KVM: x86: Convert vapic synchronization to _cached functions (CVE-2013-6368)
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32  kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105
106 #define KVM_NR_SHARED_MSRS 16
107
108 struct kvm_shared_msrs_global {
109         int nr;
110         u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112
113 struct kvm_shared_msrs {
114         struct user_return_notifier urn;
115         bool registered;
116         struct kvm_shared_msr_values {
117                 u64 host;
118                 u64 curr;
119         } values[KVM_NR_SHARED_MSRS];
120 };
121
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
124
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126         { "pf_fixed", VCPU_STAT(pf_fixed) },
127         { "pf_guest", VCPU_STAT(pf_guest) },
128         { "tlb_flush", VCPU_STAT(tlb_flush) },
129         { "invlpg", VCPU_STAT(invlpg) },
130         { "exits", VCPU_STAT(exits) },
131         { "io_exits", VCPU_STAT(io_exits) },
132         { "mmio_exits", VCPU_STAT(mmio_exits) },
133         { "signal_exits", VCPU_STAT(signal_exits) },
134         { "irq_window", VCPU_STAT(irq_window_exits) },
135         { "nmi_window", VCPU_STAT(nmi_window_exits) },
136         { "halt_exits", VCPU_STAT(halt_exits) },
137         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
138         { "hypercalls", VCPU_STAT(hypercalls) },
139         { "request_irq", VCPU_STAT(request_irq_exits) },
140         { "irq_exits", VCPU_STAT(irq_exits) },
141         { "host_state_reload", VCPU_STAT(host_state_reload) },
142         { "efer_reload", VCPU_STAT(efer_reload) },
143         { "fpu_reload", VCPU_STAT(fpu_reload) },
144         { "insn_emulation", VCPU_STAT(insn_emulation) },
145         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146         { "irq_injections", VCPU_STAT(irq_injections) },
147         { "nmi_injections", VCPU_STAT(nmi_injections) },
148         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
150         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152         { "mmu_flooded", VM_STAT(mmu_flooded) },
153         { "mmu_recycled", VM_STAT(mmu_recycled) },
154         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155         { "mmu_unsync", VM_STAT(mmu_unsync) },
156         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157         { "largepages", VM_STAT(lpages) },
158         { NULL }
159 };
160
161 u64 __read_mostly host_xcr0;
162
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164
165 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
166 {
167         int i;
168         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
169                 vcpu->arch.apf.gfns[i] = ~0;
170 }
171
172 static void kvm_on_user_return(struct user_return_notifier *urn)
173 {
174         unsigned slot;
175         struct kvm_shared_msrs *locals
176                 = container_of(urn, struct kvm_shared_msrs, urn);
177         struct kvm_shared_msr_values *values;
178
179         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
180                 values = &locals->values[slot];
181                 if (values->host != values->curr) {
182                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
183                         values->curr = values->host;
184                 }
185         }
186         locals->registered = false;
187         user_return_notifier_unregister(urn);
188 }
189
190 static void shared_msr_update(unsigned slot, u32 msr)
191 {
192         u64 value;
193         unsigned int cpu = smp_processor_id();
194         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
195
196         /* only read, and nobody should modify it at this time,
197          * so don't need lock */
198         if (slot >= shared_msrs_global.nr) {
199                 printk(KERN_ERR "kvm: invalid MSR slot!");
200                 return;
201         }
202         rdmsrl_safe(msr, &value);
203         smsr->values[slot].host = value;
204         smsr->values[slot].curr = value;
205 }
206
207 void kvm_define_shared_msr(unsigned slot, u32 msr)
208 {
209         if (slot >= shared_msrs_global.nr)
210                 shared_msrs_global.nr = slot + 1;
211         shared_msrs_global.msrs[slot] = msr;
212         /* we need ensured the shared_msr_global have been updated */
213         smp_wmb();
214 }
215 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
216
217 static void kvm_shared_msr_cpu_online(void)
218 {
219         unsigned i;
220
221         for (i = 0; i < shared_msrs_global.nr; ++i)
222                 shared_msr_update(i, shared_msrs_global.msrs[i]);
223 }
224
225 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
226 {
227         unsigned int cpu = smp_processor_id();
228         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
229
230         if (((value ^ smsr->values[slot].curr) & mask) == 0)
231                 return;
232         smsr->values[slot].curr = value;
233         wrmsrl(shared_msrs_global.msrs[slot], value);
234         if (!smsr->registered) {
235                 smsr->urn.on_user_return = kvm_on_user_return;
236                 user_return_notifier_register(&smsr->urn);
237                 smsr->registered = true;
238         }
239 }
240 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
241
242 static void drop_user_return_notifiers(void *ignore)
243 {
244         unsigned int cpu = smp_processor_id();
245         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246
247         if (smsr->registered)
248                 kvm_on_user_return(&smsr->urn);
249 }
250
251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
252 {
253         return vcpu->arch.apic_base;
254 }
255 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
256
257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
258 {
259         /* TODO: reserve bits check */
260         kvm_lapic_set_base(vcpu, data);
261 }
262 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
263
264 asmlinkage void kvm_spurious_fault(void)
265 {
266         /* Fault while not rebooting.  We want the trace. */
267         BUG();
268 }
269 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
270
271 #define EXCPT_BENIGN            0
272 #define EXCPT_CONTRIBUTORY      1
273 #define EXCPT_PF                2
274
275 static int exception_class(int vector)
276 {
277         switch (vector) {
278         case PF_VECTOR:
279                 return EXCPT_PF;
280         case DE_VECTOR:
281         case TS_VECTOR:
282         case NP_VECTOR:
283         case SS_VECTOR:
284         case GP_VECTOR:
285                 return EXCPT_CONTRIBUTORY;
286         default:
287                 break;
288         }
289         return EXCPT_BENIGN;
290 }
291
292 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
293                 unsigned nr, bool has_error, u32 error_code,
294                 bool reinject)
295 {
296         u32 prev_nr;
297         int class1, class2;
298
299         kvm_make_request(KVM_REQ_EVENT, vcpu);
300
301         if (!vcpu->arch.exception.pending) {
302         queue:
303                 vcpu->arch.exception.pending = true;
304                 vcpu->arch.exception.has_error_code = has_error;
305                 vcpu->arch.exception.nr = nr;
306                 vcpu->arch.exception.error_code = error_code;
307                 vcpu->arch.exception.reinject = reinject;
308                 return;
309         }
310
311         /* to check exception */
312         prev_nr = vcpu->arch.exception.nr;
313         if (prev_nr == DF_VECTOR) {
314                 /* triple fault -> shutdown */
315                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
316                 return;
317         }
318         class1 = exception_class(prev_nr);
319         class2 = exception_class(nr);
320         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
321                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
322                 /* generate double fault per SDM Table 5-5 */
323                 vcpu->arch.exception.pending = true;
324                 vcpu->arch.exception.has_error_code = true;
325                 vcpu->arch.exception.nr = DF_VECTOR;
326                 vcpu->arch.exception.error_code = 0;
327         } else
328                 /* replace previous exception with a new one in a hope
329                    that instruction re-execution will regenerate lost
330                    exception */
331                 goto queue;
332 }
333
334 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
335 {
336         kvm_multiple_exception(vcpu, nr, false, 0, false);
337 }
338 EXPORT_SYMBOL_GPL(kvm_queue_exception);
339
340 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
341 {
342         kvm_multiple_exception(vcpu, nr, false, 0, true);
343 }
344 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
345
346 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
347 {
348         if (err)
349                 kvm_inject_gp(vcpu, 0);
350         else
351                 kvm_x86_ops->skip_emulated_instruction(vcpu);
352 }
353 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
354
355 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
356 {
357         ++vcpu->stat.pf_guest;
358         vcpu->arch.cr2 = fault->address;
359         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
362
363 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
364 {
365         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
366                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
367         else
368                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
369 }
370
371 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
372 {
373         atomic_inc(&vcpu->arch.nmi_queued);
374         kvm_make_request(KVM_REQ_NMI, vcpu);
375 }
376 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
377
378 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
379 {
380         kvm_multiple_exception(vcpu, nr, true, error_code, false);
381 }
382 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
383
384 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
385 {
386         kvm_multiple_exception(vcpu, nr, true, error_code, true);
387 }
388 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
389
390 /*
391  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
392  * a #GP and return false.
393  */
394 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
395 {
396         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
397                 return true;
398         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
399         return false;
400 }
401 EXPORT_SYMBOL_GPL(kvm_require_cpl);
402
403 /*
404  * This function will be used to read from the physical memory of the currently
405  * running guest. The difference to kvm_read_guest_page is that this function
406  * can read from guest physical or from the guest's guest physical memory.
407  */
408 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
409                             gfn_t ngfn, void *data, int offset, int len,
410                             u32 access)
411 {
412         gfn_t real_gfn;
413         gpa_t ngpa;
414
415         ngpa     = gfn_to_gpa(ngfn);
416         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
417         if (real_gfn == UNMAPPED_GVA)
418                 return -EFAULT;
419
420         real_gfn = gpa_to_gfn(real_gfn);
421
422         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
423 }
424 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
425
426 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
427                                void *data, int offset, int len, u32 access)
428 {
429         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
430                                        data, offset, len, access);
431 }
432
433 /*
434  * Load the pae pdptrs.  Return true is they are all valid.
435  */
436 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
437 {
438         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
439         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
440         int i;
441         int ret;
442         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
443
444         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
445                                       offset * sizeof(u64), sizeof(pdpte),
446                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
447         if (ret < 0) {
448                 ret = 0;
449                 goto out;
450         }
451         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
452                 if (is_present_gpte(pdpte[i]) &&
453                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
454                         ret = 0;
455                         goto out;
456                 }
457         }
458         ret = 1;
459
460         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
461         __set_bit(VCPU_EXREG_PDPTR,
462                   (unsigned long *)&vcpu->arch.regs_avail);
463         __set_bit(VCPU_EXREG_PDPTR,
464                   (unsigned long *)&vcpu->arch.regs_dirty);
465 out:
466
467         return ret;
468 }
469 EXPORT_SYMBOL_GPL(load_pdptrs);
470
471 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
472 {
473         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
474         bool changed = true;
475         int offset;
476         gfn_t gfn;
477         int r;
478
479         if (is_long_mode(vcpu) || !is_pae(vcpu))
480                 return false;
481
482         if (!test_bit(VCPU_EXREG_PDPTR,
483                       (unsigned long *)&vcpu->arch.regs_avail))
484                 return true;
485
486         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
487         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
488         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
489                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
490         if (r < 0)
491                 goto out;
492         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
493 out:
494
495         return changed;
496 }
497
498 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
499 {
500         unsigned long old_cr0 = kvm_read_cr0(vcpu);
501         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
502                                     X86_CR0_CD | X86_CR0_NW;
503
504         cr0 |= X86_CR0_ET;
505
506 #ifdef CONFIG_X86_64
507         if (cr0 & 0xffffffff00000000UL)
508                 return 1;
509 #endif
510
511         cr0 &= ~CR0_RESERVED_BITS;
512
513         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
514                 return 1;
515
516         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
517                 return 1;
518
519         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
520 #ifdef CONFIG_X86_64
521                 if ((vcpu->arch.efer & EFER_LME)) {
522                         int cs_db, cs_l;
523
524                         if (!is_pae(vcpu))
525                                 return 1;
526                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
527                         if (cs_l)
528                                 return 1;
529                 } else
530 #endif
531                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
532                                                  kvm_read_cr3(vcpu)))
533                         return 1;
534         }
535
536         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
537                 return 1;
538
539         kvm_x86_ops->set_cr0(vcpu, cr0);
540
541         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
542                 kvm_clear_async_pf_completion_queue(vcpu);
543                 kvm_async_pf_hash_reset(vcpu);
544         }
545
546         if ((cr0 ^ old_cr0) & update_bits)
547                 kvm_mmu_reset_context(vcpu);
548         return 0;
549 }
550 EXPORT_SYMBOL_GPL(kvm_set_cr0);
551
552 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
553 {
554         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
555 }
556 EXPORT_SYMBOL_GPL(kvm_lmsw);
557
558 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
559 {
560         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
561                         !vcpu->guest_xcr0_loaded) {
562                 /* kvm_set_xcr() also depends on this */
563                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
564                 vcpu->guest_xcr0_loaded = 1;
565         }
566 }
567
568 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
569 {
570         if (vcpu->guest_xcr0_loaded) {
571                 if (vcpu->arch.xcr0 != host_xcr0)
572                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
573                 vcpu->guest_xcr0_loaded = 0;
574         }
575 }
576
577 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
578 {
579         u64 xcr0;
580
581         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
582         if (index != XCR_XFEATURE_ENABLED_MASK)
583                 return 1;
584         xcr0 = xcr;
585         if (!(xcr0 & XSTATE_FP))
586                 return 1;
587         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
588                 return 1;
589         if (xcr0 & ~host_xcr0)
590                 return 1;
591         kvm_put_guest_xcr0(vcpu);
592         vcpu->arch.xcr0 = xcr0;
593         return 0;
594 }
595
596 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
597 {
598         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
599             __kvm_set_xcr(vcpu, index, xcr)) {
600                 kvm_inject_gp(vcpu, 0);
601                 return 1;
602         }
603         return 0;
604 }
605 EXPORT_SYMBOL_GPL(kvm_set_xcr);
606
607 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
608 {
609         unsigned long old_cr4 = kvm_read_cr4(vcpu);
610         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
611                                    X86_CR4_PAE | X86_CR4_SMEP;
612         if (cr4 & CR4_RESERVED_BITS)
613                 return 1;
614
615         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
616                 return 1;
617
618         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
619                 return 1;
620
621         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
622                 return 1;
623
624         if (is_long_mode(vcpu)) {
625                 if (!(cr4 & X86_CR4_PAE))
626                         return 1;
627         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
628                    && ((cr4 ^ old_cr4) & pdptr_bits)
629                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
630                                    kvm_read_cr3(vcpu)))
631                 return 1;
632
633         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
634                 if (!guest_cpuid_has_pcid(vcpu))
635                         return 1;
636
637                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
638                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
639                         return 1;
640         }
641
642         if (kvm_x86_ops->set_cr4(vcpu, cr4))
643                 return 1;
644
645         if (((cr4 ^ old_cr4) & pdptr_bits) ||
646             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
647                 kvm_mmu_reset_context(vcpu);
648
649         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
650                 kvm_update_cpuid(vcpu);
651
652         return 0;
653 }
654 EXPORT_SYMBOL_GPL(kvm_set_cr4);
655
656 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
657 {
658         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
659                 kvm_mmu_sync_roots(vcpu);
660                 kvm_mmu_flush_tlb(vcpu);
661                 return 0;
662         }
663
664         if (is_long_mode(vcpu)) {
665                 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
666                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
667                                 return 1;
668                 } else
669                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
670                                 return 1;
671         } else {
672                 if (is_pae(vcpu)) {
673                         if (cr3 & CR3_PAE_RESERVED_BITS)
674                                 return 1;
675                         if (is_paging(vcpu) &&
676                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
677                                 return 1;
678                 }
679                 /*
680                  * We don't check reserved bits in nonpae mode, because
681                  * this isn't enforced, and VMware depends on this.
682                  */
683         }
684
685         /*
686          * Does the new cr3 value map to physical memory? (Note, we
687          * catch an invalid cr3 even in real-mode, because it would
688          * cause trouble later on when we turn on paging anyway.)
689          *
690          * A real CPU would silently accept an invalid cr3 and would
691          * attempt to use it - with largely undefined (and often hard
692          * to debug) behavior on the guest side.
693          */
694         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
695                 return 1;
696         vcpu->arch.cr3 = cr3;
697         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
698         vcpu->arch.mmu.new_cr3(vcpu);
699         return 0;
700 }
701 EXPORT_SYMBOL_GPL(kvm_set_cr3);
702
703 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
704 {
705         if (cr8 & CR8_RESERVED_BITS)
706                 return 1;
707         if (irqchip_in_kernel(vcpu->kvm))
708                 kvm_lapic_set_tpr(vcpu, cr8);
709         else
710                 vcpu->arch.cr8 = cr8;
711         return 0;
712 }
713 EXPORT_SYMBOL_GPL(kvm_set_cr8);
714
715 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
716 {
717         if (irqchip_in_kernel(vcpu->kvm))
718                 return kvm_lapic_get_cr8(vcpu);
719         else
720                 return vcpu->arch.cr8;
721 }
722 EXPORT_SYMBOL_GPL(kvm_get_cr8);
723
724 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
725 {
726         unsigned long dr7;
727
728         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
729                 dr7 = vcpu->arch.guest_debug_dr7;
730         else
731                 dr7 = vcpu->arch.dr7;
732         kvm_x86_ops->set_dr7(vcpu, dr7);
733         vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
734 }
735
736 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
737 {
738         switch (dr) {
739         case 0 ... 3:
740                 vcpu->arch.db[dr] = val;
741                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
742                         vcpu->arch.eff_db[dr] = val;
743                 break;
744         case 4:
745                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
746                         return 1; /* #UD */
747                 /* fall through */
748         case 6:
749                 if (val & 0xffffffff00000000ULL)
750                         return -1; /* #GP */
751                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
752                 break;
753         case 5:
754                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
755                         return 1; /* #UD */
756                 /* fall through */
757         default: /* 7 */
758                 if (val & 0xffffffff00000000ULL)
759                         return -1; /* #GP */
760                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
761                 kvm_update_dr7(vcpu);
762                 break;
763         }
764
765         return 0;
766 }
767
768 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
769 {
770         int res;
771
772         res = __kvm_set_dr(vcpu, dr, val);
773         if (res > 0)
774                 kvm_queue_exception(vcpu, UD_VECTOR);
775         else if (res < 0)
776                 kvm_inject_gp(vcpu, 0);
777
778         return res;
779 }
780 EXPORT_SYMBOL_GPL(kvm_set_dr);
781
782 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
783 {
784         switch (dr) {
785         case 0 ... 3:
786                 *val = vcpu->arch.db[dr];
787                 break;
788         case 4:
789                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
790                         return 1;
791                 /* fall through */
792         case 6:
793                 *val = vcpu->arch.dr6;
794                 break;
795         case 5:
796                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
797                         return 1;
798                 /* fall through */
799         default: /* 7 */
800                 *val = vcpu->arch.dr7;
801                 break;
802         }
803
804         return 0;
805 }
806
807 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
808 {
809         if (_kvm_get_dr(vcpu, dr, val)) {
810                 kvm_queue_exception(vcpu, UD_VECTOR);
811                 return 1;
812         }
813         return 0;
814 }
815 EXPORT_SYMBOL_GPL(kvm_get_dr);
816
817 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
818 {
819         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
820         u64 data;
821         int err;
822
823         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
824         if (err)
825                 return err;
826         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
827         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
828         return err;
829 }
830 EXPORT_SYMBOL_GPL(kvm_rdpmc);
831
832 /*
833  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
834  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
835  *
836  * This list is modified at module load time to reflect the
837  * capabilities of the host cpu. This capabilities test skips MSRs that are
838  * kvm-specific. Those are put in the beginning of the list.
