KVM: nVMX: Fix content of MSR_IA32_VMX_ENTRY/EXIT_CTLS
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include "kvm_cache_regs.h"
35 #include "x86.h"
36
37 #include <asm/io.h>
38 #include <asm/desc.h>
39 #include <asm/vmx.h>
40 #include <asm/virtext.h>
41 #include <asm/mce.h>
42 #include <asm/i387.h>
43 #include <asm/xcr.h>
44 #include <asm/perf_event.h>
45 #include <asm/kexec.h>
46
47 #include "trace.h"
48
49 #define __ex(x) __kvm_handle_fault_on_reboot(x)
50 #define __ex_clear(x, reg) \
51         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
52
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
55
56 static const struct x86_cpu_id vmx_cpu_id[] = {
57         X86_FEATURE_MATCH(X86_FEATURE_VMX),
58         {}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
61
62 static bool __read_mostly enable_vpid = 1;
63 module_param_named(vpid, enable_vpid, bool, 0444);
64
65 static bool __read_mostly flexpriority_enabled = 1;
66 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
67
68 static bool __read_mostly enable_ept = 1;
69 module_param_named(ept, enable_ept, bool, S_IRUGO);
70
71 static bool __read_mostly enable_unrestricted_guest = 1;
72 module_param_named(unrestricted_guest,
73                         enable_unrestricted_guest, bool, S_IRUGO);
74
75 static bool __read_mostly enable_ept_ad_bits = 1;
76 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
77
78 static bool __read_mostly emulate_invalid_guest_state = true;
79 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
80
81 static bool __read_mostly vmm_exclusive = 1;
82 module_param(vmm_exclusive, bool, S_IRUGO);
83
84 static bool __read_mostly fasteoi = 1;
85 module_param(fasteoi, bool, S_IRUGO);
86
87 static bool __read_mostly enable_apicv_reg_vid;
88
89 /*
90  * If nested=1, nested virtualization is supported, i.e., guests may use
91  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
92  * use VMX instructions.
93  */
94 static bool __read_mostly nested = 0;
95 module_param(nested, bool, S_IRUGO);
96
97 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
98 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
99 #define KVM_VM_CR0_ALWAYS_ON                                            \
100         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
101 #define KVM_CR4_GUEST_OWNED_BITS                                      \
102         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
103          | X86_CR4_OSXMMEXCPT)
104
105 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
106 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
107
108 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
109
110 /*
111  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
112  * ple_gap:    upper bound on the amount of time between two successive
113  *             executions of PAUSE in a loop. Also indicate if ple enabled.
114  *             According to test, this time is usually smaller than 128 cycles.
115  * ple_window: upper bound on the amount of time a guest is allowed to execute
116  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
117  *             less than 2^12 cycles
118  * Time is measured based on a counter that runs at the same rate as the TSC,
119  * refer SDM volume 3b section 21.6.13 & 22.1.3.
120  */
121 #define KVM_VMX_DEFAULT_PLE_GAP    128
122 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
123 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
124 module_param(ple_gap, int, S_IRUGO);
125
126 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
127 module_param(ple_window, int, S_IRUGO);
128
129 extern const ulong vmx_return;
130
131 #define NR_AUTOLOAD_MSRS 8
132 #define VMCS02_POOL_SIZE 1
133
134 struct vmcs {
135         u32 revision_id;
136         u32 abort;
137         char data[0];
138 };
139
140 /*
141  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
142  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
143  * loaded on this CPU (so we can clear them if the CPU goes down).
144  */
145 struct loaded_vmcs {
146         struct vmcs *vmcs;
147         int cpu;
148         int launched;
149         struct list_head loaded_vmcss_on_cpu_link;
150 };
151
152 struct shared_msr_entry {
153         unsigned index;
154         u64 data;
155         u64 mask;
156 };
157
158 /*
159  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
160  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
161  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
162  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
163  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
164  * More than one of these structures may exist, if L1 runs multiple L2 guests.
165  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
166  * underlying hardware which will be used to run L2.
167  * This structure is packed to ensure that its layout is identical across
168  * machines (necessary for live migration).
169  * If there are changes in this struct, VMCS12_REVISION must be changed.
170  */
171 typedef u64 natural_width;
172 struct __packed vmcs12 {
173         /* According to the Intel spec, a VMCS region must start with the
174          * following two fields. Then follow implementation-specific data.
175          */
176         u32 revision_id;
177         u32 abort;
178
179         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
180         u32 padding[7]; /* room for future expansion */
181
182         u64 io_bitmap_a;
183         u64 io_bitmap_b;
184         u64 msr_bitmap;
185         u64 vm_exit_msr_store_addr;
186         u64 vm_exit_msr_load_addr;
187         u64 vm_entry_msr_load_addr;
188         u64 tsc_offset;
189         u64 virtual_apic_page_addr;
190         u64 apic_access_addr;
191         u64 ept_pointer;
192         u64 guest_physical_address;
193         u64 vmcs_link_pointer;
194         u64 guest_ia32_debugctl;
195         u64 guest_ia32_pat;
196         u64 guest_ia32_efer;
197         u64 guest_ia32_perf_global_ctrl;
198         u64 guest_pdptr0;
199         u64 guest_pdptr1;
200         u64 guest_pdptr2;
201         u64 guest_pdptr3;
202         u64 host_ia32_pat;
203         u64 host_ia32_efer;
204         u64 host_ia32_perf_global_ctrl;
205         u64 padding64[8]; /* room for future expansion */
206         /*
207          * To allow migration of L1 (complete with its L2 guests) between
208          * machines of different natural widths (32 or 64 bit), we cannot have
209          * unsigned long fields with no explict size. We use u64 (aliased
210          * natural_width) instead. Luckily, x86 is little-endian.
211          */
212         natural_width cr0_guest_host_mask;
213         natural_width cr4_guest_host_mask;
214         natural_width cr0_read_shadow;
215         natural_width cr4_read_shadow;
216         natural_width cr3_target_value0;
217         natural_width cr3_target_value1;
218         natural_width cr3_target_value2;
219         natural_width cr3_target_value3;
220         natural_width exit_qualification;
221         natural_width guest_linear_address;
222         natural_width guest_cr0;
223         natural_width guest_cr3;
224         natural_width guest_cr4;
225         natural_width guest_es_base;
226         natural_width guest_cs_base;
227         natural_width guest_ss_base;
228         natural_width guest_ds_base;
229         natural_width guest_fs_base;
230         natural_width guest_gs_base;
231         natural_width guest_ldtr_base;
232         natural_width guest_tr_base;
233         natural_width guest_gdtr_base;
234         natural_width guest_idtr_base;
235         natural_width guest_dr7;
236         natural_width guest_rsp;
237         natural_width guest_rip;
238         natural_width guest_rflags;
239         natural_width guest_pending_dbg_exceptions;
240         natural_width guest_sysenter_esp;
241         natural_width guest_sysenter_eip;
242         natural_width host_cr0;
243         natural_width host_cr3;
244         natural_width host_cr4;
245         natural_width host_fs_base;
246         natural_width host_gs_base;
247         natural_width host_tr_base;
248         natural_width host_gdtr_base;
249         natural_width host_idtr_base;
250         natural_width host_ia32_sysenter_esp;
251         natural_width host_ia32_sysenter_eip;
252         natural_width host_rsp;
253         natural_width host_rip;
254         natural_width paddingl[8]; /* room for future expansion */
255         u32 pin_based_vm_exec_control;
256         u32 cpu_based_vm_exec_control;
257         u32 exception_bitmap;
258         u32 page_fault_error_code_mask;
259         u32 page_fault_error_code_match;
260         u32 cr3_target_count;
261         u32 vm_exit_controls;
262         u32 vm_exit_msr_store_count;
263         u32 vm_exit_msr_load_count;
264         u32 vm_entry_controls;
265         u32 vm_entry_msr_load_count;
266         u32 vm_entry_intr_info_field;
267         u32 vm_entry_exception_error_code;
268         u32 vm_entry_instruction_len;
269         u32 tpr_threshold;
270         u32 secondary_vm_exec_control;
271         u32 vm_instruction_error;
272         u32 vm_exit_reason;
273         u32 vm_exit_intr_info;
274         u32 vm_exit_intr_error_code;
275         u32 idt_vectoring_info_field;
276         u32 idt_vectoring_error_code;
277         u32 vm_exit_instruction_len;
278         u32 vmx_instruction_info;
279         u32 guest_es_limit;
280         u32 guest_cs_limit;
281         u32 guest_ss_limit;
282         u32 guest_ds_limit;
283         u32 guest_fs_limit;
284         u32 guest_gs_limit;
285         u32 guest_ldtr_limit;
286         u32 guest_tr_limit;
287         u32 guest_gdtr_limit;
288         u32 guest_idtr_limit;
289         u32 guest_es_ar_bytes;
290         u32 guest_cs_ar_bytes;
291         u32 guest_ss_ar_bytes;
292         u32 guest_ds_ar_bytes;
293         u32 guest_fs_ar_bytes;
294         u32 guest_gs_ar_bytes;
295         u32 guest_ldtr_ar_bytes;
296         u32 guest_tr_ar_bytes;
297         u32 guest_interruptibility_info;
298         u32 guest_activity_state;
299         u32 guest_sysenter_cs;
300         u32 host_ia32_sysenter_cs;
301         u32 padding32[8]; /* room for future expansion */
302         u16 virtual_processor_id;
303         u16 guest_es_selector;
304         u16 guest_cs_selector;
305         u16 guest_ss_selector;
306         u16 guest_ds_selector;
307         u16 guest_fs_selector;
308         u16 guest_gs_selector;
309         u16 guest_ldtr_selector;
310         u16 guest_tr_selector;
311         u16 host_es_selector;
312         u16 host_cs_selector;
313         u16 host_ss_selector;
314         u16 host_ds_selector;
315         u16 host_fs_selector;
316         u16 host_gs_selector;
317         u16 host_tr_selector;
318 };
319
320 /*
321  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
322  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
323  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
324  */
325 #define VMCS12_REVISION 0x11e57ed0
326
327 /*
328  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
329  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
330  * current implementation, 4K are reserved to avoid future complications.
331  */
332 #define VMCS12_SIZE 0x1000
333
334 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
335 struct vmcs02_list {
336         struct list_head list;
337         gpa_t vmptr;
338         struct loaded_vmcs vmcs02;
339 };
340
341 /*
342  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
343  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
344  */
345 struct nested_vmx {
346         /* Has the level1 guest done vmxon? */
347         bool vmxon;
348
349         /* The guest-physical address of the current VMCS L1 keeps for L2 */
350         gpa_t current_vmptr;
351         /* The host-usable pointer to the above */
352         struct page *current_vmcs12_page;
353         struct vmcs12 *current_vmcs12;
354
355         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
356         struct list_head vmcs02_pool;
357         int vmcs02_num;
358         u64 vmcs01_tsc_offset;
359         /* L2 must run next, and mustn't decide to exit to L1. */
360         bool nested_run_pending;
361         /*
362          * Guest pages referred to in vmcs02 with host-physical pointers, so
363          * we must keep them pinned while L2 runs.
364          */
365         struct page *apic_access_page;
366 };
367
368 struct vcpu_vmx {
369         struct kvm_vcpu       vcpu;
370         unsigned long         host_rsp;
371         u8                    fail;
372         u8                    cpl;
373         bool                  nmi_known_unmasked;
374         u32                   exit_intr_info;
375         u32                   idt_vectoring_info;
376         ulong                 rflags;
377         struct shared_msr_entry *guest_msrs;
378         int                   nmsrs;
379         int                   save_nmsrs;
380 #ifdef CONFIG_X86_64
381         u64                   msr_host_kernel_gs_base;
382         u64                   msr_guest_kernel_gs_base;
383 #endif
384         /*
385          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
386          * non-nested (L1) guest, it always points to vmcs01. For a nested
387          * guest (L2), it points to a different VMCS.
388          */
389         struct loaded_vmcs    vmcs01;
390         struct loaded_vmcs   *loaded_vmcs;
391         bool                  __launched; /* temporary, used in vmx_vcpu_run */
392         struct msr_autoload {
393                 unsigned nr;
394                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
395                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
396         } msr_autoload;
397         struct {
398                 int           loaded;
399                 u16           fs_sel, gs_sel, ldt_sel;
400 #ifdef CONFIG_X86_64
401                 u16           ds_sel, es_sel;
402 #endif
403                 int           gs_ldt_reload_needed;
404                 int           fs_reload_needed;
405         } host_state;
406         struct {
407                 int vm86_active;
408                 ulong save_rflags;
409                 struct kvm_segment segs[8];
410         } rmode;
411         struct {
412                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
413                 struct kvm_save_segment {
414                         u16 selector;
415                         unsigned long base;
416                         u32 limit;
417                         u32 ar;
418                 } seg[8];
419         } segment_cache;
420         int vpid;
421         bool emulation_required;
422
423         /* Support for vnmi-less CPUs */
424         int soft_vnmi_blocked;
425         ktime_t entry_time;
426         s64 vnmi_blocked_time;
427         u32 exit_reason;
428
429         bool rdtscp_enabled;
430
431         /* Support for a guest hypervisor (nested VMX) */
432         struct nested_vmx nested;
433 };
434
435 enum segment_cache_field {
436         SEG_FIELD_SEL = 0,
437         SEG_FIELD_BASE = 1,
438         SEG_FIELD_LIMIT = 2,
439         SEG_FIELD_AR = 3,
440
441         SEG_FIELD_NR = 4
442 };
443
444 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
445 {
446         return container_of(vcpu, struct vcpu_vmx, vcpu);
447 }
448
449 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
450 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
451 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
452                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
453
454 static const unsigned short vmcs_field_to_offset_table[] = {
455         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
456         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
457         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
458         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
459         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
460         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
461         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
462         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
463         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
464         FIELD(HOST_ES_SELECTOR, host_es_selector),
465         FIELD(HOST_CS_SELECTOR, host_cs_selector),
466         FIELD(HOST_SS_SELECTOR, host_ss_selector),
467         FIELD(HOST_DS_SELECTOR, host_ds_selector),
468         FIELD(HOST_FS_SELECTOR, host_fs_selector),
469         FIELD(HOST_GS_SELECTOR, host_gs_selector),
470         FIELD(HOST_TR_SELECTOR, host_tr_selector),
471         FIELD64(IO_BITMAP_A, io_bitmap_a),
472         FIELD64(IO_BITMAP_B, io_bitmap_b),
473         FIELD64(MSR_BITMAP, msr_bitmap),
474         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
475         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
476         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
477         FIELD64(TSC_OFFSET, tsc_offset),
478         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
479         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
480         FIELD64(EPT_POINTER, ept_pointer),
481         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
482         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
483         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
484         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
485         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
486         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
487         FIELD64(GUEST_PDPTR0, guest_pdptr0),
488         FIELD64(GUEST_PDPTR1, guest_pdptr1),
489         FIELD64(GUEST_PDPTR2, guest_pdptr2),
490         FIELD64(GUEST_PDPTR3, guest_pdptr3),
491         FIELD64(HOST_IA32_PAT, host_ia32_pat),
492         FIELD64(HOST_IA32_EFER, host_ia32_efer),
493         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
494         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
495         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
496         FIELD(EXCEPTION_BITMAP, exception_bitmap),
497         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
498         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
499         FIELD(CR3_TARGET_COUNT, cr3_target_count),
500         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
501         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
502         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
503         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
504         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
505         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
506         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
507         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
508         FIELD(TPR_THRESHOLD, tpr_threshold),
509         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
510         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
511         FIELD(VM_EXIT_REASON, vm_exit_reason),
512         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
513         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
514         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
515         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
516         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
517         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
518         FIELD(GUEST_ES_LIMIT, guest_es_limit),
519         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
520         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
521         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
522         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
523         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
524         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
525         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
526         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
527         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
528         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
529         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
530         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
531         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
532         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
533         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
534         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
535         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
536         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
537         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
538         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
539         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
540         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
541         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
542         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
543         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
544         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
545         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
546         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
547         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
548         FIELD(EXIT_QUALIFICATION, exit_qualification),
549         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
550         FIELD(GUEST_CR0, guest_cr0),
551         FIELD(GUEST_CR3, guest_cr3),
552         FIELD(GUEST_CR4, guest_cr4),
553         FIELD(GUEST_ES_BASE, guest_es_base),
554         FIELD(GUEST_CS_BASE, guest_cs_base),
555         FIELD(GUEST_SS_BASE, guest_ss_base),
556         FIELD(GUEST_DS_BASE, guest_ds_base),
557         FIELD(GUEST_FS_BASE, guest_fs_base),
558         FIELD(GUEST_GS_BASE, guest_gs_base),
559         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
560         FIELD(GUEST_TR_BASE, guest_tr_base),
561         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
562         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
563         FIELD(GUEST_DR7, guest_dr7),
564         FIELD(GUEST_RSP, guest_rsp),
565         FIELD(GUEST_RIP, guest_rip),
566         FIELD(GUEST_RFLAGS, guest_rflags),
567         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
568         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
569         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
570         FIELD(HOST_CR0, host_cr0),
571         FIELD(HOST_CR3, host_cr3),
572         FIELD(HOST_CR4, host_cr4),
573         FIELD(HOST_FS_BASE, host_fs_base),
574         FIELD(HOST_GS_BASE, host_gs_base),
575         FIELD(HOST_TR_BASE, host_tr_base),
576         FIELD(HOST_GDTR_BASE, host_gdtr_base),
577         FIELD(HOST_IDTR_BASE, host_idtr_base),
578         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
579         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
580         FIELD(HOST_RSP, host_rsp),
581         FIELD(HOST_RIP, host_rip),
582 };
583 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
584
585 static inline short vmcs_field_to_offset(unsigned long field)
586 {
587         if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
588                 return -1;
589         return vmcs_field_to_offset_table[field];
590 }
591
592 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
593 {
594         return to_vmx(vcpu)->nested.current_vmcs12;
595 }
596
597 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
598 {
599         struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
600         if (is_error_page(page))
601                 return NULL;
602
603         return page;
604 }
605
606 static void nested_release_page(struct page *page)
607 {
608         kvm_release_page_dirty(page);
609 }
610
611 static void nested_release_page_clean(struct page *page)
612 {
613         kvm_release_page_clean(page);
614 }
615
616 static u64 construct_eptp(unsigned long root_hpa);
617 static void kvm_cpu_vmxon(u64 addr);
618 static void kvm_cpu_vmxoff(void);
619 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
620 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
621 static void vmx_set_segment(struct kvm_vcpu *vcpu,
622                             struct kvm_segment *var, int seg);
623 static void vmx_get_segment(struct kvm_vcpu *vcpu,
624                             struct kvm_segment *var, int seg);
625 static bool guest_state_valid(struct kvm_vcpu *vcpu);
626 static u32 vmx_segment_access_rights(struct kvm_segment *var);
627
628 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
629 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
630 /*
631  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
632  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
633  */
634 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
635 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
636
637 static unsigned long *vmx_io_bitmap_a;
638 static unsigned long *vmx_io_bitmap_b;
639 static unsigned long *vmx_msr_bitmap_legacy;
640 static unsigned long *vmx_msr_bitmap_longmode;
641 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
642 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
643
644 static bool cpu_has_load_ia32_efer;
645 static bool cpu_has_load_perf_global_ctrl;
646
647 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
648 static DEFINE_SPINLOCK(vmx_vpid_lock);
649
650 static struct vmcs_config {
651         int size;
652         int order;
653         u32 revision_id;
654         u32 pin_based_exec_ctrl;
655         u32 cpu_based_exec_ctrl;
656         u32 cpu_based_2nd_exec_ctrl;
657         u32 vmexit_ctrl;
658         u32 vmentry_ctrl;
659 } vmcs_config;
660
661 static struct vmx_capability {
662         u32 ept;
663         u32 vpid;
664 } vmx_capability;
665
666 #define VMX_SEGMENT_FIELD(seg)                                  \
667         [VCPU_SREG_##seg] = {                                   \
668                 .selector = GUEST_##seg##_SELECTOR,             \
669                 .base = GUEST_##seg##_BASE,                     \
670                 .limit = GUEST_##seg##_LIMIT,                   \
671                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
672         }
673
674 static const struct kvm_vmx_segment_field {
675         unsigned selector;
676         unsigned base;
677         unsigned limit;
678         unsigned ar_bytes;
679 } kvm_vmx_segment_fields[] = {
680         VMX_SEGMENT_FIELD(CS),
681         VMX_SEGMENT_FIELD(DS),
682         VMX_SEGMENT_FIELD(ES),
683         VMX_SEGMENT_FIELD(FS),
684         VMX_SEGMENT_FIELD(GS),
685         VMX_SEGMENT_FIELD(SS),
686         VMX_SEGMENT_FIELD(TR),
687         VMX_SEGMENT_FIELD(LDTR),
688 };
689
690 static u64 host_efer;
691
692 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
693
694 /*
695  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
696  * away by decrementing the array size.
697  */
698 static const u32 vmx_msr_index[] = {
699 #ifdef CONFIG_X86_64
700         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
701 #endif
702         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
703 };
704 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
705
706 static inline bool is_page_fault(u32 intr_info)
707 {
708         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
709                              INTR_INFO_VALID_MASK)) ==
710                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
711 }
712
713 static inline bool is_no_device(u32 intr_info)
714 {
715         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
716                              INTR_INFO_VALID_MASK)) ==
717                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
718 }
719
720 static inline bool is_invalid_opcode(u32 intr_info)
721 {
722         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
723                              INTR_INFO_VALID_MASK)) ==
724                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
725 }
726
727 static inline bool is_external_interrupt(u32 intr_info)
728 {
729         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
730                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
731 }
732
733 static inline bool is_machine_check(u32 intr_info)
734 {
735         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
736                              INTR_INFO_VALID_MASK)) ==
737                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
738 }
739
740 static inline bool cpu_has_vmx_msr_bitmap(void)
741 {
742         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
743 }
744
745 static inline bool cpu_has_vmx_tpr_shadow(void)
746 {
747         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
748 }
749
750 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
751 {
752         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
753 }
754
755 static inline bool cpu_has_secondary_exec_ctrls(void)
756 {
757         return vmcs_config.cpu_based_exec_ctrl &
758                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
759 }
760
761 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
762 {
763         return vmcs_config.cpu_based_2nd_exec_ctrl &
764                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
765 }
766
767 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
768 {
769         return vmcs_config.cpu_based_2nd_exec_ctrl &
770                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
771 }
772
773 static inline bool cpu_has_vmx_apic_register_virt(void)
774 {
775         return vmcs_config.cpu_based_2nd_exec_ctrl &
776                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
777 }
778
779 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
780 {
781         return vmcs_config.cpu_based_2nd_exec_ctrl &
782                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
783 }
784
785 static inline bool cpu_has_vmx_flexpriority(void)
786 {
787         return cpu_has_vmx_tpr_shadow() &&
788                 cpu_has_vmx_virtualize_apic_accesses();
789 }
790
791 static inline bool cpu_has_vmx_ept_execute_only(void)
792 {
793         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
794 }
795
796 static inline bool cpu_has_vmx_eptp_uncacheable(void)
797 {
798         return vmx_capability.ept & VMX_EPTP_UC_BIT;
799 }
800
801 static inline bool cpu_has_vmx_eptp_writeback(void)
802 {
803         return vmx_capability.ept & VMX_EPTP_WB_BIT;
804 }
805
806 static inline bool cpu_has_vmx_ept_2m_page(void)
807 {
808         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
809 }
810
811 static inline bool cpu_has_vmx_ept_1g_page(void)
812 {
813         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
814 }
815
816 static inline bool cpu_has_vmx_ept_4levels(void)
817 {
818         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
819 }
820
821 static inline bool cpu_has_vmx_ept_ad_bits(void)
822 {
823         return vmx_capability.ept & VMX_EPT_AD_BIT;
824 }
825
826 static inline bool cpu_has_vmx_invept_context(void)
827 {
828         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
829 }
830
831 static inline bool cpu_has_vmx_invept_global(void)
832 {
833         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
834 }
835
836 static inline bool cpu_has_vmx_invvpid_single(void)
837 {
838         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
839 }
840
841 static inline bool cpu_has_vmx_invvpid_global(void)
842 {
843         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
844 }
845
846 static inline bool cpu_has_vmx_ept(void)
847 {
848         return vmcs_config.cpu_based_2nd_exec_ctrl &
849                 SECONDARY_EXEC_ENABLE_EPT;
850 }
851
852 static inline bool cpu_has_vmx_unrestricted_guest(void)
853 {
854         return vmcs_config.cpu_based_2nd_exec_ctrl &
855                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
856 }
857
858 static inline bool cpu_has_vmx_ple(void)
859 {
860         return vmcs_config.cpu_based_2nd_exec_ctrl &
861                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
862 }
863
864 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
865 {
866         return flexpriority_enabled && irqchip_in_kernel(kvm);
867 }
868
869 static inline bool cpu_has_vmx_vpid(void)
870 {
871         return vmcs_config.cpu_based_2nd_exec_ctrl &
872                 SECONDARY_EXEC_ENABLE_VPID;
873 }
874
875 static inline bool cpu_has_vmx_rdtscp(void)
876 {
877         return vmcs_config.cpu_based_2nd_exec_ctrl &
878                 SECONDARY_EXEC_RDTSCP;
879 }
880
881 static inline bool cpu_has_vmx_invpcid(void)
882 {
883         return vmcs_config.cpu_based_2nd_exec_ctrl &
884                 SECONDARY_EXEC_ENABLE_INVPCID;
885 }
886
887 static inline bool cpu_has_virtual_nmis(void)
888 {
889         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
890 }
891
892 static inline bool cpu_has_vmx_wbinvd_exit(void)
893 {
894         return vmcs_config.cpu_based_2nd_exec_ctrl &
895                 SECONDARY_EXEC_WBINVD_EXITING;
896 }
897
898 static inline bool report_flexpriority(void)
899 {
900         return flexpriority_enabled;
901 }
902
903 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
904 {
905         return vmcs12->cpu_based_vm_exec_control & bit;
906 }
907
908 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
909 {
910         return (vmcs12->cpu_based_vm_exec_control &
911                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
912                 (vmcs12->secondary_vm_exec_control & bit);
913 }
914
915 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
916         struct kvm_vcpu *vcpu)
917 {
918         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
919 }
920
921 static inline bool is_exception(u32 intr_info)
922 {
923         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
924                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
925 }
926
927 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
928 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
929                         struct vmcs12 *vmcs12,
930                         u32 reason, unsigned long qualification);
931
932 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
933 {
934         int i;
935
936         for (i = 0; i < vmx->nmsrs; ++i)
937                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
938                         return i;
939         return -1;
940 }
941
942 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
943 {
944     struct {
945         u64 vpid : 16;
946         u64 rsvd : 48;
947         u64 gva;
948     } operand = { vpid, 0, gva };
949
950     asm volatile (__ex(ASM_VMX_INVVPID)
951                   /* CF==1 or ZF==1 --> rc = -1 */
952                   "; ja 1f ; ud2 ; 1:"
953                   : : "a"(&operand), "c"(ext) : "cc", "memory");
954 }
955
956 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
957 {
958         struct {
959                 u64 eptp, gpa;
960         } operand = {eptp, gpa};
961
962         asm volatile (__ex(ASM_VMX_INVEPT)
963                         /* CF==1 or ZF==1 --> rc = -1 */
964                         "; ja 1f ; ud2 ; 1:\n"
965                         : : "a" (&operand), "c" (ext) : "cc", "memory");
966 }
967
968 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
969 {
970         int i;
971
972         i = __find_msr_index(vmx, msr);
973         if (i >= 0)
974                 return &vmx->guest_msrs[i];
975         return NULL;
976 }
977
978 static void vmcs_clear(struct vmcs *vmcs)
979 {
980         u64 phys_addr = __pa(vmcs);
981         u8 error;
982
983         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
984                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
985                       : "cc", "memory");
986         if (error)
987                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
988                        vmcs, phys_addr);
989 }
990
991 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
992 {
993         vmcs_clear(loaded_vmcs->vmcs);
994         loaded_vmcs->cpu = -1;
995         loaded_vmcs->launched = 0;
996 }
997
998 static void vmcs_load(struct vmcs *vmcs)
999 {
1000         u64 phys_addr = __pa(vmcs);
1001         u8 error;
1002
1003         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1004                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1005                         : "cc", "memory");
1006         if (error)
1007                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1008                        vmcs, phys_addr);
1009 }
1010
1011 #ifdef CONFIG_KEXEC
1012 /*
1013  * This bitmap is used to indicate whether the vmclear
1014  * operation is enabled on all cpus. All disabled by
1015  * default.
