m->nr;
686         m->guest[i] = m->guest[m->nr];
687         m->host[i] = m->host[m->nr];
688         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
689         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
690 }
691
692 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
693                                   u64 guest_val, u64 host_val)
694 {
695         unsigned i;
696         struct msr_autoload *m = &vmx->msr_autoload;
697
698         if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
699                 vmcs_write64(GUEST_IA32_EFER, guest_val);
700                 vmcs_write64(HOST_IA32_EFER, host_val);
701                 vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
702                 vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
703                 return;
704         }
705
706         for (i = 0; i < m->nr; ++i)
707                 if (m->guest[i].index == msr)
708                         break;
709
710         if (i == m->nr) {
711                 ++m->nr;
712                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
713                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
714         }
715
716         m->guest[i].index = msr;
717         m->guest[i].value = guest_val;
718         m->host[i].index = msr;
719         m->host[i].value = host_val;
720 }
721
722 static void reload_tss(void)
723 {
724         /*
725          * VT restores TR but not its size.  Useless.
726          */
727         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
728         struct desc_struct *descs;
729
730         descs = (void *)gdt->address;
731         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
732         load_TR_desc();
733 }
734
735 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
736 {
737         u64 guest_efer;
738         u64 ignore_bits;
739
740         guest_efer = vmx->vcpu.arch.efer;
741
742         /*
743          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
744          * outside long mode
745          */
746         ignore_bits = EFER_NX | EFER_SCE;
747 #ifdef CONFIG_X86_64
748         ignore_bits |= EFER_LMA | EFER_LME;
749         /* SCE is meaningful only in long mode on Intel */
750         if (guest_efer & EFER_LMA)
751                 ignore_bits &= ~(u64)EFER_SCE;
752 #endif
753         guest_efer &= ~ignore_bits;
754         guest_efer |= host_efer & ignore_bits;
755         vmx->guest_msrs[efer_offset].data = guest_efer;
756         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
757
758         clear_atomic_switch_msr(vmx, MSR_EFER);
759         /* On ept, can't emulate nx, and must switch nx atomically */
760         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
761                 guest_efer = vmx->vcpu.arch.efer;
762                 if (!(guest_efer & EFER_LMA))
763                         guest_efer &= ~EFER_LME;
764                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
765                 return false;
766         }
767
768         return true;
769 }
770
771 static unsigned long segment_base(u16 selector)
772 {
773         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
774         struct desc_struct *d;
775         unsigned long table_base;
776         unsigned long v;
777
778         if (!(selector & ~3))
779                 return 0;
780
781         table_base = gdt->address;
782
783         if (selector & 4) {           /* from ldt */
784                 u16 ldt_selector = kvm_read_ldt();
785
786                 if (!(ldt_selector & ~3))
787                         return 0;
788
789                 table_base = segment_base(ldt_selector);
790         }
791         d = (struct desc_struct *)(table_base + (selector & ~7));
792         v = get_desc_base(d);
793 #ifdef CONFIG_X86_64
794        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
795                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
796 #endif
797         return v;
798 }
799
800 static inline unsigned long kvm_read_tr_base(void)
801 {
802         u16 tr;
803         asm("str %0" : "=g"(tr));
804         return segment_base(tr);
805 }
806
807 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
808 {
809         struct vcpu_vmx *vmx = to_vmx(vcpu);
810         int i;
811
812         if (vmx->host_state.loaded)
813                 return;
814
815         vmx->host_state.loaded = 1;
816         /*
817          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
818          * allow segment selectors with cpl > 0 or ti == 1.
819          */
820         vmx->host_state.ldt_sel = kvm_read_ldt();
821         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
822         savesegment(fs, vmx->host_state.fs_sel);
823         if (!(vmx->host_state.fs_sel & 7)) {
824                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
825                 vmx->host_state.fs_reload_needed = 0;
826         } else {
827                 vmcs_write16(HOST_FS_SELECTOR, 0);
828                 vmx->host_state.fs_reload_needed = 1;
829         }
830         savesegment(gs, vmx->host_state.gs_sel);
831         if (!(vmx->host_state.gs_sel & 7))
832                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
833         else {
834                 vmcs_write16(HOST_GS_SELECTOR, 0);
835                 vmx->host_state.gs_ldt_reload_needed = 1;
836         }
837
838 #ifdef CONFIG_X86_64
839         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
840         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
841 #else
842         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
843         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
844 #endif
845
846 #ifdef CONFIG_X86_64
847         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
848         if (is_long_mode(&vmx->vcpu))
849                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
850 #endif
851         for (i = 0; i < vmx->save_nmsrs; ++i)
852                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
853                                    vmx->guest_msrs[i].data,
854                                    vmx->guest_msrs[i].mask);
855 }
856
857 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
858 {
859         if (!vmx->host_state.loaded)
860                 return;
861
862         ++vmx->vcpu.stat.host_state_reload;
863         vmx->host_state.loaded = 0;
864 #ifdef CONFIG_X86_64
865         if (is_long_mode(&vmx->vcpu))
866                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
867 #endif
868         if (vmx->host_state.gs_ldt_reload_needed) {
869                 kvm_load_ldt(vmx->host_state.ldt_sel);
870 #ifdef CONFIG_X86_64
871                 load_gs_index(vmx->host_state.gs_sel);
872 #else
873                 loadsegment(gs, vmx->host_state.gs_sel);
874 #endif
875         }
876         if (vmx->host_state.fs_reload_needed)
877                 loadsegment(fs, vmx->host_state.fs_sel);
878         reload_tss();
879 #ifdef CONFIG_X86_64
880         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
881 #endif
882         if (current_thread_info()->status & TS_USEDFPU)
883                 clts();
884         load_gdt(&__get_cpu_var(host_gdt));
885 }
886
887 static void vmx_load_host_state(struct vcpu_vmx *vmx)
888 {
889         preempt_disable();
890         __vmx_load_host_state(vmx);
891         preempt_enable();
892 }
893
894 /*
895  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
896  * vcpu mutex is already taken.
897  */
898 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
899 {
900         struct vcpu_vmx *vmx = to_vmx(vcpu);
901         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
902
903         if (!vmm_exclusive)
904                 kvm_cpu_vmxon(phys_addr);
905         else if (vcpu->cpu != cpu)
906                 vcpu_clear(vmx);
907
908         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
909                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
910                 vmcs_load(vmx->vmcs);
911         }
912
913         if (vcpu->cpu != cpu) {
914                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
915                 unsigned long sysenter_esp;
916
917                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
918                 local_irq_disable();
919                 list_add(&vmx->local_vcpus_link,
920                          &per_cpu(vcpus_on_cpu, cpu));
921                 local_irq_enable();
922
923                 /*
924                  * Linux uses per-cpu TSS and GDT, so set these when switching
925                  * processors.
926                  */
927                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
928                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
929
930                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
931                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
932         }
933 }
934
935 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
936 {
937         __vmx_load_host_state(to_vmx(vcpu));
938         if (!vmm_exclusive) {
939                 __vcpu_clear(to_vmx(vcpu));
940                 kvm_cpu_vmxoff();
941         }
942 }
943
944 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
945 {
946         ulong cr0;
947
948         if (vcpu->fpu_active)
949                 return;
950         vcpu->fpu_active = 1;
951         cr0 = vmcs_readl(GUEST_CR0);
952         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
953         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
954         vmcs_writel(GUEST_CR0, cr0);
955         update_exception_bitmap(vcpu);
956         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
957         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
958 }
959
960 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
961
962 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
963 {
964         vmx_decache_cr0_guest_bits(vcpu);
965         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
966         update_exception_bitmap(vcpu);
967         vcpu->arch.cr0_guest_owned_bits = 0;
968         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
969         vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
970 }
971
972 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
973 {
974         unsigned long rflags, save_rflags;
975
976         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
977                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
978                 rflags = vmcs_readl(GUEST_RFLAGS);
979                 if (to_vmx(vcpu)->rmode.vm86_active) {
980                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
981                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
982                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
983                 }
984                 to_vmx(vcpu)->rflags = rflags;
985         }
986         return to_vmx(vcpu)->rflags;
987 }
988
989 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
990 {
991         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
992         __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
993         to_vmx(vcpu)->rflags = rflags;
994         if (to_vmx(vcpu)->rmode.vm86_active) {
995                 to_vmx(vcpu)->rmode.save_rflags = rflags;
996                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
997         }
998         vmcs_writel(GUEST_RFLAGS, rflags);
999 }
1000
1001 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1002 {
1003         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1004         int ret = 0;
1005
1006         if (interruptibility & GUEST_INTR_STATE_STI)
1007                 ret |= KVM_X86_SHADOW_INT_STI;
1008         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1009                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1010
1011         return ret & mask;
1012 }
1013
1014 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1015 {
1016         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1017         u32 interruptibility = interruptibility_old;
1018
1019         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1020
1021         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1022                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1023         else if (mask & KVM_X86_SHADOW_INT_STI)
1024                 interruptibility |= GUEST_INTR_STATE_STI;
1025
1026         if ((interruptibility != interruptibility_old))
1027                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1028 }
1029
1030 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1031 {
1032         unsigned long rip;
1033
1034         rip = kvm_rip_read(vcpu);
1035         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1036         kvm_rip_write(vcpu, rip);
1037
1038         /* skipping an emulated instruction also counts */
1039         vmx_set_interrupt_shadow(vcpu, 0);
1040 }
1041
1042 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1043 {
1044         /* Ensure that we clear the HLT state in the VMCS.  We don't need to
1045          * explicitly skip the instruction because if the HLT state is set, then
1046          * the instruction is already executing and RIP has already been
1047          * advanced. */
1048         if (!yield_on_hlt &&
1049             vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1050                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1051 }
1052
1053 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1054                                 bool has_error_code, u32 error_code,
1055                                 bool reinject)
1056 {
1057         struct vcpu_vmx *vmx = to_vmx(vcpu);
1058         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1059
1060         if (has_error_code) {
1061                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1062                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1063         }
1064
1065         if (vmx->rmode.vm86_active) {
1066                 if (kvm_inject_realmode_interrupt(vcpu, nr) != EMULATE_DONE)
1067                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1068                 return;
1069         }
1070
1071         if (kvm_exception_is_soft(nr)) {
1072                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1073                              vmx->vcpu.arch.event_exit_inst_len);
1074                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1075         } else
1076                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1077
1078         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1079         vmx_clear_hlt(vcpu);
1080 }
1081
1082 static bool vmx_rdtscp_supported(void)
1083 {
1084         return cpu_has_vmx_rdtscp();
1085 }
1086
1087 /*
1088  * Swap MSR entry in host/guest MSR entry array.
1089  */
1090 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1091 {
1092         struct shared_msr_entry tmp;
1093
1094         tmp = vmx->guest_msrs[to];
1095         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1096         vmx->guest_msrs[from] = tmp;
1097 }
1098
1099 /*
1100  * Set up the vmcs to automatically save and restore system
1101  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1102  * mode, as fiddling with msrs is very expensive.
1103  */
1104 static void setup_msrs(struct vcpu_vmx *vmx)
1105 {
1106         int save_nmsrs, index;
1107         unsigned long *msr_bitmap;
1108
1109         vmx_load_host_state(vmx);
1110         save_nmsrs = 0;
1111 #ifdef CONFIG_X86_64
1112         if (is_long_mode(&vmx->vcpu)) {
1113                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1114                 if (index >= 0)
1115                         move_msr_up(vmx, index, save_nmsrs++);
1116                 index = __find_msr_index(vmx, MSR_LSTAR);
1117                 if (index >= 0)
1118                         move_msr_up(vmx, index, save_nmsrs++);
1119                 index = __find_msr_index(vmx, MSR_CSTAR);
1120                 if (index >= 0)
1121                         move_msr_up(vmx, index, save_nmsrs++);
1122                 index = __find_msr_index(vmx, MSR_TSC_AUX);
1123                 if (index >= 0 && vmx->rdtscp_enabled)
1124                         move_msr_up(vmx, index, save_nmsrs++);
1125                 /*
1126                  * MSR_STAR is only needed on long mode guests, and only
1127                  * if efer.sce is enabled.
1128                  */
1129                 index = __find_msr_index(vmx, MSR_STAR);
1130                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1131                         move_msr_up(vmx, index, save_nmsrs++);
1132         }
1133 #endif
1134         index = __find_msr_index(vmx, MSR_EFER);
1135         if (index >= 0 && update_transition_efer(vmx, index))
1136                 move_msr_up(vmx, index, save_nmsrs++);
1137
1138         vmx->save_nmsrs = save_nmsrs;
1139
1140         if (cpu_has_vmx_msr_bitmap()) {
1141                 if (is_long_mode(&vmx->vcpu))
1142                         msr_bitmap = vmx_msr_bitmap_longmode;
1143                 else
1144                         msr_bitmap = vmx_msr_bitmap_legacy;
1145
1146                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1147         }
1148 }
1149
1150 /*
1151  * reads and returns guest's timestamp counter "register"
1152  * guest_tsc = host_tsc + tsc_offset    -- 21.3
1153  */
1154 static u64 guest_read_tsc(void)
1155 {
1156         u64 host_tsc, tsc_offset;
1157
1158         rdtscll(host_tsc);
1159         tsc_offset = vmcs_read64(TSC_OFFSET);
1160         return host_tsc + tsc_offset;
1161 }
1162
1163 /*
1164  * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
1165  * ioctl. In this case the call-back should update internal vmx state to make
1166  * the changes effective.
1167  */
1168 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1169 {
1170         /* Nothing to do here */
1171 }
1172
1173 /*
1174  * writes 'offset' into guest's timestamp counter offset register
1175  */
1176 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1177 {
1178         vmcs_write64(TSC_OFFSET, offset);
1179 }
1180
1181 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1182 {
1183         u64 offset = vmcs_read64(TSC_OFFSET);
1184         vmcs_write64(TSC_OFFSET, offset + adjustment);
1185 }
1186
1187 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1188 {
1189         return target_tsc - native_read_tsc();
1190 }
1191
1192 /*
1193  * Reads an msr value (of 'msr_index') into 'pdata'.
1194  * Returns 0 on success, non-0 otherwise.
1195  * Assumes vcpu_load() was already called.