839  */
840
841 #define KVM_SAVE_MSRS_BEGIN     10
842 static u32 msrs_to_save[] = {
843         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
844         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
845         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
846         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
847         MSR_KVM_PV_EOI_EN,
848         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
849         MSR_STAR,
850 #ifdef CONFIG_X86_64
851         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
852 #endif
853         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
854 };
855
856 static unsigned num_msrs_to_save;
857
858 static const u32 emulated_msrs[] = {
859         MSR_IA32_TSC_ADJUST,
860         MSR_IA32_TSCDEADLINE,
861         MSR_IA32_MISC_ENABLE,
862         MSR_IA32_MCG_STATUS,
863         MSR_IA32_MCG_CTL,
864 };
865
866 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
867 {
868         if (efer & efer_reserved_bits)
869                 return false;
870
871         if (efer & EFER_FFXSR) {
872                 struct kvm_cpuid_entry2 *feat;
873
874                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
875                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
876                         return false;
877         }
878
879         if (efer & EFER_SVME) {
880                 struct kvm_cpuid_entry2 *feat;
881
882                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
883                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
884                         return false;
885         }
886
887         return true;
888 }
889 EXPORT_SYMBOL_GPL(kvm_valid_efer);
890
891 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
892 {
893         u64 old_efer = vcpu->arch.efer;
894
895         if (!kvm_valid_efer(vcpu, efer))
896                 return 1;
897
898         if (is_paging(vcpu)
899             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
900                 return 1;
901
902         efer &= ~EFER_LMA;
903         efer |= vcpu->arch.efer & EFER_LMA;
904
905         kvm_x86_ops->set_efer(vcpu, efer);
906
907         /* Update reserved bits */
908         if ((efer ^ old_efer) & EFER_NX)
909                 kvm_mmu_reset_context(vcpu);
910
911         return 0;
912 }
913
914 void kvm_enable_efer_bits(u64 mask)
915 {
916        efer_reserved_bits &= ~mask;
917 }
918 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
919
920
921 /*
922  * Writes msr value into into the appropriate "register".
923  * Returns 0 on success, non-0 otherwise.
924  * Assumes vcpu_load() was already called.
925  */
926 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
927 {
928         return kvm_x86_ops->set_msr(vcpu, msr);
929 }
930
931 /*
932  * Adapt set_msr() to msr_io()'s calling convention
933  */
934 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
935 {
936         struct msr_data msr;
937
938         msr.data = *data;
939         msr.index = index;
940         msr.host_initiated = true;
941         return kvm_set_msr(vcpu, &msr);
942 }
943
944 #ifdef CONFIG_X86_64
945 struct pvclock_gtod_data {
946         seqcount_t      seq;
947
948         struct { /* extract of a clocksource struct */
949                 int vclock_mode;
950                 cycle_t cycle_last;
951                 cycle_t mask;
952                 u32     mult;
953                 u32     shift;
954         } clock;
955
956         /* open coded 'struct timespec' */
957         u64             monotonic_time_snsec;
958         time_t          monotonic_time_sec;
959 };
960
961 static struct pvclock_gtod_data pvclock_gtod_data;
962
963 static void update_pvclock_gtod(struct timekeeper *tk)
964 {
965         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
966
967         write_seqcount_begin(&vdata->seq);
968
969         /* copy pvclock gtod data */
970         vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
971         vdata->clock.cycle_last         = tk->clock->cycle_last;
972         vdata->clock.mask               = tk->clock->mask;
973         vdata->clock.mult               = tk->mult;
974         vdata->clock.shift              = tk->shift;
975
976         vdata->monotonic_time_sec       = tk->xtime_sec
977                                         + tk->wall_to_monotonic.tv_sec;
978         vdata->monotonic_time_snsec     = tk->xtime_nsec
979                                         + (tk->wall_to_monotonic.tv_nsec
980                                                 << tk->shift);
981         while (vdata->monotonic_time_snsec >=
982                                         (((u64)NSEC_PER_SEC) << tk->shift)) {
983                 vdata->monotonic_time_snsec -=
984                                         ((u64)NSEC_PER_SEC) << tk->shift;
985                 vdata->monotonic_time_sec++;
986         }
987
988         write_seqcount_end(&vdata->seq);
989 }
990 #endif
991
992
993 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
994 {
995         int version;
996         int r;
997         struct pvclock_wall_clock wc;
998         struct timespec boot;
999
1000         if (!wall_clock)
1001                 return;
1002
1003         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1004         if (r)
1005                 return;
1006
1007         if (version & 1)
1008                 ++version;  /* first time write, random junk */
1009
1010         ++version;
1011
1012         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1013
1014         /*
1015          * The guest calculates current wall clock time by adding
1016          * system time (updated by kvm_guest_time_update below) to the
1017          * wall clock specified here.  guest system time equals host
1018          * system time for us, thus we must fill in host boot time here.
1019          */
1020         getboottime(&boot);
1021
1022         if (kvm->arch.kvmclock_offset) {
1023                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1024                 boot = timespec_sub(boot, ts);
1025         }
1026         wc.sec = boot.tv_sec;
1027         wc.nsec = boot.tv_nsec;
1028         wc.version = version;
1029
1030         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1031
1032         version++;
1033         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1034 }
1035
1036 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1037 {
1038         uint32_t quotient, remainder;
1039
1040         /* Don't try to replace with do_div(), this one calculates
1041          * "(dividend << 32) / divisor" */
1042         __asm__ ( "divl %4"
1043                   : "=a" (quotient), "=d" (remainder)
1044                   : "0" (0), "1" (dividend), "r" (divisor) );
1045         return quotient;
1046 }
1047
1048 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1049                                s8 *pshift, u32 *pmultiplier)
1050 {
1051         uint64_t scaled64;
1052         int32_t  shift = 0;
1053         uint64_t tps64;
1054         uint32_t tps32;
1055
1056         tps64 = base_khz * 1000LL;
1057         scaled64 = scaled_khz * 1000LL;
1058         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1059                 tps64 >>= 1;
1060                 shift--;
1061         }
1062
1063         tps32 = (uint32_t)tps64;
1064         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1065                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1066                         scaled64 >>= 1;
1067                 else
1068                         tps32 <<= 1;
1069                 shift++;
1070         }
1071
1072         *pshift = shift;
1073         *pmultiplier = div_frac(scaled64, tps32);
1074
1075         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1076                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1077 }
1078
1079 static inline u64 get_kernel_ns(void)
1080 {
1081         struct timespec ts;
1082
1083         WARN_ON(preemptible());
1084         ktime_get_ts(&ts);
1085         monotonic_to_bootbased(&ts);
1086         return timespec_to_ns(&ts);
1087 }
1088
1089 #ifdef CONFIG_X86_64
1090 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1091 #endif
1092
1093 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1094 unsigned long max_tsc_khz;
1095
1096 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1097 {
1098         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1099                                    vcpu->arch.virtual_tsc_shift);
1100 }
1101
1102 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1103 {
1104         u64 v = (u64)khz * (1000000 + ppm);
1105         do_div(v, 1000000);
1106         return v;
1107 }
1108
1109 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1110 {
1111         u32 thresh_lo, thresh_hi;
1112         int use_scaling = 0;
1113
1114         /* tsc_khz can be zero if TSC calibration fails */
1115         if (this_tsc_khz == 0)
1116                 return;
1117
1118         /* Compute a scale to convert nanoseconds in TSC cycles */
1119         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1120                            &vcpu->arch.virtual_tsc_shift,
1121                            &vcpu->arch.virtual_tsc_mult);
1122         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1123
1124         /*
1125          * Compute the variation in TSC rate which is acceptable
1126          * within the range of tolerance and decide if the
1127          * rate being applied is within that bounds of the hardware
1128          * rate.  If so, no scaling or compensation need be done.
1129          */
1130         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1131         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1132         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1133                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1134                 use_scaling = 1;
1135         }
1136         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1137 }
1138
1139 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1140 {
1141         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1142                                       vcpu->arch.virtual_tsc_mult,
1143                                       vcpu->arch.virtual_tsc_shift);
1144         tsc += vcpu->arch.this_tsc_write;
1145         return tsc;
1146 }
1147
1148 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1149 {
1150 #ifdef CONFIG_X86_64
1151         bool vcpus_matched;
1152         bool do_request = false;
1153         struct kvm_arch *ka = &vcpu->kvm->arch;
1154         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1155
1156         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1157                          atomic_read(&vcpu->kvm->online_vcpus));
1158
1159         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1160                 if (!ka->use_master_clock)
1161                         do_request = 1;
1162
1163         if (!vcpus_matched && ka->use_master_clock)
1164                         do_request = 1;
1165
1166         if (do_request)
1167                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1168
1169         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1170                             atomic_read(&vcpu->kvm->online_vcpus),
1171                             ka->use_master_clock, gtod->clock.vclock_mode);
1172 #endif
1173 }
1174
1175 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1176 {
1177         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1178         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1179 }
1180
1181 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1182 {
1183         struct kvm *kvm = vcpu->kvm;
1184         u64 offset, ns, elapsed;
1185         unsigned long flags;
1186         s64 usdiff;
1187         bool matched;
1188         u64 data = msr->data;
1189
1190         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1191         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1192         ns = get_kernel_ns();
1193         elapsed = ns - kvm->arch.last_tsc_nsec;
1194
1195         if (vcpu->arch.virtual_tsc_khz) {
1196                 /* n.b - signed multiplication and division required */
1197                 usdiff = data - kvm->arch.last_tsc_write;
1198 #ifdef CONFIG_X86_64
1199                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1200 #else
1201                 /* do_div() only does unsigned */
1202                 asm("idivl %2; xor %%edx, %%edx"
1203                 : "=A"(usdiff)
1204                 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1205 #endif
1206                 do_div(elapsed, 1000);
1207                 usdiff -= elapsed;
1208                 if (usdiff < 0)
1209                         usdiff = -usdiff;
1210         } else
1211                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1212
1213         /*
1214          * Special case: TSC write with a small delta (1 second) of virtual
1215          * cycle time against real time is interpreted as an attempt to
1216          * synchronize the CPU.
1217          *
1218          * For a reliable TSC, we can match TSC offsets, and for an unstable
1219          * TSC, we add elapsed time in this computation.  We could let the
1220          * compensation code attempt to catch up if we fall behind, but
1221          * it's better to try to match offsets from the beginning.
1222          */
1223         if (usdiff < USEC_PER_SEC &&
1224             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1225                 if (!check_tsc_unstable()) {
1226                         offset = kvm->arch.cur_tsc_offset;
1227                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1228                 } else {
1229                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1230                         data += delta;
1231                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1232                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1233                 }
1234                 matched = true;
1235         } else {
1236                 /*
1237                  * We split periods of matched TSC writes into generations.
1238                  * For each generation, we track the original measured
1239                  * nanosecond time, offset, and write, so if TSCs are in
1240                  * sync, we can match exact offset, and if not, we can match
1241                  * exact software computation in compute_guest_tsc()
1242                  *
1243                  * These values are tracked in kvm->arch.cur_xxx variables.
1244                  */
1245                 kvm->arch.cur_tsc_generation++;
1246                 kvm->arch.cur_tsc_nsec = ns;
1247                 kvm->arch.cur_tsc_write = data;
1248                 kvm->arch.cur_tsc_offset = offset;
1249                 matched = false;
1250                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1251                          kvm->arch.cur_tsc_generation, data);
1252         }
1253
1254         /*
1255          * We also track th most recent recorded KHZ, write and time to
1256          * allow the matching interval to be extended at each write.
1257          */
1258         kvm->arch.last_tsc_nsec = ns;
1259         kvm->arch.last_tsc_write = data;
1260         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1261
1262         /* Reset of TSC must disable overshoot protection below */
1263         vcpu->arch.hv_clock.tsc_timestamp = 0;
1264         vcpu->arch.last_guest_tsc = data;
1265
1266         /* Keep track of which generation this VCPU has synchronized to */
1267         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1268         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1269         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1270
1271         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1272                 update_ia32_tsc_adjust_msr(vcpu, offset);
1273         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1274         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1275
1276         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1277         if (matched)
1278                 kvm->arch.nr_vcpus_matched_tsc++;
1279         else
1280                 kvm->arch.nr_vcpus_matched_tsc = 0;
1281
1282         kvm_track_tsc_matching(vcpu);
1283         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1284 }
1285
1286 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1287
1288 #ifdef CONFIG_X86_64
1289
1290 static cycle_t read_tsc(void)
1291 {
1292         cycle_t ret;
1293         u64 last;
1294
1295         /*
1296          * Empirically, a fence (of type that depends on the CPU)
1297          * before rdtsc is enough to ensure that rdtsc is ordered
1298          * with respect to loads.  The various CPU manuals are unclear
1299          * as to whether rdtsc can be reordered with later loads,
1300          * but no one has ever seen it happen.
1301          */
1302         rdtsc_barrier();
1303         ret = (cycle_t)vget_cycles();
1304
1305         last = pvclock_gtod_data.clock.cycle_last;
1306
1307         if (likely(ret >= last))
1308                 return ret;
1309
1310         /*
1311          * GCC likes to generate cmov here, but this branch is extremely
1312          * predictable (it's just a funciton of time and the likely is
1313          * very likely) and there's a data dependence, so force GCC
1314          * to generate a branch instead.  I don't barrier() because
1315          * we don't actually need a barrier, and if this function
1316          * ever gets inlined it will generate worse code.
1317          */
1318         asm volatile ("");
1319         return last;
1320 }
1321
1322 static inline u64 vgettsc(cycle_t *cycle_now)
1323 {
1324         long v;
1325         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1326
1327         *cycle_now = read_tsc();
1328
1329         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1330         return v * gtod->clock.mult;
1331 }
1332
1333 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1334 {
1335         unsigned long seq;
1336         u64 ns;
1337         int mode;
1338         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1339
1340         ts->tv_nsec = 0;
1341         do {
1342                 seq = read_seqcount_begin(&gtod->seq);
1343                 mode = gtod->clock.vclock_mode;
1344                 ts->tv_sec = gtod->monotonic_time_sec;
1345                 ns = gtod->monotonic_time_snsec;
1346                 ns += vgettsc(cycle_now);
1347                 ns >>= gtod->clock.shift;
1348         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1349         timespec_add_ns(ts, ns);
1350
1351         return mode;
1352 }
1353
1354 /* returns true if host is using tsc clocksource */
1355 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1356 {
1357         struct timespec ts;
1358
1359         /* checked again under seqlock below */
1360         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1361                 return false;
1362
1363         if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1364                 return false;
1365
1366         monotonic_to_bootbased(&ts);
1367         *kernel_ns = timespec_to_ns(&ts);
1368
1369         return true;
1370 }
1371 #endif
1372
1373 /*
1374  *
1375  * Assuming a stable TSC across physical CPUS, and a stable TSC
1376  * across virtual CPUs, the following condition is possible.
1377  * Each numbered line represents an event visible to both
1378  * CPUs at the next numbered event.
1379  *
1380  * "timespecX" represents host monotonic time. "tscX" represents
1381  * RDTSC value.
1382  *
1383  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1384  *
1385  * 1.  read timespec0,tsc0
1386  * 2.                                   | timespec1 = timespec0 + N
1387  *                                      | tsc1 = tsc0 + M
1388  * 3. transition to guest               | transition to guest
1389  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1390  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1391  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1392  *
1393  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1394  *
1395  *      - ret0 < ret1
1396  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1397  *              ...
1398  *      - 0 < N - M => M < N
1399  *
1400  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1401  * always the case (the difference between two distinct xtime instances
1402  * might be smaller then the difference between corresponding TSC reads,
1403  * when updating guest vcpus pvclock areas).
1404  *
1405  * To avoid that problem, do not allow visibility of distinct
1406  * system_timestamp/tsc_timestamp values simultaneously: use a master
1407  * copy of host monotonic time values. Update that master copy
1408  * in lockstep.
1409  *
1410  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1411  *
1412  */
1413
1414 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1415 {
1416 #ifdef CONFIG_X86_64
1417         struct kvm_arch *ka = &kvm->arch;
1418         int vclock_mode;
1419         bool host_tsc_clocksource, vcpus_matched;
1420
1421         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1422                         atomic_read(&kvm->online_vcpus));
1423
1424         /*
1425          * If the host uses TSC clock, then passthrough TSC as stable
1426          * to the guest.
1427          */
1428         host_tsc_clocksource = kvm_get_time_and_clockread(
1429                                         &ka->master_kernel_ns,
1430                                         &ka->master_cycle_now);
1431
1432         ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1433
1434         if (ka->use_master_clock)
1435                 atomic_set(&kvm_guest_has_master_clock, 1);
1436
1437         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1438         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1439                                         vcpus_matched);
1440 #endif
1441 }
1442
1443 static int kvm_guest_time_update(struct kvm_vcpu *v)
1444 {
1445         unsigned long flags, this_tsc_khz;
1446         struct kvm_vcpu_arch *vcpu = &v->arch;
1447         struct kvm_arch *ka = &v->kvm->arch;
1448         s64 kernel_ns, max_kernel_ns;
1449         u64 tsc_timestamp, host_tsc;
1450         struct pvclock_vcpu_time_info guest_hv_clock;
1451         u8 pvclock_flags;
1452         bool use_master_clock;
1453
1454         kernel_ns = 0;
1455         host_tsc = 0;
1456
1457         /*
1458          * If the host uses TSC clock, then passthrough TSC as stable
1459          * to the guest.
1460          */
1461         spin_lock(&ka->pvclock_gtod_sync_lock);
1462         use_master_clock = ka->use_master_clock;
1463         if (use_master_clock) {
1464                 host_tsc = ka->master_cycle_now;
1465                 kernel_ns = ka->master_kernel_ns;
1466         }
1467         spin_unlock(&ka->pvclock_gtod_sync_lock);
1468
1469         /* Keep irq disabled to prevent changes to the clock */
1470         local_irq_save(flags);
1471         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1472         if (unlikely(this_tsc_khz == 0)) {
1473                 local_irq_restore(flags);
1474                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1475                 return 1;
1476         }
1477         if (!use_master_clock) {
1478                 host_tsc = native_read_tsc();
1479                 kernel_ns = get_kernel_ns();
1480         }
1481
1482         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1483
1484         /*
1485          * We may have to catch up the TSC to match elapsed wall clock
1486          * time for two reasons, even if kvmclock is used.