1016  */
1017 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1018
1019 static inline void crash_enable_local_vmclear(int cpu)
1020 {
1021         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1022 }
1023
1024 static inline void crash_disable_local_vmclear(int cpu)
1025 {
1026         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1027 }
1028
1029 static inline int crash_local_vmclear_enabled(int cpu)
1030 {
1031         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1032 }
1033
1034 static void crash_vmclear_local_loaded_vmcss(void)
1035 {
1036         int cpu = raw_smp_processor_id();
1037         struct loaded_vmcs *v;
1038
1039         if (!crash_local_vmclear_enabled(cpu))
1040                 return;
1041
1042         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1043                             loaded_vmcss_on_cpu_link)
1044                 vmcs_clear(v->vmcs);
1045 }
1046 #else
1047 static inline void crash_enable_local_vmclear(int cpu) { }
1048 static inline void crash_disable_local_vmclear(int cpu) { }
1049 #endif /* CONFIG_KEXEC */
1050
1051 static void __loaded_vmcs_clear(void *arg)
1052 {
1053         struct loaded_vmcs *loaded_vmcs = arg;
1054         int cpu = raw_smp_processor_id();
1055
1056         if (loaded_vmcs->cpu != cpu)
1057                 return; /* vcpu migration can race with cpu offline */
1058         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1059                 per_cpu(current_vmcs, cpu) = NULL;
1060         crash_disable_local_vmclear(cpu);
1061         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1062
1063         /*
1064          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1065          * is before setting loaded_vmcs->vcpu to -1 which is done in
1066          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1067          * then adds the vmcs into percpu list before it is deleted.
1068          */
1069         smp_wmb();
1070
1071         loaded_vmcs_init(loaded_vmcs);
1072         crash_enable_local_vmclear(cpu);
1073 }
1074
1075 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1076 {
1077         int cpu = loaded_vmcs->cpu;
1078
1079         if (cpu != -1)
1080                 smp_call_function_single(cpu,
1081                          __loaded_vmcs_clear, loaded_vmcs, 1);
1082 }
1083
1084 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1085 {
1086         if (vmx->vpid == 0)
1087                 return;
1088
1089         if (cpu_has_vmx_invvpid_single())
1090                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1091 }
1092
1093 static inline void vpid_sync_vcpu_global(void)
1094 {
1095         if (cpu_has_vmx_invvpid_global())
1096                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1097 }
1098
1099 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1100 {
1101         if (cpu_has_vmx_invvpid_single())
1102                 vpid_sync_vcpu_single(vmx);
1103         else
1104                 vpid_sync_vcpu_global();
1105 }
1106
1107 static inline void ept_sync_global(void)
1108 {
1109         if (cpu_has_vmx_invept_global())
1110                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1111 }
1112
1113 static inline void ept_sync_context(u64 eptp)
1114 {
1115         if (enable_ept) {
1116                 if (cpu_has_vmx_invept_context())
1117                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1118                 else
1119                         ept_sync_global();
1120         }
1121 }
1122
1123 static __always_inline unsigned long vmcs_readl(unsigned long field)
1124 {
1125         unsigned long value;
1126
1127         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1128                       : "=a"(value) : "d"(field) : "cc");
1129         return value;
1130 }
1131
1132 static __always_inline u16 vmcs_read16(unsigned long field)
1133 {
1134         return vmcs_readl(field);
1135 }
1136
1137 static __always_inline u32 vmcs_read32(unsigned long field)
1138 {
1139         return vmcs_readl(field);
1140 }
1141
1142 static __always_inline u64 vmcs_read64(unsigned long field)
1143 {
1144 #ifdef CONFIG_X86_64
1145         return vmcs_readl(field);
1146 #else
1147         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1148 #endif
1149 }
1150
1151 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1152 {
1153         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1154                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1155         dump_stack();
1156 }
1157
1158 static void vmcs_writel(unsigned long field, unsigned long value)
1159 {
1160         u8 error;
1161
1162         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1163                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1164         if (unlikely(error))
1165                 vmwrite_error(field, value);
1166 }
1167
1168 static void vmcs_write16(unsigned long field, u16 value)
1169 {
1170         vmcs_writel(field, value);
1171 }
1172
1173 static void vmcs_write32(unsigned long field, u32 value)
1174 {
1175         vmcs_writel(field, value);
1176 }
1177
1178 static void vmcs_write64(unsigned long field, u64 value)
1179 {
1180         vmcs_writel(field, value);
1181 #ifndef CONFIG_X86_64
1182         asm volatile ("");
1183         vmcs_writel(field+1, value >> 32);
1184 #endif
1185 }
1186
1187 static void vmcs_clear_bits(unsigned long field, u32 mask)
1188 {
1189         vmcs_writel(field, vmcs_readl(field) & ~mask);
1190 }
1191
1192 static void vmcs_set_bits(unsigned long field, u32 mask)
1193 {
1194         vmcs_writel(field, vmcs_readl(field) | mask);
1195 }
1196
1197 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1198 {
1199         vmx->segment_cache.bitmask = 0;
1200 }
1201
1202 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1203                                        unsigned field)
1204 {
1205         bool ret;
1206         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1207
1208         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1209                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1210                 vmx->segment_cache.bitmask = 0;
1211         }
1212         ret = vmx->segment_cache.bitmask & mask;
1213         vmx->segment_cache.bitmask |= mask;
1214         return ret;
1215 }
1216
1217 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1218 {
1219         u16 *p = &vmx->segment_cache.seg[seg].selector;
1220
1221         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1222                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1223         return *p;
1224 }
1225
1226 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1227 {
1228         ulong *p = &vmx->segment_cache.seg[seg].base;
1229
1230         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1231                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1232         return *p;
1233 }
1234
1235 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1236 {
1237         u32 *p = &vmx->segment_cache.seg[seg].limit;
1238
1239         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1240                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1241         return *p;
1242 }
1243
1244 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1245 {
1246         u32 *p = &vmx->segment_cache.seg[seg].ar;
1247
1248         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1249                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1250         return *p;
1251 }
1252
1253 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1254 {
1255         u32 eb;
1256
1257         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1258              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1259         if ((vcpu->guest_debug &
1260              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1261             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1262                 eb |= 1u << BP_VECTOR;
1263         if (to_vmx(vcpu)->rmode.vm86_active)
1264                 eb = ~0;
1265         if (enable_ept)
1266                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1267         if (vcpu->fpu_active)
1268                 eb &= ~(1u << NM_VECTOR);
1269
1270         /* When we are running a nested L2 guest and L1 specified for it a
1271          * certain exception bitmap, we must trap the same exceptions and pass
1272          * them to L1. When running L2, we will only handle the exceptions
1273          * specified above if L1 did not want them.
1274          */
1275         if (is_guest_mode(vcpu))
1276                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1277
1278         vmcs_write32(EXCEPTION_BITMAP, eb);
1279 }
1280
1281 static void clear_atomic_switch_msr_special(unsigned long entry,
1282                 unsigned long exit)
1283 {
1284         vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1285         vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1286 }
1287
1288 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1289 {
1290         unsigned i;
1291         struct msr_autoload *m = &vmx->msr_autoload;
1292
1293         switch (msr) {
1294         case MSR_EFER:
1295                 if (cpu_has_load_ia32_efer) {
1296                         clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1297                                         VM_EXIT_LOAD_IA32_EFER);
1298                         return;
1299                 }
1300                 break;
1301         case MSR_CORE_PERF_GLOBAL_CTRL:
1302                 if (cpu_has_load_perf_global_ctrl) {
1303                         clear_atomic_switch_msr_special(
1304                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1305                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1306                         return;
1307                 }
1308                 break;
1309         }
1310
1311         for (i = 0; i < m->nr; ++i)
1312                 if (m->guest[i].index == msr)
1313                         break;
1314
1315         if (i == m->nr)
1316                 return;
1317         --m->nr;
1318         m->guest[i] = m->guest[m->nr];
1319         m->host[i] = m->host[m->nr];
1320         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1321         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1322 }
1323
1324 static void add_atomic_switch_msr_special(unsigned long entry,
1325                 unsigned long exit, unsigned long guest_val_vmcs,
1326                 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1327 {
1328         vmcs_write64(guest_val_vmcs, guest_val);
1329         vmcs_write64(host_val_vmcs, host_val);
1330         vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1331         vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1332 }
1333
1334 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1335                                   u64 guest_val, u64 host_val)
1336 {
1337         unsigned i;
1338         struct msr_autoload *m = &vmx->msr_autoload;
1339
1340         switch (msr) {
1341         case MSR_EFER:
1342                 if (cpu_has_load_ia32_efer) {
1343                         add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1344                                         VM_EXIT_LOAD_IA32_EFER,
1345                                         GUEST_IA32_EFER,
1346                                         HOST_IA32_EFER,
1347                                         guest_val, host_val);
1348                         return;
1349                 }
1350                 break;
1351         case MSR_CORE_PERF_GLOBAL_CTRL:
1352                 if (cpu_has_load_perf_global_ctrl) {
1353                         add_atomic_switch_msr_special(
1354                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1355                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1356                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1357                                         HOST_IA32_PERF_GLOBAL_CTRL,
1358                                         guest_val, host_val);
1359                         return;
1360                 }
1361                 break;
1362         }
1363
1364         for (i = 0; i < m->nr; ++i)
1365                 if (m->guest[i].index == msr)
1366                         break;
1367
1368         if (i == NR_AUTOLOAD_MSRS) {
1369                 printk_once(KERN_WARNING"Not enough mst switch entries. "
1370                                 "Can't add msr %x\n", msr);
1371                 return;
1372         } else if (i == m->nr) {
1373                 ++m->nr;
1374                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1375                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1376         }
1377
1378         m->guest[i].index = msr;
1379         m->guest[i].value = guest_val;
1380         m->host[i].index = msr;
1381         m->host[i].value = host_val;
1382 }
1383
1384 static void reload_tss(void)
1385 {
1386         /*
1387          * VT restores TR but not its size.  Useless.
1388          */
1389         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1390         struct desc_struct *descs;
1391
1392         descs = (void *)gdt->address;
1393         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1394         load_TR_desc();
1395 }
1396
1397 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1398 {
1399         u64 guest_efer;
1400         u64 ignore_bits;
1401
1402         guest_efer = vmx->vcpu.arch.efer;
1403
1404         /*
1405          * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1406          * outside long mode
1407          */
1408         ignore_bits = EFER_NX | EFER_SCE;
1409 #ifdef CONFIG_X86_64
1410         ignore_bits |= EFER_LMA | EFER_LME;
1411         /* SCE is meaningful only in long mode on Intel */
1412         if (guest_efer & EFER_LMA)
1413                 ignore_bits &= ~(u64)EFER_SCE;
1414 #endif
1415         guest_efer &= ~ignore_bits;
1416         guest_efer |= host_efer & ignore_bits;
1417         vmx->guest_msrs[efer_offset].data = guest_efer;
1418         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1419
1420         clear_atomic_switch_msr(vmx, MSR_EFER);
1421         /* On ept, can't emulate nx, and must switch nx atomically */
1422         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1423                 guest_efer = vmx->vcpu.arch.efer;
1424                 if (!(guest_efer & EFER_LMA))
1425                         guest_efer &= ~EFER_LME;
1426                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1427                 return false;
1428         }
1429
1430         return true;
1431 }
1432
1433 static unsigned long segment_base(u16 selector)
1434 {
1435         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1436         struct desc_struct *d;
1437         unsigned long table_base;
1438         unsigned long v;
1439
1440         if (!(selector & ~3))
1441                 return 0;
1442
1443         table_base = gdt->address;
1444
1445         if (selector & 4) {           /* from ldt */
1446                 u16 ldt_selector = kvm_read_ldt();
1447
1448                 if (!(ldt_selector & ~3))
1449                         return 0;
1450
1451                 table_base = segment_base(ldt_selector);
1452         }
1453         d = (struct desc_struct *)(table_base + (selector & ~7));
1454         v = get_desc_base(d);
1455 #ifdef CONFIG_X86_64
1456        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1457                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1458 #endif
1459         return v;
1460 }
1461
1462 static inline unsigned long kvm_read_tr_base(void)
1463 {
1464         u16 tr;
1465         asm("str %0" : "=g"(tr));
1466         return segment_base(tr);
1467 }
1468
1469 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1470 {
1471         struct vcpu_vmx *vmx = to_vmx(vcpu);
1472         int i;
1473
1474         if (vmx->host_state.loaded)
1475                 return;
1476
1477         vmx->host_state.loaded = 1;
1478         /*
1479          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1480          * allow segment selectors with cpl > 0 or ti == 1.
1481          */
1482         vmx->host_state.ldt_sel = kvm_read_ldt();
1483         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1484         savesegment(fs, vmx->host_state.fs_sel);
1485         if (!(vmx->host_state.fs_sel & 7)) {
1486                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1487                 vmx->host_state.fs_reload_needed = 0;
1488         } else {
1489                 vmcs_write16(HOST_FS_SELECTOR, 0);
1490                 vmx->host_state.fs_reload_needed = 1;
1491         }
1492         savesegment(gs, vmx->host_state.gs_sel);
1493         if (!(vmx->host_state.gs_sel & 7))
1494                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1495         else {
1496                 vmcs_write16(HOST_GS_SELECTOR, 0);
1497                 vmx->host_state.gs_ldt_reload_needed = 1;
1498         }
1499
1500 #ifdef CONFIG_X86_64
1501         savesegment(ds, vmx->host_state.ds_sel);
1502         savesegment(es, vmx->host_state.es_sel);
1503 #endif
1504
1505 #ifdef CONFIG_X86_64
1506         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1507         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1508 #else
1509         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1510         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1511 #endif
1512
1513 #ifdef CONFIG_X86_64
1514         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1515         if (is_long_mode(&vmx->vcpu))
1516                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1517 #endif
1518         for (i = 0; i < vmx->save_nmsrs; ++i)
1519                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1520                                    vmx->guest_msrs[i].data,
1521                                    vmx->guest_msrs[i].mask);
1522 }
1523
1524 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1525 {
1526         if (!vmx->host_state.loaded)
1527                 return;
1528
1529         ++vmx->vcpu.stat.host_state_reload;
1530         vmx->host_state.loaded = 0;
1531 #ifdef CONFIG_X86_64
1532         if (is_long_mode(&vmx->vcpu))
1533                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1534 #endif
1535         if (vmx->host_state.gs_ldt_reload_needed) {
1536                 kvm_load_ldt(vmx->host_state.ldt_sel);
1537 #ifdef CONFIG_X86_64
1538                 load_gs_index(vmx->host_state.gs_sel);
1539 #else
1540                 loadsegment(gs, vmx->host_state.gs_sel);
1541 #endif
1542         }
1543         if (vmx->host_state.fs_reload_needed)
1544                 loadsegment(fs, vmx->host_state.fs_sel);
1545 #ifdef CONFIG_X86_64
1546         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1547                 loadsegment(ds, vmx->host_state.ds_sel);
1548                 loadsegment(es, vmx->host_state.es_sel);
1549         }
1550 #endif
1551         reload_tss();
1552 #ifdef CONFIG_X86_64
1553         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1554 #endif
1555         /*
1556          * If the FPU is not active (through the host task or
1557          * the guest vcpu), then restore the cr0.TS bit.
1558          */
1559         if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1560                 stts();
1561         load_gdt(&__get_cpu_var(host_gdt));
1562 }
1563
1564 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1565 {
1566         preempt_disable();
1567         __vmx_load_host_state(vmx);
1568         preempt_enable();
1569 }
1570
1571 /*
1572  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1573  * vcpu mutex is already taken.
1574  */
1575 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1576 {
1577         struct vcpu_vmx *vmx = to_vmx(vcpu);
1578         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1579
1580         if (!vmm_exclusive)
1581                 kvm_cpu_vmxon(phys_addr);
1582         else if (vmx->loaded_vmcs->cpu != cpu)
1583                 loaded_vmcs_clear(vmx->loaded_vmcs);
1584
1585         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1586                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1587                 vmcs_load(vmx->loaded_vmcs->vmcs);
1588         }
1589
1590         if (vmx->loaded_vmcs->cpu != cpu) {
1591                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1592                 unsigned long sysenter_esp;
1593
1594                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1595                 local_irq_disable();
1596                 crash_disable_local_vmclear(cpu);
1597
1598                 /*
1599                  * Read loaded_vmcs->cpu should be before fetching
1600                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1601                  * See the comments in __loaded_vmcs_clear().
1602                  */
1603                 smp_rmb();
1604
1605                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1606                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1607                 crash_enable_local_vmclear(cpu);
1608                 local_irq_enable();
1609
1610                 /*
1611                  * Linux uses per-cpu TSS and GDT, so set these when switching
1612                  * processors.
1613                  */
1614                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1615                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1616
1617                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1618                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1619                 vmx->loaded_vmcs->cpu = cpu;
1620         }
1621 }
1622
1623 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1624 {
1625         __vmx_load_host_state(to_vmx(vcpu));
1626         if (!vmm_exclusive) {
1627                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1628                 vcpu->cpu = -1;
1629                 kvm_cpu_vmxoff();
1630         }
1631 }
1632
1633 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1634 {
1635         ulong cr0;
1636
1637         if (vcpu->fpu_active)
1638                 return;
1639         vcpu->fpu_active = 1;
1640         cr0 = vmcs_readl(GUEST_CR0);
1641         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1642         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1643         vmcs_writel(GUEST_CR0, cr0);
1644         update_exception_bitmap(vcpu);
1645         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1646         if (is_guest_mode(vcpu))
1647                 vcpu->arch.cr0_guest_owned_bits &=
1648                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1649         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1650 }
1651
1652 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1653
1654 /*
1655  * Return the cr0 value that a nested guest would read. This is a combination
1656  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1657  * its hypervisor (cr0_read_shadow).
1658  */
1659 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1660 {
1661         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1662                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1663 }
1664 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1665 {
1666         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1667                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1668 }
1669
1670 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1671 {
1672         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1673          * set this *before* calling this function.
1674          */
1675         vmx_decache_cr0_guest_bits(vcpu);
1676         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1677         update_exception_bitmap(vcpu);
1678         vcpu->arch.cr0_guest_owned_bits = 0;
1679         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1680         if (is_guest_mode(vcpu)) {
1681                 /*
1682                  * L1's specified read shadow might not contain the TS bit,
1683                  * so now that we turned on shadowing of this bit, we need to
1684                  * set this bit of the shadow. Like in nested_vmx_run we need
1685                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1686                  * up-to-date here because we just decached cr0.TS (and we'll
1687                  * only update vmcs12->guest_cr0 on nested exit).
1688                  */
1689                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1690                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1691                         (vcpu->arch.cr0 & X86_CR0_TS);
1692                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1693         } else
1694                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1695 }
1696
1697 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1698 {
1699         unsigned long rflags, save_rflags;
1700
1701         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1702                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1703                 rflags = vmcs_readl(GUEST_RFLAGS);
1704                 if (to_vmx(vcpu)->rmode.vm86_active) {
1705                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1706                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1707                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1708                 }
1709                 to_vmx(vcpu)->rflags = rflags;
1710         }
1711         return to_vmx(vcpu)->rflags;
1712 }
1713
1714 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1715 {
1716         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1717         to_vmx(vcpu)->rflags = rflags;
1718         if (to_vmx(vcpu)->rmode.vm86_active) {
1719                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1720                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1721         }
1722         vmcs_writel(GUEST_RFLAGS, rflags);
1723 }
1724
1725 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1726 {
1727         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1728         int ret = 0;
1729
1730         if (interruptibility & GUEST_INTR_STATE_STI)
1731                 ret |= KVM_X86_SHADOW_INT_STI;
1732         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1733                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1734
1735         return ret & mask;
1736 }
1737
1738 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1739 {
1740         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1741         u32 interruptibility = interruptibility_old;
1742
1743         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1744
1745         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1746                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1747         else if (mask & KVM_X86_SHADOW_INT_STI)
1748                 interruptibility |= GUEST_INTR_STATE_STI;
1749
1750         if ((interruptibility != interruptibility_old))
1751                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1752 }
1753
1754 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1755 {
1756         unsigned long rip;
1757
1758         rip = kvm_rip_read(vcpu);
1759         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1760         kvm_rip_write(vcpu, rip);
1761
1762         /* skipping an emulated instruction also counts */
1763         vmx_set_interrupt_shadow(vcpu, 0);
1764 }
1765
1766 /*
1767  * KVM wants to inject page-faults which it got to the guest. This function
1768  * checks whether in a nested guest, we need to inject them to L1 or L2.
1769  * This function assumes it is called with the exit reason in vmcs02 being
1770  * a #PF exception (this is the only case in which KVM injects a #PF when L2
1771  * is running).
1772  */
1773 static int nested_pf_handled(struct kvm_vcpu *vcpu)
1774 {
1775         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1776
1777         /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1778         if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
1779                 return 0;
1780
1781         nested_vmx_vmexit(vcpu);
1782         return 1;
1783 }
1784
1785 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1786                                 bool has_error_code, u32 error_code,
1787                                 bool reinject)
1788 {
1789         struct vcpu_vmx *vmx = to_vmx(vcpu);
1790         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1791
1792         if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1793                 nested_pf_handled(vcpu))
1794                 return;
1795
1796         if (has_error_code) {
1797                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1798                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1799         }
1800
1801         if (vmx->rmode.vm86_active) {
1802                 int inc_eip = 0;
1803                 if (kvm_exception_is_soft(nr))
1804                         inc_eip = vcpu->arch.event_exit_inst_len;
1805                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1806                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1807                 return;
1808         }
1809
1810         if (kvm_exception_is_soft(nr)) {
1811                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1812                              vmx->vcpu.arch.event_exit_inst_len);
1813                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1814         } else
1815                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1816
1817         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1818 }
1819
1820 static bool vmx_rdtscp_supported(void)
1821 {
1822         return cpu_has_vmx_rdtscp();
1823 }
1824
1825 static bool vmx_invpcid_supported(void)
1826 {
1827         return cpu_has_vmx_invpcid() && enable_ept;
1828 }
1829
1830 /*
1831  * Swap MSR entry in host/guest MSR entry array.
1832  */
1833 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1834 {
1835         struct shared_msr_entry tmp;
1836
1837         tmp = vmx->guest_msrs[to];
1838         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1839         vmx->guest_msrs[from] = tmp;
1840 }
1841
1842 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
1843 {
1844         unsigned long *msr_bitmap;
1845
1846         if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
1847                 if (is_long_mode(vcpu))
1848                         msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
1849                 else
1850                         msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
1851         } else {
1852                 if (is_long_mode(vcpu))
1853                         msr_bitmap = vmx_msr_bitmap_longmode;
1854                 else
1855                         msr_bitmap = vmx_msr_bitmap_legacy;
1856         }
1857
1858         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1859 }
1860
1861 /*
1862  * Set up the vmcs to automatically save and restore system
1863  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1864  * mode, as fiddling with msrs is very expensive.
1865  */
1866 static void setup_msrs(struct vcpu_vmx *vmx)
1867 {
1868         int save_nmsrs, index;
1869
1870         save_nmsrs = 0;
1871 #ifdef CONFIG_X86_64
1872         if (is_long_mode(&vmx->vcpu)) {
1873                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1874                 if (index >= 0)
1875                         move_msr_up(vmx, index, save_nmsrs++);
1876                 index = __find_msr_index(vmx, MSR_LSTAR);
1877                 if (index >= 0)
1878                         move_msr_up(vmx, index, save_nmsrs++);
1879                 index = __find_msr_index(vmx, MSR_CSTAR);
1880                 if (index >= 0)
1881                         move_msr_up(vmx, index, save_nmsrs++);
1882                 index = __find_msr_index(vmx, MSR_TSC_AUX);
1883                 if (index >= 0 && vmx->rdtscp_enabled)
1884                         move_msr_up(vmx, index, save_nmsrs++);
1885                 /*
1886                  * MSR_STAR is only needed on long mode guests, and only
1887                  * if efer.sce is enabled.
1888                  */
1889                 index = __find_msr_index(vmx, MSR_STAR);
1890                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1891                         move_msr_up(vmx, index, save_nmsrs++);
1892         }
1893 #endif
1894         index = __find_msr_index(vmx, MSR_EFER);
1895         if (index >= 0 && update_transition_efer(vmx, index))
1896                 move_msr_up(vmx, index, save_nmsrs++);
1897
1898         vmx->save_nmsrs = save_nmsrs;
1899
1900         if (cpu_has_vmx_msr_bitmap())
1901                 vmx_set_msr_bitmap(&vmx->vcpu);
1902 }
1903
1904 /*
1905  * reads and returns guest's timestamp counter "register"
1906  * guest_tsc = host_tsc + tsc_offset    -- 21.3
1907  */
1908 static u64 guest_read_tsc(void)
1909 {
1910         u64 host_tsc, tsc_offset;
1911
1912         rdtscll(host_tsc);
1913         tsc_offset = vmcs_read64(TSC_OFFSET);
1914         return host_tsc + tsc_offset;
1915 }
1916
1917 /*
1918  * Like guest_read_tsc, but always returns L1's notion of the timestamp
1919  * counter, even if a nested guest (L2) is currently running.
1920  */
1921 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1922 {
1923         u64 tsc_offset;
1924
1925         tsc_offset = is_guest_mode(vcpu) ?
1926                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1927                 vmcs_read64(TSC_OFFSET);
1928         return host_tsc + tsc_offset;
1929 }
1930
1931 /*
1932  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
1933  * software catchup for faster rates on slower CPUs.
1934  */
1935 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1936 {
1937         if (!scale)
1938                 return;
1939
1940         if (user_tsc_khz > tsc_khz) {
1941                 vcpu->arch.tsc_catchup = 1;
1942                 vcpu->arch.tsc_always_catchup = 1;
1943         } else
1944                 WARN(1, "user requested TSC rate below hardware speed\n");
1945 }
1946
1947 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
1948 {
1949         return vmcs_read64(TSC_OFFSET);
1950 }
1951
1952 /*
1953  * writes 'offset' into guest's timestamp counter offset register
1954  */
1955 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1956 {
1957         if (is_guest_mode(vcpu)) {
1958                 /*
1959                  * We're here if L1 chose not to trap WRMSR to TSC. According
1960                  * to the spec, this should set L1's TSC; The offset that L1
1961                  * set for L2 remains unchanged, and still needs to be added
1962                  * to the newly set TSC to get L2's TSC.
1963                  */
1964                 struct vmcs12 *vmcs12;
1965                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1966                 /* recalculate vmcs02.TSC_OFFSET: */
1967                 vmcs12 = get_vmcs12(vcpu);
1968                 vmcs_write64(TSC_OFFSET, offset +
1969                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1970                          vmcs12->tsc_offset : 0));
1971         } else {
1972                 vmcs_write64(TSC_OFFSET, offset);
1973         }
1974 }
1975
1976 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1977 {
1978         u64 offset = vmcs_read64(TSC_OFFSET);
1979         vmcs_write64(TSC_OFFSET, offset + adjustment);
1980         if (is_guest_mode(vcpu)) {
1981                 /* Even when running L2, the adjustment needs to apply to L1 */
1982                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1983         }
1984 }
1985
1986 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1987 {
1988         return target_tsc - native_read_tsc();
1989 }
1990
1991 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1992 {
1993         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1994         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1995 }
1996
1997 /*
1998  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1999  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2000  * all guests if the "nested" module option is off, and can also be disabled
2001  * for a single guest by disabling its VMX cpuid bit.