1196  */
1197 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1198 {
1199         u64 data;
1200         struct shared_msr_entry *msr;
1201
1202         if (!pdata) {
1203                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1204                 return -EINVAL;
1205         }
1206
1207         switch (msr_index) {
1208 #ifdef CONFIG_X86_64
1209         case MSR_FS_BASE:
1210                 data = vmcs_readl(GUEST_FS_BASE);
1211                 break;
1212         case MSR_GS_BASE:
1213                 data = vmcs_readl(GUEST_GS_BASE);
1214                 break;
1215         case MSR_KERNEL_GS_BASE:
1216                 vmx_load_host_state(to_vmx(vcpu));
1217                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1218                 break;
1219 #endif
1220         case MSR_EFER:
1221                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1222         case MSR_IA32_TSC:
1223                 data = guest_read_tsc();
1224                 break;
1225         case MSR_IA32_SYSENTER_CS:
1226                 data = vmcs_read32(GUEST_SYSENTER_CS);
1227                 break;
1228         case MSR_IA32_SYSENTER_EIP:
1229                 data = vmcs_readl(GUEST_SYSENTER_EIP);
1230                 break;
1231         case MSR_IA32_SYSENTER_ESP:
1232                 data = vmcs_readl(GUEST_SYSENTER_ESP);
1233                 break;
1234         case MSR_TSC_AUX:
1235                 if (!to_vmx(vcpu)->rdtscp_enabled)
1236                         return 1;
1237                 /* Otherwise falls through */
1238         default:
1239                 vmx_load_host_state(to_vmx(vcpu));
1240                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1241                 if (msr) {
1242                         vmx_load_host_state(to_vmx(vcpu));
1243                         data = msr->data;
1244                         break;
1245                 }
1246                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1247         }
1248
1249         *pdata = data;
1250         return 0;
1251 }
1252
1253 /*
1254  * Writes msr value into into the appropriate "register".
1255  * Returns 0 on success, non-0 otherwise.
1256  * Assumes vcpu_load() was already called.
1257  */
1258 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1259 {
1260         struct vcpu_vmx *vmx = to_vmx(vcpu);
1261         struct shared_msr_entry *msr;
1262         int ret = 0;
1263
1264         switch (msr_index) {
1265         case MSR_EFER:
1266                 vmx_load_host_state(vmx);
1267                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1268                 break;
1269 #ifdef CONFIG_X86_64
1270         case MSR_FS_BASE:
1271                 vmcs_writel(GUEST_FS_BASE, data);
1272                 break;
1273         case MSR_GS_BASE:
1274                 vmcs_writel(GUEST_GS_BASE, data);
1275                 break;
1276         case MSR_KERNEL_GS_BASE:
1277                 vmx_load_host_state(vmx);
1278                 vmx->msr_guest_kernel_gs_base = data;
1279                 break;
1280 #endif
1281         case MSR_IA32_SYSENTER_CS:
1282                 vmcs_write32(GUEST_SYSENTER_CS, data);
1283                 break;
1284         case MSR_IA32_SYSENTER_EIP:
1285                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1286                 break;
1287         case MSR_IA32_SYSENTER_ESP:
1288                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1289                 break;
1290         case MSR_IA32_TSC:
1291                 kvm_write_tsc(vcpu, data);
1292                 break;
1293         case MSR_IA32_CR_PAT:
1294                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1295                         vmcs_write64(GUEST_IA32_PAT, data);
1296                         vcpu->arch.pat = data;
1297                         break;
1298                 }
1299                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1300                 break;
1301         case MSR_TSC_AUX:
1302                 if (!vmx->rdtscp_enabled)
1303                         return 1;
1304                 /* Check reserved bit, higher 32 bits should be zero */
1305                 if ((data >> 32) != 0)
1306                         return 1;
1307                 /* Otherwise falls through */
1308         default:
1309                 msr = find_msr_entry(vmx, msr_index);
1310                 if (msr) {
1311                         vmx_load_host_state(vmx);
1312                         msr->data = data;
1313                         break;
1314                 }
1315                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1316         }
1317
1318         return ret;
1319 }
1320
1321 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1322 {
1323         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1324         switch (reg) {
1325         case VCPU_REGS_RSP:
1326                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1327                 break;
1328         case VCPU_REGS_RIP:
1329                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1330                 break;
1331         case VCPU_EXREG_PDPTR:
1332                 if (enable_ept)
1333                         ept_save_pdptrs(vcpu);
1334                 break;
1335         default:
1336                 break;
1337         }
1338 }
1339
1340 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1341 {
1342         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1343                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1344         else
1345                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1346
1347         update_exception_bitmap(vcpu);
1348 }
1349
1350 static __init int cpu_has_kvm_support(void)
1351 {
1352         return cpu_has_vmx();
1353 }
1354
1355 static __init int vmx_disabled_by_bios(void)
1356 {
1357         u64 msr;
1358
1359         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1360         if (msr & FEATURE_CONTROL_LOCKED) {
1361                 /* launched w/ TXT and VMX disabled */
1362                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1363                         && tboot_enabled())
1364                         return 1;
1365                 /* launched w/o TXT and VMX only enabled w/ TXT */
1366                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1367                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1368                         && !tboot_enabled()) {
1369                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
1370                                 "activate TXT before enabling KVM\n");
1371                         return 1;
1372                 }
1373                 /* launched w/o TXT and VMX disabled */
1374                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1375                         && !tboot_enabled())
1376                         return 1;
1377         }
1378
1379         return 0;
1380 }
1381
1382 static void kvm_cpu_vmxon(u64 addr)
1383 {
1384         asm volatile (ASM_VMX_VMXON_RAX
1385                         : : "a"(&addr), "m"(addr)
1386                         : "memory", "cc");
1387 }
1388
1389 static int hardware_enable(void *garbage)
1390 {
1391         int cpu = raw_smp_processor_id();
1392         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1393         u64 old, test_bits;
1394
1395         if (read_cr4() & X86_CR4_VMXE)
1396                 return -EBUSY;
1397
1398         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1399         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1400
1401         test_bits = FEATURE_CONTROL_LOCKED;
1402         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1403         if (tboot_enabled())
1404                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
1405
1406         if ((old & test_bits) != test_bits) {
1407                 /* enable and lock */
1408                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
1409         }
1410         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1411
1412         if (vmm_exclusive) {
1413                 kvm_cpu_vmxon(phys_addr);
1414                 ept_sync_global();
1415         }
1416
1417         store_gdt(&__get_cpu_var(host_gdt));
1418
1419         return 0;
1420 }
1421
1422 static void vmclear_local_vcpus(void)
1423 {
1424         int cpu = raw_smp_processor_id();
1425         struct vcpu_vmx *vmx, *n;
1426
1427         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1428                                  local_vcpus_link)
1429                 __vcpu_clear(vmx);
1430 }
1431
1432
1433 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1434  * tricks.
1435  */
1436 static void kvm_cpu_vmxoff(void)
1437 {
1438         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1439 }
1440
1441 static void hardware_disable(void *garbage)
1442 {
1443         if (vmm_exclusive) {
1444                 vmclear_local_vcpus();
1445                 kvm_cpu_vmxoff();
1446         }
1447         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1448 }
1449
1450 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1451                                       u32 msr, u32 *result)
1452 {
1453         u32 vmx_msr_low, vmx_msr_high;
1454         u32 ctl = ctl_min | ctl_opt;
1455
1456         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1457
1458         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1459         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1460
1461         /* Ensure minimum (required) set of control bits are supported. */
1462         if (ctl_min & ~ctl)
1463                 return -EIO;
1464
1465         *result = ctl;
1466         return 0;
1467 }
1468
1469 static __init bool allow_1_setting(u32 msr, u32 ctl)
1470 {
1471         u32 vmx_msr_low, vmx_msr_high;
1472
1473         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1474         return vmx_msr_high & ctl;
1475 }
1476
1477 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1478 {
1479         u32 vmx_msr_low, vmx_msr_high;
1480         u32 min, opt, min2, opt2;
1481         u32 _pin_based_exec_control = 0;
1482         u32 _cpu_based_exec_control = 0;
1483         u32 _cpu_based_2nd_exec_control = 0;
1484         u32 _vmexit_control = 0;
1485         u32 _vmentry_control = 0;
1486
1487         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1488         opt = PIN_BASED_VIRTUAL_NMIS;
1489         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1490                                 &_pin_based_exec_control) < 0)
1491                 return -EIO;
1492
1493         min =
1494 #ifdef CONFIG_X86_64
1495               CPU_BASED_CR8_LOAD_EXITING |
1496               CPU_BASED_CR8_STORE_EXITING |
1497 #endif
1498               CPU_BASED_CR3_LOAD_EXITING |
1499               CPU_BASED_CR3_STORE_EXITING |
1500               CPU_BASED_USE_IO_BITMAPS |
1501               CPU_BASED_MOV_DR_EXITING |
1502               CPU_BASED_USE_TSC_OFFSETING |
1503               CPU_BASED_MWAIT_EXITING |
1504               CPU_BASED_MONITOR_EXITING |
1505               CPU_BASED_INVLPG_EXITING;
1506
1507         if (yield_on_hlt)
1508                 min |= CPU_BASED_HLT_EXITING;
1509
1510         opt = CPU_BASED_TPR_SHADOW |
1511               CPU_BASED_USE_MSR_BITMAPS |
1512               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1513         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1514                                 &_cpu_based_exec_control) < 0)
1515                 return -EIO;
1516 #ifdef CONFIG_X86_64
1517         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1518                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1519                                            ~CPU_BASED_CR8_STORE_EXITING;
1520 #endif
1521         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1522                 min2 = 0;
1523                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1524                         SECONDARY_EXEC_WBINVD_EXITING |
1525                         SECONDARY_EXEC_ENABLE_VPID |
1526                         SECONDARY_EXEC_ENABLE_EPT |
1527                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
1528                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1529                         SECONDARY_EXEC_RDTSCP;
1530                 if (adjust_vmx_controls(min2, opt2,
1531                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1532                                         &_cpu_based_2nd_exec_control) < 0)
1533                         return -EIO;
1534         }
1535 #ifndef CONFIG_X86_64
1536         if (!(_cpu_based_2nd_exec_control &
1537                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1538                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1539 #endif
1540         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1541                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1542                    enabled */
1543                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1544                                              CPU_BASED_CR3_STORE_EXITING |
1545                                              CPU_BASED_INVLPG_EXITING);
1546                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1547                       vmx_capability.ept, vmx_capability.vpid);
1548         }
1549
1550         min = 0;
1551 #ifdef CONFIG_X86_64
1552         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1553 #endif
1554         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1555         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1556                                 &_vmexit_control) < 0)
1557                 return -EIO;
1558
1559         min = 0;
1560         opt = VM_ENTRY_LOAD_IA32_PAT;
1561         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1562                                 &_vmentry_control) < 0)
1563                 return -EIO;
1564
1565         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1566
1567         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1568         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1569                 return -EIO;
1570
1571 #ifdef CONFIG_X86_64
1572         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1573         if (vmx_msr_high & (1u<<16))
1574                 return -EIO;
1575 #endif
1576
1577         /* Require Write-Back (WB) memory type for VMCS accesses. */
1578         if (((vmx_msr_high >> 18) & 15) != 6)
1579                 return -EIO;
1580
1581         vmcs_conf->size = vmx_msr_high & 0x1fff;
1582         vmcs_conf->order = get_order(vmcs_config.size);
1583         vmcs_conf->revision_id = vmx_msr_low;
1584
1585         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1586         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1587         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1588         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1589         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1590
1591         cpu_has_load_ia32_efer =
1592                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
1593                                 VM_ENTRY_LOAD_IA32_EFER)
1594                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
1595                                    VM_EXIT_LOAD_IA32_EFER);
1596
1597         return 0;
1598 }
1599
1600 static struct vmcs *alloc_vmcs_cpu(int cpu)
1601 {
1602         int node = cpu_to_node(cpu);
1603         struct page *pages;
1604         struct vmcs *vmcs;
1605
1606         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1607         if (!pages)
1608                 return NULL;
1609         vmcs = page_address(pages);
1610         memset(vmcs, 0, vmcs_config.size);
1611         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1612         return vmcs;
1613 }
1614
1615 static struct vmcs *alloc_vmcs(void)
1616 {
1617         return alloc_vmcs_cpu(raw_smp_processor_id());
1618 }
1619
1620 static void free_vmcs(struct vmcs *vmcs)
1621 {
1622         free_pages((unsigned long)vmcs, vmcs_config.order);
1623 }
1624
1625 static void free_kvm_area(void)
1626 {
1627         int cpu;
1628
1629         for_each_possible_cpu(cpu) {
1630                 free_vmcs(per_cpu(vmxarea, cpu));
1631                 per_cpu(vmxarea, cpu) = NULL;
1632         }
1633 }
1634
1635 static __init int alloc_kvm_area(void)
1636 {
1637         int cpu;
1638
1639         for_each_possible_cpu(cpu) {
1640                 struct vmcs *vmcs;
1641
1642                 vmcs = alloc_vmcs_cpu(cpu);
1643                 if (!vmcs) {
1644                         free_kvm_area();
1645                         return -ENOMEM;
1646                 }
1647
1648                 per_cpu(vmxarea, cpu) = vmcs;
1649         }
1650         return 0;
1651 }
1652
1653 static __init int hardware_setup(void)
1654 {
1655         if (setup_vmcs_config(&vmcs_config) < 0)
1656                 return -EIO;
1657
1658         if (boot_cpu_has(X86_FEATURE_NX))
1659                 kvm_enable_efer_bits(EFER_NX);
1660
1661         if (!cpu_has_vmx_vpid())
1662                 enable_vpid = 0;
1663
1664         if (!cpu_has_vmx_ept() ||
1665             !cpu_has_vmx_ept_4levels()) {
1666                 enable_ept = 0;
1667                 enable_unrestricted_guest = 0;
1668         }
1669
1670         if (!cpu_has_vmx_unrestricted_guest())
1671                 enable_unrestricted_guest = 0;
1672
1673         if (!cpu_has_vmx_flexpriority())
1674                 flexpriority_enabled = 0;
1675
1676         if (!cpu_has_vmx_tpr_shadow())
1677                 kvm_x86_ops->update_cr8_intercept = NULL;
1678
1679         if (enable_ept && !cpu_has_vmx_ept_2m_page())
1680                 kvm_disable_largepages();
1681
1682         if (!cpu_has_vmx_ple())
1683                 ple_gap = 0;
1684
1685         return alloc_kvm_area();
1686 }
1687
1688 static __exit void hardware_unsetup(void)
1689 {
1690         free_kvm_area();
1691 }
1692
1693 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1694 {
1695         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1696
1697         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1698                 vmcs_write16(sf->selector, save->selector);
1699                 vmcs_writel(sf->base, save->base);
1700                 vmcs_write32(sf->limit, save->limit);
1701                 vmcs_write32(sf->ar_bytes, save->ar);
1702         } else {
1703                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1704                         << AR_DPL_SHIFT;
1705                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1706         }
1707 }
1708
1709 static void enter_pmode(struct kvm_vcpu *vcpu)
1710 {
1711         unsigned long flags;
1712         struct vcpu_vmx *vmx = to_vmx(vcpu);
1713
1714         vmx->emulation_required = 1;
1715         vmx->rmode.vm86_active = 0;
1716
1717         vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
1718         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1719         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1720         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1721
1722         flags = vmcs_readl(GUEST_RFLAGS);
1723         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1724         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1725         vmcs_writel(GUEST_RFLAGS, flags);
1726
1727         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1728                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1729
1730         update_exception_bitmap(vcpu);
1731
1732         if (emulate_invalid_guest_state)
1733                 return;
1734
1735         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1736         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1737         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1738         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1739
1740         vmcs_write16(GUEST_SS_SELECTOR, 0);
1741         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1742
1743         vmcs_write16(GUEST_CS_SELECTOR,
1744                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1745         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1746 }
1747
1748 static gva_t rmode_tss_base(struct kvm *kvm)
1749 {
1750         if (!kvm->arch.tss_addr) {
1751                 struct kvm_memslots *slots;
1752                 gfn_t base_gfn;
1753
1754                 slots = kvm_memslots(kvm);
1755                 base_gfn = slots->memslots[0].base_gfn +
1756                                  kvm->memslots->memslots[0].npages - 3;
1757                 return base_gfn << PAGE_SHIFT;
1758         }
1759         return kvm->arch.tss_addr;
1760 }
1761
1762 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1763 {
1764         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1765
1766         save->selector = vmcs_read16(sf->selector);
1767         save->base = vmcs_readl(sf->base);
1768         save->limit = vmcs_read32(sf->limit);
1769         save->ar = vmcs_read32(sf->ar_bytes);
1770         vmcs_write16(sf->selector, save->base >> 4);
1771         vmcs_write32(sf->base, save->base & 0xffff0);
1772         vmcs_write32(sf->limit, 0xffff);
1773         vmcs_write32(sf->ar_bytes, 0xf3);
1774         if (save->base & 0xf)
1775                 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
1776                             " aligned when entering protected mode (seg=%d)",
1777                             seg);
1778 }
1779
1780 static void enter_rmode(struct kvm_vcpu *vcpu)
1781 {
1782         unsigned long flags;
1783         struct vcpu_vmx *vmx = to_vmx(vcpu);
1784
1785         if (enable_unrestricted_guest)
1786                 return;
1787
1788         vmx->emulation_required = 1;
1789         vmx->rmode.vm86_active = 1;
1790
1791         /*
1792          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
1793          * vcpu. Call it here with phys address pointing 16M below 4G.