1487          *   1) CPU could have been running below the maximum TSC rate
1488          *   2) Broken TSC compensation resets the base at each VCPU
1489          *      entry to avoid unknown leaps of TSC even when running
1490          *      again on the same CPU.  This may cause apparent elapsed
1491          *      time to disappear, and the guest to stand still or run
1492          *      very slowly.
1493          */
1494         if (vcpu->tsc_catchup) {
1495                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1496                 if (tsc > tsc_timestamp) {
1497                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1498                         tsc_timestamp = tsc;
1499                 }
1500         }
1501
1502         local_irq_restore(flags);
1503
1504         if (!vcpu->pv_time_enabled)
1505                 return 0;
1506
1507         /*
1508          * Time as measured by the TSC may go backwards when resetting the base
1509          * tsc_timestamp.  The reason for this is that the TSC resolution is
1510          * higher than the resolution of the other clock scales.  Thus, many
1511          * possible measurments of the TSC correspond to one measurement of any
1512          * other clock, and so a spread of values is possible.  This is not a
1513          * problem for the computation of the nanosecond clock; with TSC rates
1514          * around 1GHZ, there can only be a few cycles which correspond to one
1515          * nanosecond value, and any path through this code will inevitably
1516          * take longer than that.  However, with the kernel_ns value itself,
1517          * the precision may be much lower, down to HZ granularity.  If the
1518          * first sampling of TSC against kernel_ns ends in the low part of the
1519          * range, and the second in the high end of the range, we can get:
1520          *
1521          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1522          *
1523          * As the sampling errors potentially range in the thousands of cycles,
1524          * it is possible such a time value has already been observed by the
1525          * guest.  To protect against this, we must compute the system time as
1526          * observed by the guest and ensure the new system time is greater.
1527          */
1528         max_kernel_ns = 0;
1529         if (vcpu->hv_clock.tsc_timestamp) {
1530                 max_kernel_ns = vcpu->last_guest_tsc -
1531                                 vcpu->hv_clock.tsc_timestamp;
1532                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1533                                     vcpu->hv_clock.tsc_to_system_mul,
1534                                     vcpu->hv_clock.tsc_shift);
1535                 max_kernel_ns += vcpu->last_kernel_ns;
1536         }
1537
1538         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1539                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1540                                    &vcpu->hv_clock.tsc_shift,
1541                                    &vcpu->hv_clock.tsc_to_system_mul);
1542                 vcpu->hw_tsc_khz = this_tsc_khz;
1543         }
1544
1545         /* with a master <monotonic time, tsc value> tuple,
1546          * pvclock clock reads always increase at the (scaled) rate
1547          * of guest TSC - no need to deal with sampling errors.
1548          */
1549         if (!use_master_clock) {
1550                 if (max_kernel_ns > kernel_ns)
1551                         kernel_ns = max_kernel_ns;
1552         }
1553         /* With all the info we got, fill in the values */
1554         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1555         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1556         vcpu->last_kernel_ns = kernel_ns;
1557         vcpu->last_guest_tsc = tsc_timestamp;
1558
1559         /*
1560          * The interface expects us to write an even number signaling that the
1561          * update is finished. Since the guest won't see the intermediate
1562          * state, we just increase by 2 at the end.
1563          */
1564         vcpu->hv_clock.version += 2;
1565
1566         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1567                 &guest_hv_clock, sizeof(guest_hv_clock))))
1568                 return 0;
1569
1570         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1571         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1572
1573         if (vcpu->pvclock_set_guest_stopped_request) {
1574                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1575                 vcpu->pvclock_set_guest_stopped_request = false;
1576         }
1577
1578         /* If the host uses TSC clocksource, then it is stable */
1579         if (use_master_clock)
1580                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1581
1582         vcpu->hv_clock.flags = pvclock_flags;
1583
1584         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1585                                 &vcpu->hv_clock,
1586                                 sizeof(vcpu->hv_clock));
1587         return 0;
1588 }
1589
1590 static bool msr_mtrr_valid(unsigned msr)
1591 {
1592         switch (msr) {
1593         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1594         case MSR_MTRRfix64K_00000:
1595         case MSR_MTRRfix16K_80000:
1596         case MSR_MTRRfix16K_A0000:
1597         case MSR_MTRRfix4K_C0000:
1598         case MSR_MTRRfix4K_C8000:
1599         case MSR_MTRRfix4K_D0000:
1600         case MSR_MTRRfix4K_D8000:
1601         case MSR_MTRRfix4K_E0000:
1602         case MSR_MTRRfix4K_E8000:
1603         case MSR_MTRRfix4K_F0000:
1604         case MSR_MTRRfix4K_F8000:
1605         case MSR_MTRRdefType:
1606         case MSR_IA32_CR_PAT:
1607                 return true;
1608         case 0x2f8:
1609                 return true;
1610         }
1611         return false;
1612 }
1613
1614 static bool valid_pat_type(unsigned t)
1615 {
1616         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1617 }
1618
1619 static bool valid_mtrr_type(unsigned t)
1620 {
1621         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1622 }
1623
1624 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1625 {
1626         int i;
1627
1628         if (!msr_mtrr_valid(msr))
1629                 return false;
1630
1631         if (msr == MSR_IA32_CR_PAT) {
1632                 for (i = 0; i < 8; i++)
1633                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1634                                 return false;
1635                 return true;
1636         } else if (msr == MSR_MTRRdefType) {
1637                 if (data & ~0xcff)
1638                         return false;
1639                 return valid_mtrr_type(data & 0xff);
1640         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1641                 for (i = 0; i < 8 ; i++)
1642                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1643                                 return false;
1644                 return true;
1645         }
1646
1647         /* variable MTRRs */
1648         return valid_mtrr_type(data & 0xff);
1649 }
1650
1651 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1652 {
1653         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1654
1655         if (!mtrr_valid(vcpu, msr, data))
1656                 return 1;
1657
1658         if (msr == MSR_MTRRdefType) {
1659                 vcpu->arch.mtrr_state.def_type = data;
1660                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1661         } else if (msr == MSR_MTRRfix64K_00000)
1662                 p[0] = data;
1663         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1664                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1665         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1666                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1667         else if (msr == MSR_IA32_CR_PAT)
1668                 vcpu->arch.pat = data;
1669         else {  /* Variable MTRRs */
1670                 int idx, is_mtrr_mask;
1671                 u64 *pt;
1672
1673                 idx = (msr - 0x200) / 2;
1674                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1675                 if (!is_mtrr_mask)
1676                         pt =
1677                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1678                 else
1679                         pt =
1680                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1681                 *pt = data;
1682         }
1683
1684         kvm_mmu_reset_context(vcpu);
1685         return 0;
1686 }
1687
1688 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1689 {
1690         u64 mcg_cap = vcpu->arch.mcg_cap;
1691         unsigned bank_num = mcg_cap & 0xff;
1692
1693         switch (msr) {
1694         case MSR_IA32_MCG_STATUS:
1695                 vcpu->arch.mcg_status = data;
1696                 break;
1697         case MSR_IA32_MCG_CTL:
1698                 if (!(mcg_cap & MCG_CTL_P))
1699                         return 1;
1700                 if (data != 0 && data != ~(u64)0)
1701                         return -1;
1702                 vcpu->arch.mcg_ctl = data;
1703                 break;
1704         default:
1705                 if (msr >= MSR_IA32_MC0_CTL &&
1706                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1707                         u32 offset = msr - MSR_IA32_MC0_CTL;
1708                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1709                          * some Linux kernels though clear bit 10 in bank 4 to
1710                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1711                          * this to avoid an uncatched #GP in the guest
1712                          */
1713                         if ((offset & 0x3) == 0 &&
1714                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1715                                 return -1;
1716                         vcpu->arch.mce_banks[offset] = data;
1717                         break;
1718                 }
1719                 return 1;
1720         }
1721         return 0;
1722 }
1723
1724 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1725 {
1726         struct kvm *kvm = vcpu->kvm;
1727         int lm = is_long_mode(vcpu);
1728         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1729                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1730         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1731                 : kvm->arch.xen_hvm_config.blob_size_32;
1732         u32 page_num = data & ~PAGE_MASK;
1733         u64 page_addr = data & PAGE_MASK;
1734         u8 *page;
1735         int r;
1736
1737         r = -E2BIG;
1738         if (page_num >= blob_size)
1739                 goto out;
1740         r = -ENOMEM;
1741         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1742         if (IS_ERR(page)) {
1743                 r = PTR_ERR(page);
1744                 goto out;
1745         }
1746         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1747                 goto out_free;
1748         r = 0;
1749 out_free:
1750         kfree(page);
1751 out:
1752         return r;
1753 }
1754
1755 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1756 {
1757         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1758 }
1759
1760 static bool kvm_hv_msr_partition_wide(u32 msr)
1761 {
1762         bool r = false;
1763         switch (msr) {
1764         case HV_X64_MSR_GUEST_OS_ID:
1765         case HV_X64_MSR_HYPERCALL:
1766                 r = true;
1767                 break;
1768         }
1769
1770         return r;
1771 }
1772
1773 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1774 {
1775         struct kvm *kvm = vcpu->kvm;
1776
1777         switch (msr) {
1778         case HV_X64_MSR_GUEST_OS_ID:
1779                 kvm->arch.hv_guest_os_id = data;
1780                 /* setting guest os id to zero disables hypercall page */
1781                 if (!kvm->arch.hv_guest_os_id)
1782                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1783                 break;
1784         case HV_X64_MSR_HYPERCALL: {
1785                 u64 gfn;
1786                 unsigned long addr;
1787                 u8 instructions[4];
1788
1789                 /* if guest os id is not set hypercall should remain disabled */
1790                 if (!kvm->arch.hv_guest_os_id)
1791                         break;
1792                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1793                         kvm->arch.hv_hypercall = data;
1794                         break;
1795                 }
1796                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1797                 addr = gfn_to_hva(kvm, gfn);
1798                 if (kvm_is_error_hva(addr))
1799                         return 1;
1800                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1801                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1802                 if (__copy_to_user((void __user *)addr, instructions, 4))
1803                         return 1;
1804                 kvm->arch.hv_hypercall = data;
1805                 break;
1806         }
1807         default:
1808                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1809                             "data 0x%llx\n", msr, data);
1810                 return 1;
1811         }
1812         return 0;
1813 }
1814
1815 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1816 {
1817         switch (msr) {
1818         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1819                 unsigned long addr;
1820
1821                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1822                         vcpu->arch.hv_vapic = data;
1823                         break;
1824                 }
1825                 addr = gfn_to_hva(vcpu->kvm, data >>
1826                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1827                 if (kvm_is_error_hva(addr))
1828                         return 1;
1829                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1830                         return 1;
1831                 vcpu->arch.hv_vapic = data;
1832                 break;
1833         }
1834         case HV_X64_MSR_EOI:
1835                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1836         case HV_X64_MSR_ICR:
1837                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1838         case HV_X64_MSR_TPR:
1839                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1840         default:
1841                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1842                             "data 0x%llx\n", msr, data);
1843                 return 1;
1844         }
1845
1846         return 0;
1847 }
1848
1849 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1850 {
1851         gpa_t gpa = data & ~0x3f;
1852
1853         /* Bits 2:5 are reserved, Should be zero */
1854         if (data & 0x3c)
1855                 return 1;
1856
1857         vcpu->arch.apf.msr_val = data;
1858
1859         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1860                 kvm_clear_async_pf_completion_queue(vcpu);
1861                 kvm_async_pf_hash_reset(vcpu);
1862                 return 0;
1863         }
1864
1865         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1866                                         sizeof(u32)))
1867                 return 1;
1868
1869         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1870         kvm_async_pf_wakeup_all(vcpu);
1871         return 0;
1872 }
1873
1874 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1875 {
1876         vcpu->arch.pv_time_enabled = false;
1877 }
1878
1879 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1880 {
1881         u64 delta;
1882
1883         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1884                 return;
1885
1886         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1887         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1888         vcpu->arch.st.accum_steal = delta;
1889 }
1890
1891 static void record_steal_time(struct kvm_vcpu *vcpu)
1892 {
1893         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1894                 return;
1895
1896         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1897                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1898                 return;
1899
1900         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1901         vcpu->arch.st.steal.version += 2;
1902         vcpu->arch.st.accum_steal = 0;
1903
1904         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1905                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1906 }
1907
1908 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1909 {
1910         bool pr = false;
1911         u32 msr = msr_info->index;
1912         u64 data = msr_info->data;
1913
1914         switch (msr) {
1915         case MSR_AMD64_NB_CFG:
1916         case MSR_IA32_UCODE_REV:
1917         case MSR_IA32_UCODE_WRITE:
1918         case MSR_VM_HSAVE_PA:
1919         case MSR_AMD64_PATCH_LOADER:
1920         case MSR_AMD64_BU_CFG2:
1921                 break;
1922
1923         case MSR_EFER:
1924                 return set_efer(vcpu, data);
1925         case MSR_K7_HWCR:
1926                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1927                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1928                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1929                 if (data != 0) {
1930                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1931                                     data);
1932                         return 1;
1933                 }
1934                 break;
1935         case MSR_FAM10H_MMIO_CONF_BASE:
1936                 if (data != 0) {
1937                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1938                                     "0x%llx\n", data);
1939                         return 1;
1940                 }
1941                 break;
1942         case MSR_IA32_DEBUGCTLMSR:
1943                 if (!data) {
1944                         /* We support the non-activated case already */
1945                         break;
1946                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1947                         /* Values other than LBR and BTF are vendor-specific,
1948                            thus reserved and should throw a #GP */
1949                         return 1;
1950                 }
1951                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1952                             __func__, data);
1953                 break;
1954         case 0x200 ... 0x2ff:
1955                 return set_msr_mtrr(vcpu, msr, data);
1956         case MSR_IA32_APICBASE:
1957                 kvm_set_apic_base(vcpu, data);
1958                 break;
1959         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1960                 return kvm_x2apic_msr_write(vcpu, msr, data);
1961         case MSR_IA32_TSCDEADLINE:
1962                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1963                 break;
1964         case MSR_IA32_TSC_ADJUST:
1965                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1966                         if (!msr_info->host_initiated) {
1967                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1968                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1969                         }
1970                         vcpu->arch.ia32_tsc_adjust_msr = data;
1971                 }
1972                 break;
1973         case MSR_IA32_MISC_ENABLE:
1974                 vcpu->arch.ia32_misc_enable_msr = data;
1975                 break;
1976         case MSR_KVM_WALL_CLOCK_NEW:
1977         case MSR_KVM_WALL_CLOCK:
1978                 vcpu->kvm->arch.wall_clock = data;
1979                 kvm_write_wall_clock(vcpu->kvm, data);
1980                 break;
1981         case MSR_KVM_SYSTEM_TIME_NEW:
1982         case MSR_KVM_SYSTEM_TIME: {
1983                 u64 gpa_offset;
1984                 kvmclock_reset(vcpu);
1985
1986                 vcpu->arch.time = data;
1987                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1988
1989                 /* we verify if the enable bit is set... */
1990                 if (!(data & 1))
1991                         break;
1992
1993                 gpa_offset = data & ~(PAGE_MASK | 1);
1994
1995                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
1996                      &vcpu->arch.pv_time, data & ~1ULL,
1997                      sizeof(struct pvclock_vcpu_time_info)))
1998                         vcpu->arch.pv_time_enabled = false;
1999                 else
2000                         vcpu->arch.pv_time_enabled = true;
2001
2002                 break;
2003         }
2004         case MSR_KVM_ASYNC_PF_EN:
2005                 if (kvm_pv_enable_async_pf(vcpu, data))
2006                         return 1;
2007                 break;
2008         case MSR_KVM_STEAL_TIME:
2009
2010                 if (unlikely(!sched_info_on()))
2011                         return 1;
2012
2013                 if (data & KVM_STEAL_RESERVED_MASK)
2014                         return 1;
2015
2016                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2017                                                 data & KVM_STEAL_VALID_BITS,
2018                                                 sizeof(struct kvm_steal_time)))
2019                         return 1;
2020
2021                 vcpu->arch.st.msr_val = data;
2022
2023                 if (!(data & KVM_MSR_ENABLED))
2024                         break;
2025
2026                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2027
2028                 preempt_disable();
2029                 accumulate_steal_time(vcpu);
2030                 preempt_enable();
2031
2032                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2033
2034                 break;
2035         case MSR_KVM_PV_EOI_EN:
2036                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2037                         return 1;
2038                 break;
2039
2040         case MSR_IA32_MCG_CTL:
2041         case MSR_IA32_MCG_STATUS:
2042         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2043                 return set_msr_mce(vcpu, msr, data);
2044
2045         /* Performance counters are not protected by a CPUID bit,
2046          * so we should check all of them in the generic path for the sake of
2047          * cross vendor migration.
2048          * Writing a zero into the event select MSRs disables them,
2049          * which we perfectly emulate ;-). Any other value should be at least
2050          * reported, some guests depend on them.
2051          */
2052         case MSR_K7_EVNTSEL0:
2053         case MSR_K7_EVNTSEL1:
2054         case MSR_K7_EVNTSEL2:
2055         case MSR_K7_EVNTSEL3:
2056                 if (data != 0)
2057                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2058                                     "0x%x data 0x%llx\n", msr, data);
2059                 break;
2060         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2061          * so we ignore writes to make it happy.
2062          */
2063         case MSR_K7_PERFCTR0:
2064         case MSR_K7_PERFCTR1:
2065         case MSR_K7_PERFCTR2:
2066         case MSR_K7_PERFCTR3:
2067                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2068                             "0x%x data 0x%llx\n", msr, data);
2069                 break;
2070         case MSR_P6_PERFCTR0:
2071         case MSR_P6_PERFCTR1:
2072                 pr = true;
2073         case MSR_P6_EVNTSEL0:
2074         case MSR_P6_EVNTSEL1:
2075                 if (kvm_pmu_msr(vcpu, msr))
2076                         return kvm_pmu_set_msr(vcpu, msr_info);
2077
2078                 if (pr || data != 0)
2079                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2080                                     "0x%x data 0x%llx\n", msr, data);
2081                 break;
2082         case MSR_K7_CLK_CTL:
2083                 /*
2084                  * Ignore all writes to this no longer documented MSR.
2085                  * Writes are only relevant for old K7 processors,
2086                  * all pre-dating SVM, but a recommended workaround from
2087                  * AMD for these chips. It is possible to specify the
2088                  * affected processor models on the command line, hence
2089                  * the need to ignore the workaround.