2002  */
2003 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2004 {
2005         return nested && guest_cpuid_has_vmx(vcpu);
2006 }
2007
2008 /*
2009  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2010  * returned for the various VMX controls MSRs when nested VMX is enabled.
2011  * The same values should also be used to verify that vmcs12 control fields are
2012  * valid during nested entry from L1 to L2.
2013  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2014  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2015  * bit in the high half is on if the corresponding bit in the control field
2016  * may be on. See also vmx_control_verify().
2017  * TODO: allow these variables to be modified (downgraded) by module options
2018  * or other means.
2019  */
2020 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2021 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2022 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2023 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2024 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2025 static __init void nested_vmx_setup_ctls_msrs(void)
2026 {
2027         /*
2028          * Note that as a general rule, the high half of the MSRs (bits in
2029          * the control fields which may be 1) should be initialized by the
2030          * intersection of the underlying hardware's MSR (i.e., features which
2031          * can be supported) and the list of features we want to expose -
2032          * because they are known to be properly supported in our code.
2033          * Also, usually, the low half of the MSRs (bits which must be 1) can
2034          * be set to 0, meaning that L1 may turn off any of these bits. The
2035          * reason is that if one of these bits is necessary, it will appear
2036          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2037          * fields of vmcs01 and vmcs02, will turn these bits off - and
2038          * nested_vmx_exit_handled() will not pass related exits to L1.
2039          * These rules have exceptions below.
2040          */
2041
2042         /* pin-based controls */
2043         /*
2044          * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2045          * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2046          */
2047         nested_vmx_pinbased_ctls_low = 0x16 ;
2048         nested_vmx_pinbased_ctls_high = 0x16 |
2049                 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
2050                 PIN_BASED_VIRTUAL_NMIS;
2051
2052         /*
2053          * Exit controls
2054          * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2055          * 17 must be 1.
2056          */
2057         nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2058         /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
2059 #ifdef CONFIG_X86_64
2060         nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
2061 #else
2062         nested_vmx_exit_ctls_high = 0;
2063 #endif
2064         nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2065
2066         /* entry controls */
2067         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2068                 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2069         /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2070         nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2071         nested_vmx_entry_ctls_high &=
2072                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
2073         nested_vmx_entry_ctls_high |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2074
2075         /* cpu-based controls */
2076         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2077                 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2078         nested_vmx_procbased_ctls_low = 0;
2079         nested_vmx_procbased_ctls_high &=
2080                 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2081                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2082                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2083                 CPU_BASED_CR3_STORE_EXITING |
2084 #ifdef CONFIG_X86_64
2085                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2086 #endif
2087                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2088                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2089                 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2090                 CPU_BASED_PAUSE_EXITING |
2091                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2092         /*
2093          * We can allow some features even when not supported by the
2094          * hardware. For example, L1 can specify an MSR bitmap - and we
2095          * can use it to avoid exits to L1 - even when L0 runs L2
2096          * without MSR bitmaps.
2097          */
2098         nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2099
2100         /* secondary cpu-based controls */
2101         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2102                 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2103         nested_vmx_secondary_ctls_low = 0;
2104         nested_vmx_secondary_ctls_high &=
2105                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2106                 SECONDARY_EXEC_WBINVD_EXITING;
2107 }
2108
2109 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2110 {
2111         /*
2112          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2113          */
2114         return ((control & high) | low) == control;
2115 }
2116
2117 static inline u64 vmx_control_msr(u32 low, u32 high)
2118 {
2119         return low | ((u64)high << 32);
2120 }
2121
2122 /*
2123  * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2124  * also let it use VMX-specific MSRs.
2125  * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2126  * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2127  * like all other MSRs).
2128  */
2129 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2130 {
2131         if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2132                      msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2133                 /*
2134                  * According to the spec, processors which do not support VMX
2135                  * should throw a #GP(0) when VMX capability MSRs are read.
2136                  */
2137                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2138                 return 1;
2139         }
2140
2141         switch (msr_index) {
2142         case MSR_IA32_FEATURE_CONTROL:
2143                 *pdata = 0;
2144                 break;
2145         case MSR_IA32_VMX_BASIC:
2146                 /*
2147                  * This MSR reports some information about VMX support. We
2148                  * should return information about the VMX we emulate for the
2149                  * guest, and the VMCS structure we give it - not about the
2150                  * VMX support of the underlying hardware.
2151                  */
2152                 *pdata = VMCS12_REVISION |
2153                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2154                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2155                 break;
2156         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2157         case MSR_IA32_VMX_PINBASED_CTLS:
2158                 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2159                                         nested_vmx_pinbased_ctls_high);
2160                 break;
2161         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2162         case MSR_IA32_VMX_PROCBASED_CTLS:
2163                 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2164                                         nested_vmx_procbased_ctls_high);
2165                 break;
2166         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2167         case MSR_IA32_VMX_EXIT_CTLS:
2168                 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2169                                         nested_vmx_exit_ctls_high);
2170                 break;
2171         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2172         case MSR_IA32_VMX_ENTRY_CTLS:
2173                 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2174                                         nested_vmx_entry_ctls_high);
2175                 break;
2176         case MSR_IA32_VMX_MISC:
2177                 *pdata = 0;
2178                 break;
2179         /*
2180          * These MSRs specify bits which the guest must keep fixed (on or off)
2181          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2182          * We picked the standard core2 setting.
2183          */
2184 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2185 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2186         case MSR_IA32_VMX_CR0_FIXED0:
2187                 *pdata = VMXON_CR0_ALWAYSON;
2188                 break;
2189         case MSR_IA32_VMX_CR0_FIXED1:
2190                 *pdata = -1ULL;
2191                 break;
2192         case MSR_IA32_VMX_CR4_FIXED0:
2193                 *pdata = VMXON_CR4_ALWAYSON;
2194                 break;
2195         case MSR_IA32_VMX_CR4_FIXED1:
2196                 *pdata = -1ULL;
2197                 break;
2198         case MSR_IA32_VMX_VMCS_ENUM:
2199                 *pdata = 0x1f;
2200                 break;
2201         case MSR_IA32_VMX_PROCBASED_CTLS2:
2202                 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2203                                         nested_vmx_secondary_ctls_high);
2204                 break;
2205         case MSR_IA32_VMX_EPT_VPID_CAP:
2206                 /* Currently, no nested ept or nested vpid */
2207                 *pdata = 0;
2208                 break;
2209         default:
2210                 return 0;
2211         }
2212
2213         return 1;
2214 }
2215
2216 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2217 {
2218         if (!nested_vmx_allowed(vcpu))
2219                 return 0;
2220
2221         if (msr_index == MSR_IA32_FEATURE_CONTROL)
2222                 /* TODO: the right thing. */
2223                 return 1;
2224         /*
2225          * No need to treat VMX capability MSRs specially: If we don't handle
2226          * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2227          */
2228         return 0;
2229 }
2230
2231 /*
2232  * Reads an msr value (of 'msr_index') into 'pdata'.
2233  * Returns 0 on success, non-0 otherwise.
2234  * Assumes vcpu_load() was already called.
2235  */
2236 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2237 {
2238         u64 data;
2239         struct shared_msr_entry *msr;
2240
2241         if (!pdata) {
2242                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2243                 return -EINVAL;
2244         }
2245
2246         switch (msr_index) {
2247 #ifdef CONFIG_X86_64
2248         case MSR_FS_BASE:
2249                 data = vmcs_readl(GUEST_FS_BASE);
2250                 break;
2251         case MSR_GS_BASE:
2252                 data = vmcs_readl(GUEST_GS_BASE);
2253                 break;
2254         case MSR_KERNEL_GS_BASE:
2255                 vmx_load_host_state(to_vmx(vcpu));
2256                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2257                 break;
2258 #endif
2259         case MSR_EFER:
2260                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2261         case MSR_IA32_TSC:
2262                 data = guest_read_tsc();
2263                 break;
2264         case MSR_IA32_SYSENTER_CS:
2265                 data = vmcs_read32(GUEST_SYSENTER_CS);
2266                 break;
2267         case MSR_IA32_SYSENTER_EIP:
2268                 data = vmcs_readl(GUEST_SYSENTER_EIP);
2269                 break;
2270         case MSR_IA32_SYSENTER_ESP:
2271                 data = vmcs_readl(GUEST_SYSENTER_ESP);
2272                 break;
2273         case MSR_TSC_AUX:
2274                 if (!to_vmx(vcpu)->rdtscp_enabled)
2275                         return 1;
2276                 /* Otherwise falls through */
2277         default:
2278                 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2279                         return 0;
2280                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2281                 if (msr) {
2282                         data = msr->data;
2283                         break;
2284                 }
2285                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2286         }
2287
2288         *pdata = data;
2289         return 0;
2290 }
2291
2292 /*
2293  * Writes msr value into into the appropriate "register".
2294  * Returns 0 on success, non-0 otherwise.
2295  * Assumes vcpu_load() was already called.
2296  */
2297 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2298 {
2299         struct vcpu_vmx *vmx = to_vmx(vcpu);
2300         struct shared_msr_entry *msr;
2301         int ret = 0;
2302         u32 msr_index = msr_info->index;
2303         u64 data = msr_info->data;
2304
2305         switch (msr_index) {
2306         case MSR_EFER:
2307                 ret = kvm_set_msr_common(vcpu, msr_info);
2308                 break;
2309 #ifdef CONFIG_X86_64
2310         case MSR_FS_BASE:
2311                 vmx_segment_cache_clear(vmx);
2312                 vmcs_writel(GUEST_FS_BASE, data);
2313                 break;
2314         case MSR_GS_BASE:
2315                 vmx_segment_cache_clear(vmx);
2316                 vmcs_writel(GUEST_GS_BASE, data);
2317                 break;
2318         case MSR_KERNEL_GS_BASE:
2319                 vmx_load_host_state(vmx);
2320                 vmx->msr_guest_kernel_gs_base = data;
2321                 break;
2322 #endif
2323         case MSR_IA32_SYSENTER_CS:
2324                 vmcs_write32(GUEST_SYSENTER_CS, data);
2325                 break;
2326         case MSR_IA32_SYSENTER_EIP:
2327                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2328                 break;
2329         case MSR_IA32_SYSENTER_ESP:
2330                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2331                 break;
2332         case MSR_IA32_TSC:
2333                 kvm_write_tsc(vcpu, msr_info);
2334                 break;
2335         case MSR_IA32_CR_PAT:
2336                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2337                         vmcs_write64(GUEST_IA32_PAT, data);
2338                         vcpu->arch.pat = data;
2339                         break;
2340                 }
2341                 ret = kvm_set_msr_common(vcpu, msr_info);
2342                 break;
2343         case MSR_IA32_TSC_ADJUST:
2344                 ret = kvm_set_msr_common(vcpu, msr_info);
2345                 break;
2346         case MSR_TSC_AUX:
2347                 if (!vmx->rdtscp_enabled)
2348                         return 1;
2349                 /* Check reserved bit, higher 32 bits should be zero */
2350                 if ((data >> 32) != 0)
2351                         return 1;
2352                 /* Otherwise falls through */
2353         default:
2354                 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2355                         break;
2356                 msr = find_msr_entry(vmx, msr_index);
2357                 if (msr) {
2358                         msr->data = data;
2359                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2360                                 preempt_disable();
2361                                 kvm_set_shared_msr(msr->index, msr->data,
2362                                                    msr->mask);
2363                                 preempt_enable();
2364                         }
2365                         break;
2366                 }
2367                 ret = kvm_set_msr_common(vcpu, msr_info);
2368         }
2369
2370         return ret;
2371 }
2372
2373 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2374 {
2375         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2376         switch (reg) {
2377         case VCPU_REGS_RSP:
2378                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2379                 break;
2380         case VCPU_REGS_RIP:
2381                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2382                 break;
2383         case VCPU_EXREG_PDPTR:
2384                 if (enable_ept)
2385                         ept_save_pdptrs(vcpu);
2386                 break;
2387         default:
2388                 break;
2389         }
2390 }
2391
2392 static __init int cpu_has_kvm_support(void)
2393 {
2394         return cpu_has_vmx();
2395 }
2396
2397 static __init int vmx_disabled_by_bios(void)
2398 {
2399         u64 msr;
2400
2401         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2402         if (msr & FEATURE_CONTROL_LOCKED) {
2403                 /* launched w/ TXT and VMX disabled */
2404                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2405                         && tboot_enabled())
2406                         return 1;
2407                 /* launched w/o TXT and VMX only enabled w/ TXT */
2408                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2409                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2410                         && !tboot_enabled()) {
2411                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2412                                 "activate TXT before enabling KVM\n");
2413                         return 1;
2414                 }
2415                 /* launched w/o TXT and VMX disabled */
2416                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2417                         && !tboot_enabled())
2418                         return 1;
2419         }
2420
2421         return 0;
2422 }
2423
2424 static void kvm_cpu_vmxon(u64 addr)
2425 {
2426         asm volatile (ASM_VMX_VMXON_RAX
2427                         : : "a"(&addr), "m"(addr)
2428                         : "memory", "cc");
2429 }
2430
2431 static int hardware_enable(void *garbage)
2432 {
2433         int cpu = raw_smp_processor_id();
2434         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2435         u64 old, test_bits;
2436
2437         if (read_cr4() & X86_CR4_VMXE)
2438                 return -EBUSY;
2439
2440         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2441
2442         /*
2443          * Now we can enable the vmclear operation in kdump
2444          * since the loaded_vmcss_on_cpu list on this cpu
2445          * has been initialized.
2446          *
2447          * Though the cpu is not in VMX operation now, there
2448          * is no problem to enable the vmclear operation
2449          * for the loaded_vmcss_on_cpu list is empty!
2450          */
2451         crash_enable_local_vmclear(cpu);
2452
2453         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2454
2455         test_bits = FEATURE_CONTROL_LOCKED;
2456         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2457         if (tboot_enabled())
2458                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2459
2460         if ((old & test_bits) != test_bits) {
2461                 /* enable and lock */
2462                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2463         }
2464         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2465
2466         if (vmm_exclusive) {
2467                 kvm_cpu_vmxon(phys_addr);
2468                 ept_sync_global();
2469         }
2470
2471         store_gdt(&__get_cpu_var(host_gdt));
2472
2473         return 0;
2474 }
2475
2476 static void vmclear_local_loaded_vmcss(void)
2477 {
2478         int cpu = raw_smp_processor_id();
2479         struct loaded_vmcs *v, *n;
2480
2481         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2482                                  loaded_vmcss_on_cpu_link)
2483                 __loaded_vmcs_clear(v);
2484 }
2485
2486
2487 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2488  * tricks.
2489  */
2490 static void kvm_cpu_vmxoff(void)
2491 {
2492         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2493 }
2494
2495 static void hardware_disable(void *garbage)
2496 {
2497         if (vmm_exclusive) {
2498                 vmclear_local_loaded_vmcss();
2499                 kvm_cpu_vmxoff();
2500         }
2501         write_cr4(read_cr4() & ~X86_CR4_VMXE);
2502 }
2503
2504 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2505                                       u32 msr, u32 *result)
2506 {
2507         u32 vmx_msr_low, vmx_msr_high;
2508         u32 ctl = ctl_min | ctl_opt;
2509
2510         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2511
2512         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2513         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2514
2515         /* Ensure minimum (required) set of control bits are supported. */
2516         if (ctl_min & ~ctl)
2517                 return -EIO;
2518
2519         *result = ctl;
2520         return 0;
2521 }
2522
2523 static __init bool allow_1_setting(u32 msr, u32 ctl)
2524 {
2525         u32 vmx_msr_low, vmx_msr_high;
2526
2527         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2528         return vmx_msr_high & ctl;
2529 }
2530
2531 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2532 {
2533         u32 vmx_msr_low, vmx_msr_high;
2534         u32 min, opt, min2, opt2;
2535         u32 _pin_based_exec_control = 0;
2536         u32 _cpu_based_exec_control = 0;
2537         u32 _cpu_based_2nd_exec_control = 0;
2538         u32 _vmexit_control = 0;
2539         u32 _vmentry_control = 0;
2540
2541         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2542         opt = PIN_BASED_VIRTUAL_NMIS;
2543         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2544                                 &_pin_based_exec_control) < 0)
2545                 return -EIO;
2546
2547         min = CPU_BASED_HLT_EXITING |
2548 #ifdef CONFIG_X86_64
2549               CPU_BASED_CR8_LOAD_EXITING |
2550               CPU_BASED_CR8_STORE_EXITING |
2551 #endif
2552               CPU_BASED_CR3_LOAD_EXITING |
2553               CPU_BASED_CR3_STORE_EXITING |
2554               CPU_BASED_USE_IO_BITMAPS |
2555               CPU_BASED_MOV_DR_EXITING |
2556               CPU_BASED_USE_TSC_OFFSETING |
2557               CPU_BASED_MWAIT_EXITING |
2558               CPU_BASED_MONITOR_EXITING |
2559               CPU_BASED_INVLPG_EXITING |
2560               CPU_BASED_RDPMC_EXITING;
2561
2562         opt = CPU_BASED_TPR_SHADOW |
2563               CPU_BASED_USE_MSR_BITMAPS |
2564               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2565         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2566                                 &_cpu_based_exec_control) < 0)
2567                 return -EIO;
2568 #ifdef CONFIG_X86_64
2569         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2570                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2571                                            ~CPU_BASED_CR8_STORE_EXITING;
2572 #endif
2573         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2574                 min2 = 0;
2575                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2576                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2577                         SECONDARY_EXEC_WBINVD_EXITING |
2578                         SECONDARY_EXEC_ENABLE_VPID |
2579                         SECONDARY_EXEC_ENABLE_EPT |
2580                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2581                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2582                         SECONDARY_EXEC_RDTSCP |
2583                         SECONDARY_EXEC_ENABLE_INVPCID |
2584                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2585                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
2586                 if (adjust_vmx_controls(min2, opt2,
2587                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2588                                         &_cpu_based_2nd_exec_control) < 0)
2589                         return -EIO;
2590         }
2591 #ifndef CONFIG_X86_64
2592         if (!(_cpu_based_2nd_exec_control &
2593                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2594                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2595 #endif
2596
2597         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2598                 _cpu_based_2nd_exec_control &= ~(
2599                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2600                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2601                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2602
2603         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2604                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2605                    enabled */
2606                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2607                                              CPU_BASED_CR3_STORE_EXITING |
2608                                              CPU_BASED_INVLPG_EXITING);
2609                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2610                       vmx_capability.ept, vmx_capability.vpid);
2611         }
2612
2613         min = 0;
2614 #ifdef CONFIG_X86_64
2615         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2616 #endif
2617         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
2618         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2619                                 &_vmexit_control) < 0)
2620                 return -EIO;
2621
2622         min = 0;
2623         opt = VM_ENTRY_LOAD_IA32_PAT;
2624         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2625                                 &_vmentry_control) < 0)
2626                 return -EIO;
2627
2628         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2629
2630         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2631         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2632                 return -EIO;
2633
2634 #ifdef CONFIG_X86_64
2635         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2636         if (vmx_msr_high & (1u<<16))
2637                 return -EIO;
2638 #endif
2639
2640         /* Require Write-Back (WB) memory type for VMCS accesses. */
2641         if (((vmx_msr_high >> 18) & 15) != 6)
2642                 return -EIO;
2643
2644         vmcs_conf->size = vmx_msr_high & 0x1fff;
2645         vmcs_conf->order = get_order(vmcs_config.size);
2646         vmcs_conf->revision_id = vmx_msr_low;
2647
2648         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2649         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2650         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2651         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2652         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2653
2654         cpu_has_load_ia32_efer =
2655                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2656                                 VM_ENTRY_LOAD_IA32_EFER)
2657                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2658                                    VM_EXIT_LOAD_IA32_EFER);
2659
2660         cpu_has_load_perf_global_ctrl =
2661                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2662                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2663                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2664                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2665
2666         /*
2667          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2668          * but due to arrata below it can't be used. Workaround is to use
2669          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2670          *
2671          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2672          *
2673          * AAK155             (model 26)
2674          * AAP115             (model 30)
2675          * AAT100             (model 37)
2676          * BC86,AAY89,BD102   (model 44)
2677          * BA97               (model 46)
2678          *
2679          */
2680         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2681                 switch (boot_cpu_data.x86_model) {
2682                 case 26:
2683                 case 30:
2684                 case 37:
2685                 case 44:
2686                 case 46:
2687                         cpu_has_load_perf_global_ctrl = false;
2688                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2689                                         "does not work properly. Using workaround\n");
2690                         break;
2691                 default:
2692                         break;
2693                 }
2694         }
2695
2696         return 0;
2697 }
2698
2699 static struct vmcs *alloc_vmcs_cpu(int cpu)
2700 {
2701         int node = cpu_to_node(cpu);
2702         struct page *pages;
2703         struct vmcs *vmcs;
2704
2705         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2706         if (!pages)
2707                 return NULL;
2708         vmcs = page_address(pages);
2709         memset(vmcs, 0, vmcs_config.size);
2710         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2711         return vmcs;
2712 }
2713
2714 static struct vmcs *alloc_vmcs(void)
2715 {
2716         return alloc_vmcs_cpu(raw_smp_processor_id());
2717 }
2718
2719 static void free_vmcs(struct vmcs *vmcs)
2720 {
2721         free_pages((unsigned long)vmcs, vmcs_config.order);
2722 }
2723
2724 /*
2725  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2726  */
2727 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2728 {
2729         if (!loaded_vmcs->vmcs)
2730                 return;
2731         loaded_vmcs_clear(loaded_vmcs);
2732         free_vmcs(loaded_vmcs->vmcs);
2733         loaded_vmcs->vmcs = NULL;
2734 }
2735
2736 static void free_kvm_area(void)
2737 {
2738         int cpu;
2739
2740         for_each_possible_cpu(cpu) {
2741                 free_vmcs(per_cpu(vmxarea, cpu));
2742                 per_cpu(vmxarea, cpu) = NULL;
2743         }
2744 }
2745
2746 static __init int alloc_kvm_area(void)
2747 {
2748         int cpu;
2749
2750         for_each_possible_cpu(cpu) {
2751                 struct vmcs *vmcs;
2752
2753                 vmcs = alloc_vmcs_cpu(cpu);
2754                 if (!vmcs) {
2755                         free_kvm_area();
2756                         return -ENOMEM;
2757                 }
2758
2759                 per_cpu(vmxarea, cpu) = vmcs;
2760         }
2761         return 0;
2762 }
2763
2764 static __init int hardware_setup(void)
2765 {
2766         if (setup_vmcs_config(&vmcs_config) < 0)
2767                 return -EIO;
2768
2769         if (boot_cpu_has(X86_FEATURE_NX))
2770                 kvm_enable_efer_bits(EFER_NX);
2771
2772         if (!cpu_has_vmx_vpid())
2773                 enable_vpid = 0;
2774
2775         if (!cpu_has_vmx_ept() ||
2776             !cpu_has_vmx_ept_4levels()) {
2777                 enable_ept = 0;
2778                 enable_unrestricted_guest = 0;
2779                 enable_ept_ad_bits = 0;
2780         }
2781
2782         if (!cpu_has_vmx_ept_ad_bits())
2783                 enable_ept_ad_bits = 0;
2784
2785         if (!cpu_has_vmx_unrestricted_guest())
2786                 enable_unrestricted_guest = 0;
2787
2788         if (!cpu_has_vmx_flexpriority())
2789                 flexpriority_enabled = 0;
2790
2791         if (!cpu_has_vmx_tpr_shadow())
2792                 kvm_x86_ops->update_cr8_intercept = NULL;
2793
2794         if (enable_ept && !cpu_has_vmx_ept_2m_page())
2795                 kvm_disable_largepages();
2796
2797         if (!cpu_has_vmx_ple())
2798                 ple_gap = 0;
2799
2800         if (!cpu_has_vmx_apic_register_virt() ||
2801                                 !cpu_has_vmx_virtual_intr_delivery())
2802                 enable_apicv_reg_vid = 0;
2803
2804         if (enable_apicv_reg_vid)
2805                 kvm_x86_ops->update_cr8_intercept = NULL;
2806         else
2807                 kvm_x86_ops->hwapic_irr_update = NULL;
2808
2809         if (nested)
2810                 nested_vmx_setup_ctls_msrs();
2811
2812         return alloc_kvm_area();
2813 }
2814
2815 static __exit void hardware_unsetup(void)
2816 {
2817         free_kvm_area();
2818 }
2819
2820 static bool emulation_required(struct kvm_vcpu *vcpu)
2821 {
2822         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2823 }
2824
2825 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2826                 struct kvm_segment *save)
2827 {
2828         if (!emulate_invalid_guest_state) {
2829                 /*
2830                  * CS and SS RPL should be equal during guest entry according
2831                  * to VMX spec, but in reality it is not always so. Since vcpu
2832                  * is in the middle of the transition from real mode to
2833                  * protected mode it is safe to assume that RPL 0 is a good
2834                  * default value.
2835                  */
2836                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2837                         save->selector &= ~SELECTOR_RPL_MASK;
2838                 save->dpl = save->selector & SELECTOR_RPL_MASK;
2839                 save->s = 1;
2840         }
2841         vmx_set_segment(vcpu, save, seg);
2842 }
2843
2844 static void enter_pmode(struct kvm_vcpu *vcpu)
2845 {
2846         unsigned long flags;
2847         struct vcpu_vmx *vmx = to_vmx(vcpu);
2848
2849         /*
2850          * Update real mode segment cache. It may be not up-to-date if sement
2851          * register was written while vcpu was in a guest mode.
2852          */
2853         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2854         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2855         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2856         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2857         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2858         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2859
2860         vmx->rmode.vm86_active = 0;
2861
2862         vmx_segment_cache_clear(vmx);
2863
2864         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2865
2866         flags = vmcs_readl(GUEST_RFLAGS);
2867         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2868         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2869         vmcs_writel(GUEST_RFLAGS, flags);
2870
2871         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2872                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2873
2874         update_exception_bitmap(vcpu);
2875
2876         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2877         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2878         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2879         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2880         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2881         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2882
2883         /* CPL is always 0 when CPU enters protected mode */
2884         __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2885         vmx->cpl = 0;
2886 }
2887
2888 static gva_t rmode_tss_base(struct kvm *kvm)
2889 {
2890         if (!kvm->arch.tss_addr) {
2891                 struct kvm_memslots *slots;
2892                 struct kvm_memory_slot *slot;
2893                 gfn_t base_gfn;
2894
2895                 slots = kvm_memslots(kvm);
2896                 slot = id_to_memslot(slots, 0);
2897                 base_gfn = slot->base_gfn + slot->npages - 3;
2898
2899                 return base_gfn << PAGE_SHIFT;
2900         }
2901         return kvm->arch.tss_addr;
2902 }
2903
2904 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2905 {
2906         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2907         struct kvm_segment var = *save;
2908
2909         var.dpl = 0x3;
2910         if (seg == VCPU_SREG_CS)
2911                 var.type = 0x3;
2912
2913         if (!emulate_invalid_guest_state) {
2914                 var.selector = var.base >> 4;
2915                 var.base = var.base & 0xffff0;
2916                 var.limit = 0xffff;
2917                 var.g = 0;
2918                 var.db = 0;
2919                 var.present = 1;
2920                 var.s = 1;
2921                 var.l = 0;
2922                 var.unusable = 0;
2923                 var.type = 0x3;
2924                 var.avl = 0;
2925                 if (save->base & 0xf)
2926                         printk_once(KERN_WARNING "kvm: segment base is not "
2927                                         "paragraph aligned when entering "
2928                                         "protected mode (seg=%d)", seg);
2929         }
2930
2931         vmcs_write16(sf->selector, var.selector);
2932         vmcs_write32(sf->base, var.base);
2933         vmcs_write32(sf->limit, var.limit);
2934         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2935 }
2936
2937 static void enter_rmode(struct kvm_vcpu *vcpu)
2938 {
2939         unsigned long flags;
2940         struct vcpu_vmx *vmx = to_vmx(vcpu);
2941
2942         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2943         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2944         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2945         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2946         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2947         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2948         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2949
2950         vmx->rmode.vm86_active = 1;
2951
2952         /*
2953          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2954          * vcpu. Call it here with phys address pointing 16M below 4G.