1794          */
1795         if (!vcpu->kvm->arch.tss_addr) {
1796                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
1797                              "called before entering vcpu\n");
1798                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1799                 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
1800                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1801         }
1802
1803         vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
1804         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1805         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1806
1807         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1808         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1809
1810         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1811         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1812
1813         flags = vmcs_readl(GUEST_RFLAGS);
1814         vmx->rmode.save_rflags = flags;
1815
1816         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1817
1818         vmcs_writel(GUEST_RFLAGS, flags);
1819         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1820         update_exception_bitmap(vcpu);
1821
1822         if (emulate_invalid_guest_state)
1823                 goto continue_rmode;
1824
1825         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1826         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1827         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1828
1829         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1830         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1831         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1832                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1833         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1834
1835         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1836         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1837         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1838         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1839
1840 continue_rmode:
1841         kvm_mmu_reset_context(vcpu);
1842 }
1843
1844 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1845 {
1846         struct vcpu_vmx *vmx = to_vmx(vcpu);
1847         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1848
1849         if (!msr)
1850                 return;
1851
1852         /*
1853          * Force kernel_gs_base reloading before EFER changes, as control
1854          * of this msr depends on is_long_mode().
1855          */
1856         vmx_load_host_state(to_vmx(vcpu));
1857         vcpu->arch.efer = efer;
1858         if (efer & EFER_LMA) {
1859                 vmcs_write32(VM_ENTRY_CONTROLS,
1860                              vmcs_read32(VM_ENTRY_CONTROLS) |
1861                              VM_ENTRY_IA32E_MODE);
1862                 msr->data = efer;
1863         } else {
1864                 vmcs_write32(VM_ENTRY_CONTROLS,
1865                              vmcs_read32(VM_ENTRY_CONTROLS) &
1866                              ~VM_ENTRY_IA32E_MODE);
1867
1868                 msr->data = efer & ~EFER_LME;
1869         }
1870         setup_msrs(vmx);
1871 }
1872
1873 #ifdef CONFIG_X86_64
1874
1875 static void enter_lmode(struct kvm_vcpu *vcpu)
1876 {
1877         u32 guest_tr_ar;
1878
1879         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1880         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1881                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1882                        __func__);
1883                 vmcs_write32(GUEST_TR_AR_BYTES,
1884                              (guest_tr_ar & ~AR_TYPE_MASK)
1885                              | AR_TYPE_BUSY_64_TSS);
1886         }
1887         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
1888 }
1889
1890 static void exit_lmode(struct kvm_vcpu *vcpu)
1891 {
1892         vmcs_write32(VM_ENTRY_CONTROLS,
1893                      vmcs_read32(VM_ENTRY_CONTROLS)
1894                      & ~VM_ENTRY_IA32E_MODE);
1895         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
1896 }
1897
1898 #endif
1899
1900 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1901 {
1902         vpid_sync_context(to_vmx(vcpu));
1903         if (enable_ept) {
1904                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1905                         return;
1906                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1907         }
1908 }
1909
1910 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1911 {
1912         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
1913
1914         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
1915         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
1916 }
1917
1918 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
1919 {
1920         if (enable_ept && is_paging(vcpu))
1921                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
1922         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
1923 }
1924
1925 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1926 {
1927         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
1928
1929         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
1930         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
1931 }
1932
1933 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1934 {
1935         if (!test_bit(VCPU_EXREG_PDPTR,
1936                       (unsigned long *)&vcpu->arch.regs_dirty))
1937                 return;
1938
1939         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1940                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
1941                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
1942                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
1943                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1944         }
1945 }
1946
1947 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1948 {
1949         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1950                 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1951                 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1952                 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1953                 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1954         }
1955
1956         __set_bit(VCPU_EXREG_PDPTR,
1957                   (unsigned long *)&vcpu->arch.regs_avail);
1958         __set_bit(VCPU_EXREG_PDPTR,
1959                   (unsigned long *)&vcpu->arch.regs_dirty);
1960 }
1961
1962 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1963
1964 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1965                                         unsigned long cr0,
1966                                         struct kvm_vcpu *vcpu)
1967 {
1968         vmx_decache_cr3(vcpu);
1969         if (!(cr0 & X86_CR0_PG)) {
1970                 /* From paging/starting to nonpaging */
1971                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1972                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1973                              (CPU_BASED_CR3_LOAD_EXITING |
1974                               CPU_BASED_CR3_STORE_EXITING));
1975                 vcpu->arch.cr0 = cr0;
1976                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1977         } else if (!is_paging(vcpu)) {
1978                 /* From nonpaging to paging */
1979                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1980                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1981                              ~(CPU_BASED_CR3_LOAD_EXITING |
1982                                CPU_BASED_CR3_STORE_EXITING));
1983                 vcpu->arch.cr0 = cr0;
1984                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1985         }
1986
1987         if (!(cr0 & X86_CR0_WP))
1988                 *hw_cr0 &= ~X86_CR0_WP;
1989 }
1990
1991 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1992 {
1993         struct vcpu_vmx *vmx = to_vmx(vcpu);
1994         unsigned long hw_cr0;
1995
1996         if (enable_unrestricted_guest)
1997                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1998                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1999         else
2000                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
2001
2002         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2003                 enter_pmode(vcpu);
2004
2005         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2006                 enter_rmode(vcpu);
2007
2008 #ifdef CONFIG_X86_64
2009         if (vcpu->arch.efer & EFER_LME) {
2010                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2011                         enter_lmode(vcpu);
2012                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2013                         exit_lmode(vcpu);
2014         }
2015 #endif
2016
2017         if (enable_ept)
2018                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2019
2020         if (!vcpu->fpu_active)
2021                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
2022
2023         vmcs_writel(CR0_READ_SHADOW, cr0);
2024         vmcs_writel(GUEST_CR0, hw_cr0);
2025         vcpu->arch.cr0 = cr0;
2026         __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2027 }
2028
2029 static u64 construct_eptp(unsigned long root_hpa)
2030 {
2031         u64 eptp;
2032
2033         /* TODO write the value reading from MSR */
2034         eptp = VMX_EPT_DEFAULT_MT |
2035                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
2036         eptp |= (root_hpa & PAGE_MASK);
2037
2038         return eptp;
2039 }
2040
2041 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2042 {
2043         unsigned long guest_cr3;
2044         u64 eptp;
2045
2046         guest_cr3 = cr3;
2047         if (enable_ept) {
2048                 eptp = construct_eptp(cr3);
2049                 vmcs_write64(EPT_POINTER, eptp);
2050                 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
2051                         vcpu->kvm->arch.ept_identity_map_addr;
2052                 ept_load_pdptrs(vcpu);
2053         }
2054
2055         vmx_flush_tlb(vcpu);
2056         vmcs_writel(GUEST_CR3, guest_cr3);
2057 }
2058
2059 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2060 {
2061         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
2062                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
2063
2064         vcpu->arch.cr4 = cr4;
2065         if (enable_ept) {
2066                 if (!is_paging(vcpu)) {
2067                         hw_cr4 &= ~X86_CR4_PAE;
2068                         hw_cr4 |= X86_CR4_PSE;
2069                 } else if (!(cr4 & X86_CR4_PAE)) {
2070                         hw_cr4 &= ~X86_CR4_PAE;
2071                 }
2072         }
2073
2074         vmcs_writel(CR4_READ_SHADOW, cr4);
2075         vmcs_writel(GUEST_CR4, hw_cr4);
2076 }
2077
2078 static void vmx_get_segment(struct kvm_vcpu *vcpu,
2079                             struct kvm_segment *var, int seg)
2080 {
2081         struct vcpu_vmx *vmx = to_vmx(vcpu);
2082         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2083         struct kvm_save_segment *save;
2084         u32 ar;
2085
2086         if (vmx->rmode.vm86_active
2087             && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
2088                 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
2089                 || seg == VCPU_SREG_GS)
2090             && !emulate_invalid_guest_state) {
2091                 switch (seg) {
2092                 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
2093                 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
2094                 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
2095                 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
2096                 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
2097                 default: BUG();
2098                 }
2099                 var->selector = save->selector;
2100                 var->base = save->base;
2101                 var->limit = save->limit;
2102                 ar = save->ar;
2103                 if (seg == VCPU_SREG_TR
2104                     || var->selector == vmcs_read16(sf->selector))
2105                         goto use_saved_rmode_seg;
2106         }
2107         var->base = vmcs_readl(sf->base);
2108         var->limit = vmcs_read32(sf->limit);
2109         var->selector = vmcs_read16(sf->selector);
2110         ar = vmcs_read32(sf->ar_bytes);
2111 use_saved_rmode_seg:
2112         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
2113                 ar = 0;
2114         var->type = ar & 15;
2115         var->s = (ar >> 4) & 1;
2116         var->dpl = (ar >> 5) & 3;
2117         var->present = (ar >> 7) & 1;
2118         var->avl = (ar >> 12) & 1;
2119         var->l = (ar >> 13) & 1;
2120         var->db = (ar >> 14) & 1;
2121         var->g = (ar >> 15) & 1;
2122         var->unusable = (ar >> 16) & 1;
2123 }
2124
2125 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2126 {
2127         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2128         struct kvm_segment s;
2129
2130         if (to_vmx(vcpu)->rmode.vm86_active) {
2131                 vmx_get_segment(vcpu, &s, seg);
2132                 return s.base;
2133         }
2134         return vmcs_readl(sf->base);
2135 }
2136
2137 static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
2138 {
2139         if (!is_protmode(vcpu))
2140                 return 0;
2141
2142         if (!is_long_mode(vcpu)
2143             && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2144                 return 3;
2145
2146         return vmcs_read16(GUEST_CS_SELECTOR) & 3;
2147 }
2148
2149 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2150 {
2151         if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
2152                 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2153                 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
2154         }
2155         return to_vmx(vcpu)->cpl;
2156 }
2157
2158
2159 static u32 vmx_segment_access_rights(struct kvm_segment *var)
2160 {
2161         u32 ar;
2162
2163         if (var->unusable)
2164                 ar = 1 << 16;
2165         else {
2166                 ar = var->type & 15;
2167                 ar |= (var->s & 1) << 4;
2168                 ar |= (var->dpl & 3) << 5;
2169                 ar |= (var->present & 1) << 7;
2170                 ar |= (var->avl & 1) << 12;
2171                 ar |= (var->l & 1) << 13;
2172                 ar |= (var->db & 1) << 14;
2173                 ar |= (var->g & 1) << 15;
2174         }
2175         if (ar == 0) /* a 0 value means unusable */
2176                 ar = AR_UNUSABLE_MASK;
2177
2178         return ar;
2179 }
2180
2181 static void vmx_set_segment(struct kvm_vcpu *vcpu,
2182                             struct kvm_segment *var, int seg)
2183 {
2184         struct vcpu_vmx *vmx = to_vmx(vcpu);
2185         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2186         u32 ar;
2187
2188         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
2189                 vmcs_write16(sf->selector, var->selector);
2190                 vmx->rmode.tr.selector = var->selector;
2191                 vmx->rmode.tr.base = var->base;
2192                 vmx->rmode.tr.limit = var->limit;
2193                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
2194                 return;
2195         }
2196         vmcs_writel(sf->base, var->base);
2197         vmcs_write32(sf->limit, var->limit);
2198         vmcs_write16(sf->selector, var->selector);
2199         if (vmx->rmode.vm86_active && var->s) {
2200                 /*
2201                  * Hack real-mode segments into vm86 compatibility.