2090                  */
2091                 break;
2092         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2093                 if (kvm_hv_msr_partition_wide(msr)) {
2094                         int r;
2095                         mutex_lock(&vcpu->kvm->lock);
2096                         r = set_msr_hyperv_pw(vcpu, msr, data);
2097                         mutex_unlock(&vcpu->kvm->lock);
2098                         return r;
2099                 } else
2100                         return set_msr_hyperv(vcpu, msr, data);
2101                 break;
2102         case MSR_IA32_BBL_CR_CTL3:
2103                 /* Drop writes to this legacy MSR -- see rdmsr
2104                  * counterpart for further detail.
2105                  */
2106                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2107                 break;
2108         case MSR_AMD64_OSVW_ID_LENGTH:
2109                 if (!guest_cpuid_has_osvw(vcpu))
2110                         return 1;
2111                 vcpu->arch.osvw.length = data;
2112                 break;
2113         case MSR_AMD64_OSVW_STATUS:
2114                 if (!guest_cpuid_has_osvw(vcpu))
2115                         return 1;
2116                 vcpu->arch.osvw.status = data;
2117                 break;
2118         default:
2119                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2120                         return xen_hvm_config(vcpu, data);
2121                 if (kvm_pmu_msr(vcpu, msr))
2122                         return kvm_pmu_set_msr(vcpu, msr_info);
2123                 if (!ignore_msrs) {
2124                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2125                                     msr, data);
2126                         return 1;
2127                 } else {
2128                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2129                                     msr, data);
2130                         break;
2131                 }
2132         }
2133         return 0;
2134 }
2135 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2136
2137
2138 /*
2139  * Reads an msr value (of 'msr_index') into 'pdata'.
2140  * Returns 0 on success, non-0 otherwise.
2141  * Assumes vcpu_load() was already called.
2142  */
2143 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2144 {
2145         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2146 }
2147
2148 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2149 {
2150         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2151
2152         if (!msr_mtrr_valid(msr))
2153                 return 1;
2154
2155         if (msr == MSR_MTRRdefType)
2156                 *pdata = vcpu->arch.mtrr_state.def_type +
2157                          (vcpu->arch.mtrr_state.enabled << 10);
2158         else if (msr == MSR_MTRRfix64K_00000)
2159                 *pdata = p[0];
2160         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2161                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2162         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2163                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2164         else if (msr == MSR_IA32_CR_PAT)
2165                 *pdata = vcpu->arch.pat;
2166         else {  /* Variable MTRRs */
2167                 int idx, is_mtrr_mask;
2168                 u64 *pt;
2169
2170                 idx = (msr - 0x200) / 2;
2171                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2172                 if (!is_mtrr_mask)
2173                         pt =
2174                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2175                 else
2176                         pt =
2177                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2178                 *pdata = *pt;
2179         }
2180
2181         return 0;
2182 }
2183
2184 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2185 {
2186         u64 data;
2187         u64 mcg_cap = vcpu->arch.mcg_cap;
2188         unsigned bank_num = mcg_cap & 0xff;
2189
2190         switch (msr) {
2191         case MSR_IA32_P5_MC_ADDR:
2192         case MSR_IA32_P5_MC_TYPE:
2193                 data = 0;
2194                 break;
2195         case MSR_IA32_MCG_CAP:
2196                 data = vcpu->arch.mcg_cap;
2197                 break;
2198         case MSR_IA32_MCG_CTL:
2199                 if (!(mcg_cap & MCG_CTL_P))
2200                         return 1;
2201                 data = vcpu->arch.mcg_ctl;
2202                 break;
2203         case MSR_IA32_MCG_STATUS:
2204                 data = vcpu->arch.mcg_status;
2205                 break;
2206         default:
2207                 if (msr >= MSR_IA32_MC0_CTL &&
2208                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2209                         u32 offset = msr - MSR_IA32_MC0_CTL;
2210                         data = vcpu->arch.mce_banks[offset];
2211                         break;
2212                 }
2213                 return 1;
2214         }
2215         *pdata = data;
2216         return 0;
2217 }
2218
2219 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2220 {
2221         u64 data = 0;
2222         struct kvm *kvm = vcpu->kvm;
2223
2224         switch (msr) {
2225         case HV_X64_MSR_GUEST_OS_ID:
2226                 data = kvm->arch.hv_guest_os_id;
2227                 break;
2228         case HV_X64_MSR_HYPERCALL:
2229                 data = kvm->arch.hv_hypercall;
2230                 break;
2231         default:
2232                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2233                 return 1;
2234         }
2235
2236         *pdata = data;
2237         return 0;
2238 }
2239
2240 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2241 {
2242         u64 data = 0;
2243
2244         switch (msr) {
2245         case HV_X64_MSR_VP_INDEX: {
2246                 int r;
2247                 struct kvm_vcpu *v;
2248                 kvm_for_each_vcpu(r, v, vcpu->kvm)
2249                         if (v == vcpu)
2250                                 data = r;
2251                 break;
2252         }
2253         case HV_X64_MSR_EOI:
2254                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2255         case HV_X64_MSR_ICR:
2256                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2257         case HV_X64_MSR_TPR:
2258                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2259         case HV_X64_MSR_APIC_ASSIST_PAGE:
2260                 data = vcpu->arch.hv_vapic;
2261                 break;
2262         default:
2263                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2264                 return 1;
2265         }
2266         *pdata = data;
2267         return 0;
2268 }
2269
2270 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2271 {
2272         u64 data;
2273
2274         switch (msr) {
2275         case MSR_IA32_PLATFORM_ID:
2276         case MSR_IA32_EBL_CR_POWERON:
2277         case MSR_IA32_DEBUGCTLMSR:
2278         case MSR_IA32_LASTBRANCHFROMIP:
2279         case MSR_IA32_LASTBRANCHTOIP:
2280         case MSR_IA32_LASTINTFROMIP:
2281         case MSR_IA32_LASTINTTOIP:
2282         case MSR_K8_SYSCFG:
2283         case MSR_K7_HWCR:
2284         case MSR_VM_HSAVE_PA:
2285         case MSR_K7_EVNTSEL0:
2286         case MSR_K7_PERFCTR0:
2287         case MSR_K8_INT_PENDING_MSG:
2288         case MSR_AMD64_NB_CFG:
2289         case MSR_FAM10H_MMIO_CONF_BASE:
2290         case MSR_AMD64_BU_CFG2:
2291                 data = 0;
2292                 break;
2293         case MSR_P6_PERFCTR0:
2294         case MSR_P6_PERFCTR1:
2295         case MSR_P6_EVNTSEL0:
2296         case MSR_P6_EVNTSEL1:
2297                 if (kvm_pmu_msr(vcpu, msr))
2298                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2299                 data = 0;
2300                 break;
2301         case MSR_IA32_UCODE_REV:
2302                 data = 0x100000000ULL;
2303                 break;
2304         case MSR_MTRRcap:
2305                 data = 0x500 | KVM_NR_VAR_MTRR;
2306                 break;
2307         case 0x200 ... 0x2ff:
2308                 return get_msr_mtrr(vcpu, msr, pdata);
2309         case 0xcd: /* fsb frequency */
2310                 data = 3;
2311                 break;
2312                 /*
2313                  * MSR_EBC_FREQUENCY_ID
2314                  * Conservative value valid for even the basic CPU models.
2315                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2316                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2317                  * and 266MHz for model 3, or 4. Set Core Clock
2318                  * Frequency to System Bus Frequency Ratio to 1 (bits
2319                  * 31:24) even though these are only valid for CPU
2320                  * models > 2, however guests may end up dividing or
2321                  * multiplying by zero otherwise.
2322                  */
2323         case MSR_EBC_FREQUENCY_ID:
2324                 data = 1 << 24;
2325                 break;
2326         case MSR_IA32_APICBASE:
2327                 data = kvm_get_apic_base(vcpu);
2328                 break;
2329         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2330                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2331                 break;
2332         case MSR_IA32_TSCDEADLINE:
2333                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2334                 break;
2335         case MSR_IA32_TSC_ADJUST:
2336                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2337                 break;
2338         case MSR_IA32_MISC_ENABLE:
2339                 data = vcpu->arch.ia32_misc_enable_msr;
2340                 break;
2341         case MSR_IA32_PERF_STATUS:
2342                 /* TSC increment by tick */
2343                 data = 1000ULL;
2344                 /* CPU multiplier */
2345                 data |= (((uint64_t)4ULL) << 40);
2346                 break;
2347         case MSR_EFER:
2348                 data = vcpu->arch.efer;
2349                 break;
2350         case MSR_KVM_WALL_CLOCK:
2351         case MSR_KVM_WALL_CLOCK_NEW:
2352                 data = vcpu->kvm->arch.wall_clock;
2353                 break;
2354         case MSR_KVM_SYSTEM_TIME:
2355         case MSR_KVM_SYSTEM_TIME_NEW:
2356                 data = vcpu->arch.time;
2357                 break;
2358         case MSR_KVM_ASYNC_PF_EN:
2359                 data = vcpu->arch.apf.msr_val;
2360                 break;
2361         case MSR_KVM_STEAL_TIME:
2362                 data = vcpu->arch.st.msr_val;
2363                 break;
2364         case MSR_KVM_PV_EOI_EN:
2365                 data = vcpu->arch.pv_eoi.msr_val;
2366                 break;
2367         case MSR_IA32_P5_MC_ADDR:
2368         case MSR_IA32_P5_MC_TYPE:
2369         case MSR_IA32_MCG_CAP:
2370         case MSR_IA32_MCG_CTL:
2371         case MSR_IA32_MCG_STATUS:
2372         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2373                 return get_msr_mce(vcpu, msr, pdata);
2374         case MSR_K7_CLK_CTL:
2375                 /*
2376                  * Provide expected ramp-up count for K7. All other
2377                  * are set to zero, indicating minimum divisors for
2378                  * every field.
2379                  *
2380                  * This prevents guest kernels on AMD host with CPU
2381                  * type 6, model 8 and higher from exploding due to
2382                  * the rdmsr failing.
2383                  */
2384                 data = 0x20000000;
2385                 break;
2386         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2387                 if (kvm_hv_msr_partition_wide(msr)) {
2388                         int r;
2389                         mutex_lock(&vcpu->kvm->lock);
2390                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2391                         mutex_unlock(&vcpu->kvm->lock);
2392                         return r;
2393                 } else
2394                         return get_msr_hyperv(vcpu, msr, pdata);
2395                 break;
2396         case MSR_IA32_BBL_CR_CTL3:
2397                 /* This legacy MSR exists but isn't fully documented in current
2398                  * silicon.  It is however accessed by winxp in very narrow
2399                  * scenarios where it sets bit #19, itself documented as
2400                  * a "reserved" bit.  Best effort attempt to source coherent
2401                  * read data here should the balance of the register be
2402                  * interpreted by the guest:
2403                  *
2404                  * L2 cache control register 3: 64GB range, 256KB size,
2405                  * enabled, latency 0x1, configured
2406                  */
2407                 data = 0xbe702111;
2408                 break;
2409         case MSR_AMD64_OSVW_ID_LENGTH:
2410                 if (!guest_cpuid_has_osvw(vcpu))
2411                         return 1;
2412                 data = vcpu->arch.osvw.length;
2413                 break;
2414         case MSR_AMD64_OSVW_STATUS:
2415                 if (!guest_cpuid_has_osvw(vcpu))
2416                         return 1;
2417                 data = vcpu->arch.osvw.status;
2418                 break;
2419         default:
2420                 if (kvm_pmu_msr(vcpu, msr))
2421                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2422                 if (!ignore_msrs) {
2423                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2424                         return 1;
2425                 } else {
2426                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2427                         data = 0;
2428                 }
2429                 break;
2430         }
2431         *pdata = data;
2432         return 0;
2433 }
2434 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2435
2436 /*
2437  * Read or write a bunch of msrs. All parameters are kernel addresses.
2438  *
2439  * @return number of msrs set successfully.
2440  */
2441 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2442                     struct kvm_msr_entry *entries,
2443                     int (*do_msr)(struct kvm_vcpu *vcpu,
2444                                   unsigned index, u64 *data))
2445 {
2446         int i, idx;
2447
2448         idx = srcu_read_lock(&vcpu->kvm->srcu);
2449         for (i = 0; i < msrs->nmsrs; ++i)
2450                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2451                         break;
2452         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2453
2454         return i;
2455 }
2456
2457 /*
2458  * Read or write a bunch of msrs. Parameters are user addresses.
2459  *
2460  * @return number of msrs set successfully.
2461  */
2462 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2463                   int (*do_msr)(struct kvm_vcpu *vcpu,
2464                                 unsigned index, u64 *data),
2465                   int writeback)
2466 {
2467         struct kvm_msrs msrs;
2468         struct kvm_msr_entry *entries;
2469         int r, n;
2470         unsigned size;
2471
2472         r = -EFAULT;
2473         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2474                 goto out;
2475
2476         r = -E2BIG;
2477         if (msrs.nmsrs >= MAX_IO_MSRS)
2478                 goto out;
2479
2480         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2481         entries = memdup_user(user_msrs->entries, size);
2482         if (IS_ERR(entries)) {
2483                 r = PTR_ERR(entries);
2484                 goto out;
2485         }
2486
2487         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2488         if (r < 0)
2489                 goto out_free;
2490
2491         r = -EFAULT;
2492         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2493                 goto out_free;
2494
2495         r = n;
2496
2497 out_free:
2498         kfree(entries);
2499 out:
2500         return r;
2501 }
2502
2503 int kvm_dev_ioctl_check_extension(long ext)
2504 {
2505         int r;
2506
2507         switch (ext) {
2508         case KVM_CAP_IRQCHIP:
2509         case KVM_CAP_HLT:
2510         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2511         case KVM_CAP_SET_TSS_ADDR:
2512         case KVM_CAP_EXT_CPUID:
2513         case KVM_CAP_CLOCKSOURCE:
2514         case KVM_CAP_PIT:
2515         case KVM_CAP_NOP_IO_DELAY:
2516         case KVM_CAP_MP_STATE:
2517         case KVM_CAP_SYNC_MMU:
2518         case KVM_CAP_USER_NMI:
2519         case KVM_CAP_REINJECT_CONTROL:
2520         case KVM_CAP_IRQ_INJECT_STATUS:
2521         case KVM_CAP_IRQFD:
2522         case KVM_CAP_IOEVENTFD:
2523         case KVM_CAP_PIT2:
2524         case KVM_CAP_PIT_STATE2:
2525         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2526         case KVM_CAP_XEN_HVM:
2527         case KVM_CAP_ADJUST_CLOCK:
2528         case KVM_CAP_VCPU_EVENTS:
2529         case KVM_CAP_HYPERV:
2530         case KVM_CAP_HYPERV_VAPIC:
2531         case KVM_CAP_HYPERV_SPIN:
2532         case KVM_CAP_PCI_SEGMENT:
2533         case KVM_CAP_DEBUGREGS:
2534         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2535         case KVM_CAP_XSAVE:
2536         case KVM_CAP_ASYNC_PF:
2537         case KVM_CAP_GET_TSC_KHZ:
2538         case KVM_CAP_KVMCLOCK_CTRL:
2539         case KVM_CAP_READONLY_MEM:
2540 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2541         case KVM_CAP_ASSIGN_DEV_IRQ:
2542         case KVM_CAP_PCI_2_3:
2543 #endif
2544                 r = 1;
2545                 break;
2546         case KVM_CAP_COALESCED_MMIO:
2547                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2548                 break;
2549         case KVM_CAP_VAPIC:
2550                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2551                 break;
2552         case KVM_CAP_NR_VCPUS:
2553                 r = KVM_SOFT_MAX_VCPUS;
2554                 break;
2555         case KVM_CAP_MAX_VCPUS:
2556                 r = KVM_MAX_VCPUS;
2557                 break;
2558         case KVM_CAP_NR_MEMSLOTS:
2559                 r = KVM_USER_MEM_SLOTS;
2560                 break;
2561         case KVM_CAP_PV_MMU:    /* obsolete */
2562                 r = 0;
2563                 break;
2564 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2565         case KVM_CAP_IOMMU:
2566                 r = iommu_present(&pci_bus_type);
2567                 break;
2568 #endif
2569         case KVM_CAP_MCE:
2570                 r = KVM_MAX_MCE_BANKS;
2571                 break;
2572         case KVM_CAP_XCRS:
2573                 r = cpu_has_xsave;
2574                 break;
2575         case KVM_CAP_TSC_CONTROL:
2576                 r = kvm_has_tsc_control;
2577                 break;
2578         case KVM_CAP_TSC_DEADLINE_TIMER:
2579                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2580                 break;
2581         default:
2582                 r = 0;
2583                 break;
2584         }
2585         return r;
2586
2587 }
2588
2589 long kvm_arch_dev_ioctl(struct file *filp,
2590                         unsigned int ioctl, unsigned long arg)
2591 {
2592         void __user *argp = (void __user *)arg;
2593         long r;
2594
2595         switch (ioctl) {
2596         case KVM_GET_MSR_INDEX_LIST: {
2597                 struct kvm_msr_list __user *user_msr_list = argp;
2598                 struct kvm_msr_list msr_list;
2599                 unsigned n;
2600
2601                 r = -EFAULT;
2602                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2603                         goto out;
2604                 n = msr_list.nmsrs;
2605                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2606                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2607                         goto out;
2608                 r = -E2BIG;
2609                 if (n < msr_list.nmsrs)
2610                         goto out;
2611                 r = -EFAULT;
2612                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2613                                  num_msrs_to_save * sizeof(u32)))
2614                         goto out;
2615                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2616                                  &emulated_msrs,
2617                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2618                         goto out;
2619                 r = 0;
2620                 break;
2621         }
2622         case KVM_GET_SUPPORTED_CPUID: {
2623                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2624                 struct kvm_cpuid2 cpuid;
2625
2626                 r = -EFAULT;
2627                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2628                         goto out;
2629                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2630                                                       cpuid_arg->entries);
2631                 if (r)
2632                         goto out;
2633
2634                 r = -EFAULT;
2635                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2636                         goto out;
2637                 r = 0;
2638                 break;
2639         }
2640         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2641                 u64 mce_cap;
2642
2643                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2644                 r = -EFAULT;
2645                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2646                         goto out;
2647                 r = 0;
2648                 break;
2649         }
2650         default:
2651                 r = -EINVAL;
2652         }
2653 out:
2654         return r;
2655 }
2656
2657 static void wbinvd_ipi(void *garbage)
2658 {
2659         wbinvd();
2660 }
2661
2662 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2663 {
2664         return vcpu->kvm->arch.iommu_domain &&
2665                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2666 }
2667
2668 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2669 {
2670         /* Address WBINVD may be executed by guest */
2671         if (need_emulate_wbinvd(vcpu)) {
2672                 if (kvm_x86_ops->has_wbinvd_exit())
2673                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2674                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2675                         smp_call_function_single(vcpu->cpu,
2676                                         wbinvd_ipi, NULL, 1);
2677         }
2678
2679         kvm_x86_ops->vcpu_load(vcpu, cpu);
2680
2681         /* Apply any externally detected TSC adjustments (due to suspend) */
2682         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2683                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2684                 vcpu->arch.tsc_offset_adjustment = 0;
2685                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2686         }
2687
2688         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2689                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2690                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2691                 if (tsc_delta < 0)
2692                         mark_tsc_unstable("KVM discovered backwards TSC");
2693                 if (check_tsc_unstable()) {
2694                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2695                                                 vcpu->arch.last_guest_tsc);
2696                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2697                         vcpu->arch.tsc_catchup = 1;
2698                 }
2699                 /*
2700                  * On a host with synchronized TSC, there is no need to update
2701                  * kvmclock on vcpu->cpu migration
2702                  */
2703                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2704                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2705                 if (vcpu->cpu != cpu)
2706                         kvm_migrate_timers(vcpu);
2707                 vcpu->cpu = cpu;
2708         }
2709
2710         accumulate_steal_time(vcpu);
2711         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2712 }
2713
2714 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2715 {
2716         kvm_x86_ops->vcpu_put(vcpu);
2717         kvm_put_guest_fpu(vcpu);
2718         vcpu->arch.last_host_tsc = native_read_tsc();
2719 }
2720
2721 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2722                                     struct kvm_lapic_state *s)
2723 {
2724         kvm_x86_ops->sync_pir_to_irr(vcpu);
2725         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2726
2727         return 0;
2728 }
2729
2730 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2731                                     struct kvm_lapic_state *s)
2732 {
2733         kvm_apic_post_state_restore(vcpu, s);
2734         update_cr8_intercept(vcpu);
2735
2736         return 0;
2737 }
2738
2739 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2740                                     struct kvm_interrupt *irq)
2741 {
2742         if (irq->irq >= KVM_NR_INTERRUPTS)
2743                 return -EINVAL;
2744         if (irqchip_in_kernel(vcpu->kvm))
2745                 return -ENXIO;
2746
2747         kvm_queue_interrupt(vcpu, irq->irq, false);
2748         kvm_make_request(KVM_REQ_EVENT, vcpu);
2749
2750         return 0;
2751 }
2752
2753 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2754 {
2755         kvm_inject_nmi(vcpu);
2756
2757         return 0;
2758 }
2759
2760 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2761                                            struct kvm_tpr_access_ctl *tac)
2762 {
2763         if (tac->flags)
2764                 return -EINVAL;
2765         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2766         return 0;
2767 }
2768
2769 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2770                                         u64 mcg_cap)
2771 {
2772         int r;
2773         unsigned bank_num = mcg_cap & 0xff, bank;