2955          */
2956         if (!vcpu->kvm->arch.tss_addr) {
2957                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2958                              "called before entering vcpu\n");
2959                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2960                 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2961                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2962         }
2963
2964         vmx_segment_cache_clear(vmx);
2965
2966         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2967         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2968         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2969
2970         flags = vmcs_readl(GUEST_RFLAGS);
2971         vmx->rmode.save_rflags = flags;
2972
2973         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2974
2975         vmcs_writel(GUEST_RFLAGS, flags);
2976         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2977         update_exception_bitmap(vcpu);
2978
2979         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2980         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2981         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2982         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2983         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2984         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2985
2986         kvm_mmu_reset_context(vcpu);
2987 }
2988
2989 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2990 {
2991         struct vcpu_vmx *vmx = to_vmx(vcpu);
2992         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2993
2994         if (!msr)
2995                 return;
2996
2997         /*
2998          * Force kernel_gs_base reloading before EFER changes, as control
2999          * of this msr depends on is_long_mode().
3000          */
3001         vmx_load_host_state(to_vmx(vcpu));
3002         vcpu->arch.efer = efer;
3003         if (efer & EFER_LMA) {
3004                 vmcs_write32(VM_ENTRY_CONTROLS,
3005                              vmcs_read32(VM_ENTRY_CONTROLS) |
3006                              VM_ENTRY_IA32E_MODE);
3007                 msr->data = efer;
3008         } else {
3009                 vmcs_write32(VM_ENTRY_CONTROLS,
3010                              vmcs_read32(VM_ENTRY_CONTROLS) &
3011                              ~VM_ENTRY_IA32E_MODE);
3012
3013                 msr->data = efer & ~EFER_LME;
3014         }
3015         setup_msrs(vmx);
3016 }
3017
3018 #ifdef CONFIG_X86_64
3019
3020 static void enter_lmode(struct kvm_vcpu *vcpu)
3021 {
3022         u32 guest_tr_ar;
3023
3024         vmx_segment_cache_clear(to_vmx(vcpu));
3025
3026         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3027         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3028                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3029                                      __func__);
3030                 vmcs_write32(GUEST_TR_AR_BYTES,
3031                              (guest_tr_ar & ~AR_TYPE_MASK)
3032                              | AR_TYPE_BUSY_64_TSS);
3033         }
3034         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3035 }
3036
3037 static void exit_lmode(struct kvm_vcpu *vcpu)
3038 {
3039         vmcs_write32(VM_ENTRY_CONTROLS,
3040                      vmcs_read32(VM_ENTRY_CONTROLS)
3041                      & ~VM_ENTRY_IA32E_MODE);
3042         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3043 }
3044
3045 #endif
3046
3047 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3048 {
3049         vpid_sync_context(to_vmx(vcpu));
3050         if (enable_ept) {
3051                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3052                         return;
3053                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3054         }
3055 }
3056
3057 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3058 {
3059         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3060
3061         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3062         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3063 }
3064
3065 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3066 {
3067         if (enable_ept && is_paging(vcpu))
3068                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3069         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3070 }
3071
3072 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3073 {
3074         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3075
3076         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3077         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3078 }
3079
3080 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3081 {
3082         if (!test_bit(VCPU_EXREG_PDPTR,
3083                       (unsigned long *)&vcpu->arch.regs_dirty))
3084                 return;
3085
3086         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3087                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
3088                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
3089                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
3090                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
3091         }
3092 }
3093
3094 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3095 {
3096         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3097                 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3098                 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3099                 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3100                 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3101         }
3102
3103         __set_bit(VCPU_EXREG_PDPTR,
3104                   (unsigned long *)&vcpu->arch.regs_avail);
3105         __set_bit(VCPU_EXREG_PDPTR,
3106                   (unsigned long *)&vcpu->arch.regs_dirty);
3107 }
3108
3109 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3110
3111 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3112                                         unsigned long cr0,
3113                                         struct kvm_vcpu *vcpu)
3114 {
3115         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3116                 vmx_decache_cr3(vcpu);
3117         if (!(cr0 & X86_CR0_PG)) {
3118                 /* From paging/starting to nonpaging */
3119                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3120                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3121                              (CPU_BASED_CR3_LOAD_EXITING |
3122                               CPU_BASED_CR3_STORE_EXITING));
3123                 vcpu->arch.cr0 = cr0;
3124                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3125         } else if (!is_paging(vcpu)) {
3126                 /* From nonpaging to paging */
3127                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3128                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3129                              ~(CPU_BASED_CR3_LOAD_EXITING |
3130                                CPU_BASED_CR3_STORE_EXITING));
3131                 vcpu->arch.cr0 = cr0;
3132                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3133         }
3134
3135         if (!(cr0 & X86_CR0_WP))
3136                 *hw_cr0 &= ~X86_CR0_WP;
3137 }
3138
3139 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3140 {
3141         struct vcpu_vmx *vmx = to_vmx(vcpu);
3142         unsigned long hw_cr0;
3143
3144         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3145         if (enable_unrestricted_guest)
3146                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3147         else {
3148                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3149
3150                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3151                         enter_pmode(vcpu);
3152
3153                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3154                         enter_rmode(vcpu);
3155         }
3156
3157 #ifdef CONFIG_X86_64
3158         if (vcpu->arch.efer & EFER_LME) {
3159                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3160                         enter_lmode(vcpu);
3161                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3162                         exit_lmode(vcpu);
3163         }
3164 #endif
3165
3166         if (enable_ept)
3167                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3168
3169         if (!vcpu->fpu_active)
3170                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3171
3172         vmcs_writel(CR0_READ_SHADOW, cr0);
3173         vmcs_writel(GUEST_CR0, hw_cr0);
3174         vcpu->arch.cr0 = cr0;
3175
3176         /* depends on vcpu->arch.cr0 to be set to a new value */
3177         vmx->emulation_required = emulation_required(vcpu);
3178 }
3179
3180 static u64 construct_eptp(unsigned long root_hpa)
3181 {
3182         u64 eptp;
3183
3184         /* TODO write the value reading from MSR */
3185         eptp = VMX_EPT_DEFAULT_MT |
3186                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3187         if (enable_ept_ad_bits)
3188                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3189         eptp |= (root_hpa & PAGE_MASK);
3190
3191         return eptp;
3192 }
3193
3194 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3195 {
3196         unsigned long guest_cr3;
3197         u64 eptp;
3198
3199         guest_cr3 = cr3;
3200         if (enable_ept) {
3201                 eptp = construct_eptp(cr3);
3202                 vmcs_write64(EPT_POINTER, eptp);
3203                 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3204                         vcpu->kvm->arch.ept_identity_map_addr;
3205                 ept_load_pdptrs(vcpu);
3206         }
3207
3208         vmx_flush_tlb(vcpu);
3209         vmcs_writel(GUEST_CR3, guest_cr3);
3210 }
3211
3212 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3213 {
3214         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3215                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3216
3217         if (cr4 & X86_CR4_VMXE) {
3218                 /*
3219                  * To use VMXON (and later other VMX instructions), a guest
3220                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3221                  * So basically the check on whether to allow nested VMX
3222                  * is here.
3223                  */
3224                 if (!nested_vmx_allowed(vcpu))
3225                         return 1;
3226         } else if (to_vmx(vcpu)->nested.vmxon)
3227                 return 1;
3228
3229         vcpu->arch.cr4 = cr4;
3230         if (enable_ept) {
3231                 if (!is_paging(vcpu)) {
3232                         hw_cr4 &= ~X86_CR4_PAE;
3233                         hw_cr4 |= X86_CR4_PSE;
3234                         /*
3235                          * SMEP is disabled if CPU is in non-paging mode in
3236                          * hardware. However KVM always uses paging mode to
3237                          * emulate guest non-paging mode with TDP.
3238                          * To emulate this behavior, SMEP needs to be manually
3239                          * disabled when guest switches to non-paging mode.
3240                          */
3241                         hw_cr4 &= ~X86_CR4_SMEP;
3242                 } else if (!(cr4 & X86_CR4_PAE)) {
3243                         hw_cr4 &= ~X86_CR4_PAE;
3244                 }
3245         }
3246
3247         vmcs_writel(CR4_READ_SHADOW, cr4);
3248         vmcs_writel(GUEST_CR4, hw_cr4);
3249         return 0;
3250 }
3251
3252 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3253                             struct kvm_segment *var, int seg)
3254 {
3255         struct vcpu_vmx *vmx = to_vmx(vcpu);
3256         u32 ar;
3257
3258         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3259                 *var = vmx->rmode.segs[seg];
3260                 if (seg == VCPU_SREG_TR
3261                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3262                         return;
3263                 var->base = vmx_read_guest_seg_base(vmx, seg);
3264                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3265                 return;
3266         }
3267         var->base = vmx_read_guest_seg_base(vmx, seg);
3268         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3269         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3270         ar = vmx_read_guest_seg_ar(vmx, seg);
3271         var->type = ar & 15;
3272         var->s = (ar >> 4) & 1;
3273         var->dpl = (ar >> 5) & 3;
3274         var->present = (ar >> 7) & 1;
3275         var->avl = (ar >> 12) & 1;
3276         var->l = (ar >> 13) & 1;
3277         var->db = (ar >> 14) & 1;
3278         var->g = (ar >> 15) & 1;
3279         var->unusable = (ar >> 16) & 1;
3280 }
3281
3282 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3283 {
3284         struct kvm_segment s;
3285
3286         if (to_vmx(vcpu)->rmode.vm86_active) {
3287                 vmx_get_segment(vcpu, &s, seg);
3288                 return s.base;
3289         }
3290         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3291 }
3292
3293 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3294 {
3295         struct vcpu_vmx *vmx = to_vmx(vcpu);
3296
3297         if (!is_protmode(vcpu))
3298                 return 0;
3299
3300         if (!is_long_mode(vcpu)
3301             && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3302                 return 3;
3303
3304         if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3305                 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3306                 vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
3307         }
3308
3309         return vmx->cpl;
3310 }
3311
3312
3313 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3314 {
3315         u32 ar;
3316
3317         if (var->unusable || !var->present)
3318                 ar = 1 << 16;
3319         else {
3320                 ar = var->type & 15;
3321                 ar |= (var->s & 1) << 4;
3322                 ar |= (var->dpl & 3) << 5;
3323                 ar |= (var->present & 1) << 7;
3324                 ar |= (var->avl & 1) << 12;
3325                 ar |= (var->l & 1) << 13;
3326                 ar |= (var->db & 1) << 14;
3327                 ar |= (var->g & 1) << 15;
3328         }
3329
3330         return ar;
3331 }
3332
3333 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3334                             struct kvm_segment *var, int seg)
3335 {
3336         struct vcpu_vmx *vmx = to_vmx(vcpu);
3337         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3338
3339         vmx_segment_cache_clear(vmx);
3340         if (seg == VCPU_SREG_CS)
3341                 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3342
3343         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3344                 vmx->rmode.segs[seg] = *var;
3345                 if (seg == VCPU_SREG_TR)
3346                         vmcs_write16(sf->selector, var->selector);
3347                 else if (var->s)
3348                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3349                 goto out;
3350         }
3351
3352         vmcs_writel(sf->base, var->base);
3353         vmcs_write32(sf->limit, var->limit);
3354         vmcs_write16(sf->selector, var->selector);
3355
3356         /*
3357          *   Fix the "Accessed" bit in AR field of segment registers for older
3358          * qemu binaries.
3359          *   IA32 arch specifies that at the time of processor reset the
3360          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3361          * is setting it to 0 in the userland code. This causes invalid guest
3362          * state vmexit when "unrestricted guest" mode is turned on.
3363          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3364          * tree. Newer qemu binaries with that qemu fix would not need this
3365          * kvm hack.
3366          */
3367         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3368                 var->type |= 0x1; /* Accessed */
3369
3370         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3371
3372 out:
3373         vmx->emulation_required |= emulation_required(vcpu);
3374 }
3375
3376 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3377 {
3378         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3379
3380         *db = (ar >> 14) & 1;
3381         *l = (ar >> 13) & 1;
3382 }
3383
3384 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3385 {
3386         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3387         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3388 }
3389
3390 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3391 {
3392         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3393         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3394 }
3395
3396 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3397 {
3398         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3399         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3400 }
3401
3402 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3403 {
3404         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3405         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3406 }
3407
3408 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3409 {
3410         struct kvm_segment var;
3411         u32 ar;
3412
3413         vmx_get_segment(vcpu, &var, seg);
3414         var.dpl = 0x3;
3415         if (seg == VCPU_SREG_CS)
3416                 var.type = 0x3;
3417         ar = vmx_segment_access_rights(&var);
3418
3419         if (var.base != (var.selector << 4))
3420                 return false;
3421         if (var.limit != 0xffff)
3422                 return false;
3423         if (ar != 0xf3)
3424                 return false;
3425
3426         return true;
3427 }
3428
3429 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3430 {
3431         struct kvm_segment cs;
3432         unsigned int cs_rpl;
3433
3434         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3435         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3436
3437         if (cs.unusable)
3438                 return false;
3439         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3440                 return false;
3441         if (!cs.s)
3442                 return false;
3443         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3444                 if (cs.dpl > cs_rpl)
3445                         return false;
3446         } else {
3447                 if (cs.dpl != cs_rpl)
3448                         return false;
3449         }
3450         if (!cs.present)
3451                 return false;
3452
3453         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3454         return true;
3455 }
3456
3457 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3458 {
3459         struct kvm_segment ss;
3460         unsigned int ss_rpl;
3461
3462         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3463         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3464
3465         if (ss.unusable)
3466                 return true;
3467         if (ss.type != 3 && ss.type != 7)
3468                 return false;
3469         if (!ss.s)
3470                 return false;
3471         if (ss.dpl != ss_rpl) /* DPL != RPL */
3472                 return false;
3473         if (!ss.present)
3474                 return false;
3475
3476         return true;
3477 }
3478
3479 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3480 {
3481         struct kvm_segment var;
3482         unsigned int rpl;
3483
3484         vmx_get_segment(vcpu, &var, seg);
3485         rpl = var.selector & SELECTOR_RPL_MASK;
3486
3487         if (var.unusable)
3488                 return true;
3489         if (!var.s)
3490                 return false;
3491         if (!var.present)
3492                 return false;
3493         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3494                 if (var.dpl < rpl) /* DPL < RPL */
3495                         return false;
3496         }
3497
3498         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3499          * rights flags
3500          */
3501         return true;
3502 }
3503
3504 static bool tr_valid(struct kvm_vcpu *vcpu)
3505 {
3506         struct kvm_segment tr;
3507
3508         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3509
3510         if (tr.unusable)
3511                 return false;
3512         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
3513                 return false;
3514         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3515                 return false;
3516         if (!tr.present)
3517                 return false;
3518
3519         return true;
3520 }
3521
3522 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3523 {
3524         struct kvm_segment ldtr;
3525
3526         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3527
3528         if (ldtr.unusable)
3529                 return true;
3530         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
3531                 return false;
3532         if (ldtr.type != 2)
3533                 return false;
3534         if (!ldtr.present)
3535                 return false;
3536
3537         return true;
3538 }
3539
3540 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3541 {
3542         struct kvm_segment cs, ss;
3543
3544         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3545         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3546
3547         return ((cs.selector & SELECTOR_RPL_MASK) ==
3548                  (ss.selector & SELECTOR_RPL_MASK));
3549 }
3550
3551 /*
3552  * Check if guest state is valid. Returns true if valid, false if
3553  * not.
3554  * We assume that registers are always usable
3555  */
3556 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3557 {
3558         if (enable_unrestricted_guest)
3559                 return true;
3560
3561         /* real mode guest state checks */
3562         if (!is_protmode(vcpu)) {
3563                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3564                         return false;
3565                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3566                         return false;
3567                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3568                         return false;
3569                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3570                         return false;
3571                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3572                         return false;
3573                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3574                         return false;
3575         } else {
3576         /* protected mode guest state checks */
3577                 if (!cs_ss_rpl_check(vcpu))
3578                         return false;
3579                 if (!code_segment_valid(vcpu))
3580                         return false;
3581                 if (!stack_segment_valid(vcpu))
3582                         return false;
3583                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3584                         return false;
3585                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3586                         return false;
3587                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3588                         return false;
3589                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3590                         return false;
3591                 if (!tr_valid(vcpu))
3592                         return false;
3593                 if (!ldtr_valid(vcpu))
3594                         return false;
3595         }
3596         /* TODO:
3597          * - Add checks on RIP
3598          * - Add checks on RFLAGS
3599          */
3600
3601         return true;
3602 }
3603
3604 static int init_rmode_tss(struct kvm *kvm)
3605 {
3606         gfn_t fn;
3607         u16 data = 0;
3608         int r, idx, ret = 0;
3609
3610         idx = srcu_read_lock(&kvm->srcu);
3611         fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
3612         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3613         if (r < 0)
3614                 goto out;
3615         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3616         r = kvm_write_guest_page(kvm, fn++, &data,
3617                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3618         if (r < 0)
3619                 goto out;
3620         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3621         if (r < 0)
3622                 goto out;
3623         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3624         if (r < 0)
3625                 goto out;
3626         data = ~0;
3627         r = kvm_write_guest_page(kvm, fn, &data,
3628                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3629                                  sizeof(u8));
3630         if (r < 0)
3631                 goto out;
3632
3633         ret = 1;
3634 out:
3635         srcu_read_unlock(&kvm->srcu, idx);
3636         return ret;
3637 }
3638
3639 static int init_rmode_identity_map(struct kvm *kvm)
3640 {
3641         int i, idx, r, ret;
3642         pfn_t identity_map_pfn;
3643         u32 tmp;
3644
3645         if (!enable_ept)
3646                 return 1;
3647         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3648                 printk(KERN_ERR "EPT: identity-mapping pagetable "
3649                         "haven't been allocated!\n");
3650                 return 0;
3651         }
3652         if (likely(kvm->arch.ept_identity_pagetable_done))
3653                 return 1;
3654         ret = 0;
3655         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3656         idx = srcu_read_lock(&kvm->srcu);
3657         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3658         if (r < 0)
3659                 goto out;
3660         /* Set up identity-mapping pagetable for EPT in real mode */
3661         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3662                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3663                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3664                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3665                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3666                 if (r < 0)
3667                         goto out;
3668         }
3669         kvm->arch.ept_identity_pagetable_done = true;
3670         ret = 1;
3671 out:
3672         srcu_read_unlock(&kvm->srcu, idx);
3673         return ret;
3674 }
3675
3676 static void seg_setup(int seg)
3677 {
3678         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3679         unsigned int ar;
3680
3681         vmcs_write16(sf->selector, 0);
3682         vmcs_writel(sf->base, 0);
3683         vmcs_write32(sf->limit, 0xffff);
3684         ar = 0x93;
3685         if (seg == VCPU_SREG_CS)
3686                 ar |= 0x08; /* code segment */
3687
3688         vmcs_write32(sf->ar_bytes, ar);
3689 }
3690
3691 static int alloc_apic_access_page(struct kvm *kvm)
3692 {
3693         struct page *page;
3694         struct kvm_userspace_memory_region kvm_userspace_mem;
3695         int r = 0;
3696
3697         mutex_lock(&kvm->slots_lock);
3698         if (kvm->arch.apic_access_page)
3699                 goto out;
3700         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3701         kvm_userspace_mem.flags = 0;
3702         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3703         kvm_userspace_mem.memory_size = PAGE_SIZE;
3704         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3705         if (r)
3706                 goto out;
3707
3708         page = gfn_to_page(kvm, 0xfee00);
3709         if (is_error_page(page)) {
3710                 r = -EFAULT;
3711                 goto out;
3712         }
3713
3714         kvm->arch.apic_access_page = page;
3715 out:
3716         mutex_unlock(&kvm->slots_lock);
3717         return r;
3718 }
3719
3720 static int alloc_identity_pagetable(struct kvm *kvm)
3721 {
3722         struct page *page;
3723         struct kvm_userspace_memory_region kvm_userspace_mem;
3724         int r = 0;
3725
3726         mutex_lock(&kvm->slots_lock);
3727         if (kvm->arch.ept_identity_pagetable)
3728                 goto out;
3729         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3730         kvm_userspace_mem.flags = 0;
3731         kvm_userspace_mem.guest_phys_addr =
3732                 kvm->arch.ept_identity_map_addr;
3733         kvm_userspace_mem.memory_size = PAGE_SIZE;
3734         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3735         if (r)
3736                 goto out;
3737
3738         page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3739         if (is_error_page(page)) {
3740                 r = -EFAULT;
3741                 goto out;
3742         }
3743
3744         kvm->arch.ept_identity_pagetable = page;
3745 out:
3746         mutex_unlock(&kvm->slots_lock);
3747         return r;
3748 }
3749
3750 static void allocate_vpid(struct vcpu_vmx *vmx)
3751 {
3752         int vpid;
3753
3754         vmx->vpid = 0;
3755         if (!enable_vpid)
3756                 return;
3757         spin_lock(&vmx_vpid_lock);
3758         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3759         if (vpid < VMX_NR_VPIDS) {
3760                 vmx->vpid = vpid;
3761                 __set_bit(vpid, vmx_vpid_bitmap);
3762         }
3763         spin_unlock(&vmx_vpid_lock);
3764 }
3765
3766 static void free_vpid(struct vcpu_vmx *vmx)
3767 {
3768         if (!enable_vpid)
3769                 return;
3770         spin_lock(&vmx_vpid_lock);
3771         if (vmx->vpid != 0)
3772                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3773         spin_unlock(&vmx_vpid_lock);
3774 }
3775
3776 #define MSR_TYPE_R      1
3777 #define MSR_TYPE_W      2
3778 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3779                                                 u32 msr, int type)
3780 {
3781         int f = sizeof(unsigned long);
3782
3783         if (!cpu_has_vmx_msr_bitmap())
3784                 return;
3785
3786         /*
3787          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3788          * have the write-low and read-high bitmap offsets the wrong way round.
3789          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3790          */
3791         if (msr <= 0x1fff) {
3792                 if (type & MSR_TYPE_R)
3793                         /* read-low */
3794                         __clear_bit(msr, msr_bitmap + 0x000 / f);
3795
3796                 if (type & MSR_TYPE_W)
3797                         /* write-low */
3798                         __clear_bit(msr, msr_bitmap + 0x800 / f);
3799
3800         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3801                 msr &= 0x1fff;
3802                 if (type & MSR_TYPE_R)
3803                         /* read-high */
3804                         __clear_bit(msr, msr_bitmap + 0x400 / f);
3805
3806                 if (type & MSR_TYPE_W)
3807                         /* write-high */
3808                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
3809
3810         }
3811 }
3812
3813 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3814                                                 u32 msr, int type)
3815 {
3816         int f = sizeof(unsigned long);
3817
3818         if (!cpu_has_vmx_msr_bitmap())
3819                 return;
3820
3821         /*
3822          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3823          * have the write-low and read-high bitmap offsets the wrong way round.
3824          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3825          */
3826         if (msr <= 0x1fff) {
3827                 if (type & MSR_TYPE_R)
3828                         /* read-low */
3829                         __set_bit(msr, msr_bitmap + 0x000 / f);
3830
3831                 if (type & MSR_TYPE_W)
3832                         /* write-low */
3833                         __set_bit(msr, msr_bitmap + 0x800 / f);
3834
3835         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3836                 msr &= 0x1fff;
3837                 if (type & MSR_TYPE_R)
3838                         /* read-high */
3839                         __set_bit(msr, msr_bitmap + 0x400 / f);
3840
3841                 if (type & MSR_TYPE_W)
3842                         /* write-high */
3843                         __set_bit(msr, msr_bitmap + 0xc00 / f);
3844
3845         }
3846 }
3847
3848 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3849 {
3850         if (!longmode_only)
3851                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
3852                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
3853         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
3854                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
3855 }
3856
3857 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
3858 {
3859         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
3860                         msr, MSR_TYPE_R);
3861         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
3862                         msr, MSR_TYPE_R);
3863 }
3864
3865 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
3866 {
3867         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
3868                         msr, MSR_TYPE_R);
3869         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
3870                         msr, MSR_TYPE_R);
3871 }
3872
3873 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
3874 {
3875         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
3876                         msr, MSR_TYPE_W);
3877         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
3878                         msr, MSR_TYPE_W);
3879 }
3880
3881 /*
3882  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3883  * will not change in the lifetime of the guest.
3884  * Note that host-state that does change is set elsewhere. E.g., host-state
3885  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3886  */
3887 static void vmx_set_constant_host_state(void)
3888 {
3889         u32 low32, high32;
3890         unsigned long tmpl;
3891         struct desc_ptr dt;
3892
3893         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
3894         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
3895         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
3896
3897         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3898 #ifdef CONFIG_X86_64
3899         /*
3900          * Load null selectors, so we can avoid reloading them in
3901          * __vmx_load_host_state(), in case userspace uses the null selectors
3902          * too (the expected case).
3903          */
3904         vmcs_write16(HOST_DS_SELECTOR, 0);
3905         vmcs_write16(HOST_ES_SELECTOR, 0);
3906 #else
3907         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3908         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3909 #endif
3910         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3911         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3912
3913         native_store_idt(&dt);
3914         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
3915
3916         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
3917
3918         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3919         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3920         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3921         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3922
3923         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3924                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3925                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3926         }
3927 }
3928
3929 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3930 {
3931         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3932         if (enable_ept)
3933                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3934         if (is_guest_mode(&vmx->vcpu))
3935                 vmx->vcpu.arch.cr4_guest_owned_bits &=
3936                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3937         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3938 }
3939
3940 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3941 {
3942         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3943         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3944                 exec_control &= ~CPU_BASED_TPR_SHADOW;
3945 #ifdef CONFIG_X86_64
3946                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3947                                 CPU_BASED_CR8_LOAD_EXITING;
3948 #endif
3949         }
3950         if (!enable_ept)
3951                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3952                                 CPU_BASED_CR3_LOAD_EXITING  |
3953                                 CPU_BASED_INVLPG_EXITING;
3954         return exec_control;
3955 }
3956
3957 static int vmx_vm_has_apicv(struct kvm *kvm)
3958 {
3959         return enable_apicv_reg_vid && irqchip_in_kernel(kvm);
3960 }
3961
3962 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3963 {
3964         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3965         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3966                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3967         if (vmx->vpid == 0)
3968                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3969         if (!enable_ept) {
3970                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3971                 enable_unrestricted_guest = 0;
3972                 /* Enable INVPCID for non-ept guests may cause performance regression. */
3973                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
3974         }
3975         if (!enable_unrestricted_guest)
3976                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3977         if (!ple_gap)
3978                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3979         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
3980                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
3981                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3982         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
3983         return exec_control;
3984 }
3985
3986 static void ept_set_mmio_spte_mask(void)
3987 {
3988         /*
3989          * EPT Misconfigurations can be generated if the value of bits 2:0
3990          * of an EPT paging-structure entry is 110b (write/execute).
3991          * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3992          * spte.
3993          */
3994         kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3995 }
3996
3997 /*
3998  * Sets up the vmcs for emulated real mode.