2202                  */
2203                 if (var->base == 0xffff0000 && var->selector == 0xf000)
2204                         vmcs_writel(sf->base, 0xf0000);
2205                 ar = 0xf3;
2206         } else
2207                 ar = vmx_segment_access_rights(var);
2208
2209         /*
2210          *   Fix the "Accessed" bit in AR field of segment registers for older
2211          * qemu binaries.
2212          *   IA32 arch specifies that at the time of processor reset the
2213          * "Accessed" bit in the AR field of segment registers is 1. And qemu
2214          * is setting it to 0 in the usedland code. This causes invalid guest
2215          * state vmexit when "unrestricted guest" mode is turned on.
2216          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
2217          * tree. Newer qemu binaries with that qemu fix would not need this
2218          * kvm hack.
2219          */
2220         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
2221                 ar |= 0x1; /* Accessed */
2222
2223         vmcs_write32(sf->ar_bytes, ar);
2224         __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2225 }
2226
2227 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2228 {
2229         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
2230
2231         *db = (ar >> 14) & 1;
2232         *l = (ar >> 13) & 1;
2233 }
2234
2235 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2236 {
2237         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
2238         dt->address = vmcs_readl(GUEST_IDTR_BASE);
2239 }
2240
2241 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2242 {
2243         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
2244         vmcs_writel(GUEST_IDTR_BASE, dt->address);
2245 }
2246
2247 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2248 {
2249         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
2250         dt->address = vmcs_readl(GUEST_GDTR_BASE);
2251 }
2252
2253 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2254 {
2255         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
2256         vmcs_writel(GUEST_GDTR_BASE, dt->address);
2257 }
2258
2259 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
2260 {
2261         struct kvm_segment var;
2262         u32 ar;
2263
2264         vmx_get_segment(vcpu, &var, seg);
2265         ar = vmx_segment_access_rights(&var);
2266
2267         if (var.base != (var.selector << 4))
2268                 return false;
2269         if (var.limit != 0xffff)
2270                 return false;
2271         if (ar != 0xf3)
2272                 return false;
2273
2274         return true;
2275 }
2276
2277 static bool code_segment_valid(struct kvm_vcpu *vcpu)
2278 {
2279         struct kvm_segment cs;
2280         unsigned int cs_rpl;
2281
2282         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2283         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
2284
2285         if (cs.unusable)
2286                 return false;
2287         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
2288                 return false;
2289         if (!cs.s)
2290                 return false;
2291         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
2292                 if (cs.dpl > cs_rpl)
2293                         return false;
2294         } else {
2295                 if (cs.dpl != cs_rpl)
2296                         return false;
2297         }
2298         if (!cs.present)
2299                 return false;
2300
2301         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
2302         return true;
2303 }
2304
2305 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
2306 {
2307         struct kvm_segment ss;
2308         unsigned int ss_rpl;
2309
2310         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2311         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2312
2313         if (ss.unusable)
2314                 return true;
2315         if (ss.type != 3 && ss.type != 7)
2316                 return false;
2317         if (!ss.s)
2318                 return false;
2319         if (ss.dpl != ss_rpl) /* DPL != RPL */
2320                 return false;
2321         if (!ss.present)
2322                 return false;
2323
2324         return true;
2325 }
2326
2327 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2328 {
2329         struct kvm_segment var;
2330         unsigned int rpl;
2331
2332         vmx_get_segment(vcpu, &var, seg);
2333         rpl = var.selector & SELECTOR_RPL_MASK;
2334
2335         if (var.unusable)
2336                 return true;
2337         if (!var.s)
2338                 return false;
2339         if (!var.present)
2340                 return false;
2341         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2342                 if (var.dpl < rpl) /* DPL < RPL */
2343                         return false;
2344         }
2345
2346         /* TODO: Add other members to kvm_segment_field to allow checking for other access
2347          * rights flags
2348          */
2349         return true;
2350 }
2351
2352 static bool tr_valid(struct kvm_vcpu *vcpu)
2353 {
2354         struct kvm_segment tr;
2355
2356         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2357
2358         if (tr.unusable)
2359                 return false;
2360         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
2361                 return false;
2362         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2363                 return false;
2364         if (!tr.present)
2365                 return false;
2366
2367         return true;
2368 }
2369
2370 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2371 {
2372         struct kvm_segment ldtr;
2373
2374         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2375
2376         if (ldtr.unusable)
2377                 return true;
2378         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
2379                 return false;
2380         if (ldtr.type != 2)
2381                 return false;
2382         if (!ldtr.present)
2383                 return false;
2384
2385         return true;
2386 }
2387
2388 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2389 {
2390         struct kvm_segment cs, ss;
2391
2392         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2393         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2394
2395         return ((cs.selector & SELECTOR_RPL_MASK) ==
2396                  (ss.selector & SELECTOR_RPL_MASK));
2397 }
2398
2399 /*
2400  * Check if guest state is valid. Returns true if valid, false if
2401  * not.
2402  * We assume that registers are always usable
2403  */
2404 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2405 {
2406         /* real mode guest state checks */
2407         if (!is_protmode(vcpu)) {
2408                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2409                         return false;
2410                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2411                         return false;
2412                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2413                         return false;
2414                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2415                         return false;
2416                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2417                         return false;
2418                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2419                         return false;
2420         } else {
2421         /* protected mode guest state checks */
2422                 if (!cs_ss_rpl_check(vcpu))
2423                         return false;
2424                 if (!code_segment_valid(vcpu))
2425                         return false;
2426                 if (!stack_segment_valid(vcpu))
2427                         return false;
2428                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2429                         return false;
2430                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2431                         return false;
2432                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2433                         return false;
2434                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2435                         return false;
2436                 if (!tr_valid(vcpu))
2437                         return false;
2438                 if (!ldtr_valid(vcpu))
2439                         return false;
2440         }
2441         /* TODO:
2442          * - Add checks on RIP
2443          * - Add checks on RFLAGS
2444          */
2445
2446         return true;
2447 }
2448
2449 static int init_rmode_tss(struct kvm *kvm)
2450 {
2451         gfn_t fn;
2452         u16 data = 0;
2453         int r, idx, ret = 0;
2454
2455         idx = srcu_read_lock(&kvm->srcu);
2456         fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2457         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2458         if (r < 0)
2459                 goto out;
2460         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2461         r = kvm_write_guest_page(kvm, fn++, &data,
2462                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
2463         if (r < 0)
2464                 goto out;
2465         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2466         if (r < 0)
2467                 goto out;
2468         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2469         if (r < 0)
2470                 goto out;
2471         data = ~0;
2472         r = kvm_write_guest_page(kvm, fn, &data,
2473                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2474                                  sizeof(u8));
2475         if (r < 0)
2476                 goto out;
2477
2478         ret = 1;
2479 out:
2480         srcu_read_unlock(&kvm->srcu, idx);
2481         return ret;
2482 }
2483
2484 static int init_rmode_identity_map(struct kvm *kvm)
2485 {
2486         int i, idx, r, ret;
2487         pfn_t identity_map_pfn;
2488         u32 tmp;
2489
2490         if (!enable_ept)
2491                 return 1;
2492         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2493                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2494                         "haven't been allocated!\n");
2495                 return 0;
2496         }
2497         if (likely(kvm->arch.ept_identity_pagetable_done))
2498                 return 1;
2499         ret = 0;
2500         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2501         idx = srcu_read_lock(&kvm->srcu);
2502         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2503         if (r < 0)
2504                 goto out;
2505         /* Set up identity-mapping pagetable for EPT in real mode */
2506         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2507                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2508                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2509                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2510                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2511                 if (r < 0)
2512                         goto out;
2513         }
2514         kvm->arch.ept_identity_pagetable_done = true;
2515         ret = 1;
2516 out:
2517         srcu_read_unlock(&kvm->srcu, idx);
2518         return ret;
2519 }
2520
2521 static void seg_setup(int seg)
2522 {
2523         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2524         unsigned int ar;
2525
2526         vmcs_write16(sf->selector, 0);
2527         vmcs_writel(sf->base, 0);
2528         vmcs_write32(sf->limit, 0xffff);
2529         if (enable_unrestricted_guest) {
2530                 ar = 0x93;
2531                 if (seg == VCPU_SREG_CS)
2532                         ar |= 0x08; /* code segment */
2533         } else
2534                 ar = 0xf3;
2535
2536         vmcs_write32(sf->ar_bytes, ar);
2537 }
2538
2539 static int alloc_apic_access_page(struct kvm *kvm)
2540 {
2541         struct kvm_userspace_memory_region kvm_userspace_mem;
2542         int r = 0;
2543
2544         mutex_lock(&kvm->slots_lock);
2545         if (kvm->arch.apic_access_page)
2546                 goto out;
2547         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2548         kvm_userspace_mem.flags = 0;
2549         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2550         kvm_userspace_mem.memory_size = PAGE_SIZE;
2551         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2552         if (r)
2553                 goto out;
2554
2555         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2556 out:
2557         mutex_unlock(&kvm->slots_lock);
2558         return r;
2559 }
2560
2561 static int alloc_identity_pagetable(struct kvm *kvm)
2562 {
2563         struct kvm_userspace_memory_region kvm_userspace_mem;
2564         int r = 0;
2565
2566         mutex_lock(&kvm->slots_lock);
2567         if (kvm->arch.ept_identity_pagetable)
2568                 goto out;
2569         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2570         kvm_userspace_mem.flags = 0;
2571         kvm_userspace_mem.guest_phys_addr =
2572                 kvm->arch.ept_identity_map_addr;
2573         kvm_userspace_mem.memory_size = PAGE_SIZE;
2574         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2575         if (r)
2576                 goto out;
2577
2578         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2579                         kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2580 out:
2581         mutex_unlock(&kvm->slots_lock);
2582         return r;
2583 }
2584
2585 static void allocate_vpid(struct vcpu_vmx *vmx)
2586 {
2587         int vpid;
2588
2589         vmx->vpid = 0;
2590         if (!enable_vpid)
2591                 return;
2592         spin_lock(&vmx_vpid_lock);
2593         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2594         if (vpid < VMX_NR_VPIDS) {
2595                 vmx->vpid = vpid;
2596                 __set_bit(vpid, vmx_vpid_bitmap);
2597         }
2598         spin_unlock(&vmx_vpid_lock);
2599 }
2600
2601 static void free_vpid(struct vcpu_vmx *vmx)
2602 {
2603         if (!enable_vpid)
2604                 return;
2605         spin_lock(&vmx_vpid_lock);
2606         if (vmx->vpid != 0)
2607                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2608         spin_unlock(&vmx_vpid_lock);
2609 }
2610
2611 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2612 {
2613         int f = sizeof(unsigned long);
2614
2615         if (!cpu_has_vmx_msr_bitmap())
2616                 return;
2617
2618         /*
2619          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2620          * have the write-low and read-high bitmap offsets the wrong way round.
2621          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2622          */
2623         if (msr <= 0x1fff) {
2624                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2625                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2626         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2627                 msr &= 0x1fff;
2628                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2629                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2630         }
2631 }
2632
2633 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2634 {
2635         if (!longmode_only)
2636                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2637         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2638 }
2639
2640 /*
2641  * Sets up the vmcs for emulated real mode.