2774
2775         r = -EINVAL;
2776         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2777                 goto out;
2778         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2779                 goto out;
2780         r = 0;
2781         vcpu->arch.mcg_cap = mcg_cap;
2782         /* Init IA32_MCG_CTL to all 1s */
2783         if (mcg_cap & MCG_CTL_P)
2784                 vcpu->arch.mcg_ctl = ~(u64)0;
2785         /* Init IA32_MCi_CTL to all 1s */
2786         for (bank = 0; bank < bank_num; bank++)
2787                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2788 out:
2789         return r;
2790 }
2791
2792 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2793                                       struct kvm_x86_mce *mce)
2794 {
2795         u64 mcg_cap = vcpu->arch.mcg_cap;
2796         unsigned bank_num = mcg_cap & 0xff;
2797         u64 *banks = vcpu->arch.mce_banks;
2798
2799         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2800                 return -EINVAL;
2801         /*
2802          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2803          * reporting is disabled
2804          */
2805         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2806             vcpu->arch.mcg_ctl != ~(u64)0)
2807                 return 0;
2808         banks += 4 * mce->bank;
2809         /*
2810          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2811          * reporting is disabled for the bank
2812          */
2813         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2814                 return 0;
2815         if (mce->status & MCI_STATUS_UC) {
2816                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2817                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2818                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2819                         return 0;
2820                 }
2821                 if (banks[1] & MCI_STATUS_VAL)
2822                         mce->status |= MCI_STATUS_OVER;
2823                 banks[2] = mce->addr;
2824                 banks[3] = mce->misc;
2825                 vcpu->arch.mcg_status = mce->mcg_status;
2826                 banks[1] = mce->status;
2827                 kvm_queue_exception(vcpu, MC_VECTOR);
2828         } else if (!(banks[1] & MCI_STATUS_VAL)
2829                    || !(banks[1] & MCI_STATUS_UC)) {
2830                 if (banks[1] & MCI_STATUS_VAL)
2831                         mce->status |= MCI_STATUS_OVER;
2832                 banks[2] = mce->addr;
2833                 banks[3] = mce->misc;
2834                 banks[1] = mce->status;
2835         } else
2836                 banks[1] |= MCI_STATUS_OVER;
2837         return 0;
2838 }
2839
2840 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2841                                                struct kvm_vcpu_events *events)
2842 {
2843         process_nmi(vcpu);
2844         events->exception.injected =
2845                 vcpu->arch.exception.pending &&
2846                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2847         events->exception.nr = vcpu->arch.exception.nr;
2848         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2849         events->exception.pad = 0;
2850         events->exception.error_code = vcpu->arch.exception.error_code;
2851
2852         events->interrupt.injected =
2853                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2854         events->interrupt.nr = vcpu->arch.interrupt.nr;
2855         events->interrupt.soft = 0;
2856         events->interrupt.shadow =
2857                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2858                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2859
2860         events->nmi.injected = vcpu->arch.nmi_injected;
2861         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2862         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2863         events->nmi.pad = 0;
2864
2865         events->sipi_vector = 0; /* never valid when reporting to user space */
2866
2867         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2868                          | KVM_VCPUEVENT_VALID_SHADOW);
2869         memset(&events->reserved, 0, sizeof(events->reserved));
2870 }
2871
2872 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2873                                               struct kvm_vcpu_events *events)
2874 {
2875         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2876                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2877                               | KVM_VCPUEVENT_VALID_SHADOW))
2878                 return -EINVAL;
2879
2880         process_nmi(vcpu);
2881         vcpu->arch.exception.pending = events->exception.injected;
2882         vcpu->arch.exception.nr = events->exception.nr;
2883         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2884         vcpu->arch.exception.error_code = events->exception.error_code;
2885
2886         vcpu->arch.interrupt.pending = events->interrupt.injected;
2887         vcpu->arch.interrupt.nr = events->interrupt.nr;
2888         vcpu->arch.interrupt.soft = events->interrupt.soft;
2889         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2890                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2891                                                   events->interrupt.shadow);
2892
2893         vcpu->arch.nmi_injected = events->nmi.injected;
2894         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2895                 vcpu->arch.nmi_pending = events->nmi.pending;
2896         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2897
2898         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2899             kvm_vcpu_has_lapic(vcpu))
2900                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2901
2902         kvm_make_request(KVM_REQ_EVENT, vcpu);
2903
2904         return 0;
2905 }
2906
2907 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2908                                              struct kvm_debugregs *dbgregs)
2909 {
2910         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2911         dbgregs->dr6 = vcpu->arch.dr6;
2912         dbgregs->dr7 = vcpu->arch.dr7;
2913         dbgregs->flags = 0;
2914         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2915 }
2916
2917 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2918                                             struct kvm_debugregs *dbgregs)
2919 {
2920         if (dbgregs->flags)
2921                 return -EINVAL;
2922
2923         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2924         vcpu->arch.dr6 = dbgregs->dr6;
2925         vcpu->arch.dr7 = dbgregs->dr7;
2926
2927         return 0;
2928 }
2929
2930 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2931                                          struct kvm_xsave *guest_xsave)
2932 {
2933         if (cpu_has_xsave)
2934                 memcpy(guest_xsave->region,
2935                         &vcpu->arch.guest_fpu.state->xsave,
2936                         xstate_size);
2937         else {
2938                 memcpy(guest_xsave->region,
2939                         &vcpu->arch.guest_fpu.state->fxsave,
2940                         sizeof(struct i387_fxsave_struct));
2941                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2942                         XSTATE_FPSSE;
2943         }
2944 }
2945
2946 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2947                                         struct kvm_xsave *guest_xsave)
2948 {
2949         u64 xstate_bv =
2950                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2951
2952         if (cpu_has_xsave)
2953                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2954                         guest_xsave->region, xstate_size);
2955         else {
2956                 if (xstate_bv & ~XSTATE_FPSSE)
2957                         return -EINVAL;
2958                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2959                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2960         }
2961         return 0;
2962 }
2963
2964 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2965                                         struct kvm_xcrs *guest_xcrs)
2966 {
2967         if (!cpu_has_xsave) {
2968                 guest_xcrs->nr_xcrs = 0;
2969                 return;
2970         }
2971
2972         guest_xcrs->nr_xcrs = 1;
2973         guest_xcrs->flags = 0;
2974         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2975         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2976 }
2977
2978 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2979                                        struct kvm_xcrs *guest_xcrs)
2980 {
2981         int i, r = 0;
2982
2983         if (!cpu_has_xsave)
2984                 return -EINVAL;
2985
2986         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2987                 return -EINVAL;
2988
2989         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2990                 /* Only support XCR0 currently */
2991                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2992                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2993                                 guest_xcrs->xcrs[0].value);
2994                         break;
2995                 }
2996         if (r)
2997                 r = -EINVAL;
2998         return r;
2999 }
3000
3001 /*
3002  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3003  * stopped by the hypervisor.  This function will be called from the host only.
3004  * EINVAL is returned when the host attempts to set the flag for a guest that
3005  * does not support pv clocks.
3006  */
3007 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3008 {
3009         if (!vcpu->arch.pv_time_enabled)
3010                 return -EINVAL;
3011         vcpu->arch.pvclock_set_guest_stopped_request = true;
3012         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3013         return 0;
3014 }
3015
3016 long kvm_arch_vcpu_ioctl(struct file *filp,
3017                          unsigned int ioctl, unsigned long arg)
3018 {
3019         struct kvm_vcpu *vcpu = filp->private_data;
3020         void __user *argp = (void __user *)arg;
3021         int r;
3022         union {
3023                 struct kvm_lapic_state *lapic;
3024                 struct kvm_xsave *xsave;
3025                 struct kvm_xcrs *xcrs;
3026                 void *buffer;
3027         } u;
3028
3029         u.buffer = NULL;
3030         switch (ioctl) {
3031         case KVM_GET_LAPIC: {
3032                 r = -EINVAL;
3033                 if (!vcpu->arch.apic)
3034                         goto out;
3035                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3036
3037                 r = -ENOMEM;
3038                 if (!u.lapic)
3039                         goto out;
3040                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3041                 if (r)
3042                         goto out;
3043                 r = -EFAULT;
3044                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3045                         goto out;
3046                 r = 0;
3047                 break;
3048         }
3049         case KVM_SET_LAPIC: {
3050                 r = -EINVAL;
3051                 if (!vcpu->arch.apic)
3052                         goto out;
3053                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3054                 if (IS_ERR(u.lapic))
3055                         return PTR_ERR(u.lapic);
3056
3057                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3058                 break;
3059         }
3060         case KVM_INTERRUPT: {
3061                 struct kvm_interrupt irq;
3062
3063                 r = -EFAULT;
3064                 if (copy_from_user(&irq, argp, sizeof irq))
3065                         goto out;
3066                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3067                 break;
3068         }
3069         case KVM_NMI: {
3070                 r = kvm_vcpu_ioctl_nmi(vcpu);
3071                 break;
3072         }
3073         case KVM_SET_CPUID: {
3074                 struct kvm_cpuid __user *cpuid_arg = argp;
3075                 struct kvm_cpuid cpuid;
3076
3077                 r = -EFAULT;
3078                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3079                         goto out;
3080                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3081                 break;
3082         }
3083         case KVM_SET_CPUID2: {
3084                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3085                 struct kvm_cpuid2 cpuid;
3086
3087                 r = -EFAULT;
3088                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3089                         goto out;
3090                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3091                                               cpuid_arg->entries);
3092                 break;
3093         }
3094         case KVM_GET_CPUID2: {
3095                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3096                 struct kvm_cpuid2 cpuid;
3097
3098                 r = -EFAULT;
3099                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3100                         goto out;
3101                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3102                                               cpuid_arg->entries);
3103                 if (r)
3104                         goto out;
3105                 r = -EFAULT;
3106                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3107                         goto out;
3108                 r = 0;
3109                 break;
3110         }
3111         case KVM_GET_MSRS:
3112                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3113                 break;
3114         case KVM_SET_MSRS:
3115                 r = msr_io(vcpu, argp, do_set_msr, 0);
3116                 break;
3117         case KVM_TPR_ACCESS_REPORTING: {
3118                 struct kvm_tpr_access_ctl tac;
3119
3120                 r = -EFAULT;
3121                 if (copy_from_user(&tac, argp, sizeof tac))
3122                         goto out;
3123                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3124                 if (r)
3125                         goto out;
3126                 r = -EFAULT;
3127                 if (copy_to_user(argp, &tac, sizeof tac))
3128                         goto out;
3129                 r = 0;
3130                 break;
3131         };
3132         case KVM_SET_VAPIC_ADDR: {
3133                 struct kvm_vapic_addr va;
3134
3135                 r = -EINVAL;
3136                 if (!irqchip_in_kernel(vcpu->kvm))
3137                         goto out;
3138                 r = -EFAULT;
3139                 if (copy_from_user(&va, argp, sizeof va))
3140                         goto out;
3141                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3142                 break;
3143         }
3144         case KVM_X86_SETUP_MCE: {
3145                 u64 mcg_cap;
3146
3147                 r = -EFAULT;
3148                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3149                         goto out;
3150                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3151                 break;
3152         }
3153         case KVM_X86_SET_MCE: {
3154                 struct kvm_x86_mce mce;
3155
3156                 r = -EFAULT;
3157                 if (copy_from_user(&mce, argp, sizeof mce))
3158                         goto out;
3159                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3160                 break;
3161         }
3162         case KVM_GET_VCPU_EVENTS: {
3163                 struct kvm_vcpu_events events;
3164
3165                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3166
3167                 r = -EFAULT;
3168                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3169                         break;
3170                 r = 0;
3171                 break;
3172         }
3173         case KVM_SET_VCPU_EVENTS: {
3174                 struct kvm_vcpu_events events;
3175
3176                 r = -EFAULT;
3177                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3178                         break;
3179
3180                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3181                 break;
3182         }
3183         case KVM_GET_DEBUGREGS: {
3184                 struct kvm_debugregs dbgregs;
3185
3186                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3187
3188                 r = -EFAULT;
3189                 if (copy_to_user(argp, &dbgregs,
3190                                  sizeof(struct kvm_debugregs)))
3191                         break;
3192                 r = 0;
3193                 break;
3194         }
3195         case KVM_SET_DEBUGREGS: {
3196                 struct kvm_debugregs dbgregs;
3197
3198                 r = -EFAULT;
3199                 if (copy_from_user(&dbgregs, argp,
3200                                    sizeof(struct kvm_debugregs)))
3201                         break;
3202
3203                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3204                 break;
3205         }
3206         case KVM_GET_XSAVE: {
3207                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3208                 r = -ENOMEM;
3209                 if (!u.xsave)
3210                         break;
3211
3212                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3213
3214                 r = -EFAULT;
3215                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3216                         break;
3217                 r = 0;
3218                 break;
3219         }
3220         case KVM_SET_XSAVE: {
3221                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3222                 if (IS_ERR(u.xsave))
3223                         return PTR_ERR(u.xsave);
3224
3225                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3226                 break;
3227         }
3228         case KVM_GET_XCRS: {
3229                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3230                 r = -ENOMEM;
3231                 if (!u.xcrs)
3232                         break;
3233
3234                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3235
3236                 r = -EFAULT;
3237                 if (copy_to_user(argp, u.xcrs,
3238                                  sizeof(struct kvm_xcrs)))
3239                         break;
3240                 r = 0;
3241                 break;
3242         }
3243         case KVM_SET_XCRS: {
3244                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3245                 if (IS_ERR(u.xcrs))
3246                         return PTR_ERR(u.xcrs);
3247
3248                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3249                 break;
3250         }
3251         case KVM_SET_TSC_KHZ: {
3252                 u32 user_tsc_khz;
3253
3254                 r = -EINVAL;
3255                 user_tsc_khz = (u32)arg;
3256
3257                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3258                         goto out;
3259
3260                 if (user_tsc_khz == 0)
3261                         user_tsc_khz = tsc_khz;
3262
3263                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3264
3265                 r = 0;
3266                 goto out;
3267         }
3268         case KVM_GET_TSC_KHZ: {
3269                 r = vcpu->arch.virtual_tsc_khz;
3270                 goto out;
3271         }
3272         case KVM_KVMCLOCK_CTRL: {
3273                 r = kvm_set_guest_paused(vcpu);
3274                 goto out;
3275         }
3276         default:
3277                 r = -EINVAL;
3278         }
3279 out:
3280         kfree(u.buffer);
3281         return r;
3282 }
3283
3284 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3285 {
3286         return VM_FAULT_SIGBUS;
3287 }
3288
3289 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3290 {
3291         int ret;
3292
3293         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3294                 return -EINVAL;
3295         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3296         return ret;
3297 }
3298
3299 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3300                                               u64 ident_addr)
3301 {
3302         kvm->arch.ept_identity_map_addr = ident_addr;
3303         return 0;
3304 }
3305
3306 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3307                                           u32 kvm_nr_mmu_pages)
3308 {
3309         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3310                 return -EINVAL;
3311
3312         mutex_lock(&kvm->slots_lock);
3313
3314         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3315         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3316
3317         mutex_unlock(&kvm->slots_lock);
3318         return 0;
3319 }
3320
3321 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3322 {
3323         return kvm->arch.n_max_mmu_pages;
3324 }
3325
3326 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3327 {
3328         int r;
3329
3330         r = 0;
3331         switch (chip->chip_id) {
3332         case KVM_IRQCHIP_PIC_MASTER:
3333                 memcpy(&chip->chip.pic,
3334                         &pic_irqchip(kvm)->pics[0],
3335                         sizeof(struct kvm_pic_state));
3336                 break;
3337         case KVM_IRQCHIP_PIC_SLAVE:
3338                 memcpy(&chip->chip.pic,
3339                         &pic_irqchip(kvm)->pics[1],
3340                         sizeof(struct kvm_pic_state));
3341                 break;
3342         case KVM_IRQCHIP_IOAPIC:
3343                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3344                 break;
3345         default:
3346                 r = -EINVAL;
3347                 break;
3348         }
3349         return r;
3350 }
3351
3352 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3353 {
3354         int r;
3355
3356         r = 0;
3357         switch (chip->chip_id) {
3358         case KVM_IRQCHIP_PIC_MASTER:
3359                 spin_lock(&pic_irqchip(kvm)->lock);
3360                 memcpy(&pic_irqchip(kvm)->pics[0],
3361                         &chip->chip.pic,
3362                         sizeof(struct kvm_pic_state));
3363                 spin_unlock(&pic_irqchip(kvm)->lock);
3364                 break;
3365         case KVM_IRQCHIP_PIC_SLAVE:
3366                 spin_lock(&pic_irqchip(kvm)->lock);
3367                 memcpy(&pic_irqchip(kvm)->pics[1],
3368                         &chip->chip.pic,
3369                         sizeof(struct kvm_pic_state));
3370                 spin_unlock(&pic_irqchip(kvm)->lock);
3371                 break;
3372         case KVM_IRQCHIP_IOAPIC:
3373                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3374                 break;
3375         default:
3376                 r = -EINVAL;
3377                 break;
3378         }
3379         kvm_pic_update_irq(pic_irqchip(kvm));
3380         return r;
3381 }
3382
3383 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3384 {
3385         int r = 0;
3386
3387         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3388         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3389         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3390         return r;
3391 }
3392
3393 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3394 {
3395         int r = 0;
3396
3397         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3398         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3399         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3400         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3401         return r;
3402 }
3403
3404 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3405 {
3406         int r = 0;
3407
3408         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3409         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3410                 sizeof(ps->channels));
3411         ps->flags = kvm->arch.vpit->pit_state.flags;
3412         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3413         memset(&ps->reserved, 0, sizeof(ps->reserved));
3414         return r;
3415 }
3416
3417 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3418 {
3419         int r = 0, start = 0;
3420         u32 prev_legacy, cur_legacy;
3421         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3422         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3423         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3424         if (!prev_legacy && cur_legacy)
3425                 start = 1;
3426         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3427                sizeof(kvm->arch.vpit->pit_state.channels));
3428         kvm->arch.vpit->pit_state.flags = ps->flags;
3429         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3430         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3431         return r;
3432 }
3433
3434 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3435                                  struct kvm_reinject_control *control)
3436 {
3437         if (!kvm->arch.vpit)
3438                 return -ENXIO;
3439         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3440         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3441         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3442         return 0;
3443 }
3444
3445 /**
3446  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3447  * @kvm: kvm instance
3448  * @log: slot id and address to which we copy the log
3449  *
3450  * We need to keep it in mind that VCPU threads can write to the bitmap
3451  * concurrently.  So, to avoid losing data, we keep the following order for
3452  * each bit:
3453  *
3454  *   1. Take a snapshot of the bit and clear it if needed.