3999  */
4000 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4001 {
4002 #ifdef CONFIG_X86_64
4003         unsigned long a;
4004 #endif
4005         int i;
4006
4007         /* I/O */
4008         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4009         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4010
4011         if (cpu_has_vmx_msr_bitmap())
4012                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4013
4014         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4015
4016         /* Control */
4017         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
4018                 vmcs_config.pin_based_exec_ctrl);
4019
4020         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4021
4022         if (cpu_has_secondary_exec_ctrls()) {
4023                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4024                                 vmx_secondary_exec_control(vmx));
4025         }
4026
4027         if (enable_apicv_reg_vid) {
4028                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4029                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4030                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4031                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4032
4033                 vmcs_write16(GUEST_INTR_STATUS, 0);
4034         }
4035
4036         if (ple_gap) {
4037                 vmcs_write32(PLE_GAP, ple_gap);
4038                 vmcs_write32(PLE_WINDOW, ple_window);
4039         }
4040
4041         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4042         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4043         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4044
4045         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4046         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4047         vmx_set_constant_host_state();
4048 #ifdef CONFIG_X86_64
4049         rdmsrl(MSR_FS_BASE, a);
4050         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4051         rdmsrl(MSR_GS_BASE, a);
4052         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4053 #else
4054         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4055         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4056 #endif
4057
4058         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4059         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4060         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4061         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4062         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4063
4064         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4065                 u32 msr_low, msr_high;
4066                 u64 host_pat;
4067                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4068                 host_pat = msr_low | ((u64) msr_high << 32);
4069                 /* Write the default value follow host pat */
4070                 vmcs_write64(GUEST_IA32_PAT, host_pat);
4071                 /* Keep arch.pat sync with GUEST_IA32_PAT */
4072                 vmx->vcpu.arch.pat = host_pat;
4073         }
4074
4075         for (i = 0; i < NR_VMX_MSR; ++i) {
4076                 u32 index = vmx_msr_index[i];
4077                 u32 data_low, data_high;
4078                 int j = vmx->nmsrs;
4079
4080                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4081                         continue;
4082                 if (wrmsr_safe(index, data_low, data_high) < 0)
4083                         continue;
4084                 vmx->guest_msrs[j].index = i;
4085                 vmx->guest_msrs[j].data = 0;
4086                 vmx->guest_msrs[j].mask = -1ull;
4087                 ++vmx->nmsrs;
4088         }
4089
4090         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
4091
4092         /* 22.2.1, 20.8.1 */
4093         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
4094
4095         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4096         set_cr4_guest_host_mask(vmx);
4097
4098         return 0;
4099 }
4100
4101 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4102 {
4103         struct vcpu_vmx *vmx = to_vmx(vcpu);
4104         u64 msr;
4105         int ret;
4106
4107         vmx->rmode.vm86_active = 0;
4108
4109         vmx->soft_vnmi_blocked = 0;
4110
4111         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4112         kvm_set_cr8(&vmx->vcpu, 0);
4113         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
4114         if (kvm_vcpu_is_bsp(&vmx->vcpu))
4115                 msr |= MSR_IA32_APICBASE_BSP;
4116         kvm_set_apic_base(&vmx->vcpu, msr);
4117
4118         vmx_segment_cache_clear(vmx);
4119
4120         seg_setup(VCPU_SREG_CS);
4121         if (kvm_vcpu_is_bsp(&vmx->vcpu))
4122                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4123         else {
4124                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
4125                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
4126         }
4127
4128         seg_setup(VCPU_SREG_DS);
4129         seg_setup(VCPU_SREG_ES);
4130         seg_setup(VCPU_SREG_FS);
4131         seg_setup(VCPU_SREG_GS);
4132         seg_setup(VCPU_SREG_SS);
4133
4134         vmcs_write16(GUEST_TR_SELECTOR, 0);
4135         vmcs_writel(GUEST_TR_BASE, 0);
4136         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4137         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4138
4139         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4140         vmcs_writel(GUEST_LDTR_BASE, 0);
4141         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4142         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4143
4144         vmcs_write32(GUEST_SYSENTER_CS, 0);
4145         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4146         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4147
4148         vmcs_writel(GUEST_RFLAGS, 0x02);
4149         if (kvm_vcpu_is_bsp(&vmx->vcpu))
4150                 kvm_rip_write(vcpu, 0xfff0);
4151         else
4152                 kvm_rip_write(vcpu, 0);
4153
4154         vmcs_writel(GUEST_GDTR_BASE, 0);
4155         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4156
4157         vmcs_writel(GUEST_IDTR_BASE, 0);
4158         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4159
4160         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4161         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4162         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4163
4164         /* Special registers */
4165         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4166
4167         setup_msrs(vmx);
4168
4169         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4170
4171         if (cpu_has_vmx_tpr_shadow()) {
4172                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4173                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4174                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4175                                      __pa(vmx->vcpu.arch.apic->regs));
4176                 vmcs_write32(TPR_THRESHOLD, 0);
4177         }
4178
4179         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4180                 vmcs_write64(APIC_ACCESS_ADDR,
4181                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4182
4183         if (vmx->vpid != 0)
4184                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4185
4186         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4187         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4188         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4189         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4190         vmx_set_cr4(&vmx->vcpu, 0);
4191         vmx_set_efer(&vmx->vcpu, 0);
4192         vmx_fpu_activate(&vmx->vcpu);
4193         update_exception_bitmap(&vmx->vcpu);
4194
4195         vpid_sync_context(vmx);
4196
4197         ret = 0;
4198
4199         return ret;
4200 }
4201
4202 /*
4203  * In nested virtualization, check if L1 asked to exit on external interrupts.
4204  * For most existing hypervisors, this will always return true.
4205  */
4206 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4207 {
4208         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4209                 PIN_BASED_EXT_INTR_MASK;
4210 }
4211
4212 static void enable_irq_window(struct kvm_vcpu *vcpu)
4213 {
4214         u32 cpu_based_vm_exec_control;
4215         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4216                 /*
4217                  * We get here if vmx_interrupt_allowed() said we can't
4218                  * inject to L1 now because L2 must run. Ask L2 to exit
4219                  * right after entry, so we can inject to L1 more promptly.
4220                  */
4221                 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
4222                 return;
4223         }
4224
4225         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4226         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4227         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4228 }
4229
4230 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4231 {
4232         u32 cpu_based_vm_exec_control;
4233
4234         if (!cpu_has_virtual_nmis()) {
4235                 enable_irq_window(vcpu);
4236                 return;
4237         }
4238
4239         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4240                 enable_irq_window(vcpu);
4241                 return;
4242         }
4243         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4244         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4245         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4246 }
4247
4248 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4249 {
4250         struct vcpu_vmx *vmx = to_vmx(vcpu);
4251         uint32_t intr;
4252         int irq = vcpu->arch.interrupt.nr;
4253
4254         trace_kvm_inj_virq(irq);
4255
4256         ++vcpu->stat.irq_injections;
4257         if (vmx->rmode.vm86_active) {
4258                 int inc_eip = 0;
4259                 if (vcpu->arch.interrupt.soft)
4260                         inc_eip = vcpu->arch.event_exit_inst_len;
4261                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4262                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4263                 return;
4264         }
4265         intr = irq | INTR_INFO_VALID_MASK;
4266         if (vcpu->arch.interrupt.soft) {
4267                 intr |= INTR_TYPE_SOFT_INTR;
4268                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4269                              vmx->vcpu.arch.event_exit_inst_len);
4270         } else
4271                 intr |= INTR_TYPE_EXT_INTR;
4272         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4273 }
4274
4275 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4276 {
4277         struct vcpu_vmx *vmx = to_vmx(vcpu);
4278
4279         if (is_guest_mode(vcpu))
4280                 return;
4281
4282         if (!cpu_has_virtual_nmis()) {
4283                 /*
4284                  * Tracking the NMI-blocked state in software is built upon
4285                  * finding the next open IRQ window. This, in turn, depends on
4286                  * well-behaving guests: They have to keep IRQs disabled at
4287                  * least as long as the NMI handler runs. Otherwise we may
4288                  * cause NMI nesting, maybe breaking the guest. But as this is
4289                  * highly unlikely, we can live with the residual risk.
4290                  */
4291                 vmx->soft_vnmi_blocked = 1;
4292                 vmx->vnmi_blocked_time = 0;
4293         }
4294
4295         ++vcpu->stat.nmi_injections;
4296         vmx->nmi_known_unmasked = false;
4297         if (vmx->rmode.vm86_active) {
4298                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4299                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4300                 return;
4301         }
4302         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4303                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4304 }
4305
4306 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4307 {
4308         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4309                 return 0;
4310
4311         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4312                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4313                    | GUEST_INTR_STATE_NMI));
4314 }
4315
4316 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4317 {
4318         if (!cpu_has_virtual_nmis())
4319                 return to_vmx(vcpu)->soft_vnmi_blocked;
4320         if (to_vmx(vcpu)->nmi_known_unmasked)
4321                 return false;
4322         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4323 }
4324
4325 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4326 {
4327         struct vcpu_vmx *vmx = to_vmx(vcpu);
4328
4329         if (!cpu_has_virtual_nmis()) {
4330                 if (vmx->soft_vnmi_blocked != masked) {
4331                         vmx->soft_vnmi_blocked = masked;
4332                         vmx->vnmi_blocked_time = 0;
4333                 }
4334         } else {
4335                 vmx->nmi_known_unmasked = !masked;
4336                 if (masked)
4337                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4338                                       GUEST_INTR_STATE_NMI);
4339                 else
4340                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4341                                         GUEST_INTR_STATE_NMI);
4342         }
4343 }
4344
4345 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4346 {
4347         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4348                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4349                 if (to_vmx(vcpu)->nested.nested_run_pending ||
4350                     (vmcs12->idt_vectoring_info_field &
4351                      VECTORING_INFO_VALID_MASK))
4352                         return 0;
4353                 nested_vmx_vmexit(vcpu);
4354                 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4355                 vmcs12->vm_exit_intr_info = 0;
4356                 /* fall through to normal code, but now in L1, not L2 */
4357         }
4358
4359         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4360                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4361                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4362 }
4363
4364 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4365 {
4366         int ret;
4367         struct kvm_userspace_memory_region tss_mem = {
4368                 .slot = TSS_PRIVATE_MEMSLOT,
4369                 .guest_phys_addr = addr,
4370                 .memory_size = PAGE_SIZE * 3,
4371                 .flags = 0,
4372         };
4373
4374         ret = kvm_set_memory_region(kvm, &tss_mem);
4375         if (ret)
4376                 return ret;
4377         kvm->arch.tss_addr = addr;
4378         if (!init_rmode_tss(kvm))
4379                 return  -ENOMEM;
4380
4381         return 0;
4382 }
4383
4384 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4385 {
4386         switch (vec) {
4387         case BP_VECTOR:
4388                 /*
4389                  * Update instruction length as we may reinject the exception
4390                  * from user space while in guest debugging mode.
4391                  */
4392                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4393                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4394                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4395                         return false;
4396                 /* fall through */
4397         case DB_VECTOR:
4398                 if (vcpu->guest_debug &
4399                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4400                         return false;
4401                 /* fall through */
4402         case DE_VECTOR:
4403         case OF_VECTOR:
4404         case BR_VECTOR:
4405         case UD_VECTOR:
4406         case DF_VECTOR:
4407         case SS_VECTOR:
4408         case GP_VECTOR:
4409         case MF_VECTOR:
4410                 return true;
4411         break;
4412         }
4413         return false;
4414 }
4415
4416 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4417                                   int vec, u32 err_code)
4418 {
4419         /*
4420          * Instruction with address size override prefix opcode 0x67
4421          * Cause the #SS fault with 0 error code in VM86 mode.
4422          */
4423         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4424                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4425                         if (vcpu->arch.halt_request) {
4426                                 vcpu->arch.halt_request = 0;
4427                                 return kvm_emulate_halt(vcpu);
4428                         }
4429                         return 1;
4430                 }
4431                 return 0;
4432         }
4433
4434         /*
4435          * Forward all other exceptions that are valid in real mode.
4436          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4437          *        the required debugging infrastructure rework.
4438          */
4439         kvm_queue_exception(vcpu, vec);
4440         return 1;
4441 }
4442
4443 /*
4444  * Trigger machine check on the host. We assume all the MSRs are already set up
4445  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4446  * We pass a fake environment to the machine check handler because we want
4447  * the guest to be always treated like user space, no matter what context
4448  * it used internally.
4449  */
4450 static void kvm_machine_check(void)
4451 {
4452 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4453         struct pt_regs regs = {
4454                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4455                 .flags = X86_EFLAGS_IF,
4456         };
4457
4458         do_machine_check(&regs, 0);
4459 #endif
4460 }
4461
4462 static int handle_machine_check(struct kvm_vcpu *vcpu)
4463 {
4464         /* already handled by vcpu_run */
4465         return 1;
4466 }
4467
4468 static int handle_exception(struct kvm_vcpu *vcpu)
4469 {
4470         struct vcpu_vmx *vmx = to_vmx(vcpu);
4471         struct kvm_run *kvm_run = vcpu->run;
4472         u32 intr_info, ex_no, error_code;
4473         unsigned long cr2, rip, dr6;
4474         u32 vect_info;
4475         enum emulation_result er;
4476
4477         vect_info = vmx->idt_vectoring_info;
4478         intr_info = vmx->exit_intr_info;
4479
4480         if (is_machine_check(intr_info))
4481                 return handle_machine_check(vcpu);
4482
4483         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4484                 return 1;  /* already handled by vmx_vcpu_run() */
4485
4486         if (is_no_device(intr_info)) {
4487                 vmx_fpu_activate(vcpu);
4488                 return 1;
4489         }
4490
4491         if (is_invalid_opcode(intr_info)) {
4492                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4493                 if (er != EMULATE_DONE)
4494                         kvm_queue_exception(vcpu, UD_VECTOR);
4495                 return 1;
4496         }
4497
4498         error_code = 0;
4499         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4500                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4501
4502         /*
4503          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4504          * MMIO, it is better to report an internal error.
4505          * See the comments in vmx_handle_exit.
4506          */
4507         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4508             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4509                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4510                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4511                 vcpu->run->internal.ndata = 2;
4512                 vcpu->run->internal.data[0] = vect_info;
4513                 vcpu->run->internal.data[1] = intr_info;
4514                 return 0;
4515         }
4516
4517         if (is_page_fault(intr_info)) {
4518                 /* EPT won't cause page fault directly */
4519                 BUG_ON(enable_ept);
4520                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4521                 trace_kvm_page_fault(cr2, error_code);
4522
4523                 if (kvm_event_needs_reinjection(vcpu))
4524                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
4525                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4526         }
4527
4528         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4529
4530         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4531                 return handle_rmode_exception(vcpu, ex_no, error_code);
4532
4533         switch (ex_no) {
4534         case DB_VECTOR:
4535                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4536                 if (!(vcpu->guest_debug &
4537                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4538                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4539                         kvm_queue_exception(vcpu, DB_VECTOR);
4540                         return 1;
4541                 }
4542                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4543                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4544                 /* fall through */
4545         case BP_VECTOR:
4546                 /*
4547                  * Update instruction length as we may reinject #BP from
4548                  * user space while in guest debugging mode. Reading it for
4549                  * #DB as well causes no harm, it is not used in that case.
4550                  */
4551                 vmx->vcpu.arch.event_exit_inst_len =
4552                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4553                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4554                 rip = kvm_rip_read(vcpu);
4555                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4556                 kvm_run->debug.arch.exception = ex_no;
4557                 break;
4558         default:
4559                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4560                 kvm_run->ex.exception = ex_no;
4561                 kvm_run->ex.error_code = error_code;
4562                 break;
4563         }
4564         return 0;
4565 }
4566
4567 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4568 {
4569         ++vcpu->stat.irq_exits;
4570         return 1;
4571 }
4572
4573 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4574 {
4575         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4576         return 0;
4577 }
4578
4579 static int handle_io(struct kvm_vcpu *vcpu)
4580 {
4581         unsigned long exit_qualification;
4582         int size, in, string;
4583         unsigned port;
4584
4585         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4586         string = (exit_qualification & 16) != 0;
4587         in = (exit_qualification & 8) != 0;
4588
4589         ++vcpu->stat.io_exits;
4590
4591         if (string || in)
4592                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4593
4594         port = exit_qualification >> 16;
4595         size = (exit_qualification & 7) + 1;
4596         skip_emulated_instruction(vcpu);
4597
4598         return kvm_fast_pio_out(vcpu, size, port);
4599 }
4600
4601 static void
4602 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4603 {
4604         /*
4605          * Patch in the VMCALL instruction:
4606          */
4607         hypercall[0] = 0x0f;
4608         hypercall[1] = 0x01;
4609         hypercall[2] = 0xc1;
4610 }
4611
4612 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4613 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4614 {
4615         if (to_vmx(vcpu)->nested.vmxon &&
4616             ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4617                 return 1;
4618
4619         if (is_guest_mode(vcpu)) {
4620                 /*
4621                  * We get here when L2 changed cr0 in a way that did not change
4622                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4623                  * but did change L0 shadowed bits. This can currently happen
4624                  * with the TS bit: L0 may want to leave TS on (for lazy fpu
4625                  * loading) while pretending to allow the guest to change it.
4626                  */
4627                 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4628                          (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4629                         return 1;
4630                 vmcs_writel(CR0_READ_SHADOW, val);
4631                 return 0;
4632         } else
4633                 return kvm_set_cr0(vcpu, val);
4634 }
4635
4636 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4637 {
4638         if (is_guest_mode(vcpu)) {
4639                 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4640                          (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4641                         return 1;
4642                 vmcs_writel(CR4_READ_SHADOW, val);
4643                 return 0;
4644         } else
4645                 return kvm_set_cr4(vcpu, val);
4646 }
4647
4648 /* called to set cr0 as approriate for clts instruction exit. */
4649 static void handle_clts(struct kvm_vcpu *vcpu)
4650 {
4651         if (is_guest_mode(vcpu)) {
4652                 /*
4653                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4654                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4655                  * just pretend it's off (also in arch.cr0 for fpu_activate).
4656                  */
4657                 vmcs_writel(CR0_READ_SHADOW,
4658                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4659                 vcpu->arch.cr0 &= ~X86_CR0_TS;
4660         } else
4661                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4662 }
4663
4664 static int handle_cr(struct kvm_vcpu *vcpu)
4665 {
4666         unsigned long exit_qualification, val;
4667         int cr;
4668         int reg;
4669         int err;
4670
4671         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4672         cr = exit_qualification & 15;
4673         reg = (exit_qualification >> 8) & 15;
4674         switch ((exit_qualification >> 4) & 3) {
4675         case 0: /* mov to cr */
4676                 val = kvm_register_read(vcpu, reg);
4677                 trace_kvm_cr_write(cr, val);
4678                 switch (cr) {
4679                 case 0:
4680                         err = handle_set_cr0(vcpu, val);
4681                         kvm_complete_insn_gp(vcpu, err);
4682                         return 1;
4683                 case 3:
4684                         err = kvm_set_cr3(vcpu, val);
4685                         kvm_complete_insn_gp(vcpu, err);
4686                         return 1;
4687                 case 4:
4688                         err = handle_set_cr4(vcpu, val);
4689                         kvm_complete_insn_gp(vcpu, err);
4690                         return 1;
4691                 case 8: {
4692                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4693                                 u8 cr8 = kvm_register_read(vcpu, reg);
4694                                 err = kvm_set_cr8(vcpu, cr8);
4695                                 kvm_complete_insn_gp(vcpu, err);
4696                                 if (irqchip_in_kernel(vcpu->kvm))
4697                                         return 1;
4698                                 if (cr8_prev <= cr8)
4699                                         return 1;
4700                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4701                                 return 0;
4702                         }
4703                 }
4704                 break;
4705         case 2: /* clts */
4706                 handle_clts(vcpu);
4707                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4708                 skip_emulated_instruction(vcpu);
4709                 vmx_fpu_activate(vcpu);
4710                 return 1;
4711         case 1: /*mov from cr*/
4712                 switch (cr) {
4713                 case 3:
4714                         val = kvm_read_cr3(vcpu);
4715                         kvm_register_write(vcpu, reg, val);
4716                         trace_kvm_cr_read(cr, val);
4717                         skip_emulated_instruction(vcpu);
4718                         return 1;
4719                 case 8:
4720                         val = kvm_get_cr8(vcpu);
4721                         kvm_register_write(vcpu, reg, val);
4722                         trace_kvm_cr_read(cr, val);
4723                         skip_emulated_instruction(vcpu);
4724                         return 1;
4725                 }
4726                 break;
4727         case 3: /* lmsw */
4728                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4729                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4730                 kvm_lmsw(vcpu, val);
4731
4732                 skip_emulated_instruction(vcpu);
4733                 return 1;
4734         default:
4735                 break;
4736         }
4737         vcpu->run->exit_reason = 0;
4738         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4739                (int)(exit_qualification >> 4) & 3, cr);
4740         return 0;
4741 }
4742
4743 static int handle_dr(struct kvm_vcpu *vcpu)
4744 {
4745         unsigned long exit_qualification;
4746         int dr, reg;
4747
4748         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4749         if (!kvm_require_cpl(vcpu, 0))
4750                 return 1;
4751         dr = vmcs_readl(GUEST_DR7);
4752         if (dr & DR7_GD) {
4753                 /*
4754                  * As the vm-exit takes precedence over the debug trap, we
4755                  * need to emulate the latter, either for the host or the
4756                  * guest debugging itself.
4757                  */
4758                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4759                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4760                         vcpu->run->debug.arch.dr7 = dr;
4761                         vcpu->run->debug.arch.pc =
4762                                 vmcs_readl(GUEST_CS_BASE) +
4763                                 vmcs_readl(GUEST_RIP);
4764                         vcpu->run->debug.arch.exception = DB_VECTOR;
4765                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4766                         return 0;
4767                 } else {
4768                         vcpu->arch.dr7 &= ~DR7_GD;
4769                         vcpu->arch.dr6 |= DR6_BD;
4770                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4771                         kvm_queue_exception(vcpu, DB_VECTOR);
4772                         return 1;
4773                 }
4774         }
4775
4776         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4777         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4778         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4779         if (exit_qualification & TYPE_MOV_FROM_DR) {
4780                 unsigned long val;
4781                 if (!kvm_get_dr(vcpu, dr, &val))
4782                         kvm_register_write(vcpu, reg, val);
4783         } else
4784                 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
4785         skip_emulated_instruction(vcpu);
4786         return 1;
4787 }
4788
4789 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4790 {
4791         vmcs_writel(GUEST_DR7, val);
4792 }
4793
4794 static int handle_cpuid(struct kvm_vcpu *vcpu)
4795 {
4796         kvm_emulate_cpuid(vcpu);
4797         return 1;
4798 }
4799
4800 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4801 {
4802         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4803         u64 data;
4804
4805         if (vmx_get_msr(vcpu, ecx, &data)) {
4806                 trace_kvm_msr_read_ex(ecx);
4807                 kvm_inject_gp(vcpu, 0);
4808                 return 1;
4809         }
4810
4811         trace_kvm_msr_read(ecx, data);
4812
4813         /* FIXME: handling of bits 32:63 of rax, rdx */
4814         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4815         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
4816         skip_emulated_instruction(vcpu);
4817         return 1;
4818 }
4819
4820 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4821 {
4822         struct msr_data msr;
4823         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4824         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4825                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4826
4827         msr.data = data;
4828         msr.index = ecx;
4829         msr.host_initiated = false;
4830         if (vmx_set_msr(vcpu, &msr) != 0) {
4831                 trace_kvm_msr_write_ex(ecx, data);
4832                 kvm_inject_gp(vcpu, 0);
4833                 return 1;
4834         }
4835
4836         trace_kvm_msr_write(ecx, data);
4837         skip_emulated_instruction(vcpu);
4838         return 1;
4839 }
4840
4841 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4842 {
4843         kvm_make_request(KVM_REQ_EVENT, vcpu);
4844         return 1;
4845 }
4846
4847 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4848 {
4849         u32 cpu_based_vm_exec_control;
4850
4851         /* clear pending irq */
4852         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4853         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4854         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4855
4856         kvm_make_request(KVM_REQ_EVENT, vcpu);
4857
4858         ++vcpu->stat.irq_window_exits;
4859
4860         /*
4861          * If the user space waits to inject interrupts, exit as soon as
4862          * possible
4863          */
4864         if (!irqchip_in_kernel(vcpu->kvm) &&
4865             vcpu->run->request_interrupt_window &&
4866             !kvm_cpu_has_interrupt(vcpu)) {
4867                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
4868                 return 0;
4869         }
4870         return 1;
4871 }
4872
4873 static int handle_halt(struct kvm_vcpu *vcpu)
4874 {
4875         skip_emulated_instruction(vcpu);
4876         return kvm_emulate_halt(vcpu);
4877 }
4878
4879 static int handle_vmcall(struct kvm_vcpu *vcpu)
4880 {
4881         skip_emulated_instruction(vcpu);
4882         kvm_emulate_hypercall(vcpu);
4883         return 1;
4884 }
4885
4886 static int handle_invd(struct kvm_vcpu *vcpu)
4887 {
4888         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4889 }
4890
4891 static int handle_invlpg(struct kvm_vcpu *vcpu)
4892 {
4893         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4894
4895         kvm_mmu_invlpg(vcpu, exit_qualification);
4896         skip_emulated_instruction(vcpu);
4897         return 1;
4898 }
4899
4900 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4901 {
4902         int err;
4903
4904         err = kvm_rdpmc(vcpu);
4905         kvm_complete_insn_gp(vcpu, err);
4906
4907         return 1;
4908 }
4909
4910 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4911 {
4912         skip_emulated_instruction(vcpu);
4913         kvm_emulate_wbinvd(vcpu);
4914         return 1;
4915 }
4916
4917 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4918 {
4919         u64 new_bv = kvm_read_edx_eax(vcpu);
4920         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4921
4922         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4923                 skip_emulated_instruction(vcpu);
4924         return 1;
4925 }
4926
4927 static int handle_apic_access(struct kvm_vcpu *vcpu)
4928 {
4929         if (likely(fasteoi)) {
4930                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4931                 int access_type, offset;
4932
4933                 access_type = exit_qualification & APIC_ACCESS_TYPE;
4934                 offset = exit_qualification & APIC_ACCESS_OFFSET;
4935                 /*
4936                  * Sane guest uses MOV to write EOI, with written value
4937                  * not cared. So make a short-circuit here by avoiding
4938                  * heavy instruction emulation.