2642  */
2643 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2644 {
2645         u32 host_sysenter_cs, msr_low, msr_high;
2646         u32 junk;
2647         u64 host_pat;
2648         unsigned long a;
2649         struct desc_ptr dt;
2650         int i;
2651         unsigned long kvm_vmx_return;
2652         u32 exec_control;
2653
2654         /* I/O */
2655         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2656         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2657
2658         if (cpu_has_vmx_msr_bitmap())
2659                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2660
2661         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2662
2663         /* Control */
2664         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2665                 vmcs_config.pin_based_exec_ctrl);
2666
2667         exec_control = vmcs_config.cpu_based_exec_ctrl;
2668         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2669                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2670 #ifdef CONFIG_X86_64
2671                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2672                                 CPU_BASED_CR8_LOAD_EXITING;
2673 #endif
2674         }
2675         if (!enable_ept)
2676                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2677                                 CPU_BASED_CR3_LOAD_EXITING  |
2678                                 CPU_BASED_INVLPG_EXITING;
2679         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2680
2681         if (cpu_has_secondary_exec_ctrls()) {
2682                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2683                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2684                         exec_control &=
2685                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2686                 if (vmx->vpid == 0)
2687                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2688                 if (!enable_ept) {
2689                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2690                         enable_unrestricted_guest = 0;
2691                 }
2692                 if (!enable_unrestricted_guest)
2693                         exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2694                 if (!ple_gap)
2695                         exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2696                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2697         }
2698
2699         if (ple_gap) {
2700                 vmcs_write32(PLE_GAP, ple_gap);
2701                 vmcs_write32(PLE_WINDOW, ple_window);
2702         }
2703
2704         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2705         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2706         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2707
2708         vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS);  /* 22.2.3 */
2709         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2710         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2711
2712         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2713         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2714         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2715         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
2716         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
2717         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2718 #ifdef CONFIG_X86_64
2719         rdmsrl(MSR_FS_BASE, a);
2720         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2721         rdmsrl(MSR_GS_BASE, a);
2722         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2723 #else
2724         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2725         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2726 #endif
2727
2728         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2729
2730         native_store_idt(&dt);
2731         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
2732
2733         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2734         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2735         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2736         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2737         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2738         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2739         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
2740
2741         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2742         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2743         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2744         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2745         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2746         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2747
2748         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2749                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2750                 host_pat = msr_low | ((u64) msr_high << 32);
2751                 vmcs_write64(HOST_IA32_PAT, host_pat);
2752         }
2753         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2754                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2755                 host_pat = msr_low | ((u64) msr_high << 32);
2756                 /* Write the default value follow host pat */
2757                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2758                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2759                 vmx->vcpu.arch.pat = host_pat;
2760         }
2761
2762         for (i = 0; i < NR_VMX_MSR; ++i) {
2763                 u32 index = vmx_msr_index[i];
2764                 u32 data_low, data_high;
2765                 int j = vmx->nmsrs;
2766
2767                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2768                         continue;
2769                 if (wrmsr_safe(index, data_low, data_high) < 0)
2770                         continue;
2771                 vmx->guest_msrs[j].index = i;
2772                 vmx->guest_msrs[j].data = 0;
2773                 vmx->guest_msrs[j].mask = -1ull;
2774                 ++vmx->nmsrs;
2775         }
2776
2777         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2778
2779         /* 22.2.1, 20.8.1 */
2780         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2781
2782         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2783         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2784         if (enable_ept)
2785                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2786         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2787
2788         kvm_write_tsc(&vmx->vcpu, 0);
2789
2790         return 0;
2791 }
2792
2793 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2794 {
2795         struct vcpu_vmx *vmx = to_vmx(vcpu);
2796         u64 msr;
2797         int ret;
2798
2799         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2800
2801         vmx->rmode.vm86_active = 0;
2802
2803         vmx->soft_vnmi_blocked = 0;
2804
2805         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2806         kvm_set_cr8(&vmx->vcpu, 0);
2807         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2808         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2809                 msr |= MSR_IA32_APICBASE_BSP;
2810         kvm_set_apic_base(&vmx->vcpu, msr);
2811
2812         ret = fx_init(&vmx->vcpu);
2813         if (ret != 0)
2814                 goto out;
2815
2816         seg_setup(VCPU_SREG_CS);
2817         /*
2818          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2819          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2820          */
2821         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2822                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2823                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2824         } else {
2825                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2826                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2827         }
2828
2829         seg_setup(VCPU_SREG_DS);
2830         seg_setup(VCPU_SREG_ES);
2831         seg_setup(VCPU_SREG_FS);
2832         seg_setup(VCPU_SREG_GS);
2833         seg_setup(VCPU_SREG_SS);
2834
2835         vmcs_write16(GUEST_TR_SELECTOR, 0);
2836         vmcs_writel(GUEST_TR_BASE, 0);
2837         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2838         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2839
2840         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2841         vmcs_writel(GUEST_LDTR_BASE, 0);
2842         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2843         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2844
2845         vmcs_write32(GUEST_SYSENTER_CS, 0);
2846         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2847         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2848
2849         vmcs_writel(GUEST_RFLAGS, 0x02);
2850         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2851                 kvm_rip_write(vcpu, 0xfff0);
2852         else
2853                 kvm_rip_write(vcpu, 0);
2854         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2855
2856         vmcs_writel(GUEST_DR7, 0x400);
2857
2858         vmcs_writel(GUEST_GDTR_BASE, 0);
2859         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2860
2861         vmcs_writel(GUEST_IDTR_BASE, 0);
2862         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2863
2864         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
2865         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2866         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2867
2868         /* Special registers */
2869         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2870
2871         setup_msrs(vmx);
2872
2873         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2874
2875         if (cpu_has_vmx_tpr_shadow()) {
2876                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2877                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2878                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2879                                      __pa(vmx->vcpu.arch.apic->regs));
2880                 vmcs_write32(TPR_THRESHOLD, 0);
2881         }
2882
2883         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2884                 vmcs_write64(APIC_ACCESS_ADDR,
2885                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2886
2887         if (vmx->vpid != 0)
2888                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2889
2890         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2891         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
2892         vmx_set_cr4(&vmx->vcpu, 0);
2893         vmx_set_efer(&vmx->vcpu, 0);
2894         vmx_fpu_activate(&vmx->vcpu);
2895         update_exception_bitmap(&vmx->vcpu);
2896
2897         vpid_sync_context(vmx);
2898
2899         ret = 0;
2900
2901         /* HACK: Don't enable emulation on guest boot/reset */
2902         vmx->emulation_required = 0;
2903
2904 out:
2905         return ret;
2906 }
2907
2908 static void enable_irq_window(struct kvm_vcpu *vcpu)
2909 {
2910         u32 cpu_based_vm_exec_control;
2911
2912         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2913         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2914         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2915 }
2916
2917 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2918 {
2919         u32 cpu_based_vm_exec_control;
2920
2921         if (!cpu_has_virtual_nmis()) {
2922                 enable_irq_window(vcpu);
2923                 return;
2924         }
2925
2926         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
2927                 enable_irq_window(vcpu);
2928                 return;
2929         }
2930         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2931         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2932         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2933 }
2934
2935 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2936 {
2937         struct vcpu_vmx *vmx = to_vmx(vcpu);
2938         uint32_t intr;
2939         int irq = vcpu->arch.interrupt.nr;
2940
2941         trace_kvm_inj_virq(irq);
2942
2943         ++vcpu->stat.irq_injections;
2944         if (vmx->rmode.vm86_active) {
2945                 if (kvm_inject_realmode_interrupt(vcpu, irq) != EMULATE_DONE)
2946                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2947                 return;
2948         }
2949         intr = irq | INTR_INFO_VALID_MASK;
2950         if (vcpu->arch.interrupt.soft) {
2951                 intr |= INTR_TYPE_SOFT_INTR;
2952                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2953                              vmx->vcpu.arch.event_exit_inst_len);
2954         } else
2955                 intr |= INTR_TYPE_EXT_INTR;
2956         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2957         vmx_clear_hlt(vcpu);
2958 }
2959
2960 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2961 {
2962         struct vcpu_vmx *vmx = to_vmx(vcpu);
2963
2964         if (!cpu_has_virtual_nmis()) {
2965                 /*
2966                  * Tracking the NMI-blocked state in software is built upon
2967                  * finding the next open IRQ window. This, in turn, depends on
2968                  * well-behaving guests: They have to keep IRQs disabled at
2969                  * least as long as the NMI handler runs. Otherwise we may
2970                  * cause NMI nesting, maybe breaking the guest. But as this is
2971                  * highly unlikely, we can live with the residual risk.
2972                  */
2973                 vmx->soft_vnmi_blocked = 1;
2974                 vmx->vnmi_blocked_time = 0;
2975         }
2976
2977         ++vcpu->stat.nmi_injections;
2978         vmx->nmi_known_unmasked = false;
2979         if (vmx->rmode.vm86_active) {
2980                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR) != EMULATE_DONE)
2981                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2982                 return;
2983         }
2984         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2985                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2986         vmx_clear_hlt(vcpu);
2987 }
2988
2989 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2990 {
2991         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2992                 return 0;
2993
2994         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2995                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
2996                    | GUEST_INTR_STATE_NMI));
2997 }
2998
2999 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
3000 {
3001         if (!cpu_has_virtual_nmis())
3002                 return to_vmx(vcpu)->soft_vnmi_blocked;
3003         if (to_vmx(vcpu)->nmi_known_unmasked)
3004                 return false;
3005         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3006 }
3007
3008 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3009 {
3010         struct vcpu_vmx *vmx = to_vmx(vcpu);
3011
3012         if (!cpu_has_virtual_nmis()) {
3013                 if (vmx->soft_vnmi_blocked != masked) {
3014                         vmx->soft_vnmi_blocked = masked;
3015                         vmx->vnmi_blocked_time = 0;
3016                 }
3017         } else {
3018                 vmx->nmi_known_unmasked = !masked;
3019                 if (masked)
3020                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3021                                       GUEST_INTR_STATE_NMI);
3022                 else
3023                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3024                                         GUEST_INTR_STATE_NMI);
3025         }
3026 }
3027
3028 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
3029 {
3030         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
3031                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3032                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
3033 }
3034
3035 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
3036 {
3037         int ret;
3038         struct kvm_userspace_memory_region tss_mem = {
3039                 .slot = TSS_PRIVATE_MEMSLOT,
3040                 .guest_phys_addr = addr,
3041                 .memory_size = PAGE_SIZE * 3,
3042                 .flags = 0,
3043         };
3044
3045         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
3046         if (ret)
3047                 return ret;
3048         kvm->arch.tss_addr = addr;
3049         if (!init_rmode_tss(kvm))
3050                 return  -ENOMEM;
3051
3052         return 0;
3053 }
3054
3055 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
3056                                   int vec, u32 err_code)
3057 {
3058         /*
3059          * Instruction with address size override prefix opcode 0x67
3060          * Cause the #SS fault with 0 error code in VM86 mode.
3061          */
3062         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
3063                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
3064                         return 1;
3065         /*
3066          * Forward all other exceptions that are valid in real mode.
3067          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
3068          *        the required debugging infrastructure rework.
3069          */
3070         switch (vec) {
3071         case DB_VECTOR:
3072                 if (vcpu->guest_debug &
3073                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
3074                         return 0;
3075                 kvm_queue_exception(vcpu, vec);
3076                 return 1;
3077         case BP_VECTOR:
3078                 /*
3079                  * Update instruction length as we may reinject the exception
3080                  * from user space while in guest debugging mode.
3081                  */
3082                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
3083                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3084                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
3085                         return 0;
3086                 /* fall through */
3087         case DE_VECTOR:
3088         case OF_VECTOR:
3089         case BR_VECTOR:
3090         case UD_VECTOR:
3091         case DF_VECTOR:
3092         case SS_VECTOR:
3093         case GP_VECTOR:
3094         case MF_VECTOR:
3095                 kvm_queue_exception(vcpu, vec);
3096                 return 1;
3097         }
3098         return 0;
3099 }
3100
3101 /*
3102  * Trigger machine check on the host. We assume all the MSRs are already set up
3103  * by the CPU and that we still run on the same CPU as the MCE occurred on.
3104  * We pass a fake environment to the machine check handler because we want
3105  * the guest to be always treated like user space, no matter what context
3106  * it used internally.
3107  */
3108 static void kvm_machine_check(void)
3109 {
3110 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
3111         struct pt_regs regs = {
3112                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
3113                 .flags = X86_EFLAGS_IF,
3114         };
3115
3116         do_machine_check(&regs, 0);
3117 #endif
3118 }
3119
3120 static int handle_machine_check(struct kvm_vcpu *vcpu)
3121 {
3122         /* already handled by vcpu_run */
3123         return 1;
3124 }
3125
3126 static int handle_exception(struct kvm_vcpu *vcpu)
3127 {
3128         struct vcpu_vmx *vmx = to_vmx(vcpu);
3129         struct kvm_run *kvm_run = vcpu->run;
3130         u32 intr_info, ex_no, error_code;
3131         unsigned long cr2, rip, dr6;
3132         u32 vect_info;
3133         enum emulation_result er;
3134
3135         vect_info = vmx->idt_vectoring_info;
3136         intr_info = vmx->exit_intr_info;
3137
3138         if (is_machine_check(intr_info))
3139                 return handle_machine_check(vcpu);
3140
3141         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
3142             !is_page_fault(intr_info)) {
3143                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3144                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
3145                 vcpu->run->internal.ndata = 2;
3146                 vcpu->run->internal.data[0] = vect_info;
3147                 vcpu->run->internal.data[1] = intr_info;
3148                 return 0;
3149         }
3150
3151         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
3152                 return 1;  /* already handled by vmx_vcpu_run() */
3153
3154         if (is_no_device(intr_info)) {
3155                 vmx_fpu_activate(vcpu);
3156                 return 1;
3157         }
3158
3159         if (is_invalid_opcode(intr_info)) {
3160                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
3161                 if (er != EMULATE_DONE)
3162                         kvm_queue_exception(vcpu, UD_VECTOR);
3163                 return 1;
3164         }
3165
3166         error_code = 0;
3167         rip = kvm_rip_read(vcpu);
3168         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
3169                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
3170         if (is_page_fault(intr_info)) {
3171                 /* EPT won't cause page fault directly */
3172                 if (enable_ept)
3173                         BUG();
3174                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
3175                 trace_kvm_page_fault(cr2, error_code);
3176
3177                 if (kvm_event_needs_reinjection(vcpu))
3178                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
3179                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
3180         }
3181
3182         if (vmx->rmode.vm86_active &&
3183             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
3184                                                                 error_code)) {
3185                 if (vcpu->arch.halt_request) {
3186                         vcpu->arch.halt_request = 0;
3187                         return kvm_emulate_halt(vcpu);
3188                 }
3189                 return 1;
3190         }
3191
3192         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
3193         switch (ex_no) {
3194         case DB_VECTOR:
3195                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
3196                 if (!(vcpu->guest_debug &
3197                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
3198                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
3199                         kvm_queue_exception(vcpu, DB_VECTOR);
3200                         return 1;
3201                 }
3202                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
3203                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
3204                 /* fall through */
3205         case BP_VECTOR:
3206                 /*
3207                  * Update instruction length as we may reinject #BP from
3208                  * user space while in guest debugging mode. Reading it for
3209                  * #DB as well causes no harm, it is not used in that case.