3455  *   2. Write protect the corresponding page.
3456  *   3. Flush TLB's if needed.
3457  *   4. Copy the snapshot to the userspace.
3458  *
3459  * Between 2 and 3, the guest may write to the page using the remaining TLB
3460  * entry.  This is not a problem because the page will be reported dirty at
3461  * step 4 using the snapshot taken before and step 3 ensures that successive
3462  * writes will be logged for the next call.
3463  */
3464 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3465 {
3466         int r;
3467         struct kvm_memory_slot *memslot;
3468         unsigned long n, i;
3469         unsigned long *dirty_bitmap;
3470         unsigned long *dirty_bitmap_buffer;
3471         bool is_dirty = false;
3472
3473         mutex_lock(&kvm->slots_lock);
3474
3475         r = -EINVAL;
3476         if (log->slot >= KVM_USER_MEM_SLOTS)
3477                 goto out;
3478
3479         memslot = id_to_memslot(kvm->memslots, log->slot);
3480
3481         dirty_bitmap = memslot->dirty_bitmap;
3482         r = -ENOENT;
3483         if (!dirty_bitmap)
3484                 goto out;
3485
3486         n = kvm_dirty_bitmap_bytes(memslot);
3487
3488         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3489         memset(dirty_bitmap_buffer, 0, n);
3490
3491         spin_lock(&kvm->mmu_lock);
3492
3493         for (i = 0; i < n / sizeof(long); i++) {
3494                 unsigned long mask;
3495                 gfn_t offset;
3496
3497                 if (!dirty_bitmap[i])
3498                         continue;
3499
3500                 is_dirty = true;
3501
3502                 mask = xchg(&dirty_bitmap[i], 0);
3503                 dirty_bitmap_buffer[i] = mask;
3504
3505                 offset = i * BITS_PER_LONG;
3506                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3507         }
3508         if (is_dirty)
3509                 kvm_flush_remote_tlbs(kvm);
3510
3511         spin_unlock(&kvm->mmu_lock);
3512
3513         r = -EFAULT;
3514         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3515                 goto out;
3516
3517         r = 0;
3518 out:
3519         mutex_unlock(&kvm->slots_lock);
3520         return r;
3521 }
3522
3523 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3524                         bool line_status)
3525 {
3526         if (!irqchip_in_kernel(kvm))
3527                 return -ENXIO;
3528
3529         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3530                                         irq_event->irq, irq_event->level,
3531                                         line_status);
3532         return 0;
3533 }
3534
3535 long kvm_arch_vm_ioctl(struct file *filp,
3536                        unsigned int ioctl, unsigned long arg)
3537 {
3538         struct kvm *kvm = filp->private_data;
3539         void __user *argp = (void __user *)arg;
3540         int r = -ENOTTY;
3541         /*
3542          * This union makes it completely explicit to gcc-3.x
3543          * that these two variables' stack usage should be
3544          * combined, not added together.
3545          */
3546         union {
3547                 struct kvm_pit_state ps;
3548                 struct kvm_pit_state2 ps2;
3549                 struct kvm_pit_config pit_config;
3550         } u;
3551
3552         switch (ioctl) {
3553         case KVM_SET_TSS_ADDR:
3554                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3555                 break;
3556         case KVM_SET_IDENTITY_MAP_ADDR: {
3557                 u64 ident_addr;
3558
3559                 r = -EFAULT;
3560                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3561                         goto out;
3562                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3563                 break;
3564         }
3565         case KVM_SET_NR_MMU_PAGES:
3566                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3567                 break;
3568         case KVM_GET_NR_MMU_PAGES:
3569                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3570                 break;
3571         case KVM_CREATE_IRQCHIP: {
3572                 struct kvm_pic *vpic;
3573
3574                 mutex_lock(&kvm->lock);
3575                 r = -EEXIST;
3576                 if (kvm->arch.vpic)
3577                         goto create_irqchip_unlock;
3578                 r = -EINVAL;
3579                 if (atomic_read(&kvm->online_vcpus))
3580                         goto create_irqchip_unlock;
3581                 r = -ENOMEM;
3582                 vpic = kvm_create_pic(kvm);
3583                 if (vpic) {
3584                         r = kvm_ioapic_init(kvm);
3585                         if (r) {
3586                                 mutex_lock(&kvm->slots_lock);
3587                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3588                                                           &vpic->dev_master);
3589                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3590                                                           &vpic->dev_slave);
3591                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3592                                                           &vpic->dev_eclr);
3593                                 mutex_unlock(&kvm->slots_lock);
3594                                 kfree(vpic);
3595                                 goto create_irqchip_unlock;
3596                         }
3597                 } else
3598                         goto create_irqchip_unlock;
3599                 smp_wmb();
3600                 kvm->arch.vpic = vpic;
3601                 smp_wmb();
3602                 r = kvm_setup_default_irq_routing(kvm);
3603                 if (r) {
3604                         mutex_lock(&kvm->slots_lock);
3605                         mutex_lock(&kvm->irq_lock);
3606                         kvm_ioapic_destroy(kvm);
3607                         kvm_destroy_pic(kvm);
3608                         mutex_unlock(&kvm->irq_lock);
3609                         mutex_unlock(&kvm->slots_lock);
3610                 }
3611         create_irqchip_unlock:
3612                 mutex_unlock(&kvm->lock);
3613                 break;
3614         }
3615         case KVM_CREATE_PIT:
3616                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3617                 goto create_pit;
3618         case KVM_CREATE_PIT2:
3619                 r = -EFAULT;
3620                 if (copy_from_user(&u.pit_config, argp,
3621                                    sizeof(struct kvm_pit_config)))
3622                         goto out;
3623         create_pit:
3624                 mutex_lock(&kvm->slots_lock);
3625                 r = -EEXIST;
3626                 if (kvm->arch.vpit)
3627                         goto create_pit_unlock;
3628                 r = -ENOMEM;
3629                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3630                 if (kvm->arch.vpit)
3631                         r = 0;
3632         create_pit_unlock:
3633                 mutex_unlock(&kvm->slots_lock);
3634                 break;
3635         case KVM_GET_IRQCHIP: {
3636                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3637                 struct kvm_irqchip *chip;
3638
3639                 chip = memdup_user(argp, sizeof(*chip));
3640                 if (IS_ERR(chip)) {
3641                         r = PTR_ERR(chip);
3642                         goto out;
3643                 }
3644
3645                 r = -ENXIO;
3646                 if (!irqchip_in_kernel(kvm))
3647                         goto get_irqchip_out;
3648                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3649                 if (r)
3650                         goto get_irqchip_out;
3651                 r = -EFAULT;
3652                 if (copy_to_user(argp, chip, sizeof *chip))
3653                         goto get_irqchip_out;
3654                 r = 0;
3655         get_irqchip_out:
3656                 kfree(chip);
3657                 break;
3658         }
3659         case KVM_SET_IRQCHIP: {
3660                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3661                 struct kvm_irqchip *chip;
3662
3663                 chip = memdup_user(argp, sizeof(*chip));
3664                 if (IS_ERR(chip)) {
3665                         r = PTR_ERR(chip);
3666                         goto out;
3667                 }
3668
3669                 r = -ENXIO;
3670                 if (!irqchip_in_kernel(kvm))
3671                         goto set_irqchip_out;
3672                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3673                 if (r)
3674                         goto set_irqchip_out;
3675                 r = 0;
3676         set_irqchip_out:
3677                 kfree(chip);
3678                 break;
3679         }
3680         case KVM_GET_PIT: {
3681                 r = -EFAULT;
3682                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3683                         goto out;
3684                 r = -ENXIO;
3685                 if (!kvm->arch.vpit)
3686                         goto out;
3687                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3688                 if (r)
3689                         goto out;
3690                 r = -EFAULT;
3691                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3692                         goto out;
3693                 r = 0;
3694                 break;
3695         }
3696         case KVM_SET_PIT: {
3697                 r = -EFAULT;
3698                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3699                         goto out;
3700                 r = -ENXIO;
3701                 if (!kvm->arch.vpit)
3702                         goto out;
3703                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3704                 break;
3705         }
3706         case KVM_GET_PIT2: {
3707                 r = -ENXIO;
3708                 if (!kvm->arch.vpit)
3709                         goto out;
3710                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3711                 if (r)
3712                         goto out;
3713                 r = -EFAULT;
3714                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3715                         goto out;
3716                 r = 0;
3717                 break;
3718         }
3719         case KVM_SET_PIT2: {
3720                 r = -EFAULT;
3721                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3722                         goto out;
3723                 r = -ENXIO;
3724                 if (!kvm->arch.vpit)
3725                         goto out;
3726                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3727                 break;
3728         }
3729         case KVM_REINJECT_CONTROL: {
3730                 struct kvm_reinject_control control;
3731                 r =  -EFAULT;
3732                 if (copy_from_user(&control, argp, sizeof(control)))
3733                         goto out;
3734                 r = kvm_vm_ioctl_reinject(kvm, &control);
3735                 break;
3736         }
3737         case KVM_XEN_HVM_CONFIG: {
3738                 r = -EFAULT;
3739                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3740                                    sizeof(struct kvm_xen_hvm_config)))
3741                         goto out;
3742                 r = -EINVAL;
3743                 if (kvm->arch.xen_hvm_config.flags)
3744                         goto out;
3745                 r = 0;
3746                 break;
3747         }
3748         case KVM_SET_CLOCK: {
3749                 struct kvm_clock_data user_ns;
3750                 u64 now_ns;
3751                 s64 delta;
3752
3753                 r = -EFAULT;
3754                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3755                         goto out;
3756
3757                 r = -EINVAL;
3758                 if (user_ns.flags)
3759                         goto out;
3760
3761                 r = 0;
3762                 local_irq_disable();
3763                 now_ns = get_kernel_ns();
3764                 delta = user_ns.clock - now_ns;
3765                 local_irq_enable();
3766                 kvm->arch.kvmclock_offset = delta;
3767                 break;
3768         }
3769         case KVM_GET_CLOCK: {
3770                 struct kvm_clock_data user_ns;
3771                 u64 now_ns;
3772
3773                 local_irq_disable();
3774                 now_ns = get_kernel_ns();
3775                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3776                 local_irq_enable();
3777                 user_ns.flags = 0;
3778                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3779
3780                 r = -EFAULT;
3781                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3782                         goto out;
3783                 r = 0;
3784                 break;
3785         }
3786
3787         default:
3788                 ;
3789         }
3790 out:
3791         return r;
3792 }
3793
3794 static void kvm_init_msr_list(void)
3795 {
3796         u32 dummy[2];
3797         unsigned i, j;
3798
3799         /* skip the first msrs in the list. KVM-specific */
3800         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3801                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3802                         continue;
3803                 if (j < i)
3804                         msrs_to_save[j] = msrs_to_save[i];
3805                 j++;
3806         }
3807         num_msrs_to_save = j;
3808 }
3809
3810 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3811                            const void *v)
3812 {
3813         int handled = 0;
3814         int n;
3815
3816         do {
3817                 n = min(len, 8);
3818                 if (!(vcpu->arch.apic &&
3819                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3820                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3821                         break;
3822                 handled += n;
3823                 addr += n;
3824                 len -= n;
3825                 v += n;
3826         } while (len);
3827
3828         return handled;
3829 }
3830
3831 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3832 {
3833         int handled = 0;
3834         int n;
3835
3836         do {
3837                 n = min(len, 8);
3838                 if (!(vcpu->arch.apic &&
3839                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3840                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3841                         break;
3842                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3843                 handled += n;
3844                 addr += n;
3845                 len -= n;
3846                 v += n;
3847         } while (len);
3848
3849         return handled;
3850 }
3851
3852 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3853                         struct kvm_segment *var, int seg)
3854 {
3855         kvm_x86_ops->set_segment(vcpu, var, seg);
3856 }
3857
3858 void kvm_get_segment(struct kvm_vcpu *vcpu,
3859                      struct kvm_segment *var, int seg)
3860 {
3861         kvm_x86_ops->get_segment(vcpu, var, seg);
3862 }
3863
3864 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3865 {
3866         gpa_t t_gpa;
3867         struct x86_exception exception;
3868
3869         BUG_ON(!mmu_is_nested(vcpu));
3870
3871         /* NPT walks are always user-walks */
3872         access |= PFERR_USER_MASK;
3873         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3874
3875         return t_gpa;
3876 }
3877
3878 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3879                               struct x86_exception *exception)
3880 {
3881         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3882         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3883 }
3884
3885  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3886                                 struct x86_exception *exception)
3887 {
3888         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3889         access |= PFERR_FETCH_MASK;
3890         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3891 }
3892
3893 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3894                                struct x86_exception *exception)
3895 {
3896         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3897         access |= PFERR_WRITE_MASK;
3898         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3899 }
3900
3901 /* uses this to access any guest's mapped memory without checking CPL */
3902 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3903                                 struct x86_exception *exception)
3904 {
3905         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3906 }
3907
3908 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3909                                       struct kvm_vcpu *vcpu, u32 access,
3910                                       struct x86_exception *exception)
3911 {
3912         void *data = val;
3913         int r = X86EMUL_CONTINUE;
3914
3915         while (bytes) {
3916                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3917                                                             exception);
3918                 unsigned offset = addr & (PAGE_SIZE-1);
3919                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3920                 int ret;
3921
3922                 if (gpa == UNMAPPED_GVA)
3923                         return X86EMUL_PROPAGATE_FAULT;
3924                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3925                 if (ret < 0) {
3926                         r = X86EMUL_IO_NEEDED;
3927                         goto out;
3928                 }
3929
3930                 bytes -= toread;
3931                 data += toread;
3932                 addr += toread;
3933         }
3934 out:
3935         return r;
3936 }
3937
3938 /* used for instruction fetching */
3939 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3940                                 gva_t addr, void *val, unsigned int bytes,
3941                                 struct x86_exception *exception)
3942 {
3943         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3944         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3945
3946         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3947                                           access | PFERR_FETCH_MASK,
3948                                           exception);
3949 }
3950
3951 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3952                                gva_t addr, void *val, unsigned int bytes,
3953                                struct x86_exception *exception)
3954 {
3955         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3956         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3957
3958         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3959                                           exception);
3960 }
3961 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3962
3963 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3964                                       gva_t addr, void *val, unsigned int bytes,
3965                                       struct x86_exception *exception)
3966 {
3967         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3968         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3969 }
3970
3971 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3972                                        gva_t addr, void *val,
3973                                        unsigned int bytes,
3974                                        struct x86_exception *exception)
3975 {
3976         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3977         void *data = val;
3978         int r = X86EMUL_CONTINUE;
3979
3980         while (bytes) {
3981                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3982                                                              PFERR_WRITE_MASK,
3983                                                              exception);
3984                 unsigned offset = addr & (PAGE_SIZE-1);
3985                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3986                 int ret;
3987
3988                 if (gpa == UNMAPPED_GVA)
3989                         return X86EMUL_PROPAGATE_FAULT;
3990                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3991                 if (ret < 0) {
3992                         r = X86EMUL_IO_NEEDED;
3993                         goto out;
3994                 }
3995
3996                 bytes -= towrite;
3997                 data += towrite;
3998                 addr += towrite;
3999         }
4000 out:
4001         return r;
4002 }
4003 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4004
4005 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4006                                 gpa_t *gpa, struct x86_exception *exception,
4007                                 bool write)
4008 {
4009         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4010                 | (write ? PFERR_WRITE_MASK : 0);
4011
4012         if (vcpu_match_mmio_gva(vcpu, gva)
4013             && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4014                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4015                                         (gva & (PAGE_SIZE - 1));
4016                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4017                 return 1;
4018         }
4019
4020         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4021
4022         if (*gpa == UNMAPPED_GVA)
4023                 return -1;
4024
4025         /* For APIC access vmexit */
4026         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4027                 return 1;
4028
4029         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4030                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4031                 return 1;
4032         }
4033
4034         return 0;
4035 }
4036
4037 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4038                         const void *val, int bytes)
4039 {
4040         int ret;
4041
4042         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4043         if (ret < 0)
4044                 return 0;
4045         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4046         return 1;
4047 }
4048
4049 struct read_write_emulator_ops {
4050         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4051                                   int bytes);
4052         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4053                                   void *val, int bytes);
4054         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4055                                int bytes, void *val);
4056         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4057                                     void *val, int bytes);
4058         bool write;
4059 };
4060
4061 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4062 {
4063         if (vcpu->mmio_read_completed) {
4064                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4065                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4066                 vcpu->mmio_read_completed = 0;
4067                 return 1;
4068         }
4069
4070         return 0;
4071 }
4072
4073 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4074                         void *val, int bytes)
4075 {
4076         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4077 }
4078
4079 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4080                          void *val, int bytes)
4081 {
4082         return emulator_write_phys(vcpu, gpa, val, bytes);
4083 }
4084
4085 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4086 {
4087         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4088         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4089 }
4090
4091 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4092                           void *val, int bytes)
4093 {
4094         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4095         return X86EMUL_IO_NEEDED;
4096 }
4097
4098 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4099                            void *val, int bytes)
4100 {
4101         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4102
4103         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4104         return X86EMUL_CONTINUE;
4105 }
4106
4107 static const struct read_write_emulator_ops read_emultor = {
4108         .read_write_prepare = read_prepare,
4109         .read_write_emulate = read_emulate,
4110         .read_write_mmio = vcpu_mmio_read,
4111         .read_write_exit_mmio = read_exit_mmio,
4112 };
4113
4114 static const struct read_write_emulator_ops write_emultor = {
4115         .read_write_emulate = write_emulate,
4116         .read_write_mmio = write_mmio,
4117         .read_write_exit_mmio = write_exit_mmio,
4118         .write = true,
4119 };
4120
4121 static int emulator_read_write_onepage(unsigned long addr, void *val,
4122                                        unsigned int bytes,
4123                                        struct x86_exception *exception,
4124                                        struct kvm_vcpu *vcpu,
4125                                        const struct read_write_emulator_ops *ops)
4126 {
4127         gpa_t gpa;
4128         int handled, ret;
4129         bool write = ops->write;
4130         struct kvm_mmio_fragment *frag;
4131
4132         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4133
4134         if (ret < 0)
4135                 return X86EMUL_PROPAGATE_FAULT;
4136
4137         /* For APIC access vmexit */
4138         if (ret)
4139                 goto mmio;
4140
4141         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4142                 return X86EMUL_CONTINUE;
4143
4144 mmio:
4145         /*
4146          * Is this MMIO handled locally?