4939                  */
4940                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4941                     (offset == APIC_EOI)) {
4942                         kvm_lapic_set_eoi(vcpu);
4943                         skip_emulated_instruction(vcpu);
4944                         return 1;
4945                 }
4946         }
4947         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4948 }
4949
4950 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
4951 {
4952         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4953         int vector = exit_qualification & 0xff;
4954
4955         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
4956         kvm_apic_set_eoi_accelerated(vcpu, vector);
4957         return 1;
4958 }
4959
4960 static int handle_apic_write(struct kvm_vcpu *vcpu)
4961 {
4962         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4963         u32 offset = exit_qualification & 0xfff;
4964
4965         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
4966         kvm_apic_write_nodecode(vcpu, offset);
4967         return 1;
4968 }
4969
4970 static int handle_task_switch(struct kvm_vcpu *vcpu)
4971 {
4972         struct vcpu_vmx *vmx = to_vmx(vcpu);
4973         unsigned long exit_qualification;
4974         bool has_error_code = false;
4975         u32 error_code = 0;
4976         u16 tss_selector;
4977         int reason, type, idt_v, idt_index;
4978
4979         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4980         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
4981         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
4982
4983         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4984
4985         reason = (u32)exit_qualification >> 30;
4986         if (reason == TASK_SWITCH_GATE && idt_v) {
4987                 switch (type) {
4988                 case INTR_TYPE_NMI_INTR:
4989                         vcpu->arch.nmi_injected = false;
4990                         vmx_set_nmi_mask(vcpu, true);
4991                         break;
4992                 case INTR_TYPE_EXT_INTR:
4993                 case INTR_TYPE_SOFT_INTR:
4994                         kvm_clear_interrupt_queue(vcpu);
4995                         break;
4996                 case INTR_TYPE_HARD_EXCEPTION:
4997                         if (vmx->idt_vectoring_info &
4998                             VECTORING_INFO_DELIVER_CODE_MASK) {
4999                                 has_error_code = true;
5000                                 error_code =
5001                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5002                         }
5003                         /* fall through */
5004                 case INTR_TYPE_SOFT_EXCEPTION:
5005                         kvm_clear_exception_queue(vcpu);
5006                         break;
5007                 default:
5008                         break;
5009                 }
5010         }
5011         tss_selector = exit_qualification;
5012
5013         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5014                        type != INTR_TYPE_EXT_INTR &&
5015                        type != INTR_TYPE_NMI_INTR))
5016                 skip_emulated_instruction(vcpu);
5017
5018         if (kvm_task_switch(vcpu, tss_selector,
5019                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5020                             has_error_code, error_code) == EMULATE_FAIL) {
5021                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5022                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5023                 vcpu->run->internal.ndata = 0;
5024                 return 0;
5025         }
5026
5027         /* clear all local breakpoint enable flags */
5028         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
5029
5030         /*
5031          * TODO: What about debug traps on tss switch?
5032          *       Are we supposed to inject them and update dr6?
5033          */
5034
5035         return 1;
5036 }
5037
5038 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5039 {
5040         unsigned long exit_qualification;
5041         gpa_t gpa;
5042         u32 error_code;
5043         int gla_validity;
5044
5045         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5046
5047         gla_validity = (exit_qualification >> 7) & 0x3;
5048         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5049                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5050                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5051                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5052                         vmcs_readl(GUEST_LINEAR_ADDRESS));
5053                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5054                         (long unsigned int)exit_qualification);
5055                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5056                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5057                 return 0;
5058         }
5059
5060         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5061         trace_kvm_page_fault(gpa, exit_qualification);
5062
5063         /* It is a write fault? */
5064         error_code = exit_qualification & (1U << 1);
5065         /* ept page table is present? */
5066         error_code |= (exit_qualification >> 3) & 0x1;
5067
5068         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5069 }
5070
5071 static u64 ept_rsvd_mask(u64 spte, int level)
5072 {
5073         int i;
5074         u64 mask = 0;
5075
5076         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5077                 mask |= (1ULL << i);
5078
5079         if (level > 2)
5080                 /* bits 7:3 reserved */
5081                 mask |= 0xf8;
5082         else if (level == 2) {
5083                 if (spte & (1ULL << 7))
5084                         /* 2MB ref, bits 20:12 reserved */
5085                         mask |= 0x1ff000;
5086                 else
5087                         /* bits 6:3 reserved */
5088                         mask |= 0x78;
5089         }
5090
5091         return mask;
5092 }
5093
5094 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5095                                        int level)
5096 {
5097         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5098
5099         /* 010b (write-only) */
5100         WARN_ON((spte & 0x7) == 0x2);
5101
5102         /* 110b (write/execute) */
5103         WARN_ON((spte & 0x7) == 0x6);
5104
5105         /* 100b (execute-only) and value not supported by logical processor */
5106         if (!cpu_has_vmx_ept_execute_only())
5107                 WARN_ON((spte & 0x7) == 0x4);
5108
5109         /* not 000b */
5110         if ((spte & 0x7)) {
5111                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5112
5113                 if (rsvd_bits != 0) {
5114                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5115                                          __func__, rsvd_bits);
5116                         WARN_ON(1);
5117                 }
5118
5119                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5120                         u64 ept_mem_type = (spte & 0x38) >> 3;
5121
5122                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
5123                             ept_mem_type == 7) {
5124                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5125                                                 __func__, ept_mem_type);
5126                                 WARN_ON(1);
5127                         }
5128                 }
5129         }
5130 }
5131
5132 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5133 {
5134         u64 sptes[4];
5135         int nr_sptes, i, ret;
5136         gpa_t gpa;
5137
5138         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5139
5140         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5141         if (likely(ret == 1))
5142                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5143                                               EMULATE_DONE;
5144         if (unlikely(!ret))
5145                 return 1;
5146
5147         /* It is the real ept misconfig */
5148         printk(KERN_ERR "EPT: Misconfiguration.\n");
5149         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5150
5151         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5152
5153         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5154                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5155
5156         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5157         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5158
5159         return 0;
5160 }
5161
5162 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5163 {
5164         u32 cpu_based_vm_exec_control;
5165
5166         /* clear pending NMI */
5167         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5168         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5169         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5170         ++vcpu->stat.nmi_window_exits;
5171         kvm_make_request(KVM_REQ_EVENT, vcpu);
5172
5173         return 1;
5174 }
5175
5176 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5177 {
5178         struct vcpu_vmx *vmx = to_vmx(vcpu);
5179         enum emulation_result err = EMULATE_DONE;
5180         int ret = 1;
5181         u32 cpu_exec_ctrl;
5182         bool intr_window_requested;
5183         unsigned count = 130;
5184
5185         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5186         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5187
5188         while (!guest_state_valid(vcpu) && count-- != 0) {
5189                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5190                         return handle_interrupt_window(&vmx->vcpu);
5191
5192                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5193                         return 1;
5194
5195                 err = emulate_instruction(vcpu, 0);
5196
5197                 if (err == EMULATE_DO_MMIO) {
5198                         ret = 0;
5199                         goto out;
5200                 }
5201
5202                 if (err != EMULATE_DONE) {
5203                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5204                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5205                         vcpu->run->internal.ndata = 0;
5206                         return 0;
5207                 }
5208
5209                 if (signal_pending(current))
5210                         goto out;
5211                 if (need_resched())
5212                         schedule();
5213         }
5214
5215         vmx->emulation_required = emulation_required(vcpu);
5216 out:
5217         return ret;
5218 }
5219
5220 /*
5221  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5222  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5223  */
5224 static int handle_pause(struct kvm_vcpu *vcpu)
5225 {
5226         skip_emulated_instruction(vcpu);
5227         kvm_vcpu_on_spin(vcpu);
5228
5229         return 1;
5230 }
5231
5232 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5233 {
5234         kvm_queue_exception(vcpu, UD_VECTOR);
5235         return 1;
5236 }
5237
5238 /*
5239  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5240  * We could reuse a single VMCS for all the L2 guests, but we also want the
5241  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5242  * allows keeping them loaded on the processor, and in the future will allow
5243  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5244  * every entry if they never change.
5245  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5246  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5247  *
5248  * The following functions allocate and free a vmcs02 in this pool.
5249  */
5250
5251 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5252 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5253 {
5254         struct vmcs02_list *item;
5255         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5256                 if (item->vmptr == vmx->nested.current_vmptr) {
5257                         list_move(&item->list, &vmx->nested.vmcs02_pool);
5258                         return &item->vmcs02;
5259                 }
5260
5261         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5262                 /* Recycle the least recently used VMCS. */
5263                 item = list_entry(vmx->nested.vmcs02_pool.prev,
5264                         struct vmcs02_list, list);
5265                 item->vmptr = vmx->nested.current_vmptr;
5266                 list_move(&item->list, &vmx->nested.vmcs02_pool);
5267                 return &item->vmcs02;
5268         }
5269
5270         /* Create a new VMCS */
5271         item = (struct vmcs02_list *)
5272                 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5273         if (!item)
5274                 return NULL;
5275         item->vmcs02.vmcs = alloc_vmcs();
5276         if (!item->vmcs02.vmcs) {
5277                 kfree(item);
5278                 return NULL;
5279         }
5280         loaded_vmcs_init(&item->vmcs02);
5281         item->vmptr = vmx->nested.current_vmptr;
5282         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5283         vmx->nested.vmcs02_num++;
5284         return &item->vmcs02;
5285 }
5286
5287 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5288 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5289 {
5290         struct vmcs02_list *item;
5291         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5292                 if (item->vmptr == vmptr) {
5293                         free_loaded_vmcs(&item->vmcs02);
5294                         list_del(&item->list);
5295                         kfree(item);
5296                         vmx->nested.vmcs02_num--;
5297                         return;
5298                 }
5299 }
5300
5301 /*
5302  * Free all VMCSs saved for this vcpu, except the one pointed by
5303  * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5304  * currently used, if running L2), and vmcs01 when running L2.
5305  */
5306 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5307 {
5308         struct vmcs02_list *item, *n;
5309         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5310                 if (vmx->loaded_vmcs != &item->vmcs02)
5311                         free_loaded_vmcs(&item->vmcs02);
5312                 list_del(&item->list);
5313                 kfree(item);
5314         }
5315         vmx->nested.vmcs02_num = 0;
5316
5317         if (vmx->loaded_vmcs != &vmx->vmcs01)
5318                 free_loaded_vmcs(&vmx->vmcs01);
5319 }
5320
5321 /*
5322  * Emulate the VMXON instruction.
5323  * Currently, we just remember that VMX is active, and do not save or even
5324  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5325  * do not currently need to store anything in that guest-allocated memory
5326  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5327  * argument is different from the VMXON pointer (which the spec says they do).
5328  */
5329 static int handle_vmon(struct kvm_vcpu *vcpu)
5330 {
5331         struct kvm_segment cs;
5332         struct vcpu_vmx *vmx = to_vmx(vcpu);
5333
5334         /* The Intel VMX Instruction Reference lists a bunch of bits that
5335          * are prerequisite to running VMXON, most notably cr4.VMXE must be
5336          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5337          * Otherwise, we should fail with #UD. We test these now:
5338          */
5339         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5340             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5341             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5342                 kvm_queue_exception(vcpu, UD_VECTOR);
5343                 return 1;
5344         }
5345
5346         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5347         if (is_long_mode(vcpu) && !cs.l) {
5348                 kvm_queue_exception(vcpu, UD_VECTOR);
5349                 return 1;
5350         }
5351
5352         if (vmx_get_cpl(vcpu)) {
5353                 kvm_inject_gp(vcpu, 0);
5354                 return 1;
5355         }
5356
5357         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5358         vmx->nested.vmcs02_num = 0;
5359
5360         vmx->nested.vmxon = true;
5361
5362         skip_emulated_instruction(vcpu);
5363         return 1;
5364 }
5365
5366 /*
5367  * Intel's VMX Instruction Reference specifies a common set of prerequisites
5368  * for running VMX instructions (except VMXON, whose prerequisites are
5369  * slightly different). It also specifies what exception to inject otherwise.
5370  */
5371 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5372 {
5373         struct kvm_segment cs;
5374         struct vcpu_vmx *vmx = to_vmx(vcpu);
5375
5376         if (!vmx->nested.vmxon) {
5377                 kvm_queue_exception(vcpu, UD_VECTOR);
5378                 return 0;
5379         }
5380
5381         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5382         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5383             (is_long_mode(vcpu) && !cs.l)) {
5384                 kvm_queue_exception(vcpu, UD_VECTOR);
5385                 return 0;
5386         }
5387
5388         if (vmx_get_cpl(vcpu)) {
5389                 kvm_inject_gp(vcpu, 0);
5390                 return 0;
5391         }
5392
5393         return 1;
5394 }
5395
5396 /*
5397  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5398  * just stops using VMX.
5399  */
5400 static void free_nested(struct vcpu_vmx *vmx)
5401 {
5402         if (!vmx->nested.vmxon)
5403                 return;
5404         vmx->nested.vmxon = false;
5405         if (vmx->nested.current_vmptr != -1ull) {
5406                 kunmap(vmx->nested.current_vmcs12_page);
5407                 nested_release_page(vmx->nested.current_vmcs12_page);
5408                 vmx->nested.current_vmptr = -1ull;
5409                 vmx->nested.current_vmcs12 = NULL;
5410         }
5411         /* Unpin physical memory we referred to in current vmcs02 */
5412         if (vmx->nested.apic_access_page) {
5413                 nested_release_page(vmx->nested.apic_access_page);
5414                 vmx->nested.apic_access_page = 0;
5415         }
5416
5417         nested_free_all_saved_vmcss(vmx);
5418 }
5419
5420 /* Emulate the VMXOFF instruction */
5421 static int handle_vmoff(struct kvm_vcpu *vcpu)
5422 {
5423         if (!nested_vmx_check_permission(vcpu))
5424                 return 1;
5425         free_nested(to_vmx(vcpu));
5426         skip_emulated_instruction(vcpu);
5427         return 1;
5428 }
5429
5430 /*
5431  * Decode the memory-address operand of a vmx instruction, as recorded on an
5432  * exit caused by such an instruction (run by a guest hypervisor).
5433  * On success, returns 0. When the operand is invalid, returns 1 and throws
5434  * #UD or #GP.
5435  */
5436 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5437                                  unsigned long exit_qualification,
5438                                  u32 vmx_instruction_info, gva_t *ret)
5439 {
5440         /*
5441          * According to Vol. 3B, "Information for VM Exits Due to Instruction
5442          * Execution", on an exit, vmx_instruction_info holds most of the
5443          * addressing components of the operand. Only the displacement part
5444          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5445          * For how an actual address is calculated from all these components,
5446          * refer to Vol. 1, "Operand Addressing".
5447          */
5448         int  scaling = vmx_instruction_info & 3;
5449         int  addr_size = (vmx_instruction_info >> 7) & 7;
5450         bool is_reg = vmx_instruction_info & (1u << 10);
5451         int  seg_reg = (vmx_instruction_info >> 15) & 7;
5452         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5453         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5454         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5455         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5456
5457         if (is_reg) {
5458                 kvm_queue_exception(vcpu, UD_VECTOR);
5459                 return 1;
5460         }
5461
5462         /* Addr = segment_base + offset */
5463         /* offset = base + [index * scale] + displacement */
5464         *ret = vmx_get_segment_base(vcpu, seg_reg);
5465         if (base_is_valid)
5466                 *ret += kvm_register_read(vcpu, base_reg);
5467         if (index_is_valid)
5468                 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5469         *ret += exit_qualification; /* holds the displacement */
5470
5471         if (addr_size == 1) /* 32 bit */
5472                 *ret &= 0xffffffff;
5473
5474         /*
5475          * TODO: throw #GP (and return 1) in various cases that the VM*
5476          * instructions require it - e.g., offset beyond segment limit,
5477          * unusable or unreadable/unwritable segment, non-canonical 64-bit
5478          * address, and so on. Currently these are not checked.
5479          */
5480         return 0;
5481 }
5482
5483 /*
5484  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5485  * set the success or error code of an emulated VMX instruction, as specified
5486  * by Vol 2B, VMX Instruction Reference, "Conventions".
5487  */
5488 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5489 {
5490         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5491                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5492                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5493 }
5494
5495 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5496 {
5497         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5498                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5499                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5500                         | X86_EFLAGS_CF);
5501 }
5502
5503 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5504                                         u32 vm_instruction_error)
5505 {
5506         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5507                 /*
5508                  * failValid writes the error number to the current VMCS, which
5509                  * can't be done there isn't a current VMCS.
5510                  */
5511                 nested_vmx_failInvalid(vcpu);
5512                 return;
5513         }
5514         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5515                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5516                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5517                         | X86_EFLAGS_ZF);
5518         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5519 }
5520
5521 /* Emulate the VMCLEAR instruction */
5522 static int handle_vmclear(struct kvm_vcpu *vcpu)
5523 {
5524         struct vcpu_vmx *vmx = to_vmx(vcpu);
5525         gva_t gva;
5526         gpa_t vmptr;
5527         struct vmcs12 *vmcs12;
5528         struct page *page;
5529         struct x86_exception e;
5530
5531         if (!nested_vmx_check_permission(vcpu))
5532                 return 1;
5533
5534         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5535                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5536                 return 1;
5537
5538         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5539                                 sizeof(vmptr), &e)) {
5540                 kvm_inject_page_fault(vcpu, &e);
5541                 return 1;
5542         }
5543
5544         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5545                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5546                 skip_emulated_instruction(vcpu);
5547                 return 1;
5548         }
5549
5550         if (vmptr == vmx->nested.current_vmptr) {
5551                 kunmap(vmx->nested.current_vmcs12_page);
5552                 nested_release_page(vmx->nested.current_vmcs12_page);
5553                 vmx->nested.current_vmptr = -1ull;
5554                 vmx->nested.current_vmcs12 = NULL;
5555         }
5556
5557         page = nested_get_page(vcpu, vmptr);
5558         if (page == NULL) {
5559                 /*
5560                  * For accurate processor emulation, VMCLEAR beyond available
5561                  * physical memory should do nothing at all. However, it is
5562                  * possible that a nested vmx bug, not a guest hypervisor bug,
5563                  * resulted in this case, so let's shut down before doing any
5564                  * more damage:
5565                  */
5566                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5567                 return 1;
5568         }
5569         vmcs12 = kmap(page);
5570         vmcs12->launch_state = 0;
5571         kunmap(page);
5572         nested_release_page(page);
5573
5574         nested_free_vmcs02(vmx, vmptr);
5575
5576         skip_emulated_instruction(vcpu);
5577         nested_vmx_succeed(vcpu);
5578         return 1;
5579 }
5580
5581 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5582
5583 /* Emulate the VMLAUNCH instruction */
5584 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5585 {
5586         return nested_vmx_run(vcpu, true);
5587 }
5588
5589 /* Emulate the VMRESUME instruction */
5590 static int handle_vmresume(struct kvm_vcpu *vcpu)
5591 {
5592
5593         return nested_vmx_run(vcpu, false);
5594 }
5595
5596 enum vmcs_field_type {
5597         VMCS_FIELD_TYPE_U16 = 0,
5598         VMCS_FIELD_TYPE_U64 = 1,
5599         VMCS_FIELD_TYPE_U32 = 2,
5600         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5601 };
5602
5603 static inline int vmcs_field_type(unsigned long field)
5604 {
5605         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
5606                 return VMCS_FIELD_TYPE_U32;
5607         return (field >> 13) & 0x3 ;
5608 }
5609
5610 static inline int vmcs_field_readonly(unsigned long field)
5611 {
5612         return (((field >> 10) & 0x3) == 1);
5613 }
5614
5615 /*
5616  * Read a vmcs12 field. Since these can have varying lengths and we return
5617  * one type, we chose the biggest type (u64) and zero-extend the return value
5618  * to that size. Note that the caller, handle_vmread, might need to use only
5619  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5620  * 64-bit fields are to be returned).
5621  */
5622 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5623                                         unsigned long field, u64 *ret)
5624 {
5625         short offset = vmcs_field_to_offset(field);
5626         char *p;
5627
5628         if (offset < 0)
5629                 return 0;
5630
5631         p = ((char *)(get_vmcs12(vcpu))) + offset;
5632
5633         switch (vmcs_field_type(field)) {
5634         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5635                 *ret = *((natural_width *)p);
5636                 return 1;
5637         case VMCS_FIELD_TYPE_U16:
5638                 *ret = *((u16 *)p);
5639                 return 1;
5640         case VMCS_FIELD_TYPE_U32:
5641                 *ret = *((u32 *)p);
5642                 return 1;
5643         case VMCS_FIELD_TYPE_U64:
5644                 *ret = *((u64 *)p);
5645                 return 1;
5646         default:
5647                 return 0; /* can never happen. */
5648         }
5649 }
5650
5651 /*
5652  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5653  * used before) all generate the same failure when it is missing.
5654  */
5655 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5656 {
5657         struct vcpu_vmx *vmx = to_vmx(vcpu);
5658         if (vmx->nested.current_vmptr == -1ull) {
5659                 nested_vmx_failInvalid(vcpu);
5660                 skip_emulated_instruction(vcpu);
5661                 return 0;
5662         }
5663         return 1;
5664 }
5665
5666 static int handle_vmread(struct kvm_vcpu *vcpu)
5667 {
5668         unsigned long field;
5669         u64 field_value;
5670         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5671         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5672         gva_t gva = 0;
5673
5674         if (!nested_vmx_check_permission(vcpu) ||
5675             !nested_vmx_check_vmcs12(vcpu))
5676                 return 1;
5677
5678         /* Decode instruction info and find the field to read */
5679         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5680         /* Read the field, zero-extended to a u64 field_value */
5681         if (!vmcs12_read_any(vcpu, field, &field_value)) {
5682                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5683                 skip_emulated_instruction(vcpu);
5684                 return 1;
5685         }
5686         /*
5687          * Now copy part of this value to register or memory, as requested.
5688          * Note that the number of bits actually copied is 32 or 64 depending
5689          * on the guest's mode (32 or 64 bit), not on the given field's length.
5690          */
5691         if (vmx_instruction_info & (1u << 10)) {
5692                 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5693                         field_value);
5694         } else {
5695                 if (get_vmx_mem_address(vcpu, exit_qualification,
5696                                 vmx_instruction_info, &gva))
5697                         return 1;
5698                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5699                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5700                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5701         }
5702
5703         nested_vmx_succeed(vcpu);
5704         skip_emulated_instruction(vcpu);
5705         return 1;
5706 }
5707
5708
5709 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5710 {
5711         unsigned long field;
5712         gva_t gva;
5713         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5714         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5715         char *p;
5716         short offset;
5717         /* The value to write might be 32 or 64 bits, depending on L1's long
5718          * mode, and eventually we need to write that into a field of several
5719          * possible lengths. The code below first zero-extends the value to 64
5720          * bit (field_value), and then copies only the approriate number of
5721          * bits into the vmcs12 field.
5722          */
5723         u64 field_value = 0;
5724         struct x86_exception e;
5725
5726         if (!nested_vmx_check_permission(vcpu) ||
5727             !nested_vmx_check_vmcs12(vcpu))
5728                 return 1;
5729
5730         if (vmx_instruction_info & (1u << 10))
5731                 field_value = kvm_register_read(vcpu,
5732                         (((vmx_instruction_info) >> 3) & 0xf));
5733         else {
5734                 if (get_vmx_mem_address(vcpu, exit_qualification,
5735                                 vmx_instruction_info, &gva))
5736                         return 1;
5737                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5738                            &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5739                         kvm_inject_page_fault(vcpu, &e);
5740                         return 1;
5741                 }
5742         }
5743
5744
5745         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5746         if (vmcs_field_readonly(field)) {
5747                 nested_vmx_failValid(vcpu,
5748                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5749                 skip_emulated_instruction(vcpu);
5750                 return 1;
5751         }
5752
5753         offset = vmcs_field_to_offset(field);
5754         if (offset < 0) {
5755                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5756                 skip_emulated_instruction(vcpu);
5757                 return 1;
5758         }
5759         p = ((char *) get_vmcs12(vcpu)) + offset;
5760
5761         switch (vmcs_field_type(field)) {
5762         case VMCS_FIELD_TYPE_U16:
5763                 *(u16 *)p = field_value;
5764                 break;
5765         case VMCS_FIELD_TYPE_U32:
5766                 *(u32 *)p = field_value;
5767                 break;
5768         case VMCS_FIELD_TYPE_U64:
5769                 *(u64 *)p = field_value;
5770                 break;
5771         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5772                 *(natural_width *)p = field_value;
5773                 break;
5774         default:
5775                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5776                 skip_emulated_instruction(vcpu);
5777                 return 1;
5778         }
5779
5780         nested_vmx_succeed(vcpu);
5781         skip_emulated_instruction(vcpu);
5782         return 1;
5783 }
5784
5785 /* Emulate the VMPTRLD instruction */
5786 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5787 {
5788         struct vcpu_vmx *vmx = to_vmx(vcpu);
5789         gva_t gva;
5790         gpa_t vmptr;
5791         struct x86_exception e;
5792
5793         if (!nested_vmx_check_permission(vcpu))
5794                 return 1;
5795
5796         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5797                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5798                 return 1;
5799
5800         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5801                                 sizeof(vmptr), &e)) {
5802                 kvm_inject_page_fault(vcpu, &e);
5803                 return 1;
5804         }
5805
5806         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5807                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5808                 skip_emulated_instruction(vcpu);
5809                 return 1;
5810         }
5811
5812         if (vmx->nested.current_vmptr != vmptr) {
5813                 struct vmcs12 *new_vmcs12;
5814                 struct page *page;
5815                 page = nested_get_page(vcpu, vmptr);
5816                 if (page == NULL) {
5817                         nested_vmx_failInvalid(vcpu);
5818                         skip_emulated_instruction(vcpu);
5819                         return 1;
5820                 }
5821                 new_vmcs12 = kmap(page);
5822                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5823                         kunmap(page);
5824                         nested_release_page_clean(page);
5825                         nested_vmx_failValid(vcpu,
5826                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5827                         skip_emulated_instruction(vcpu);
5828                         return 1;
5829                 }
5830                 if (vmx->nested.current_vmptr != -1ull) {
5831                         kunmap(vmx->nested.current_vmcs12_page);
5832                         nested_release_page(vmx->nested.current_vmcs12_page);
5833                 }
5834
5835                 vmx->nested.current_vmptr = vmptr;
5836                 vmx->nested.current_vmcs12 = new_vmcs12;
5837                 vmx->nested.current_vmcs12_page = page;
5838         }
5839
5840         nested_vmx_succeed(vcpu);
5841         skip_emulated_instruction(vcpu);
5842         return 1;
5843 }
5844
5845 /* Emulate the VMPTRST instruction */
5846 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5847 {
5848         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5849         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5850         gva_t vmcs_gva;
5851         struct x86_exception e;
5852
5853         if (!nested_vmx_check_permission(vcpu))
5854                 return 1;
5855
5856         if (get_vmx_mem_address(vcpu, exit_qualification,
5857                         vmx_instruction_info, &vmcs_gva))
5858                 return 1;
5859         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5860         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5861                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
5862                                  sizeof(u64), &e)) {
5863                 kvm_inject_page_fault(vcpu, &e);
5864                 return 1;
5865         }
5866         nested_vmx_succeed(vcpu);
5867         skip_emulated_instruction(vcpu);
5868         return 1;
5869 }
5870
5871 /*
5872  * The exit handlers return 1 if the exit was handled fully and guest execution
5873  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5874  * to be done to userspace and return 0.
5875  */
5876 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5877         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
5878         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5879         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5880         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5881         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5882         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5883         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5884         [EXIT_REASON_CPUID]                   = handle_cpuid,
5885         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
5886         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5887         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5888         [EXIT_REASON_HLT]                     = handle_halt,
5889         [EXIT_REASON_INVD]                    = handle_invd,
5890         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5891         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5892         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5893         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
5894         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
5895         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
5896         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
5897         [EXIT_REASON_VMREAD]                  = handle_vmread,
5898         [EXIT_REASON_VMRESUME]                = handle_vmresume,
5899         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
5900         [EXIT_REASON_VMOFF]                   = handle_vmoff,
5901         [EXIT_REASON_VMON]                    = handle_vmon,
5902         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5903         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5904         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5905         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5906         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5907         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5908         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5909         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5910         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5911         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5912         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5913         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
5914         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
5915 };
5916
5917 static const int kvm_vmx_max_exit_handlers =
5918         ARRAY_SIZE(kvm_vmx_exit_handlers);
5919
5920 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5921                                        struct vmcs12 *vmcs12)
5922 {
5923         unsigned long exit_qualification;
5924         gpa_t bitmap, last_bitmap;
5925         unsigned int port;
5926         int size;
5927         u8 b;
5928
5929         if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
5930                 return 1;
5931
5932         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5933                 return 0;
5934
5935         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5936
5937         port = exit_qualification >> 16;
5938         size = (exit_qualification & 7) + 1;
5939
5940         last_bitmap = (gpa_t)-1;
5941         b = -1;
5942
5943         while (size > 0) {
5944                 if (port < 0x8000)
5945                         bitmap = vmcs12->io_bitmap_a;
5946                 else if (port < 0x10000)
5947                         bitmap = vmcs12->io_bitmap_b;
5948                 else
5949                         return 1;
5950                 bitmap += (port & 0x7fff) / 8;
5951
5952                 if (last_bitmap != bitmap)
5953                         if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
5954                                 return 1;
5955                 if (b & (1 << (port & 7)))
5956                         return 1;
5957
5958                 port++;
5959                 size--;
5960                 last_bitmap = bitmap;
5961         }
5962
5963         return 0;
5964 }
5965
5966 /*
5967  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5968  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5969  * disinterest in the current event (read or write a specific MSR) by using an
5970  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5971  */
5972 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5973         struct vmcs12 *vmcs12, u32 exit_reason)
5974 {
5975         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5976         gpa_t bitmap;
5977
5978         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5979                 return 1;
5980
5981         /*
5982          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5983          * for the four combinations of read/write and low/high MSR numbers.