3210                  */
3211                 vmx->vcpu.arch.event_exit_inst_len =
3212                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3213                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
3214                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
3215                 kvm_run->debug.arch.exception = ex_no;
3216                 break;
3217         default:
3218                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
3219                 kvm_run->ex.exception = ex_no;
3220                 kvm_run->ex.error_code = error_code;
3221                 break;
3222         }
3223         return 0;
3224 }
3225
3226 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
3227 {
3228         ++vcpu->stat.irq_exits;
3229         return 1;
3230 }
3231
3232 static int handle_triple_fault(struct kvm_vcpu *vcpu)
3233 {
3234         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3235         return 0;
3236 }
3237
3238 static int handle_io(struct kvm_vcpu *vcpu)
3239 {
3240         unsigned long exit_qualification;
3241         int size, in, string;
3242         unsigned port;
3243
3244         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3245         string = (exit_qualification & 16) != 0;
3246         in = (exit_qualification & 8) != 0;
3247
3248         ++vcpu->stat.io_exits;
3249
3250         if (string || in)
3251                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3252
3253         port = exit_qualification >> 16;
3254         size = (exit_qualification & 7) + 1;
3255         skip_emulated_instruction(vcpu);
3256
3257         return kvm_fast_pio_out(vcpu, size, port);
3258 }
3259
3260 static void
3261 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3262 {
3263         /*
3264          * Patch in the VMCALL instruction:
3265          */
3266         hypercall[0] = 0x0f;
3267         hypercall[1] = 0x01;
3268         hypercall[2] = 0xc1;
3269 }
3270
3271 static int handle_cr(struct kvm_vcpu *vcpu)
3272 {
3273         unsigned long exit_qualification, val;
3274         int cr;
3275         int reg;
3276         int err;
3277
3278         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3279         cr = exit_qualification & 15;
3280         reg = (exit_qualification >> 8) & 15;
3281         switch ((exit_qualification >> 4) & 3) {
3282         case 0: /* mov to cr */
3283                 val = kvm_register_read(vcpu, reg);
3284                 trace_kvm_cr_write(cr, val);
3285                 switch (cr) {
3286                 case 0:
3287                         err = kvm_set_cr0(vcpu, val);
3288                         kvm_complete_insn_gp(vcpu, err);
3289                         return 1;
3290                 case 3:
3291                         err = kvm_set_cr3(vcpu, val);
3292                         kvm_complete_insn_gp(vcpu, err);
3293                         return 1;
3294                 case 4:
3295                         err = kvm_set_cr4(vcpu, val);
3296                         kvm_complete_insn_gp(vcpu, err);
3297                         return 1;
3298                 case 8: {
3299                                 u8 cr8_prev = kvm_get_cr8(vcpu);
3300                                 u8 cr8 = kvm_register_read(vcpu, reg);
3301                                 err = kvm_set_cr8(vcpu, cr8);
3302                                 kvm_complete_insn_gp(vcpu, err);
3303                                 if (irqchip_in_kernel(vcpu->kvm))
3304                                         return 1;
3305                                 if (cr8_prev <= cr8)
3306                                         return 1;
3307                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
3308                                 return 0;
3309                         }
3310                 };
3311                 break;
3312         case 2: /* clts */
3313                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3314                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
3315                 skip_emulated_instruction(vcpu);
3316                 vmx_fpu_activate(vcpu);
3317                 return 1;
3318         case 1: /*mov from cr*/
3319                 switch (cr) {
3320                 case 3:
3321                         val = kvm_read_cr3(vcpu);
3322                         kvm_register_write(vcpu, reg, val);
3323                         trace_kvm_cr_read(cr, val);
3324                         skip_emulated_instruction(vcpu);
3325                         return 1;
3326                 case 8:
3327                         val = kvm_get_cr8(vcpu);
3328                         kvm_register_write(vcpu, reg, val);
3329                         trace_kvm_cr_read(cr, val);
3330                         skip_emulated_instruction(vcpu);
3331                         return 1;
3332                 }
3333                 break;
3334         case 3: /* lmsw */
3335                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
3336                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
3337                 kvm_lmsw(vcpu, val);
3338
3339                 skip_emulated_instruction(vcpu);
3340                 return 1;
3341         default:
3342                 break;
3343         }
3344         vcpu->run->exit_reason = 0;
3345         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3346                (int)(exit_qualification >> 4) & 3, cr);
3347         return 0;
3348 }
3349
3350 static int handle_dr(struct kvm_vcpu *vcpu)
3351 {
3352         unsigned long exit_qualification;
3353         int dr, reg;
3354
3355         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
3356         if (!kvm_require_cpl(vcpu, 0))
3357                 return 1;
3358         dr = vmcs_readl(GUEST_DR7);
3359         if (dr & DR7_GD) {
3360                 /*
3361                  * As the vm-exit takes precedence over the debug trap, we
3362                  * need to emulate the latter, either for the host or the
3363                  * guest debugging itself.
3364                  */
3365                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3366                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3367                         vcpu->run->debug.arch.dr7 = dr;
3368                         vcpu->run->debug.arch.pc =
3369                                 vmcs_readl(GUEST_CS_BASE) +
3370                                 vmcs_readl(GUEST_RIP);
3371                         vcpu->run->debug.arch.exception = DB_VECTOR;
3372                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3373                         return 0;
3374                 } else {
3375                         vcpu->arch.dr7 &= ~DR7_GD;
3376                         vcpu->arch.dr6 |= DR6_BD;
3377                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3378                         kvm_queue_exception(vcpu, DB_VECTOR);
3379                         return 1;
3380                 }
3381         }
3382
3383         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3384         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3385         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3386         if (exit_qualification & TYPE_MOV_FROM_DR) {
3387                 unsigned long val;
3388                 if (!kvm_get_dr(vcpu, dr, &val))
3389                         kvm_register_write(vcpu, reg, val);
3390         } else
3391                 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
3392         skip_emulated_instruction(vcpu);
3393         return 1;
3394 }
3395
3396 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
3397 {
3398         vmcs_writel(GUEST_DR7, val);
3399 }
3400
3401 static int handle_cpuid(struct kvm_vcpu *vcpu)
3402 {
3403         kvm_emulate_cpuid(vcpu);
3404         return 1;
3405 }
3406
3407 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3408 {
3409         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3410         u64 data;
3411
3412         if (vmx_get_msr(vcpu, ecx, &data)) {
3413                 trace_kvm_msr_read_ex(ecx);
3414                 kvm_inject_gp(vcpu, 0);
3415                 return 1;
3416         }
3417
3418         trace_kvm_msr_read(ecx, data);
3419
3420         /* FIXME: handling of bits 32:63 of rax, rdx */
3421         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3422         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3423         skip_emulated_instruction(vcpu);
3424         return 1;
3425 }
3426
3427 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3428 {
3429         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3430         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3431                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3432
3433         if (vmx_set_msr(vcpu, ecx, data) != 0) {
3434                 trace_kvm_msr_write_ex(ecx, data);
3435                 kvm_inject_gp(vcpu, 0);
3436                 return 1;
3437         }
3438
3439         trace_kvm_msr_write(ecx, data);
3440         skip_emulated_instruction(vcpu);
3441         return 1;
3442 }
3443
3444 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3445 {
3446         kvm_make_request(KVM_REQ_EVENT, vcpu);
3447         return 1;
3448 }
3449
3450 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3451 {
3452         u32 cpu_based_vm_exec_control;
3453
3454         /* clear pending irq */
3455         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3456         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3457         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3458
3459         kvm_make_request(KVM_REQ_EVENT, vcpu);
3460
3461         ++vcpu->stat.irq_window_exits;
3462
3463         /*
3464          * If the user space waits to inject interrupts, exit as soon as
3465          * possible
3466          */
3467         if (!irqchip_in_kernel(vcpu->kvm) &&
3468             vcpu->run->request_interrupt_window &&
3469             !kvm_cpu_has_interrupt(vcpu)) {
3470                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3471                 return 0;
3472         }
3473         return 1;
3474 }
3475
3476 static int handle_halt(struct kvm_vcpu *vcpu)
3477 {
3478         skip_emulated_instruction(vcpu);
3479         return kvm_emulate_halt(vcpu);
3480 }
3481
3482 static int handle_vmcall(struct kvm_vcpu *vcpu)
3483 {
3484         skip_emulated_instruction(vcpu);
3485         kvm_emulate_hypercall(vcpu);
3486         return 1;
3487 }
3488
3489 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3490 {
3491         kvm_queue_exception(vcpu, UD_VECTOR);
3492         return 1;
3493 }
3494
3495 static int handle_invd(struct kvm_vcpu *vcpu)
3496 {
3497         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3498 }
3499
3500 static int handle_invlpg(struct kvm_vcpu *vcpu)
3501 {
3502         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3503
3504         kvm_mmu_invlpg(vcpu, exit_qualification);
3505         skip_emulated_instruction(vcpu);
3506         return 1;
3507 }
3508
3509 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3510 {
3511         skip_emulated_instruction(vcpu);
3512         kvm_emulate_wbinvd(vcpu);
3513         return 1;
3514 }
3515
3516 static int handle_xsetbv(struct kvm_vcpu *vcpu)
3517 {
3518         u64 new_bv = kvm_read_edx_eax(vcpu);
3519         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3520
3521         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
3522                 skip_emulated_instruction(vcpu);
3523         return 1;
3524 }
3525
3526 static int handle_apic_access(struct kvm_vcpu *vcpu)
3527 {
3528         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3529 }
3530
3531 static int handle_task_switch(struct kvm_vcpu *vcpu)
3532 {
3533         struct vcpu_vmx *vmx = to_vmx(vcpu);
3534         unsigned long exit_qualification;
3535         bool has_error_code = false;
3536         u32 error_code = 0;
3537         u16 tss_selector;
3538         int reason, type, idt_v;
3539
3540         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3541         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3542
3543         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3544
3545         reason = (u32)exit_qualification >> 30;
3546         if (reason == TASK_SWITCH_GATE && idt_v) {
3547                 switch (type) {
3548                 case INTR_TYPE_NMI_INTR:
3549                         vcpu->arch.nmi_injected = false;
3550                         vmx_set_nmi_mask(vcpu, true);
3551                         break;
3552                 case INTR_TYPE_EXT_INTR:
3553                 case INTR_TYPE_SOFT_INTR:
3554                         kvm_clear_interrupt_queue(vcpu);
3555                         break;
3556                 case INTR_TYPE_HARD_EXCEPTION:
3557                         if (vmx->idt_vectoring_info &
3558                             VECTORING_INFO_DELIVER_CODE_MASK) {
3559                                 has_error_code = true;
3560                                 error_code =
3561                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
3562                         }
3563                         /* fall through */
3564                 case INTR_TYPE_SOFT_EXCEPTION:
3565                         kvm_clear_exception_queue(vcpu);
3566                         break;
3567                 default:
3568                         break;
3569                 }
3570         }
3571         tss_selector = exit_qualification;
3572
3573         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3574                        type != INTR_TYPE_EXT_INTR &&
3575                        type != INTR_TYPE_NMI_INTR))
3576                 skip_emulated_instruction(vcpu);
3577
3578         if (kvm_task_switch(vcpu, tss_selector, reason,
3579                                 has_error_code, error_code) == EMULATE_FAIL) {
3580                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3581                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3582                 vcpu->run->internal.ndata = 0;
3583                 return 0;
3584         }
3585
3586         /* clear all local breakpoint enable flags */
3587         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3588
3589         /*
3590          * TODO: What about debug traps on tss switch?
3591          *       Are we supposed to inject them and update dr6?
3592          */
3593
3594         return 1;
3595 }
3596
3597 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3598 {
3599         unsigned long exit_qualification;
3600         gpa_t gpa;
3601         int gla_validity;
3602
3603         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3604
3605         if (exit_qualification & (1 << 6)) {
3606                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3607                 return -EINVAL;
3608         }
3609
3610         gla_validity = (exit_qualification >> 7) & 0x3;
3611         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3612                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3613                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3614                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3615                         vmcs_readl(GUEST_LINEAR_ADDRESS));
3616                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3617                         (long unsigned int)exit_qualification);
3618                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3619                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3620                 return 0;
3621         }
3622
3623         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3624         trace_kvm_page_fault(gpa, exit_qualification);
3625         return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
3626 }
3627
3628 static u64 ept_rsvd_mask(u64 spte, int level)
3629 {
3630         int i;
3631         u64 mask = 0;
3632
3633         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3634                 mask |= (1ULL << i);
3635
3636         if (level > 2)
3637                 /* bits 7:3 reserved */
3638                 mask |= 0xf8;
3639         else if (level == 2) {
3640                 if (spte & (1ULL << 7))
3641                         /* 2MB ref, bits 20:12 reserved */
3642                         mask |= 0x1ff000;
3643                 else
3644                         /* bits 6:3 reserved */
3645                         mask |= 0x78;
3646         }
3647
3648         return mask;
3649 }
3650
3651 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3652                                        int level)
3653 {
3654         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3655
3656         /* 010b (write-only) */
3657         WARN_ON((spte & 0x7) == 0x2);
3658
3659         /* 110b (write/execute) */
3660         WARN_ON((spte & 0x7) == 0x6);
3661
3662         /* 100b (execute-only) and value not supported by logical processor */
3663         if (!cpu_has_vmx_ept_execute_only())
3664                 WARN_ON((spte & 0x7) == 0x4);
3665
3666         /* not 000b */
3667         if ((spte & 0x7)) {
3668                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3669
3670                 if (rsvd_bits != 0) {
3671                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3672                                          __func__, rsvd_bits);
3673                         WARN_ON(1);
3674                 }
3675
3676                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3677                         u64 ept_mem_type = (spte & 0x38) >> 3;
3678
3679                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
3680                             ept_mem_type == 7) {
3681                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3682                                                 __func__, ept_mem_type);
3683                                 WARN_ON(1);
3684                         }
3685                 }
3686         }
3687 }
3688
3689 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3690 {
3691         u64 sptes[4];
3692         int nr_sptes, i;
3693         gpa_t gpa;
3694
3695         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3696
3697         printk(KERN_ERR "EPT: Misconfiguration.\n");
3698         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3699
3700         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3701
3702         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3703                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3704
3705         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3706         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3707
3708         return 0;
3709 }
3710
3711 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3712 {
3713         u32 cpu_based_vm_exec_control;
3714
3715         /* clear pending NMI */
3716         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3717         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3718         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3719         ++vcpu->stat.nmi_window_exits;
3720         kvm_make_request(KVM_REQ_EVENT, vcpu);
3721
3722         return 1;
3723 }
3724
3725 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3726 {
3727         struct vcpu_vmx *vmx = to_vmx(vcpu);
3728         enum emulation_result err = EMULATE_DONE;
3729         int ret = 1;
3730         u32 cpu_exec_ctrl;
3731         bool intr_window_requested;
3732
3733         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3734         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
3735
3736         while (!guest_state_valid(vcpu)) {
3737                 if (intr_window_requested
3738                     && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
3739                         return handle_interrupt_window(&vmx->vcpu);
3740
3741                 err = emulate_instruction(vcpu, 0);
3742
3743                 if (err == EMULATE_DO_MMIO) {
3744                         ret = 0;
3745                         goto out;
3746                 }
3747
3748                 if (err != EMULATE_DONE)
3749                         return 0;
3750
3751                 if (signal_pending(current))
3752                         goto out;
3753                 if (need_resched())
3754                         schedule();
3755         }
3756
3757         vmx->emulation_required = 0;
3758 out:
3759         return ret;
3760 }
3761
3762 /*
3763  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3764  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3765  */
3766 static int handle_pause(struct kvm_vcpu *vcpu)
3767 {
3768         skip_emulated_instruction(vcpu);
3769         kvm_vcpu_on_spin(vcpu);
3770
3771         return 1;
3772 }
3773
3774 static int handle_invalid_op(struct kvm_vcpu *vcpu)
3775 {
3776         kvm_queue_exception(vcpu, UD_VECTOR);
3777         return 1;
3778 }
3779
3780 /*
3781  * The exit handlers return 1 if the exit was handled fully and guest execution
3782  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3783  * to be done to userspace and return 0.