4147          */
4148         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4149         if (handled == bytes)
4150                 return X86EMUL_CONTINUE;
4151
4152         gpa += handled;
4153         bytes -= handled;
4154         val += handled;
4155
4156         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4157         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4158         frag->gpa = gpa;
4159         frag->data = val;
4160         frag->len = bytes;
4161         return X86EMUL_CONTINUE;
4162 }
4163
4164 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4165                         void *val, unsigned int bytes,
4166                         struct x86_exception *exception,
4167                         const struct read_write_emulator_ops *ops)
4168 {
4169         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4170         gpa_t gpa;
4171         int rc;
4172
4173         if (ops->read_write_prepare &&
4174                   ops->read_write_prepare(vcpu, val, bytes))
4175                 return X86EMUL_CONTINUE;
4176
4177         vcpu->mmio_nr_fragments = 0;
4178
4179         /* Crossing a page boundary? */
4180         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4181                 int now;
4182
4183                 now = -addr & ~PAGE_MASK;
4184                 rc = emulator_read_write_onepage(addr, val, now, exception,
4185                                                  vcpu, ops);
4186
4187                 if (rc != X86EMUL_CONTINUE)
4188                         return rc;
4189                 addr += now;
4190                 val += now;
4191                 bytes -= now;
4192         }
4193
4194         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4195                                          vcpu, ops);
4196         if (rc != X86EMUL_CONTINUE)
4197                 return rc;
4198
4199         if (!vcpu->mmio_nr_fragments)
4200                 return rc;
4201
4202         gpa = vcpu->mmio_fragments[0].gpa;
4203
4204         vcpu->mmio_needed = 1;
4205         vcpu->mmio_cur_fragment = 0;
4206
4207         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4208         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4209         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4210         vcpu->run->mmio.phys_addr = gpa;
4211
4212         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4213 }
4214
4215 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4216                                   unsigned long addr,
4217                                   void *val,
4218                                   unsigned int bytes,
4219                                   struct x86_exception *exception)
4220 {
4221         return emulator_read_write(ctxt, addr, val, bytes,
4222                                    exception, &read_emultor);
4223 }
4224
4225 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4226                             unsigned long addr,
4227                             const void *val,
4228                             unsigned int bytes,
4229                             struct x86_exception *exception)
4230 {
4231         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4232                                    exception, &write_emultor);
4233 }
4234
4235 #define CMPXCHG_TYPE(t, ptr, old, new) \
4236         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4237
4238 #ifdef CONFIG_X86_64
4239 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4240 #else
4241 #  define CMPXCHG64(ptr, old, new) \
4242         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4243 #endif
4244
4245 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4246                                      unsigned long addr,
4247                                      const void *old,
4248                                      const void *new,
4249                                      unsigned int bytes,
4250                                      struct x86_exception *exception)
4251 {
4252         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4253         gpa_t gpa;
4254         struct page *page;
4255         char *kaddr;
4256         bool exchanged;
4257
4258         /* guests cmpxchg8b have to be emulated atomically */
4259         if (bytes > 8 || (bytes & (bytes - 1)))
4260                 goto emul_write;
4261
4262         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4263
4264         if (gpa == UNMAPPED_GVA ||
4265             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4266                 goto emul_write;
4267
4268         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4269                 goto emul_write;
4270
4271         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4272         if (is_error_page(page))
4273                 goto emul_write;
4274
4275         kaddr = kmap_atomic(page);
4276         kaddr += offset_in_page(gpa);
4277         switch (bytes) {
4278         case 1:
4279                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4280                 break;
4281         case 2:
4282                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4283                 break;
4284         case 4:
4285                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4286                 break;
4287         case 8:
4288                 exchanged = CMPXCHG64(kaddr, old, new);
4289                 break;
4290         default:
4291                 BUG();
4292         }
4293         kunmap_atomic(kaddr);
4294         kvm_release_page_dirty(page);
4295
4296         if (!exchanged)
4297                 return X86EMUL_CMPXCHG_FAILED;
4298
4299         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4300
4301         return X86EMUL_CONTINUE;
4302
4303 emul_write:
4304         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4305
4306         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4307 }
4308
4309 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4310 {
4311         /* TODO: String I/O for in kernel device */
4312         int r;
4313
4314         if (vcpu->arch.pio.in)
4315                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4316                                     vcpu->arch.pio.size, pd);
4317         else
4318                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4319                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4320                                      pd);
4321         return r;
4322 }
4323
4324 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4325                                unsigned short port, void *val,
4326                                unsigned int count, bool in)
4327 {
4328         trace_kvm_pio(!in, port, size, count);
4329
4330         vcpu->arch.pio.port = port;
4331         vcpu->arch.pio.in = in;
4332         vcpu->arch.pio.count  = count;
4333         vcpu->arch.pio.size = size;
4334
4335         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4336                 vcpu->arch.pio.count = 0;
4337                 return 1;
4338         }
4339
4340         vcpu->run->exit_reason = KVM_EXIT_IO;
4341         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4342         vcpu->run->io.size = size;
4343         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4344         vcpu->run->io.count = count;
4345         vcpu->run->io.port = port;
4346
4347         return 0;
4348 }
4349
4350 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4351                                     int size, unsigned short port, void *val,
4352                                     unsigned int count)
4353 {
4354         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4355         int ret;
4356
4357         if (vcpu->arch.pio.count)
4358                 goto data_avail;
4359
4360         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4361         if (ret) {
4362 data_avail:
4363                 memcpy(val, vcpu->arch.pio_data, size * count);
4364                 vcpu->arch.pio.count = 0;
4365                 return 1;
4366         }
4367
4368         return 0;
4369 }
4370
4371 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4372                                      int size, unsigned short port,
4373                                      const void *val, unsigned int count)
4374 {
4375         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4376
4377         memcpy(vcpu->arch.pio_data, val, size * count);
4378         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4379 }
4380
4381 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4382 {
4383         return kvm_x86_ops->get_segment_base(vcpu, seg);
4384 }
4385
4386 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4387 {
4388         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4389 }
4390
4391 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4392 {
4393         if (!need_emulate_wbinvd(vcpu))
4394                 return X86EMUL_CONTINUE;
4395
4396         if (kvm_x86_ops->has_wbinvd_exit()) {
4397                 int cpu = get_cpu();
4398
4399                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4400                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4401                                 wbinvd_ipi, NULL, 1);
4402                 put_cpu();
4403                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4404         } else
4405                 wbinvd();
4406         return X86EMUL_CONTINUE;
4407 }
4408 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4409
4410 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4411 {
4412         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4413 }
4414
4415 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4416 {
4417         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4418 }
4419
4420 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4421 {
4422
4423         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4424 }
4425
4426 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4427 {
4428         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4429 }
4430
4431 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4432 {
4433         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4434         unsigned long value;
4435
4436         switch (cr) {
4437         case 0:
4438                 value = kvm_read_cr0(vcpu);
4439                 break;
4440         case 2:
4441                 value = vcpu->arch.cr2;
4442                 break;
4443         case 3:
4444                 value = kvm_read_cr3(vcpu);
4445                 break;
4446         case 4:
4447                 value = kvm_read_cr4(vcpu);
4448                 break;
4449         case 8:
4450                 value = kvm_get_cr8(vcpu);
4451                 break;
4452         default:
4453                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4454                 return 0;
4455         }
4456
4457         return value;
4458 }
4459
4460 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4461 {
4462         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4463         int res = 0;
4464
4465         switch (cr) {
4466         case 0:
4467                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4468                 break;
4469         case 2:
4470                 vcpu->arch.cr2 = val;
4471                 break;
4472         case 3:
4473                 res = kvm_set_cr3(vcpu, val);
4474                 break;
4475         case 4:
4476                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4477                 break;
4478         case 8:
4479                 res = kvm_set_cr8(vcpu, val);
4480                 break;
4481         default:
4482                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4483                 res = -1;
4484         }
4485
4486         return res;
4487 }
4488
4489 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4490 {
4491         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4492 }
4493
4494 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4495 {
4496         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4497 }
4498
4499 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4500 {
4501         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4502 }
4503
4504 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4505 {
4506         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4507 }
4508
4509 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4510 {
4511         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4512 }
4513
4514 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4515 {
4516         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4517 }
4518
4519 static unsigned long emulator_get_cached_segment_base(
4520         struct x86_emulate_ctxt *ctxt, int seg)
4521 {
4522         return get_segment_base(emul_to_vcpu(ctxt), seg);
4523 }
4524
4525 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4526                                  struct desc_struct *desc, u32 *base3,
4527                                  int seg)
4528 {
4529         struct kvm_segment var;
4530
4531         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4532         *selector = var.selector;
4533
4534         if (var.unusable) {
4535                 memset(desc, 0, sizeof(*desc));
4536                 return false;
4537         }
4538
4539         if (var.g)
4540                 var.limit >>= 12;
4541         set_desc_limit(desc, var.limit);
4542         set_desc_base(desc, (unsigned long)var.base);
4543 #ifdef CONFIG_X86_64
4544         if (base3)
4545                 *base3 = var.base >> 32;
4546 #endif
4547         desc->type = var.type;
4548         desc->s = var.s;
4549         desc->dpl = var.dpl;
4550         desc->p = var.present;
4551         desc->avl = var.avl;
4552         desc->l = var.l;
4553         desc->d = var.db;
4554         desc->g = var.g;
4555
4556         return true;
4557 }
4558
4559 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4560                                  struct desc_struct *desc, u32 base3,
4561                                  int seg)
4562 {
4563         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4564         struct kvm_segment var;
4565
4566         var.selector = selector;
4567         var.base = get_desc_base(desc);
4568 #ifdef CONFIG_X86_64
4569         var.base |= ((u64)base3) << 32;
4570 #endif
4571         var.limit = get_desc_limit(desc);
4572         if (desc->g)
4573                 var.limit = (var.limit << 12) | 0xfff;
4574         var.type = desc->type;
4575         var.present = desc->p;
4576         var.dpl = desc->dpl;
4577         var.db = desc->d;
4578         var.s = desc->s;
4579         var.l = desc->l;
4580         var.g = desc->g;
4581         var.avl = desc->avl;
4582         var.present = desc->p;
4583         var.unusable = !var.present;
4584         var.padding = 0;
4585
4586         kvm_set_segment(vcpu, &var, seg);
4587         return;
4588 }
4589
4590 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4591                             u32 msr_index, u64 *pdata)
4592 {
4593         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4594 }
4595
4596 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4597                             u32 msr_index, u64 data)
4598 {
4599         struct msr_data msr;
4600
4601         msr.data = data;
4602         msr.index = msr_index;
4603         msr.host_initiated = false;
4604         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4605 }
4606
4607 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4608                              u32 pmc, u64 *pdata)
4609 {
4610         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4611 }
4612
4613 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4614 {
4615         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4616 }
4617
4618 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4619 {
4620         preempt_disable();
4621         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4622         /*
4623          * CR0.TS may reference the host fpu state, not the guest fpu state,
4624          * so it may be clear at this point.
4625          */
4626         clts();
4627 }
4628
4629 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4630 {
4631         preempt_enable();
4632 }
4633
4634 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4635                               struct x86_instruction_info *info,
4636                               enum x86_intercept_stage stage)
4637 {
4638         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4639 }
4640
4641 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4642                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4643 {
4644         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4645 }
4646
4647 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4648 {
4649         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4650 }
4651
4652 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4653 {
4654         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4655 }
4656
4657 static const struct x86_emulate_ops emulate_ops = {
4658         .read_gpr            = emulator_read_gpr,
4659         .write_gpr           = emulator_write_gpr,
4660         .read_std            = kvm_read_guest_virt_system,
4661         .write_std           = kvm_write_guest_virt_system,
4662         .fetch               = kvm_fetch_guest_virt,
4663         .read_emulated       = emulator_read_emulated,
4664         .write_emulated      = emulator_write_emulated,
4665         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4666         .invlpg              = emulator_invlpg,
4667         .pio_in_emulated     = emulator_pio_in_emulated,
4668         .pio_out_emulated    = emulator_pio_out_emulated,
4669         .get_segment         = emulator_get_segment,
4670         .set_segment         = emulator_set_segment,
4671         .get_cached_segment_base = emulator_get_cached_segment_base,
4672         .get_gdt             = emulator_get_gdt,
4673         .get_idt             = emulator_get_idt,
4674         .set_gdt             = emulator_set_gdt,
4675         .set_idt             = emulator_set_idt,
4676         .get_cr              = emulator_get_cr,
4677         .set_cr              = emulator_set_cr,
4678         .set_rflags          = emulator_set_rflags,
4679         .cpl                 = emulator_get_cpl,
4680         .get_dr              = emulator_get_dr,
4681         .set_dr              = emulator_set_dr,
4682         .set_msr             = emulator_set_msr,
4683         .get_msr             = emulator_get_msr,
4684         .read_pmc            = emulator_read_pmc,
4685         .halt                = emulator_halt,
4686         .wbinvd              = emulator_wbinvd,
4687         .fix_hypercall       = emulator_fix_hypercall,
4688         .get_fpu             = emulator_get_fpu,
4689         .put_fpu             = emulator_put_fpu,
4690         .intercept           = emulator_intercept,
4691         .get_cpuid           = emulator_get_cpuid,
4692 };
4693
4694 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4695 {
4696         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4697         /*
4698          * an sti; sti; sequence only disable interrupts for the first
4699          * instruction. So, if the last instruction, be it emulated or
4700          * not, left the system with the INT_STI flag enabled, it
4701          * means that the last instruction is an sti. We should not
4702          * leave the flag on in this case. The same goes for mov ss
4703          */
4704         if (!(int_shadow & mask))
4705                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4706 }
4707
4708 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4709 {
4710         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4711         if (ctxt->exception.vector == PF_VECTOR)
4712                 kvm_propagate_fault(vcpu, &ctxt->exception);
4713         else if (ctxt->exception.error_code_valid)
4714                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4715                                       ctxt->exception.error_code);
4716         else
4717                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4718 }
4719
4720 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4721 {
4722         memset(&ctxt->twobyte, 0,
4723                (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4724
4725         ctxt->fetch.start = 0;
4726         ctxt->fetch.end = 0;
4727         ctxt->io_read.pos = 0;
4728         ctxt->io_read.end = 0;
4729         ctxt->mem_read.pos = 0;
4730         ctxt->mem_read.end = 0;
4731 }
4732
4733 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4734 {
4735         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4736         int cs_db, cs_l;
4737
4738         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4739
4740         ctxt->eflags = kvm_get_rflags(vcpu);
4741         ctxt->eip = kvm_rip_read(vcpu);
4742         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4743                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4744                      cs_l                               ? X86EMUL_MODE_PROT64 :
4745                      cs_db                              ? X86EMUL_MODE_PROT32 :
4746                                                           X86EMUL_MODE_PROT16;
4747         ctxt->guest_mode = is_guest_mode(vcpu);
4748
4749         init_decode_cache(ctxt);
4750         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4751 }
4752
4753 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4754 {
4755         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4756         int ret;
4757
4758         init_emulate_ctxt(vcpu);
4759
4760         ctxt->op_bytes = 2;
4761         ctxt->ad_bytes = 2;
4762         ctxt->_eip = ctxt->eip + inc_eip;
4763         ret = emulate_int_real(ctxt, irq);
4764
4765         if (ret != X86EMUL_CONTINUE)
4766                 return EMULATE_FAIL;
4767
4768         ctxt->eip = ctxt->_eip;
4769         kvm_rip_write(vcpu, ctxt->eip);
4770         kvm_set_rflags(vcpu, ctxt->eflags);
4771
4772         if (irq == NMI_VECTOR)
4773                 vcpu->arch.nmi_pending = 0;
4774         else
4775                 vcpu->arch.interrupt.pending = false;
4776
4777         return EMULATE_DONE;
4778 }
4779 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4780
4781 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4782 {
4783         int r = EMULATE_DONE;
4784
4785         ++vcpu->stat.insn_emulation_fail;
4786         trace_kvm_emulate_insn_failed(vcpu);
4787         if (!is_guest_mode(vcpu)) {
4788                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4789                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4790                 vcpu->run->internal.ndata = 0;
4791                 r = EMULATE_FAIL;
4792         }
4793         kvm_queue_exception(vcpu, UD_VECTOR);
4794
4795         return r;
4796 }
4797
4798 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4799                                   bool write_fault_to_shadow_pgtable,
4800                                   int emulation_type)
4801 {
4802         gpa_t gpa = cr2;
4803         pfn_t pfn;
4804
4805         if (emulation_type & EMULTYPE_NO_REEXECUTE)
4806                 return false;
4807
4808         if (!vcpu->arch.mmu.direct_map) {
4809                 /*
4810                  * Write permission should be allowed since only
4811                  * write access need to be emulated.