5984          * First we need to figure out which of the four to use:
5985          */
5986         bitmap = vmcs12->msr_bitmap;
5987         if (exit_reason == EXIT_REASON_MSR_WRITE)
5988                 bitmap += 2048;
5989         if (msr_index >= 0xc0000000) {
5990                 msr_index -= 0xc0000000;
5991                 bitmap += 1024;
5992         }
5993
5994         /* Then read the msr_index'th bit from this bitmap: */
5995         if (msr_index < 1024*8) {
5996                 unsigned char b;
5997                 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
5998                         return 1;
5999                 return 1 & (b >> (msr_index & 7));
6000         } else
6001                 return 1; /* let L1 handle the wrong parameter */
6002 }
6003
6004 /*
6005  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6006  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6007  * intercept (via guest_host_mask etc.) the current event.
6008  */
6009 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6010         struct vmcs12 *vmcs12)
6011 {
6012         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6013         int cr = exit_qualification & 15;
6014         int reg = (exit_qualification >> 8) & 15;
6015         unsigned long val = kvm_register_read(vcpu, reg);
6016
6017         switch ((exit_qualification >> 4) & 3) {
6018         case 0: /* mov to cr */
6019                 switch (cr) {
6020                 case 0:
6021                         if (vmcs12->cr0_guest_host_mask &
6022                             (val ^ vmcs12->cr0_read_shadow))
6023                                 return 1;
6024                         break;
6025                 case 3:
6026                         if ((vmcs12->cr3_target_count >= 1 &&
6027                                         vmcs12->cr3_target_value0 == val) ||
6028                                 (vmcs12->cr3_target_count >= 2 &&
6029                                         vmcs12->cr3_target_value1 == val) ||
6030                                 (vmcs12->cr3_target_count >= 3 &&
6031                                         vmcs12->cr3_target_value2 == val) ||
6032                                 (vmcs12->cr3_target_count >= 4 &&
6033                                         vmcs12->cr3_target_value3 == val))
6034                                 return 0;
6035                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6036                                 return 1;
6037                         break;
6038                 case 4:
6039                         if (vmcs12->cr4_guest_host_mask &
6040                             (vmcs12->cr4_read_shadow ^ val))
6041                                 return 1;
6042                         break;
6043                 case 8:
6044                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6045                                 return 1;
6046                         break;
6047                 }
6048                 break;
6049         case 2: /* clts */
6050                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6051                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
6052                         return 1;
6053                 break;
6054         case 1: /* mov from cr */
6055                 switch (cr) {
6056                 case 3:
6057                         if (vmcs12->cpu_based_vm_exec_control &
6058                             CPU_BASED_CR3_STORE_EXITING)
6059                                 return 1;
6060                         break;
6061                 case 8:
6062                         if (vmcs12->cpu_based_vm_exec_control &
6063                             CPU_BASED_CR8_STORE_EXITING)
6064                                 return 1;
6065                         break;
6066                 }
6067                 break;
6068         case 3: /* lmsw */
6069                 /*
6070                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6071                  * cr0. Other attempted changes are ignored, with no exit.
6072                  */
6073                 if (vmcs12->cr0_guest_host_mask & 0xe &
6074                     (val ^ vmcs12->cr0_read_shadow))
6075                         return 1;
6076                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6077                     !(vmcs12->cr0_read_shadow & 0x1) &&
6078                     (val & 0x1))
6079                         return 1;
6080                 break;
6081         }
6082         return 0;
6083 }
6084
6085 /*
6086  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6087  * should handle it ourselves in L0 (and then continue L2). Only call this
6088  * when in is_guest_mode (L2).
6089  */
6090 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6091 {
6092         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6093         struct vcpu_vmx *vmx = to_vmx(vcpu);
6094         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6095         u32 exit_reason = vmx->exit_reason;
6096
6097         if (vmx->nested.nested_run_pending)
6098                 return 0;
6099
6100         if (unlikely(vmx->fail)) {
6101                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6102                                     vmcs_read32(VM_INSTRUCTION_ERROR));
6103                 return 1;
6104         }
6105
6106         switch (exit_reason) {
6107         case EXIT_REASON_EXCEPTION_NMI:
6108                 if (!is_exception(intr_info))
6109                         return 0;
6110                 else if (is_page_fault(intr_info))
6111                         return enable_ept;
6112                 return vmcs12->exception_bitmap &
6113                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6114         case EXIT_REASON_EXTERNAL_INTERRUPT:
6115                 return 0;
6116         case EXIT_REASON_TRIPLE_FAULT:
6117                 return 1;
6118         case EXIT_REASON_PENDING_INTERRUPT:
6119         case EXIT_REASON_NMI_WINDOW:
6120                 /*
6121                  * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
6122                  * (aka Interrupt Window Exiting) only when L1 turned it on,
6123                  * so if we got a PENDING_INTERRUPT exit, this must be for L1.
6124                  * Same for NMI Window Exiting.
6125                  */
6126                 return 1;
6127         case EXIT_REASON_TASK_SWITCH:
6128                 return 1;
6129         case EXIT_REASON_CPUID:
6130                 return 1;
6131         case EXIT_REASON_HLT:
6132                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6133         case EXIT_REASON_INVD:
6134                 return 1;
6135         case EXIT_REASON_INVLPG:
6136                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6137         case EXIT_REASON_RDPMC:
6138                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6139         case EXIT_REASON_RDTSC:
6140                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6141         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6142         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6143         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6144         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6145         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6146                 /*
6147                  * VMX instructions trap unconditionally. This allows L1 to
6148                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
6149                  */
6150                 return 1;
6151         case EXIT_REASON_CR_ACCESS:
6152                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6153         case EXIT_REASON_DR_ACCESS:
6154                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6155         case EXIT_REASON_IO_INSTRUCTION:
6156                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6157         case EXIT_REASON_MSR_READ:
6158         case EXIT_REASON_MSR_WRITE:
6159                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6160         case EXIT_REASON_INVALID_STATE:
6161                 return 1;
6162         case EXIT_REASON_MWAIT_INSTRUCTION:
6163                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6164         case EXIT_REASON_MONITOR_INSTRUCTION:
6165                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6166         case EXIT_REASON_PAUSE_INSTRUCTION:
6167                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6168                         nested_cpu_has2(vmcs12,
6169                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6170         case EXIT_REASON_MCE_DURING_VMENTRY:
6171                 return 0;
6172         case EXIT_REASON_TPR_BELOW_THRESHOLD:
6173                 return 1;
6174         case EXIT_REASON_APIC_ACCESS:
6175                 return nested_cpu_has2(vmcs12,
6176                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6177         case EXIT_REASON_EPT_VIOLATION:
6178         case EXIT_REASON_EPT_MISCONFIG:
6179                 return 0;
6180         case EXIT_REASON_WBINVD:
6181                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6182         case EXIT_REASON_XSETBV:
6183                 return 1;
6184         default:
6185                 return 1;
6186         }
6187 }
6188
6189 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6190 {
6191         *info1 = vmcs_readl(EXIT_QUALIFICATION);
6192         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6193 }
6194
6195 /*
6196  * The guest has exited.  See if we can fix it or if we need userspace
6197  * assistance.
6198  */
6199 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6200 {
6201         struct vcpu_vmx *vmx = to_vmx(vcpu);
6202         u32 exit_reason = vmx->exit_reason;
6203         u32 vectoring_info = vmx->idt_vectoring_info;
6204
6205         /* If guest state is invalid, start emulating */
6206         if (vmx->emulation_required)
6207                 return handle_invalid_guest_state(vcpu);
6208
6209         /*
6210          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
6211          * we did not inject a still-pending event to L1 now because of
6212          * nested_run_pending, we need to re-enable this bit.
6213          */
6214         if (vmx->nested.nested_run_pending)
6215                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6216
6217         if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
6218             exit_reason == EXIT_REASON_VMRESUME))
6219                 vmx->nested.nested_run_pending = 1;
6220         else
6221                 vmx->nested.nested_run_pending = 0;
6222
6223         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6224                 nested_vmx_vmexit(vcpu);
6225                 return 1;
6226         }
6227
6228         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6229                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6230                 vcpu->run->fail_entry.hardware_entry_failure_reason
6231                         = exit_reason;
6232                 return 0;
6233         }
6234
6235         if (unlikely(vmx->fail)) {
6236                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6237                 vcpu->run->fail_entry.hardware_entry_failure_reason
6238                         = vmcs_read32(VM_INSTRUCTION_ERROR);
6239                 return 0;
6240         }
6241
6242         /*
6243          * Note:
6244          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6245          * delivery event since it indicates guest is accessing MMIO.
6246          * The vm-exit can be triggered again after return to guest that
6247          * will cause infinite loop.
6248          */
6249         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6250                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6251                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
6252                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
6253                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6254                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6255                 vcpu->run->internal.ndata = 2;
6256                 vcpu->run->internal.data[0] = vectoring_info;
6257                 vcpu->run->internal.data[1] = exit_reason;
6258                 return 0;
6259         }
6260
6261         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6262             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6263                                         get_vmcs12(vcpu), vcpu)))) {
6264                 if (vmx_interrupt_allowed(vcpu)) {
6265                         vmx->soft_vnmi_blocked = 0;
6266                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
6267                            vcpu->arch.nmi_pending) {
6268                         /*
6269                          * This CPU don't support us in finding the end of an
6270                          * NMI-blocked window if the guest runs with IRQs
6271                          * disabled. So we pull the trigger after 1 s of
6272                          * futile waiting, but inform the user about this.
6273                          */
6274                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6275                                "state on VCPU %d after 1 s timeout\n",
6276                                __func__, vcpu->vcpu_id);
6277                         vmx->soft_vnmi_blocked = 0;
6278                 }
6279         }
6280
6281         if (exit_reason < kvm_vmx_max_exit_handlers
6282             && kvm_vmx_exit_handlers[exit_reason])
6283                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6284         else {
6285                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6286                 vcpu->run->hw.hardware_exit_reason = exit_reason;
6287         }
6288         return 0;
6289 }
6290
6291 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6292 {
6293         if (irr == -1 || tpr < irr) {
6294                 vmcs_write32(TPR_THRESHOLD, 0);
6295                 return;
6296         }
6297
6298         vmcs_write32(TPR_THRESHOLD, irr);
6299 }
6300
6301 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
6302 {
6303         u32 sec_exec_control;
6304
6305         /*
6306          * There is not point to enable virtualize x2apic without enable
6307          * apicv
6308          */
6309         if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6310                                 !vmx_vm_has_apicv(vcpu->kvm))
6311                 return;
6312
6313         if (!vm_need_tpr_shadow(vcpu->kvm))
6314                 return;
6315
6316         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6317
6318         if (set) {
6319                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6320                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6321         } else {
6322                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6323                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6324         }
6325         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
6326
6327         vmx_set_msr_bitmap(vcpu);
6328 }
6329
6330 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
6331 {
6332         u16 status;
6333         u8 old;
6334
6335         if (!vmx_vm_has_apicv(kvm))
6336                 return;
6337
6338         if (isr == -1)
6339                 isr = 0;
6340
6341         status = vmcs_read16(GUEST_INTR_STATUS);
6342         old = status >> 8;
6343         if (isr != old) {
6344                 status &= 0xff;
6345                 status |= isr << 8;
6346                 vmcs_write16(GUEST_INTR_STATUS, status);
6347         }
6348 }
6349
6350 static void vmx_set_rvi(int vector)
6351 {
6352         u16 status;
6353         u8 old;
6354
6355         status = vmcs_read16(GUEST_INTR_STATUS);
6356         old = (u8)status & 0xff;
6357         if ((u8)vector != old) {
6358                 status &= ~0xff;
6359                 status |= (u8)vector;
6360                 vmcs_write16(GUEST_INTR_STATUS, status);
6361         }
6362 }
6363
6364 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6365 {
6366         if (max_irr == -1)
6367                 return;
6368
6369         vmx_set_rvi(max_irr);
6370 }
6371
6372 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6373 {
6374         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6375         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6376         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6377         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6378 }
6379
6380 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6381 {
6382         u32 exit_intr_info;
6383
6384         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6385               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6386                 return;
6387
6388         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6389         exit_intr_info = vmx->exit_intr_info;
6390
6391         /* Handle machine checks before interrupts are enabled */
6392         if (is_machine_check(exit_intr_info))
6393                 kvm_machine_check();
6394
6395         /* We need to handle NMIs before interrupts are enabled */
6396         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
6397             (exit_intr_info & INTR_INFO_VALID_MASK)) {
6398                 kvm_before_handle_nmi(&vmx->vcpu);
6399                 asm("int $2");
6400                 kvm_after_handle_nmi(&vmx->vcpu);
6401         }
6402 }
6403
6404 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6405 {
6406         u32 exit_intr_info;
6407         bool unblock_nmi;
6408         u8 vector;
6409         bool idtv_info_valid;
6410
6411         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6412
6413         if (cpu_has_virtual_nmis()) {
6414                 if (vmx->nmi_known_unmasked)
6415                         return;
6416                 /*
6417                  * Can't use vmx->exit_intr_info since we're not sure what
6418                  * the exit reason is.
6419                  */
6420                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6421                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6422                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6423                 /*
6424                  * SDM 3: 27.7.1.2 (September 2008)
6425                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6426                  * a guest IRET fault.
6427                  * SDM 3: 23.2.2 (September 2008)
6428                  * Bit 12 is undefined in any of the following cases:
6429                  *  If the VM exit sets the valid bit in the IDT-vectoring
6430                  *   information field.
6431                  *  If the VM exit is due to a double fault.
6432                  */
6433                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6434                     vector != DF_VECTOR && !idtv_info_valid)
6435                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6436                                       GUEST_INTR_STATE_NMI);
6437                 else
6438                         vmx->nmi_known_unmasked =
6439                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6440                                   & GUEST_INTR_STATE_NMI);
6441         } else if (unlikely(vmx->soft_vnmi_blocked))
6442                 vmx->vnmi_blocked_time +=
6443                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
6444 }
6445
6446 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6447                                       u32 idt_vectoring_info,
6448                                       int instr_len_field,
6449                                       int error_code_field)
6450 {
6451         u8 vector;
6452         int type;
6453         bool idtv_info_valid;
6454
6455         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6456
6457         vcpu->arch.nmi_injected = false;
6458         kvm_clear_exception_queue(vcpu);
6459         kvm_clear_interrupt_queue(vcpu);
6460
6461         if (!idtv_info_valid)
6462                 return;
6463
6464         kvm_make_request(KVM_REQ_EVENT, vcpu);
6465
6466         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6467         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6468
6469         switch (type) {
6470         case INTR_TYPE_NMI_INTR:
6471                 vcpu->arch.nmi_injected = true;
6472                 /*
6473                  * SDM 3: 27.7.1.2 (September 2008)
6474                  * Clear bit "block by NMI" before VM entry if a NMI
6475                  * delivery faulted.
6476                  */
6477                 vmx_set_nmi_mask(vcpu, false);
6478                 break;
6479         case INTR_TYPE_SOFT_EXCEPTION:
6480                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6481                 /* fall through */
6482         case INTR_TYPE_HARD_EXCEPTION:
6483                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6484                         u32 err = vmcs_read32(error_code_field);
6485                         kvm_queue_exception_e(vcpu, vector, err);
6486                 } else
6487                         kvm_queue_exception(vcpu, vector);
6488                 break;
6489         case INTR_TYPE_SOFT_INTR:
6490                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6491                 /* fall through */
6492         case INTR_TYPE_EXT_INTR:
6493                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6494                 break;
6495         default:
6496                 break;
6497         }
6498 }
6499
6500 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6501 {
6502         if (is_guest_mode(&vmx->vcpu))
6503                 return;
6504         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6505                                   VM_EXIT_INSTRUCTION_LEN,
6506                                   IDT_VECTORING_ERROR_CODE);
6507 }
6508
6509 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6510 {
6511         if (is_guest_mode(vcpu))
6512                 return;
6513         __vmx_complete_interrupts(vcpu,
6514                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6515                                   VM_ENTRY_INSTRUCTION_LEN,
6516                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6517
6518         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6519 }
6520
6521 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6522 {
6523         int i, nr_msrs;
6524         struct perf_guest_switch_msr *msrs;
6525
6526         msrs = perf_guest_get_msrs(&nr_msrs);
6527
6528         if (!msrs)
6529                 return;
6530
6531         for (i = 0; i < nr_msrs; i++)
6532                 if (msrs[i].host == msrs[i].guest)
6533                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6534                 else
6535                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6536                                         msrs[i].host);
6537 }
6538
6539 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6540 {
6541         struct vcpu_vmx *vmx = to_vmx(vcpu);
6542         unsigned long debugctlmsr;
6543
6544         if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6545                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6546                 if (vmcs12->idt_vectoring_info_field &
6547                                 VECTORING_INFO_VALID_MASK) {
6548                         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6549                                 vmcs12->idt_vectoring_info_field);
6550                         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6551                                 vmcs12->vm_exit_instruction_len);
6552                         if (vmcs12->idt_vectoring_info_field &
6553                                         VECTORING_INFO_DELIVER_CODE_MASK)
6554                                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6555                                         vmcs12->idt_vectoring_error_code);
6556                 }
6557         }
6558
6559         /* Record the guest's net vcpu time for enforced NMI injections. */
6560         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6561                 vmx->entry_time = ktime_get();
6562
6563         /* Don't enter VMX if guest state is invalid, let the exit handler
6564            start emulation until we arrive back to a valid state */
6565         if (vmx->emulation_required)
6566                 return;
6567
6568         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6569                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6570         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6571                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6572
6573         /* When single-stepping over STI and MOV SS, we must clear the
6574          * corresponding interruptibility bits in the guest state. Otherwise
6575          * vmentry fails as it then expects bit 14 (BS) in pending debug
6576          * exceptions being set, but that's not correct for the guest debugging
6577          * case. */
6578         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6579                 vmx_set_interrupt_shadow(vcpu, 0);
6580
6581         atomic_switch_perf_msrs(vmx);
6582         debugctlmsr = get_debugctlmsr();
6583
6584         vmx->__launched = vmx->loaded_vmcs->launched;
6585         asm(
6586                 /* Store host registers */
6587                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
6588                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
6589                 "push %%" _ASM_CX " \n\t"
6590                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
6591                 "je 1f \n\t"
6592                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
6593                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
6594                 "1: \n\t"
6595                 /* Reload cr2 if changed */
6596                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
6597                 "mov %%cr2, %%" _ASM_DX " \n\t"
6598                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
6599                 "je 2f \n\t"
6600                 "mov %%" _ASM_AX", %%cr2 \n\t"
6601                 "2: \n\t"
6602                 /* Check if vmlaunch of vmresume is needed */
6603                 "cmpl $0, %c[launched](%0) \n\t"
6604                 /* Load guest registers.  Don't clobber flags. */
6605                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
6606                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
6607                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
6608                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
6609                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
6610                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
6611 #ifdef CONFIG_X86_64
6612                 "mov %c[r8](%0),  %%r8  \n\t"
6613                 "mov %c[r9](%0),  %%r9  \n\t"
6614                 "mov %c[r10](%0), %%r10 \n\t"
6615                 "mov %c[r11](%0), %%r11 \n\t"
6616                 "mov %c[r12](%0), %%r12 \n\t"
6617                 "mov %c[r13](%0), %%r13 \n\t"
6618                 "mov %c[r14](%0), %%r14 \n\t"
6619                 "mov %c[r15](%0), %%r15 \n\t"
6620 #endif
6621                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
6622
6623                 /* Enter guest mode */
6624                 "jne 1f \n\t"
6625                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
6626                 "jmp 2f \n\t"
6627                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
6628                 "2: "
6629                 /* Save guest registers, load host registers, keep flags */
6630                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
6631                 "pop %0 \n\t"
6632                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
6633                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
6634                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
6635                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
6636                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
6637                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
6638                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
6639 #ifdef CONFIG_X86_64
6640                 "mov %%r8,  %c[r8](%0) \n\t"
6641                 "mov %%r9,  %c[r9](%0) \n\t"
6642                 "mov %%r10, %c[r10](%0) \n\t"
6643                 "mov %%r11, %c[r11](%0) \n\t"
6644                 "mov %%r12, %c[r12](%0) \n\t"
6645                 "mov %%r13, %c[r13](%0) \n\t"
6646                 "mov %%r14, %c[r14](%0) \n\t"
6647                 "mov %%r15, %c[r15](%0) \n\t"
6648 #endif
6649                 "mov %%cr2, %%" _ASM_AX "   \n\t"
6650                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
6651
6652                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
6653                 "setbe %c[fail](%0) \n\t"
6654                 ".pushsection .rodata \n\t"
6655                 ".global vmx_return \n\t"
6656                 "vmx_return: " _ASM_PTR " 2b \n\t"
6657                 ".popsection"
6658               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
6659                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
6660                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
6661                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
6662                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6663                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6664                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6665                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6666                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6667                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6668                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
6669 #ifdef CONFIG_X86_64
6670                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6671                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6672                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6673                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6674                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6675                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6676                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6677                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6678 #endif
6679                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6680                 [wordsize]"i"(sizeof(ulong))
6681               : "cc", "memory"
6682 #ifdef CONFIG_X86_64
6683                 , "rax", "rbx", "rdi", "rsi"
6684                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6685 #else
6686                 , "eax", "ebx", "edi", "esi"
6687 #endif
6688               );
6689
6690         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6691         if (debugctlmsr)
6692                 update_debugctlmsr(debugctlmsr);
6693
6694 #ifndef CONFIG_X86_64
6695         /*
6696          * The sysexit path does not restore ds/es, so we must set them to
6697          * a reasonable value ourselves.
6698          *
6699          * We can't defer this to vmx_load_host_state() since that function
6700          * may be executed in interrupt context, which saves and restore segments
6701          * around it, nullifying its effect.
6702          */
6703         loadsegment(ds, __USER_DS);
6704         loadsegment(es, __USER_DS);
6705 #endif
6706
6707         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6708                                   | (1 << VCPU_EXREG_RFLAGS)
6709                                   | (1 << VCPU_EXREG_CPL)
6710                                   | (1 << VCPU_EXREG_PDPTR)
6711                                   | (1 << VCPU_EXREG_SEGMENTS)
6712                                   | (1 << VCPU_EXREG_CR3));
6713         vcpu->arch.regs_dirty = 0;
6714
6715         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6716
6717         if (is_guest_mode(vcpu)) {
6718                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6719                 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6720                 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6721                         vmcs12->idt_vectoring_error_code =
6722                                 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6723                         vmcs12->vm_exit_instruction_len =
6724                                 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6725                 }
6726         }
6727
6728         vmx->loaded_vmcs->launched = 1;
6729
6730         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6731         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6732
6733         vmx_complete_atomic_exit(vmx);
6734         vmx_recover_nmi_blocking(vmx);
6735         vmx_complete_interrupts(vmx);
6736 }
6737
6738 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6739 {
6740         struct vcpu_vmx *vmx = to_vmx(vcpu);
6741
6742         free_vpid(vmx);
6743         free_nested(vmx);
6744         free_loaded_vmcs(vmx->loaded_vmcs);
6745         kfree(vmx->guest_msrs);
6746         kvm_vcpu_uninit(vcpu);
6747         kmem_cache_free(kvm_vcpu_cache, vmx);
6748 }
6749
6750 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6751 {
6752         int err;
6753         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
6754         int cpu;
6755
6756         if (!vmx)
6757                 return ERR_PTR(-ENOMEM);
6758
6759         allocate_vpid(vmx);
6760
6761         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6762         if (err)
6763                 goto free_vcpu;
6764
6765         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
6766         err = -ENOMEM;
6767         if (!vmx->guest_msrs) {
6768                 goto uninit_vcpu;
6769         }
6770
6771         vmx->loaded_vmcs = &vmx->vmcs01;
6772         vmx->loaded_vmcs->vmcs = alloc_vmcs();
6773         if (!vmx->loaded_vmcs->vmcs)
6774                 goto free_msrs;
6775         if (!vmm_exclusive)
6776                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6777         loaded_vmcs_init(vmx->loaded_vmcs);
6778         if (!vmm_exclusive)
6779                 kvm_cpu_vmxoff();
6780
6781         cpu = get_cpu();
6782         vmx_vcpu_load(&vmx->vcpu, cpu);
6783         vmx->vcpu.cpu = cpu;
6784         err = vmx_vcpu_setup(vmx);
6785         vmx_vcpu_put(&vmx->vcpu);
6786         put_cpu();
6787         if (err)
6788                 goto free_vmcs;
6789         if (vm_need_virtualize_apic_accesses(kvm))
6790                 err = alloc_apic_access_page(kvm);
6791                 if (err)
6792                         goto free_vmcs;
6793
6794         if (enable_ept) {
6795                 if (!kvm->arch.ept_identity_map_addr)
6796                         kvm->arch.ept_identity_map_addr =
6797                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
6798                 err = -ENOMEM;
6799                 if (alloc_identity_pagetable(kvm) != 0)
6800                         goto free_vmcs;
6801                 if (!init_rmode_identity_map(kvm))
6802                         goto free_vmcs;
6803         }
6804
6805         vmx->nested.current_vmptr = -1ull;
6806         vmx->nested.current_vmcs12 = NULL;
6807
6808         return &vmx->vcpu;
6809
6810 free_vmcs:
6811         free_loaded_vmcs(vmx->loaded_vmcs);
6812 free_msrs:
6813         kfree(vmx->guest_msrs);
6814 uninit_vcpu:
6815         kvm_vcpu_uninit(&vmx->vcpu);
6816 free_vcpu:
6817         free_vpid(vmx);
6818         kmem_cache_free(kvm_vcpu_cache, vmx);
6819         return ERR_PTR(err);
6820 }
6821
6822 static void __init vmx_check_processor_compat(void *rtn)
6823 {
6824         struct vmcs_config vmcs_conf;
6825
6826         *(int *)rtn = 0;
6827         if (setup_vmcs_config(&vmcs_conf) < 0)
6828                 *(int *)rtn = -EIO;
6829         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6830                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6831                                 smp_processor_id());
6832                 *(int *)rtn = -EIO;
6833         }
6834 }
6835
6836 static int get_ept_level(void)
6837 {
6838         return VMX_EPT_DEFAULT_GAW + 1;
6839 }
6840
6841 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6842 {
6843         u64 ret;
6844
6845         /* For VT-d and EPT combination
6846          * 1. MMIO: always map as UC
6847          * 2. EPT with VT-d:
6848          *   a. VT-d without snooping control feature: can't guarantee the
6849          *      result, try to trust guest.
6850          *   b. VT-d with snooping control feature: snooping control feature of
6851          *      VT-d engine can guarantee the cache correctness. Just set it
6852          *      to WB to keep consistent with host. So the same as item 3.