3784  */
3785 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3786         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3787         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3788         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3789         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3790         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3791         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3792         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3793         [EXIT_REASON_CPUID]                   = handle_cpuid,
3794         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3795         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3796         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3797         [EXIT_REASON_HLT]                     = handle_halt,
3798         [EXIT_REASON_INVD]                    = handle_invd,
3799         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3800         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3801         [EXIT_REASON_VMCLEAR]                 = handle_vmx_insn,
3802         [EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
3803         [EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
3804         [EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
3805         [EXIT_REASON_VMREAD]                  = handle_vmx_insn,
3806         [EXIT_REASON_VMRESUME]                = handle_vmx_insn,
3807         [EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
3808         [EXIT_REASON_VMOFF]                   = handle_vmx_insn,
3809         [EXIT_REASON_VMON]                    = handle_vmx_insn,
3810         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3811         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3812         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3813         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
3814         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3815         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
3816         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3817         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
3818         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
3819         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
3820         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
3821 };
3822
3823 static const int kvm_vmx_max_exit_handlers =
3824         ARRAY_SIZE(kvm_vmx_exit_handlers);
3825
3826 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3827 {
3828         *info1 = vmcs_readl(EXIT_QUALIFICATION);
3829         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
3830 }
3831
3832 /*
3833  * The guest has exited.  See if we can fix it or if we need userspace
3834  * assistance.
3835  */
3836 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3837 {
3838         struct vcpu_vmx *vmx = to_vmx(vcpu);
3839         u32 exit_reason = vmx->exit_reason;
3840         u32 vectoring_info = vmx->idt_vectoring_info;
3841
3842         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
3843
3844         /* If guest state is invalid, start emulating */
3845         if (vmx->emulation_required && emulate_invalid_guest_state)
3846                 return handle_invalid_guest_state(vcpu);
3847
3848         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
3849                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3850                 vcpu->run->fail_entry.hardware_entry_failure_reason
3851                         = exit_reason;
3852                 return 0;
3853         }
3854
3855         if (unlikely(vmx->fail)) {
3856                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3857                 vcpu->run->fail_entry.hardware_entry_failure_reason
3858                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3859                 return 0;
3860         }
3861
3862         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3863                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3864                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3865                         exit_reason != EXIT_REASON_TASK_SWITCH))
3866                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3867                        "(0x%x) and exit reason is 0x%x\n",
3868                        __func__, vectoring_info, exit_reason);
3869
3870         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3871                 if (vmx_interrupt_allowed(vcpu)) {
3872                         vmx->soft_vnmi_blocked = 0;
3873                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3874                            vcpu->arch.nmi_pending) {
3875                         /*
3876                          * This CPU don't support us in finding the end of an
3877                          * NMI-blocked window if the guest runs with IRQs
3878                          * disabled. So we pull the trigger after 1 s of
3879                          * futile waiting, but inform the user about this.
3880                          */
3881                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3882                                "state on VCPU %d after 1 s timeout\n",
3883                                __func__, vcpu->vcpu_id);
3884                         vmx->soft_vnmi_blocked = 0;
3885                 }
3886         }
3887
3888         if (exit_reason < kvm_vmx_max_exit_handlers
3889             && kvm_vmx_exit_handlers[exit_reason])
3890                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3891         else {
3892                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3893                 vcpu->run->hw.hardware_exit_reason = exit_reason;
3894         }
3895         return 0;
3896 }
3897
3898 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3899 {
3900         if (irr == -1 || tpr < irr) {
3901                 vmcs_write32(TPR_THRESHOLD, 0);
3902                 return;
3903         }
3904
3905         vmcs_write32(TPR_THRESHOLD, irr);
3906 }
3907
3908 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
3909 {
3910         u32 exit_intr_info;
3911
3912         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
3913               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
3914                 return;
3915
3916         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3917         exit_intr_info = vmx->exit_intr_info;
3918
3919         /* Handle machine checks before interrupts are enabled */
3920         if (is_machine_check(exit_intr_info))
3921                 kvm_machine_check();
3922
3923         /* We need to handle NMIs before interrupts are enabled */
3924         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3925             (exit_intr_info & INTR_INFO_VALID_MASK)) {
3926                 kvm_before_handle_nmi(&vmx->vcpu);
3927                 asm("int $2");
3928                 kvm_after_handle_nmi(&vmx->vcpu);
3929         }
3930 }
3931
3932 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
3933 {
3934         u32 exit_intr_info;
3935         bool unblock_nmi;
3936         u8 vector;
3937         bool idtv_info_valid;
3938
3939         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3940
3941         if (cpu_has_virtual_nmis()) {
3942                 if (vmx->nmi_known_unmasked)
3943                         return;
3944                 /*
3945                  * Can't use vmx->exit_intr_info since we're not sure what
3946                  * the exit reason is.
3947                  */
3948                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3949                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3950                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3951                 /*
3952                  * SDM 3: 27.7.1.2 (September 2008)
3953                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3954                  * a guest IRET fault.
3955                  * SDM 3: 23.2.2 (September 2008)
3956                  * Bit 12 is undefined in any of the following cases:
3957                  *  If the VM exit sets the valid bit in the IDT-vectoring
3958                  *   information field.
3959                  *  If the VM exit is due to a double fault.
3960                  */
3961                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3962                     vector != DF_VECTOR && !idtv_info_valid)
3963                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3964                                       GUEST_INTR_STATE_NMI);
3965                 else
3966                         vmx->nmi_known_unmasked =
3967                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
3968                                   & GUEST_INTR_STATE_NMI);
3969         } else if (unlikely(vmx->soft_vnmi_blocked))
3970                 vmx->vnmi_blocked_time +=
3971                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3972 }
3973
3974 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
3975                                       u32 idt_vectoring_info,
3976                                       int instr_len_field,
3977                                       int error_code_field)
3978 {
3979         u8 vector;
3980         int type;
3981         bool idtv_info_valid;
3982
3983         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3984
3985         vmx->vcpu.arch.nmi_injected = false;
3986         kvm_clear_exception_queue(&vmx->vcpu);
3987         kvm_clear_interrupt_queue(&vmx->vcpu);
3988
3989         if (!idtv_info_valid)
3990                 return;
3991
3992         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
3993
3994         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3995         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3996
3997         switch (type) {
3998         case INTR_TYPE_NMI_INTR:
3999                 vmx->vcpu.arch.nmi_injected = true;
4000                 /*
4001                  * SDM 3: 27.7.1.2 (September 2008)
4002                  * Clear bit "block by NMI" before VM entry if a NMI
4003                  * delivery faulted.
4004                  */
4005                 vmx_set_nmi_mask(&vmx->vcpu, false);
4006                 break;
4007         case INTR_TYPE_SOFT_EXCEPTION:
4008                 vmx->vcpu.arch.event_exit_inst_len =
4009                         vmcs_read32(instr_len_field);
4010                 /* fall through */
4011         case INTR_TYPE_HARD_EXCEPTION:
4012                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
4013                         u32 err = vmcs_read32(error_code_field);
4014                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
4015                 } else
4016                         kvm_queue_exception(&vmx->vcpu, vector);
4017                 break;
4018         case INTR_TYPE_SOFT_INTR:
4019                 vmx->vcpu.arch.event_exit_inst_len =
4020                         vmcs_read32(instr_len_field);
4021                 /* fall through */
4022         case INTR_TYPE_EXT_INTR:
4023                 kvm_queue_interrupt(&vmx->vcpu, vector,
4024                         type == INTR_TYPE_SOFT_INTR);
4025                 break;
4026         default:
4027                 break;
4028         }
4029 }
4030
4031 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
4032 {
4033         __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
4034                                   VM_EXIT_INSTRUCTION_LEN,
4035                                   IDT_VECTORING_ERROR_CODE);
4036 }
4037
4038 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
4039 {
4040         __vmx_complete_interrupts(to_vmx(vcpu),
4041                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
4042                                   VM_ENTRY_INSTRUCTION_LEN,
4043                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
4044
4045         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
4046 }
4047
4048 #ifdef CONFIG_X86_64
4049 #define R "r"
4050 #define Q "q"
4051 #else
4052 #define R "e"
4053 #define Q "l"
4054 #endif
4055
4056 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
4057 {
4058         struct vcpu_vmx *vmx = to_vmx(vcpu);
4059
4060         /* Record the guest's net vcpu time for enforced NMI injections. */
4061         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
4062                 vmx->entry_time = ktime_get();
4063
4064         /* Don't enter VMX if guest state is invalid, let the exit handler
4065            start emulation until we arrive back to a valid state */
4066         if (vmx->emulation_required && emulate_invalid_guest_state)
4067                 return;
4068
4069         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
4070                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
4071         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
4072                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
4073
4074         /* When single-stepping over STI and MOV SS, we must clear the
4075          * corresponding interruptibility bits in the guest state. Otherwise
4076          * vmentry fails as it then expects bit 14 (BS) in pending debug
4077          * exceptions being set, but that's not correct for the guest debugging
4078          * case. */
4079         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
4080                 vmx_set_interrupt_shadow(vcpu, 0);
4081
4082         asm(
4083                 /* Store host registers */
4084                 "push %%"R"dx; push %%"R"bp;"
4085                 "push %%"R"cx \n\t" /* placeholder for guest rcx */
4086                 "push %%"R"cx \n\t"
4087                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
4088                 "je 1f \n\t"
4089                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
4090                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
4091                 "1: \n\t"
4092                 /* Reload cr2 if changed */
4093                 "mov %c[cr2](%0), %%"R"ax \n\t"
4094                 "mov %%cr2, %%"R"dx \n\t"
4095                 "cmp %%"R"ax, %%"R"dx \n\t"
4096                 "je 2f \n\t"
4097                 "mov %%"R"ax, %%cr2 \n\t"
4098                 "2: \n\t"
4099                 /* Check if vmlaunch of vmresume is needed */
4100                 "cmpl $0, %c[launched](%0) \n\t"
4101                 /* Load guest registers.  Don't clobber flags. */
4102                 "mov %c[rax](%0), %%"R"ax \n\t"
4103                 "mov %c[rbx](%0), %%"R"bx \n\t"
4104                 "mov %c[rdx](%0), %%"R"dx \n\t"
4105                 "mov %c[rsi](%0), %%"R"si \n\t"
4106                 "mov %c[rdi](%0), %%"R"di \n\t"
4107                 "mov %c[rbp](%0), %%"R"bp \n\t"
4108 #ifdef CONFIG_X86_64
4109                 "mov %c[r8](%0),  %%r8  \n\t"
4110                 "mov %c[r9](%0),  %%r9  \n\t"
4111                 "mov %c[r10](%0), %%r10 \n\t"
4112                 "mov %c[r11](%0), %%r11 \n\t"
4113                 "mov %c[r12](%0), %%r12 \n\t"
4114                 "mov %c[r13](%0), %%r13 \n\t"
4115                 "mov %c[r14](%0), %%r14 \n\t"
4116                 "mov %c[r15](%0), %%r15 \n\t"
4117 #endif
4118                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
4119
4120                 /* Enter guest mode */
4121                 "jne .Llaunched \n\t"
4122                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
4123                 "jmp .Lkvm_vmx_return \n\t"
4124                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
4125                 ".Lkvm_vmx_return: "
4126                 /* Save guest registers, load host registers, keep flags */
4127                 "mov %0, %c[wordsize](%%"R"sp) \n\t"
4128                 "pop %0 \n\t"
4129                 "mov %%"R"ax, %c[rax](%0) \n\t"
4130                 "mov %%"R"bx, %c[rbx](%0) \n\t"
4131                 "pop"Q" %c[rcx](%0) \n\t"
4132                 "mov %%"R"dx, %c[rdx](%0) \n\t"
4133                 "mov %%"R"si, %c[rsi](%0) \n\t"
4134                 "mov %%"R"di, %c[rdi](%0) \n\t"
4135                 "mov %%"R"bp, %c[rbp](%0) \n\t"
4136 #ifdef CONFIG_X86_64
4137                 "mov %%r8,  %c[r8](%0) \n\t"
4138                 "mov %%r9,  %c[r9](%0) \n\t"
4139                 "mov %%r10, %c[r10](%0) \n\t"
4140                 "mov %%r11, %c[r11](%0) \n\t"
4141                 "mov %%r12, %c[r12](%0) \n\t"
4142                 "mov %%r13, %c[r13](%0) \n\t"
4143                 "mov %%r14, %c[r14](%0) \n\t"
4144                 "mov %%r15, %c[r15](%0) \n\t"
4145 #endif
4146                 "mov %%cr2, %%"R"ax   \n\t"
4147                 "mov %%"R"ax, %c[cr2](%0) \n\t"
4148
4149                 "pop  %%"R"bp; pop  %%"R"dx \n\t"
4150                 "setbe %c[fail](%0) \n\t"
4151               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
4152                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
4153                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
4154                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
4155                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
4156                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
4157                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
4158                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
4159                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
4160                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
4161                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
4162 #ifdef CONFIG_X86_64
4163                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
4164                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
4165                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
4166                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
4167                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
4168                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
4169                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
4170                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
4171 #endif
4172                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
4173                 [wordsize]"i"(sizeof(ulong))
4174               : "cc", "memory"
4175                 , R"ax", R"bx", R"di", R"si"
4176 #ifdef CONFIG_X86_64
4177                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
4178 #endif
4179               );
4180
4181         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
4182                                   | (1 << VCPU_EXREG_RFLAGS)
4183                                   | (1 << VCPU_EXREG_CPL)
4184                                   | (1 << VCPU_EXREG_PDPTR)
4185                                   | (1 << VCPU_EXREG_CR3));
4186         vcpu->arch.regs_dirty = 0;
4187
4188         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
4189
4190         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
4191         vmx->launched = 1;
4192
4193         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
4194
4195         vmx_complete_atomic_exit(vmx);
4196         vmx_recover_nmi_blocking(vmx);
4197         vmx_complete_interrupts(vmx);
4198 }
4199
4200 #undef R
4201 #undef Q
4202
4203 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
4204 {
4205         struct vcpu_vmx *vmx = to_vmx(vcpu);
4206
4207         if (vmx->vmcs) {
4208                 vcpu_clear(vmx);
4209                 free_vmcs(vmx->vmcs);
4210                 vmx->vmcs = NULL;
4211         }
4212 }
4213
4214 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
4215 {
4216         struct vcpu_vmx *vmx = to_vmx(vcpu);
4217
4218         free_vpid(vmx);
4219         vmx_free_vmcs(vcpu);
4220         kfree(vmx->guest_msrs);
4221         kvm_vcpu_uninit(vcpu);
4222         kmem_cache_free(kvm_vcpu_cache, vmx);
4223 }
4224
4225 static inline void vmcs_init(struct vmcs *vmcs)
4226 {
4227         u64 phys_addr = __pa(per_cpu(vmxarea, raw_smp_processor_id()));
4228
4229         if (!vmm_exclusive)
4230                 kvm_cpu_vmxon(phys_addr);
4231
4232         vmcs_clear(vmcs);
4233
4234         if (!vmm_exclusive)
4235                 kvm_cpu_vmxoff();
4236 }
4237
4238 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
4239 {
4240         int err;
4241         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
4242         int cpu;
4243
4244         if (!vmx)
4245                 return ERR_PTR(-ENOMEM);
4246
4247         allocate_vpid(vmx);
4248
4249         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
4250         if (err)
4251                 goto free_vcpu;
4252
4253         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
4254         err = -ENOMEM;
4255         if (!vmx->guest_msrs) {
4256                 goto uninit_vcpu;
4257         }
4258
4259         vmx->vmcs = alloc_vmcs();
4260         if (!vmx->vmcs)
4261                 goto free_msrs;
4262
4263         vmcs_init(vmx->vmcs);
4264
4265         cpu = get_cpu();
4266         vmx_vcpu_load(&vmx->vcpu, cpu);
4267         vmx->vcpu.cpu = cpu;
4268         err = vmx_vcpu_setup(vmx);
4269         vmx_vcpu_put(&vmx->vcpu);
4270         put_cpu();
4271         if (err)
4272                 goto free_vmcs;
4273         if (vm_need_virtualize_apic_accesses(kvm))
4274                 err = alloc_apic_access_page(kvm);
4275                 if (err)
4276                         goto free_vmcs;
4277
4278         if (enable_ept) {
4279                 if (!kvm->arch.ept_identity_map_addr)
4280                         kvm->arch.ept_identity_map_addr =
4281                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4282                 err = -ENOMEM;
4283                 if (alloc_identity_pagetable(kvm) != 0)
4284                         goto free_vmcs;
4285                 if (!init_rmode_identity_map(kvm))
4286                         goto free_vmcs;
4287         }
4288
4289         return &vmx->vcpu;
4290
4291 free_vmcs:
4292         free_vmcs(vmx->vmcs);
4293 free_msrs:
4294         kfree(vmx->guest_msrs);
4295 uninit_vcpu:
4296         kvm_vcpu_uninit(&vmx->vcpu);
4297 free_vcpu:
4298         free_vpid(vmx);
4299         kmem_cache_free(kvm_vcpu_cache, vmx);
4300         return ERR_PTR(err);
4301 }
4302
4303 static void __init vmx_check_processor_compat(void *rtn)
4304 {
4305         struct vmcs_config vmcs_conf;
4306
4307         *(int *)rtn = 0;
4308         if (setup_vmcs_config(&vmcs_conf) < 0)
4309                 *(int *)rtn = -EIO;
4310         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
4311                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
4312                                 smp_processor_id());
4313                 *(int *)rtn = -EIO;
4314         }
4315 }
4316
4317 static int get_ept_level(void)
4318 {
4319         return VMX_EPT_DEFAULT_GAW + 1;
4320 }
4321
4322 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4323 {
4324         u64 ret;
4325
4326         /* For VT-d and EPT combination
4327          * 1. MMIO: always map as UC
4328          * 2. EPT with VT-d:
4329          *   a. VT-d without snooping control feature: can't guarantee the
4330          *      result, try to trust guest.