6853          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6854          *    consistent with host MTRR
6855          */
6856         if (is_mmio)
6857                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
6858         else if (vcpu->kvm->arch.iommu_domain &&
6859                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6860                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6861                       VMX_EPT_MT_EPTE_SHIFT;
6862         else
6863                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
6864                         | VMX_EPT_IPAT_BIT;
6865
6866         return ret;
6867 }
6868
6869 static int vmx_get_lpage_level(void)
6870 {
6871         if (enable_ept && !cpu_has_vmx_ept_1g_page())
6872                 return PT_DIRECTORY_LEVEL;
6873         else
6874                 /* For shadow and EPT supported 1GB page */
6875                 return PT_PDPE_LEVEL;
6876 }
6877
6878 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6879 {
6880         struct kvm_cpuid_entry2 *best;
6881         struct vcpu_vmx *vmx = to_vmx(vcpu);
6882         u32 exec_control;
6883
6884         vmx->rdtscp_enabled = false;
6885         if (vmx_rdtscp_supported()) {
6886                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6887                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6888                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6889                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6890                                 vmx->rdtscp_enabled = true;
6891                         else {
6892                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6893                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6894                                                 exec_control);
6895                         }
6896                 }
6897         }
6898
6899         /* Exposing INVPCID only when PCID is exposed */
6900         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6901         if (vmx_invpcid_supported() &&
6902             best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
6903             guest_cpuid_has_pcid(vcpu)) {
6904                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6905                 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
6906                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6907                              exec_control);
6908         } else {
6909                 if (cpu_has_secondary_exec_ctrls()) {
6910                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6911                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
6912                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6913                                      exec_control);
6914                 }
6915                 if (best)
6916                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
6917         }
6918 }
6919
6920 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6921 {
6922         if (func == 1 && nested)
6923                 entry->ecx |= bit(X86_FEATURE_VMX);
6924 }
6925
6926 /*
6927  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6928  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6929  * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6930  * guest in a way that will both be appropriate to L1's requests, and our
6931  * needs. In addition to modifying the active vmcs (which is vmcs02), this
6932  * function also has additional necessary side-effects, like setting various
6933  * vcpu->arch fields.
6934  */
6935 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6936 {
6937         struct vcpu_vmx *vmx = to_vmx(vcpu);
6938         u32 exec_control;
6939
6940         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6941         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6942         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6943         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6944         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6945         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6946         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6947         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6948         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6949         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6950         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6951         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6952         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6953         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6954         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6955         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6956         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6957         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6958         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6959         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6960         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6961         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6962         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6963         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6964         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6965         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6966         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6967         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6968         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6969         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6970         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6971         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6972         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6973         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6974         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6975         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6976
6977         vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6978         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6979                 vmcs12->vm_entry_intr_info_field);
6980         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6981                 vmcs12->vm_entry_exception_error_code);
6982         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6983                 vmcs12->vm_entry_instruction_len);
6984         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6985                 vmcs12->guest_interruptibility_info);
6986         vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6987         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6988         kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
6989         vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6990         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6991                 vmcs12->guest_pending_dbg_exceptions);
6992         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6993         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6994
6995         vmcs_write64(VMCS_LINK_POINTER, -1ull);
6996
6997         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6998                 (vmcs_config.pin_based_exec_ctrl |
6999                  vmcs12->pin_based_vm_exec_control));
7000
7001         /*
7002          * Whether page-faults are trapped is determined by a combination of
7003          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7004          * If enable_ept, L0 doesn't care about page faults and we should
7005          * set all of these to L1's desires. However, if !enable_ept, L0 does
7006          * care about (at least some) page faults, and because it is not easy
7007          * (if at all possible?) to merge L0 and L1's desires, we simply ask
7008          * to exit on each and every L2 page fault. This is done by setting
7009          * MASK=MATCH=0 and (see below) EB.PF=1.
7010          * Note that below we don't need special code to set EB.PF beyond the
7011          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7012          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7013          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7014          *
7015          * A problem with this approach (when !enable_ept) is that L1 may be
7016          * injected with more page faults than it asked for. This could have
7017          * caused problems, but in practice existing hypervisors don't care.
7018          * To fix this, we will need to emulate the PFEC checking (on the L1
7019          * page tables), using walk_addr(), when injecting PFs to L1.
7020          */
7021         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7022                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7023         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7024                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
7025
7026         if (cpu_has_secondary_exec_ctrls()) {
7027                 u32 exec_control = vmx_secondary_exec_control(vmx);
7028                 if (!vmx->rdtscp_enabled)
7029                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
7030                 /* Take the following fields only from vmcs12 */
7031                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7032                 if (nested_cpu_has(vmcs12,
7033                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7034                         exec_control |= vmcs12->secondary_vm_exec_control;
7035
7036                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7037                         /*
7038                          * Translate L1 physical address to host physical
7039                          * address for vmcs02. Keep the page pinned, so this
7040                          * physical address remains valid. We keep a reference
7041                          * to it so we can release it later.
7042                          */
7043                         if (vmx->nested.apic_access_page) /* shouldn't happen */
7044                                 nested_release_page(vmx->nested.apic_access_page);
7045                         vmx->nested.apic_access_page =
7046                                 nested_get_page(vcpu, vmcs12->apic_access_addr);
7047                         /*
7048                          * If translation failed, no matter: This feature asks
7049                          * to exit when accessing the given address, and if it
7050                          * can never be accessed, this feature won't do
7051                          * anything anyway.
7052                          */
7053                         if (!vmx->nested.apic_access_page)
7054                                 exec_control &=
7055                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7056                         else
7057                                 vmcs_write64(APIC_ACCESS_ADDR,
7058                                   page_to_phys(vmx->nested.apic_access_page));
7059                 }
7060
7061                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7062         }
7063
7064
7065         /*
7066          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7067          * Some constant fields are set here by vmx_set_constant_host_state().
7068          * Other fields are different per CPU, and will be set later when
7069          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7070          */
7071         vmx_set_constant_host_state();
7072
7073         /*
7074          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7075          * entry, but only if the current (host) sp changed from the value
7076          * we wrote last (vmx->host_rsp). This cache is no longer relevant
7077          * if we switch vmcs, and rather than hold a separate cache per vmcs,
7078          * here we just force the write to happen on entry.
7079          */
7080         vmx->host_rsp = 0;
7081
7082         exec_control = vmx_exec_control(vmx); /* L0's desires */
7083         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7084         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7085         exec_control &= ~CPU_BASED_TPR_SHADOW;
7086         exec_control |= vmcs12->cpu_based_vm_exec_control;
7087         /*
7088          * Merging of IO and MSR bitmaps not currently supported.
7089          * Rather, exit every time.
7090          */
7091         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7092         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7093         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7094
7095         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7096
7097         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7098          * bitwise-or of what L1 wants to trap for L2, and what we want to
7099          * trap. Note that CR0.TS also needs updating - we do this later.
7100          */
7101         update_exception_bitmap(vcpu);
7102         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7103         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7104
7105         /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
7106         vmcs_write32(VM_EXIT_CONTROLS,
7107                 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
7108         vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
7109                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7110
7111         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
7112                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7113         else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7114                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7115
7116
7117         set_cr4_guest_host_mask(vmx);
7118
7119         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
7120                 vmcs_write64(TSC_OFFSET,
7121                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
7122         else
7123                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7124
7125         if (enable_vpid) {
7126                 /*
7127                  * Trivially support vpid by letting L2s share their parent
7128                  * L1's vpid. TODO: move to a more elaborate solution, giving
7129                  * each L2 its own vpid and exposing the vpid feature to L1.
7130                  */
7131                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
7132                 vmx_flush_tlb(vcpu);
7133         }
7134
7135         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
7136                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
7137         if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
7138                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7139         else
7140                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7141         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7142         vmx_set_efer(vcpu, vcpu->arch.efer);
7143
7144         /*
7145          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7146          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7147          * The CR0_READ_SHADOW is what L2 should have expected to read given
7148          * the specifications by L1; It's not enough to take
7149          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7150          * have more bits than L1 expected.
7151          */
7152         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
7153         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
7154
7155         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
7156         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
7157
7158         /* shadow page tables on either EPT or shadow page tables */
7159         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
7160         kvm_mmu_reset_context(vcpu);
7161
7162         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
7163         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
7164 }
7165
7166 /*
7167  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7168  * for running an L2 nested guest.
7169  */
7170 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
7171 {
7172         struct vmcs12 *vmcs12;
7173         struct vcpu_vmx *vmx = to_vmx(vcpu);
7174         int cpu;
7175         struct loaded_vmcs *vmcs02;
7176
7177         if (!nested_vmx_check_permission(vcpu) ||
7178             !nested_vmx_check_vmcs12(vcpu))
7179                 return 1;
7180
7181         skip_emulated_instruction(vcpu);
7182         vmcs12 = get_vmcs12(vcpu);
7183
7184         /*
7185          * The nested entry process starts with enforcing various prerequisites
7186          * on vmcs12 as required by the Intel SDM, and act appropriately when
7187          * they fail: As the SDM explains, some conditions should cause the
7188          * instruction to fail, while others will cause the instruction to seem
7189          * to succeed, but return an EXIT_REASON_INVALID_STATE.
7190          * To speed up the normal (success) code path, we should avoid checking
7191          * for misconfigurations which will anyway be caught by the processor
7192          * when using the merged vmcs02.
7193          */
7194         if (vmcs12->launch_state == launch) {
7195                 nested_vmx_failValid(vcpu,
7196                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7197                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
7198                 return 1;
7199         }
7200
7201         if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
7202                         !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
7203                 /*TODO: Also verify bits beyond physical address width are 0*/
7204                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7205                 return 1;
7206         }
7207
7208         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
7209                         !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
7210                 /*TODO: Also verify bits beyond physical address width are 0*/
7211                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7212                 return 1;
7213         }
7214
7215         if (vmcs12->vm_entry_msr_load_count > 0 ||
7216             vmcs12->vm_exit_msr_load_count > 0 ||
7217             vmcs12->vm_exit_msr_store_count > 0) {
7218                 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
7219                                     __func__);
7220                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7221                 return 1;
7222         }
7223
7224         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
7225               nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
7226             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
7227               nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
7228             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
7229               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
7230             !vmx_control_verify(vmcs12->vm_exit_controls,
7231               nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
7232             !vmx_control_verify(vmcs12->vm_entry_controls,
7233               nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
7234         {
7235                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7236                 return 1;
7237         }
7238
7239         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7240             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7241                 nested_vmx_failValid(vcpu,
7242                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7243                 return 1;
7244         }
7245
7246         if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7247             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7248                 nested_vmx_entry_failure(vcpu, vmcs12,
7249                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7250                 return 1;
7251         }
7252         if (vmcs12->vmcs_link_pointer != -1ull) {
7253                 nested_vmx_entry_failure(vcpu, vmcs12,
7254                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
7255                 return 1;
7256         }
7257
7258         /*
7259          * We're finally done with prerequisite checking, and can start with
7260          * the nested entry.
7261          */
7262
7263         vmcs02 = nested_get_current_vmcs02(vmx);
7264         if (!vmcs02)
7265                 return -ENOMEM;
7266
7267         enter_guest_mode(vcpu);
7268
7269         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
7270
7271         cpu = get_cpu();
7272         vmx->loaded_vmcs = vmcs02;
7273         vmx_vcpu_put(vcpu);
7274         vmx_vcpu_load(vcpu, cpu);
7275         vcpu->cpu = cpu;
7276         put_cpu();
7277
7278         vmx_segment_cache_clear(vmx);
7279
7280         vmcs12->launch_state = 1;
7281
7282         prepare_vmcs02(vcpu, vmcs12);
7283
7284         /*
7285          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
7286          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
7287          * returned as far as L1 is concerned. It will only return (and set
7288          * the success flag) when L2 exits (see nested_vmx_vmexit()).
7289          */
7290         return 1;
7291 }
7292
7293 /*
7294  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
7295  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
7296  * This function returns the new value we should put in vmcs12.guest_cr0.
7297  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
7298  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
7299  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
7300  *     didn't trap the bit, because if L1 did, so would L0).
7301  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
7302  *     been modified by L2, and L1 knows it. So just leave the old value of
7303  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
7304  *     isn't relevant, because if L0 traps this bit it can set it to anything.
7305  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
7306  *     changed these bits, and therefore they need to be updated, but L0
7307  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
7308  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
7309  */
7310 static inline unsigned long
7311 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7312 {
7313         return
7314         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
7315         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
7316         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
7317                         vcpu->arch.cr0_guest_owned_bits));
7318 }
7319
7320 static inline unsigned long
7321 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7322 {
7323         return
7324         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
7325         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
7326         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
7327                         vcpu->arch.cr4_guest_owned_bits));
7328 }
7329
7330 /*
7331  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
7332  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
7333  * and this function updates it to reflect the changes to the guest state while
7334  * L2 was running (and perhaps made some exits which were handled directly by L0
7335  * without going back to L1), and to reflect the exit reason.
7336  * Note that we do not have to copy here all VMCS fields, just those that
7337  * could have changed by the L2 guest or the exit - i.e., the guest-state and
7338  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
7339  * which already writes to vmcs12 directly.
7340  */
7341 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7342 {
7343         /* update guest state fields: */
7344         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
7345         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
7346
7347         kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
7348         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7349         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
7350         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
7351
7352         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
7353         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
7354         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
7355         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
7356         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
7357         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
7358         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
7359         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
7360         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
7361         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
7362         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
7363         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
7364         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
7365         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
7366         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
7367         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
7368         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
7369         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
7370         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
7371         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
7372         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
7373         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
7374         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
7375         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
7376         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
7377         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
7378         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
7379         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
7380         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
7381         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
7382         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
7383         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
7384         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
7385         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
7386         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
7387         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
7388
7389         vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
7390         vmcs12->guest_interruptibility_info =
7391                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
7392         vmcs12->guest_pending_dbg_exceptions =
7393                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
7394
7395         /* TODO: These cannot have changed unless we have MSR bitmaps and
7396          * the relevant bit asks not to trap the change */
7397         vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
7398         if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
7399                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
7400         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
7401         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
7402         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
7403
7404         /* update exit information fields: */
7405
7406         vmcs12->vm_exit_reason  = to_vmx(vcpu)->exit_reason;
7407         vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7408
7409         vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7410         vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
7411         vmcs12->idt_vectoring_info_field = to_vmx(vcpu)->idt_vectoring_info;
7412         vmcs12->idt_vectoring_error_code =
7413                 vmcs_read32(IDT_VECTORING_ERROR_CODE);
7414         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
7415         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7416
7417         /* clear vm-entry fields which are to be cleared on exit */
7418         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
7419                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
7420 }
7421
7422 /*
7423  * A part of what we need to when the nested L2 guest exits and we want to
7424  * run its L1 parent, is to reset L1's guest state to the host state specified
7425  * in vmcs12.
7426  * This function is to be called not only on normal nested exit, but also on
7427  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
7428  * Failures During or After Loading Guest State").
7429  * This function should be called when the active VMCS is L1's (vmcs01).
7430  */
7431 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
7432                                    struct vmcs12 *vmcs12)
7433 {
7434         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
7435                 vcpu->arch.efer = vmcs12->host_ia32_efer;
7436         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
7437                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7438         else
7439                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7440         vmx_set_efer(vcpu, vcpu->arch.efer);
7441
7442         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
7443         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
7444         vmx_set_rflags(vcpu, X86_EFLAGS_BIT1);
7445         /*
7446          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
7447          * actually changed, because it depends on the current state of
7448          * fpu_active (which may have changed).
7449          * Note that vmx_set_cr0 refers to efer set above.
7450          */
7451         kvm_set_cr0(vcpu, vmcs12->host_cr0);
7452         /*
7453          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
7454          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
7455          * but we also need to update cr0_guest_host_mask and exception_bitmap.
7456          */
7457         update_exception_bitmap(vcpu);
7458         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
7459         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7460
7461         /*
7462          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
7463          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
7464          */
7465         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
7466         kvm_set_cr4(vcpu, vmcs12->host_cr4);
7467
7468         /* shadow page tables on either EPT or shadow page tables */
7469         kvm_set_cr3(vcpu, vmcs12->host_cr3);
7470         kvm_mmu_reset_context(vcpu);
7471
7472         if (enable_vpid) {
7473                 /*
7474                  * Trivially support vpid by letting L2s share their parent
7475                  * L1's vpid. TODO: move to a more elaborate solution, giving
7476                  * each L2 its own vpid and exposing the vpid feature to L1.
7477                  */
7478                 vmx_flush_tlb(vcpu);
7479         }
7480
7481
7482         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
7483         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7484         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7485         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7486         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7487         vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7488         vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7489         vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7490         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7491         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7492         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7493         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7494         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7495         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7496         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7497
7498         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7499                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7500         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7501                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7502                         vmcs12->host_ia32_perf_global_ctrl);
7503
7504         kvm_set_dr(vcpu, 7, 0x400);
7505         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
7506 }
7507
7508 /*
7509  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7510  * and modify vmcs12 to make it see what it would expect to see there if
7511  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7512  */
7513 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7514 {
7515         struct vcpu_vmx *vmx = to_vmx(vcpu);
7516         int cpu;
7517         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7518
7519         leave_guest_mode(vcpu);
7520         prepare_vmcs12(vcpu, vmcs12);
7521
7522         cpu = get_cpu();
7523         vmx->loaded_vmcs = &vmx->vmcs01;
7524         vmx_vcpu_put(vcpu);
7525         vmx_vcpu_load(vcpu, cpu);
7526         vcpu->cpu = cpu;
7527         put_cpu();
7528
7529         vmx_segment_cache_clear(vmx);
7530
7531         /* if no vmcs02 cache requested, remove the one we used */
7532         if (VMCS02_POOL_SIZE == 0)
7533                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7534
7535         load_vmcs12_host_state(vcpu, vmcs12);
7536
7537         /* Update TSC_OFFSET if TSC was changed while L2 ran */
7538         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7539
7540         /* This is needed for same reason as it was needed in prepare_vmcs02 */
7541         vmx->host_rsp = 0;
7542
7543         /* Unpin physical memory we referred to in vmcs02 */
7544         if (vmx->nested.apic_access_page) {
7545                 nested_release_page(vmx->nested.apic_access_page);
7546                 vmx->nested.apic_access_page = 0;
7547         }
7548
7549         /*
7550          * Exiting from L2 to L1, we're now back to L1 which thinks it just
7551          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7552          * success or failure flag accordingly.
7553          */
7554         if (unlikely(vmx->fail)) {
7555                 vmx->fail = 0;
7556                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7557         } else
7558                 nested_vmx_succeed(vcpu);
7559 }
7560
7561 /*
7562  * L1's failure to enter L2 is a subset of a normal exit, as explained in
7563  * 23.7 "VM-entry failures during or after loading guest state" (this also
7564  * lists the acceptable exit-reason and exit-qualification parameters).
7565  * It should only be called before L2 actually succeeded to run, and when
7566  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7567  */
7568 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7569                         struct vmcs12 *vmcs12,
7570                         u32 reason, unsigned long qualification)
7571 {
7572         load_vmcs12_host_state(vcpu, vmcs12);
7573         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7574         vmcs12->exit_qualification = qualification;
7575         nested_vmx_succeed(vcpu);
7576 }
7577
7578 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7579                                struct x86_instruction_info *info,
7580                                enum x86_intercept_stage stage)
7581 {
7582         return X86EMUL_CONTINUE;
7583 }
7584
7585 static struct kvm_x86_ops vmx_x86_ops = {
7586         .cpu_has_kvm_support = cpu_has_kvm_support,
7587         .disabled_by_bios = vmx_disabled_by_bios,
7588         .hardware_setup = hardware_setup,
7589         .hardware_unsetup = hardware_unsetup,
7590         .check_processor_compatibility = vmx_check_processor_compat,
7591         .hardware_enable = hardware_enable,
7592         .hardware_disable = hardware_disable,
7593         .cpu_has_accelerated_tpr = report_flexpriority,
7594
7595         .vcpu_create = vmx_create_vcpu,
7596         .vcpu_free = vmx_free_vcpu,
7597         .vcpu_reset = vmx_vcpu_reset,
7598
7599         .prepare_guest_switch = vmx_save_host_state,
7600         .vcpu_load = vmx_vcpu_load,
7601         .vcpu_put = vmx_vcpu_put,
7602
7603         .update_db_bp_intercept = update_exception_bitmap,
7604         .get_msr = vmx_get_msr,
7605         .set_msr = vmx_set_msr,
7606         .get_segment_base = vmx_get_segment_base,
7607         .get_segment = vmx_get_segment,
7608         .set_segment = vmx_set_segment,
7609         .get_cpl = vmx_get_cpl,
7610         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7611         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7612         .decache_cr3 = vmx_decache_cr3,
7613         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7614         .set_cr0 = vmx_set_cr0,
7615         .set_cr3 = vmx_set_cr3,
7616         .set_cr4 = vmx_set_cr4,
7617         .set_efer = vmx_set_efer,
7618         .get_idt = vmx_get_idt,
7619         .set_idt = vmx_set_idt,
7620         .get_gdt = vmx_get_gdt,
7621         .set_gdt = vmx_set_gdt,
7622         .set_dr7 = vmx_set_dr7,
7623         .cache_reg = vmx_cache_reg,
7624         .get_rflags = vmx_get_rflags,
7625         .set_rflags = vmx_set_rflags,
7626         .fpu_activate = vmx_fpu_activate,
7627         .fpu_deactivate = vmx_fpu_deactivate,
7628
7629         .tlb_flush = vmx_flush_tlb,
7630
7631         .run = vmx_vcpu_run,
7632         .handle_exit = vmx_handle_exit,
7633         .skip_emulated_instruction = skip_emulated_instruction,
7634         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7635         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7636         .patch_hypercall = vmx_patch_hypercall,
7637         .set_irq = vmx_inject_irq,
7638         .set_nmi = vmx_inject_nmi,
7639         .queue_exception = vmx_queue_exception,
7640         .cancel_injection = vmx_cancel_injection,
7641         .interrupt_allowed = vmx_interrupt_allowed,
7642         .nmi_allowed = vmx_nmi_allowed,
7643         .get_nmi_mask = vmx_get_nmi_mask,
7644         .set_nmi_mask = vmx_set_nmi_mask,
7645         .enable_nmi_window = enable_nmi_window,
7646         .enable_irq_window = enable_irq_window,
7647         .update_cr8_intercept = update_cr8_intercept,
7648         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
7649         .vm_has_apicv = vmx_vm_has_apicv,
7650         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7651         .hwapic_irr_update = vmx_hwapic_irr_update,
7652         .hwapic_isr_update = vmx_hwapic_isr_update,
7653
7654         .set_tss_addr = vmx_set_tss_addr,
7655         .get_tdp_level = get_ept_level,
7656         .get_mt_mask = vmx_get_mt_mask,
7657
7658         .get_exit_info = vmx_get_exit_info,
7659
7660         .get_lpage_level = vmx_get_lpage_level,
7661
7662         .cpuid_update = vmx_cpuid_update,
7663
7664         .rdtscp_supported = vmx_rdtscp_supported,
7665         .invpcid_supported = vmx_invpcid_supported,
7666
7667         .set_supported_cpuid = vmx_set_supported_cpuid,
7668
7669         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7670
7671         .set_tsc_khz = vmx_set_tsc_khz,
7672         .read_tsc_offset = vmx_read_tsc_offset,
7673         .write_tsc_offset = vmx_write_tsc_offset,
7674         .adjust_tsc_offset = vmx_adjust_tsc_offset,
7675         .compute_tsc_offset = vmx_compute_tsc_offset,
7676         .read_l1_tsc = vmx_read_l1_tsc,
7677
7678         .set_tdp_cr3 = vmx_set_cr3,
7679
7680         .check_intercept = vmx_check_intercept,
7681 };
7682
7683 static int __init vmx_init(void)
7684 {
7685         int r, i, msr;
7686
7687         rdmsrl_safe(MSR_EFER, &host_efer);
7688
7689         for (i = 0; i < NR_VMX_MSR; ++i)
7690                 kvm_define_shared_msr(i, vmx_msr_index[i]);
7691
7692         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
7693         if (!vmx_io_bitmap_a)
7694                 return -ENOMEM;
7695
7696         r = -ENOMEM;
7697
7698         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
7699         if (!vmx_io_bitmap_b)
7700                 goto out;
7701
7702         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7703         if (!vmx_msr_bitmap_legacy)
7704                 goto out1;
7705
7706         vmx_msr_bitmap_legacy_x2apic =
7707                                 (unsigned long *)__get_free_page(GFP_KERNEL);
7708         if (!vmx_msr_bitmap_legacy_x2apic)
7709                 goto out2;
7710
7711         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7712         if (!vmx_msr_bitmap_longmode)
7713                 goto out3;
7714
7715         vmx_msr_bitmap_longmode_x2apic =
7716                                 (unsigned long *)__get_free_page(GFP_KERNEL);
7717         if (!vmx_msr_bitmap_longmode_x2apic)
7718                 goto out4;
7719
7720         /*
7721          * Allow direct access to the PC debug port (it is often used for I/O
7722          * delays, but the vmexits simply slow things down).
7723          */
7724         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7725         clear_bit(0x80, vmx_io_bitmap_a);
7726
7727         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
7728
7729         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7730         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
7731
7732         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7733
7734         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7735                      __alignof__(struct vcpu_vmx), THIS_MODULE);
7736         if (r)
7737                 goto out3;
7738
7739 #ifdef CONFIG_KEXEC
7740         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7741                            crash_vmclear_local_loaded_vmcss);
7742 #endif
7743
7744         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7745         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7746         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7747         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7748         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7749         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
7750         memcpy(vmx_msr_bitmap_legacy_x2apic,
7751                         vmx_msr_bitmap_legacy, PAGE_SIZE);
7752         memcpy(vmx_msr_bitmap_longmode_x2apic,
7753                         vmx_msr_bitmap_longmode, PAGE_SIZE);
7754
7755         if (enable_apicv_reg_vid) {
7756                 for (msr = 0x800; msr <= 0x8ff; msr++)
7757                         vmx_disable_intercept_msr_read_x2apic(msr);
7758
7759                 /* According SDM, in x2apic mode, the whole id reg is used.
7760                  * But in KVM, it only use the highest eight bits. Need to
7761                  * intercept it */
7762                 vmx_enable_intercept_msr_read_x2apic(0x802);
7763                 /* TMCCT */
7764                 vmx_enable_intercept_msr_read_x2apic(0x839);
7765                 /* TPR */
7766                 vmx_disable_intercept_msr_write_x2apic(0x808);
7767                 /* EOI */
7768                 vmx_disable_intercept_msr_write_x2apic(0x80b);
7769                 /* SELF-IPI */
7770                 vmx_disable_intercept_msr_write_x2apic(0x83f);
7771         }
7772
7773         if (enable_ept) {
7774                 kvm_mmu_set_mask_ptes(0ull,
7775                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
7776                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
7777                         0ull, VMX_EPT_EXECUTABLE_MASK);
7778                 ept_set_mmio_spte_mask();
7779                 kvm_enable_tdp();
7780         } else
7781                 kvm_disable_tdp();
7782
7783         return 0;
7784
7785 out4:
7786         free_page((unsigned long)vmx_msr_bitmap_longmode);
7787 out3:
7788         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
7789 out2:
7790         free_page((unsigned long)vmx_msr_bitmap_legacy);
7791 out1:
7792         free_page((unsigned long)vmx_io_bitmap_b);
7793 out:
7794         free_page((unsigned long)vmx_io_bitmap_a);
7795         return r;
7796 }
7797
7798 static void __exit vmx_exit(void)
7799 {
7800         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
7801         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
7802         free_page((unsigned long)vmx_msr_bitmap_legacy);
7803         free_page((unsigned long)vmx_msr_bitmap_longmode);
7804         free_page((unsigned long)vmx_io_bitmap_b);
7805         free_page((unsigned long)vmx_io_bitmap_a);
7806
7807 #ifdef CONFIG_KEXEC
7808         rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
7809         synchronize_rcu();
7810 #endif
7811
7812         kvm_exit();
7813 }
7814
7815 module_init(vmx_init)
7816 module_exit(vmx_exit)