4331          *   b. VT-d with snooping control feature: snooping control feature of
4332          *      VT-d engine can guarantee the cache correctness. Just set it
4333          *      to WB to keep consistent with host. So the same as item 3.
4334          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
4335          *    consistent with host MTRR
4336          */
4337         if (is_mmio)
4338                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
4339         else if (vcpu->kvm->arch.iommu_domain &&
4340                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
4341                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
4342                       VMX_EPT_MT_EPTE_SHIFT;
4343         else
4344                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
4345                         | VMX_EPT_IPAT_BIT;
4346
4347         return ret;
4348 }
4349
4350 #define _ER(x) { EXIT_REASON_##x, #x }
4351
4352 static const struct trace_print_flags vmx_exit_reasons_str[] = {
4353         _ER(EXCEPTION_NMI),
4354         _ER(EXTERNAL_INTERRUPT),
4355         _ER(TRIPLE_FAULT),
4356         _ER(PENDING_INTERRUPT),
4357         _ER(NMI_WINDOW),
4358         _ER(TASK_SWITCH),
4359         _ER(CPUID),
4360         _ER(HLT),
4361         _ER(INVLPG),
4362         _ER(RDPMC),
4363         _ER(RDTSC),
4364         _ER(VMCALL),
4365         _ER(VMCLEAR),
4366         _ER(VMLAUNCH),
4367         _ER(VMPTRLD),
4368         _ER(VMPTRST),
4369         _ER(VMREAD),
4370         _ER(VMRESUME),
4371         _ER(VMWRITE),
4372         _ER(VMOFF),
4373         _ER(VMON),
4374         _ER(CR_ACCESS),
4375         _ER(DR_ACCESS),
4376         _ER(IO_INSTRUCTION),
4377         _ER(MSR_READ),
4378         _ER(MSR_WRITE),
4379         _ER(MWAIT_INSTRUCTION),
4380         _ER(MONITOR_INSTRUCTION),
4381         _ER(PAUSE_INSTRUCTION),
4382         _ER(MCE_DURING_VMENTRY),
4383         _ER(TPR_BELOW_THRESHOLD),
4384         _ER(APIC_ACCESS),
4385         _ER(EPT_VIOLATION),
4386         _ER(EPT_MISCONFIG),
4387         _ER(WBINVD),
4388         { -1, NULL }
4389 };
4390
4391 #undef _ER
4392
4393 static int vmx_get_lpage_level(void)
4394 {
4395         if (enable_ept && !cpu_has_vmx_ept_1g_page())
4396                 return PT_DIRECTORY_LEVEL;
4397         else
4398                 /* For shadow and EPT supported 1GB page */
4399                 return PT_PDPE_LEVEL;
4400 }
4401
4402 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
4403 {
4404         struct kvm_cpuid_entry2 *best;
4405         struct vcpu_vmx *vmx = to_vmx(vcpu);
4406         u32 exec_control;
4407
4408         vmx->rdtscp_enabled = false;
4409         if (vmx_rdtscp_supported()) {
4410                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
4411                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
4412                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
4413                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
4414                                 vmx->rdtscp_enabled = true;
4415                         else {
4416                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4417                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4418                                                 exec_control);
4419                         }
4420                 }
4421         }
4422 }
4423
4424 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4425 {
4426 }
4427
4428 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
4429                                struct x86_instruction_info *info,
4430                                enum x86_intercept_stage stage)
4431 {
4432         return X86EMUL_CONTINUE;
4433 }
4434
4435 static struct kvm_x86_ops vmx_x86_ops = {
4436         .cpu_has_kvm_support = cpu_has_kvm_support,
4437         .disabled_by_bios = vmx_disabled_by_bios,
4438         .hardware_setup = hardware_setup,
4439         .hardware_unsetup = hardware_unsetup,
4440         .check_processor_compatibility = vmx_check_processor_compat,
4441         .hardware_enable = hardware_enable,
4442         .hardware_disable = hardware_disable,
4443         .cpu_has_accelerated_tpr = report_flexpriority,
4444
4445         .vcpu_create = vmx_create_vcpu,
4446         .vcpu_free = vmx_free_vcpu,
4447         .vcpu_reset = vmx_vcpu_reset,
4448
4449         .prepare_guest_switch = vmx_save_host_state,
4450         .vcpu_load = vmx_vcpu_load,
4451         .vcpu_put = vmx_vcpu_put,
4452
4453         .set_guest_debug = set_guest_debug,
4454         .get_msr = vmx_get_msr,
4455         .set_msr = vmx_set_msr,
4456         .get_segment_base = vmx_get_segment_base,
4457         .get_segment = vmx_get_segment,
4458         .set_segment = vmx_set_segment,
4459         .get_cpl = vmx_get_cpl,
4460         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
4461         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
4462         .decache_cr3 = vmx_decache_cr3,
4463         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
4464         .set_cr0 = vmx_set_cr0,
4465         .set_cr3 = vmx_set_cr3,
4466         .set_cr4 = vmx_set_cr4,
4467         .set_efer = vmx_set_efer,
4468         .get_idt = vmx_get_idt,
4469         .set_idt = vmx_set_idt,
4470         .get_gdt = vmx_get_gdt,
4471         .set_gdt = vmx_set_gdt,
4472         .set_dr7 = vmx_set_dr7,
4473         .cache_reg = vmx_cache_reg,
4474         .get_rflags = vmx_get_rflags,
4475         .set_rflags = vmx_set_rflags,
4476         .fpu_activate = vmx_fpu_activate,
4477         .fpu_deactivate = vmx_fpu_deactivate,
4478
4479         .tlb_flush = vmx_flush_tlb,
4480
4481         .run = vmx_vcpu_run,
4482         .handle_exit = vmx_handle_exit,
4483         .skip_emulated_instruction = skip_emulated_instruction,
4484         .set_interrupt_shadow = vmx_set_interrupt_shadow,
4485         .get_interrupt_shadow = vmx_get_interrupt_shadow,
4486         .patch_hypercall = vmx_patch_hypercall,
4487         .set_irq = vmx_inject_irq,
4488         .set_nmi = vmx_inject_nmi,
4489         .queue_exception = vmx_queue_exception,
4490         .cancel_injection = vmx_cancel_injection,
4491         .interrupt_allowed = vmx_interrupt_allowed,
4492         .nmi_allowed = vmx_nmi_allowed,
4493         .get_nmi_mask = vmx_get_nmi_mask,
4494         .set_nmi_mask = vmx_set_nmi_mask,
4495         .enable_nmi_window = enable_nmi_window,
4496         .enable_irq_window = enable_irq_window,
4497         .update_cr8_intercept = update_cr8_intercept,
4498
4499         .set_tss_addr = vmx_set_tss_addr,
4500         .get_tdp_level = get_ept_level,
4501         .get_mt_mask = vmx_get_mt_mask,
4502
4503         .get_exit_info = vmx_get_exit_info,
4504         .exit_reasons_str = vmx_exit_reasons_str,
4505
4506         .get_lpage_level = vmx_get_lpage_level,
4507
4508         .cpuid_update = vmx_cpuid_update,
4509
4510         .rdtscp_supported = vmx_rdtscp_supported,
4511
4512         .set_supported_cpuid = vmx_set_supported_cpuid,
4513
4514         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
4515
4516         .set_tsc_khz = vmx_set_tsc_khz,
4517         .write_tsc_offset = vmx_write_tsc_offset,
4518         .adjust_tsc_offset = vmx_adjust_tsc_offset,
4519         .compute_tsc_offset = vmx_compute_tsc_offset,
4520
4521         .set_tdp_cr3 = vmx_set_cr3,
4522
4523         .check_intercept = vmx_check_intercept,
4524 };
4525
4526 static int __init vmx_init(void)
4527 {
4528         int r, i;
4529
4530         rdmsrl_safe(MSR_EFER, &host_efer);
4531
4532         for (i = 0; i < NR_VMX_MSR; ++i)
4533                 kvm_define_shared_msr(i, vmx_msr_index[i]);
4534
4535         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4536         if (!vmx_io_bitmap_a)
4537                 return -ENOMEM;
4538
4539         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4540         if (!vmx_io_bitmap_b) {
4541                 r = -ENOMEM;
4542                 goto out;
4543         }
4544
4545         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4546         if (!vmx_msr_bitmap_legacy) {
4547                 r = -ENOMEM;
4548                 goto out1;
4549         }
4550
4551         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4552         if (!vmx_msr_bitmap_longmode) {
4553                 r = -ENOMEM;
4554                 goto out2;
4555         }
4556
4557         /*
4558          * Allow direct access to the PC debug port (it is often used for I/O
4559          * delays, but the vmexits simply slow things down).
4560          */
4561         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4562         clear_bit(0x80, vmx_io_bitmap_a);
4563
4564         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4565
4566         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4567         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4568
4569         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4570
4571         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
4572                      __alignof__(struct vcpu_vmx), THIS_MODULE);
4573         if (r)
4574                 goto out3;
4575
4576         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4577         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4578         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4579         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4580         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4581         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4582
4583         if (enable_ept) {
4584                 bypass_guest_pf = 0;
4585                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4586                                 VMX_EPT_EXECUTABLE_MASK);
4587                 kvm_enable_tdp();
4588         } else
4589                 kvm_disable_tdp();
4590
4591         if (bypass_guest_pf)
4592                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4593
4594         return 0;
4595
4596 out3:
4597         free_page((unsigned long)vmx_msr_bitmap_longmode);
4598 out2:
4599         free_page((unsigned long)vmx_msr_bitmap_legacy);
4600 out1:
4601         free_page((unsigned long)vmx_io_bitmap_b);
4602 out:
4603         free_page((unsigned long)vmx_io_bitmap_a);
4604         return r;
4605 }
4606
4607 static void __exit vmx_exit(void)
4608 {
4609         free_page((unsigned long)vmx_msr_bitmap_legacy);
4610         free_page((unsigned long)vmx_msr_bitmap_longmode);
4611         free_page((unsigned long)vmx_io_bitmap_b);
4612         free_page((unsigned long)vmx_io_bitmap_a);
4613
4614         kvm_exit();
4615 }
4616
4617 module_init(vmx_init)
4618 module_exit(vmx_exit)