4812                  */
4813                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4814
4815                 /*
4816                  * If the mapping is invalid in guest, let cpu retry
4817                  * it to generate fault.
4818                  */
4819                 if (gpa == UNMAPPED_GVA)
4820                         return true;
4821         }
4822
4823         /*
4824          * Do not retry the unhandleable instruction if it faults on the
4825          * readonly host memory, otherwise it will goto a infinite loop:
4826          * retry instruction -> write #PF -> emulation fail -> retry
4827          * instruction -> ...
4828          */
4829         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4830
4831         /*
4832          * If the instruction failed on the error pfn, it can not be fixed,
4833          * report the error to userspace.
4834          */
4835         if (is_error_noslot_pfn(pfn))
4836                 return false;
4837
4838         kvm_release_pfn_clean(pfn);
4839
4840         /* The instructions are well-emulated on direct mmu. */
4841         if (vcpu->arch.mmu.direct_map) {
4842                 unsigned int indirect_shadow_pages;
4843
4844                 spin_lock(&vcpu->kvm->mmu_lock);
4845                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4846                 spin_unlock(&vcpu->kvm->mmu_lock);
4847
4848                 if (indirect_shadow_pages)
4849                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4850
4851                 return true;
4852         }
4853
4854         /*
4855          * if emulation was due to access to shadowed page table
4856          * and it failed try to unshadow page and re-enter the
4857          * guest to let CPU execute the instruction.
4858          */
4859         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4860
4861         /*
4862          * If the access faults on its page table, it can not
4863          * be fixed by unprotecting shadow page and it should
4864          * be reported to userspace.
4865          */
4866         return !write_fault_to_shadow_pgtable;
4867 }
4868
4869 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4870                               unsigned long cr2,  int emulation_type)
4871 {
4872         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4873         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4874
4875         last_retry_eip = vcpu->arch.last_retry_eip;
4876         last_retry_addr = vcpu->arch.last_retry_addr;
4877
4878         /*
4879          * If the emulation is caused by #PF and it is non-page_table
4880          * writing instruction, it means the VM-EXIT is caused by shadow
4881          * page protected, we can zap the shadow page and retry this
4882          * instruction directly.
4883          *
4884          * Note: if the guest uses a non-page-table modifying instruction
4885          * on the PDE that points to the instruction, then we will unmap
4886          * the instruction and go to an infinite loop. So, we cache the
4887          * last retried eip and the last fault address, if we meet the eip
4888          * and the address again, we can break out of the potential infinite
4889          * loop.
4890          */
4891         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4892
4893         if (!(emulation_type & EMULTYPE_RETRY))
4894                 return false;
4895
4896         if (x86_page_table_writing_insn(ctxt))
4897                 return false;
4898
4899         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4900                 return false;
4901
4902         vcpu->arch.last_retry_eip = ctxt->eip;
4903         vcpu->arch.last_retry_addr = cr2;
4904
4905         if (!vcpu->arch.mmu.direct_map)
4906                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4907
4908         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4909
4910         return true;
4911 }
4912
4913 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4914 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4915
4916 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4917                             unsigned long cr2,
4918                             int emulation_type,
4919                             void *insn,
4920                             int insn_len)
4921 {
4922         int r;
4923         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4924         bool writeback = true;
4925         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
4926
4927         /*
4928          * Clear write_fault_to_shadow_pgtable here to ensure it is
4929          * never reused.
4930          */
4931         vcpu->arch.write_fault_to_shadow_pgtable = false;
4932         kvm_clear_exception_queue(vcpu);
4933
4934         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4935                 init_emulate_ctxt(vcpu);
4936                 ctxt->interruptibility = 0;
4937                 ctxt->have_exception = false;
4938                 ctxt->perm_ok = false;
4939
4940                 ctxt->only_vendor_specific_insn
4941                         = emulation_type & EMULTYPE_TRAP_UD;
4942
4943                 r = x86_decode_insn(ctxt, insn, insn_len);
4944
4945                 trace_kvm_emulate_insn_start(vcpu);
4946                 ++vcpu->stat.insn_emulation;
4947                 if (r != EMULATION_OK)  {
4948                         if (emulation_type & EMULTYPE_TRAP_UD)
4949                                 return EMULATE_FAIL;
4950                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
4951                                                 emulation_type))
4952                                 return EMULATE_DONE;
4953                         if (emulation_type & EMULTYPE_SKIP)
4954                                 return EMULATE_FAIL;
4955                         return handle_emulation_failure(vcpu);
4956                 }
4957         }
4958
4959         if (emulation_type & EMULTYPE_SKIP) {
4960                 kvm_rip_write(vcpu, ctxt->_eip);
4961                 return EMULATE_DONE;
4962         }
4963
4964         if (retry_instruction(ctxt, cr2, emulation_type))
4965                 return EMULATE_DONE;
4966
4967         /* this is needed for vmware backdoor interface to work since it
4968            changes registers values  during IO operation */
4969         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4970                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4971                 emulator_invalidate_register_cache(ctxt);
4972         }
4973
4974 restart:
4975         r = x86_emulate_insn(ctxt);
4976
4977         if (r == EMULATION_INTERCEPTED)
4978                 return EMULATE_DONE;
4979
4980         if (r == EMULATION_FAILED) {
4981                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
4982                                         emulation_type))
4983                         return EMULATE_DONE;
4984
4985                 return handle_emulation_failure(vcpu);
4986         }
4987
4988         if (ctxt->have_exception) {
4989                 inject_emulated_exception(vcpu);
4990                 r = EMULATE_DONE;
4991         } else if (vcpu->arch.pio.count) {
4992                 if (!vcpu->arch.pio.in)
4993                         vcpu->arch.pio.count = 0;
4994                 else {
4995                         writeback = false;
4996                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
4997                 }
4998                 r = EMULATE_DO_MMIO;
4999         } else if (vcpu->mmio_needed) {
5000                 if (!vcpu->mmio_is_write)
5001                         writeback = false;
5002                 r = EMULATE_DO_MMIO;
5003                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5004         } else if (r == EMULATION_RESTART)
5005                 goto restart;
5006         else
5007                 r = EMULATE_DONE;
5008
5009         if (writeback) {
5010                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5011                 kvm_set_rflags(vcpu, ctxt->eflags);
5012                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5013                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5014                 kvm_rip_write(vcpu, ctxt->eip);
5015         } else
5016                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5017
5018         return r;
5019 }
5020 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5021
5022 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5023 {
5024         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5025         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5026                                             size, port, &val, 1);
5027         /* do not return to emulator after return from userspace */
5028         vcpu->arch.pio.count = 0;
5029         return ret;
5030 }
5031 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5032
5033 static void tsc_bad(void *info)
5034 {
5035         __this_cpu_write(cpu_tsc_khz, 0);
5036 }
5037
5038 static void tsc_khz_changed(void *data)
5039 {
5040         struct cpufreq_freqs *freq = data;
5041         unsigned long khz = 0;
5042
5043         if (data)
5044                 khz = freq->new;
5045         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5046                 khz = cpufreq_quick_get(raw_smp_processor_id());
5047         if (!khz)
5048                 khz = tsc_khz;
5049         __this_cpu_write(cpu_tsc_khz, khz);
5050 }
5051
5052 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5053                                      void *data)
5054 {
5055         struct cpufreq_freqs *freq = data;
5056         struct kvm *kvm;
5057         struct kvm_vcpu *vcpu;
5058         int i, send_ipi = 0;
5059
5060         /*
5061          * We allow guests to temporarily run on slowing clocks,
5062          * provided we notify them after, or to run on accelerating
5063          * clocks, provided we notify them before.  Thus time never
5064          * goes backwards.
5065          *
5066          * However, we have a problem.  We can't atomically update
5067          * the frequency of a given CPU from this function; it is
5068          * merely a notifier, which can be called from any CPU.
5069          * Changing the TSC frequency at arbitrary points in time
5070          * requires a recomputation of local variables related to
5071          * the TSC for each VCPU.  We must flag these local variables
5072          * to be updated and be sure the update takes place with the
5073          * new frequency before any guests proceed.
5074          *
5075          * Unfortunately, the combination of hotplug CPU and frequency
5076          * change creates an intractable locking scenario; the order
5077          * of when these callouts happen is undefined with respect to
5078          * CPU hotplug, and they can race with each other.  As such,
5079          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5080          * undefined; you can actually have a CPU frequency change take
5081          * place in between the computation of X and the setting of the
5082          * variable.  To protect against this problem, all updates of
5083          * the per_cpu tsc_khz variable are done in an interrupt
5084          * protected IPI, and all callers wishing to update the value
5085          * must wait for a synchronous IPI to complete (which is trivial
5086          * if the caller is on the CPU already).  This establishes the
5087          * necessary total order on variable updates.
5088          *
5089          * Note that because a guest time update may take place
5090          * anytime after the setting of the VCPU's request bit, the
5091          * correct TSC value must be set before the request.  However,
5092          * to ensure the update actually makes it to any guest which
5093          * starts running in hardware virtualization between the set
5094          * and the acquisition of the spinlock, we must also ping the
5095          * CPU after setting the request bit.
5096          *
5097          */
5098
5099         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5100                 return 0;
5101         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5102                 return 0;
5103
5104         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5105
5106         raw_spin_lock(&kvm_lock);
5107         list_for_each_entry(kvm, &vm_list, vm_list) {
5108                 kvm_for_each_vcpu(i, vcpu, kvm) {
5109                         if (vcpu->cpu != freq->cpu)
5110                                 continue;
5111                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5112                         if (vcpu->cpu != smp_processor_id())
5113                                 send_ipi = 1;
5114                 }
5115         }
5116         raw_spin_unlock(&kvm_lock);
5117
5118         if (freq->old < freq->new && send_ipi) {
5119                 /*
5120                  * We upscale the frequency.  Must make the guest
5121                  * doesn't see old kvmclock values while running with
5122                  * the new frequency, otherwise we risk the guest sees
5123                  * time go backwards.
5124                  *
5125                  * In case we update the frequency for another cpu
5126                  * (which might be in guest context) send an interrupt
5127                  * to kick the cpu out of guest context.  Next time
5128                  * guest context is entered kvmclock will be updated,
5129                  * so the guest will not see stale values.
5130                  */
5131                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5132         }
5133         return 0;
5134 }
5135
5136 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5137         .notifier_call  = kvmclock_cpufreq_notifier
5138 };
5139
5140 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5141                                         unsigned long action, void *hcpu)
5142 {
5143         unsigned int cpu = (unsigned long)hcpu;
5144
5145         switch (action) {
5146                 case CPU_ONLINE:
5147                 case CPU_DOWN_FAILED:
5148                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5149                         break;
5150                 case CPU_DOWN_PREPARE:
5151                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5152                         break;
5153         }
5154         return NOTIFY_OK;
5155 }
5156
5157 static struct notifier_block kvmclock_cpu_notifier_block = {
5158         .notifier_call  = kvmclock_cpu_notifier,
5159         .priority = -INT_MAX
5160 };
5161
5162 static void kvm_timer_init(void)
5163 {
5164         int cpu;
5165
5166         max_tsc_khz = tsc_khz;
5167         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5168         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5169 #ifdef CONFIG_CPU_FREQ
5170                 struct cpufreq_policy policy;
5171                 memset(&policy, 0, sizeof(policy));
5172                 cpu = get_cpu();
5173                 cpufreq_get_policy(&policy, cpu);
5174                 if (policy.cpuinfo.max_freq)
5175                         max_tsc_khz = policy.cpuinfo.max_freq;
5176                 put_cpu();
5177 #endif
5178                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5179                                           CPUFREQ_TRANSITION_NOTIFIER);
5180         }
5181         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5182         for_each_online_cpu(cpu)
5183                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5184 }
5185
5186 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5187
5188 int kvm_is_in_guest(void)
5189 {
5190         return __this_cpu_read(current_vcpu) != NULL;
5191 }
5192
5193 static int kvm_is_user_mode(void)
5194 {
5195         int user_mode = 3;
5196
5197         if (__this_cpu_read(current_vcpu))
5198                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5199
5200         return user_mode != 0;
5201 }
5202
5203 static unsigned long kvm_get_guest_ip(void)
5204 {
5205         unsigned long ip = 0;
5206
5207         if (__this_cpu_read(current_vcpu))
5208                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5209
5210         return ip;
5211 }
5212
5213 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5214         .is_in_guest            = kvm_is_in_guest,
5215         .is_user_mode           = kvm_is_user_mode,
5216         .get_guest_ip           = kvm_get_guest_ip,
5217 };
5218
5219 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5220 {
5221         __this_cpu_write(current_vcpu, vcpu);
5222 }
5223 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5224
5225 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5226 {
5227         __this_cpu_write(current_vcpu, NULL);
5228 }
5229 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5230
5231 static void kvm_set_mmio_spte_mask(void)
5232 {
5233         u64 mask;
5234         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5235
5236         /*
5237          * Set the reserved bits and the present bit of an paging-structure
5238          * entry to generate page fault with PFER.RSV = 1.
5239          */
5240         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5241         mask |= 1ull;
5242
5243 #ifdef CONFIG_X86_64
5244         /*
5245          * If reserved bit is not supported, clear the present bit to disable
5246          * mmio page fault.
5247          */
5248         if (maxphyaddr == 52)
5249                 mask &= ~1ull;
5250 #endif
5251
5252         kvm_mmu_set_mmio_spte_mask(mask);
5253 }
5254
5255 #ifdef CONFIG_X86_64
5256 static void pvclock_gtod_update_fn(struct work_struct *work)
5257 {
5258         struct kvm *kvm;
5259
5260         struct kvm_vcpu *vcpu;
5261         int i;
5262
5263         raw_spin_lock(&kvm_lock);
5264         list_for_each_entry(kvm, &vm_list, vm_list)
5265                 kvm_for_each_vcpu(i, vcpu, kvm)
5266                         set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5267         atomic_set(&kvm_guest_has_master_clock, 0);
5268         raw_spin_unlock(&kvm_lock);
5269 }
5270
5271 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5272
5273 /*
5274  * Notification about pvclock gtod data update.
5275  */
5276 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5277                                void *priv)
5278 {
5279         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5280         struct timekeeper *tk = priv;
5281
5282         update_pvclock_gtod(tk);
5283
5284         /* disable master clock if host does not trust, or does not
5285          * use, TSC clocksource
5286          */
5287         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5288             atomic_read(&kvm_guest_has_master_clock) != 0)
5289                 queue_work(system_long_wq, &pvclock_gtod_work);
5290
5291         return 0;
5292 }
5293
5294 static struct notifier_block pvclock_gtod_notifier = {
5295         .notifier_call = pvclock_gtod_notify,
5296 };
5297 #endif
5298
5299 int kvm_arch_init(void *opaque)
5300 {
5301         int r;
5302         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5303
5304         if (kvm_x86_ops) {
5305                 printk(KERN_ERR "kvm: already loaded the other module\n");
5306                 r = -EEXIST;
5307                 goto out;
5308         }
5309
5310         if (!ops->cpu_has_kvm_support()) {
5311                 printk(KERN_ERR "kvm: no hardware support\n");
5312                 r = -EOPNOTSUPP;
5313                 goto out;
5314         }
5315         if (ops->disabled_by_bios()) {
5316                 printk(KERN_ERR "kvm: disabled by bios\n");
5317                 r = -EOPNOTSUPP;
5318                 goto out;
5319         }
5320
5321         r = -ENOMEM;
5322         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5323         if (!shared_msrs) {
5324                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5325                 goto out;
5326         }
5327
5328         r = kvm_mmu_module_init();
5329         if (r)
5330                 goto out_free_percpu;
5331
5332         kvm_set_mmio_spte_mask();
5333         kvm_init_msr_list();
5334
5335         kvm_x86_ops = ops;
5336         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5337                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5338
5339         kvm_timer_init();
5340
5341         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5342
5343         if (cpu_has_xsave)
5344                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5345
5346         kvm_lapic_init();
5347 #ifdef CONFIG_X86_64
5348         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5349 #endif
5350
5351         return 0;
5352
5353 out_free_percpu:
5354         free_percpu(shared_msrs);
5355 out:
5356         return r;
5357 }
5358
5359 void kvm_arch_exit(void)
5360 {
5361         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5362
5363         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5364                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5365                                             CPUFREQ_TRANSITION_NOTIFIER);
5366         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5367 #ifdef CONFIG_X86_64
5368         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5369 #endif
5370         kvm_x86_ops = NULL;
5371         kvm_mmu_module_exit();
5372         free_percpu(shared_msrs);
5373 }
5374
5375 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5376 {
5377         ++vcpu->stat.halt_exits;
5378         if (irqchip_in_kernel(vcpu->kvm)) {
5379                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5380                 return 1;
5381         } else {
5382                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5383                 return 0;
5384         }
5385 }
5386 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5387
5388 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5389 {
5390         u64 param, ingpa, outgpa, ret;
5391         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5392         bool fast, longmode;
5393         int cs_db, cs_l;
5394
5395         /*
5396          * hypercall generates UD from non zero cpl and real mode
5397          * per HYPER-V spec
5398          */
5399         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5400                 kvm_queue_exception(vcpu, UD_VECTOR);
5401                 return 0;
5402         }
5403
5404         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5405         longmode = is_long_mode(vcpu) && cs_l == 1;
5406
5407         if (!longmode) {
5408                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5409                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5410                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5411                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5412                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5413                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5414         }
5415 #ifdef CONFIG_X86_64
5416         else {
5417                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5418                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5419                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5420         }
5421 #endif
5422
5423         code = param & 0xffff;
5424         fast = (param >> 16) & 0x1;
5425         rep_cnt = (param >> 32) & 0xfff;
5426         rep_idx = (param >> 48) & 0xfff;
5427
5428         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5429
5430         switch (code) {
5431         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5432                 kvm_vcpu_on_spin(vcpu);
5433                 break;
5434         default:
5435                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5436                 break;
5437         }
5438
5439         ret = res | (((u64)rep_done & 0xfff) << 32);
5440         if (longmode) {
5441                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5442         } else {
5443                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5444                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5445         }
5446
5447         return 1;
5448 }
5449
5450 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5451 {
5452         unsigned long nr, a0, a1, a2, a3, ret;
5453         int r = 1;
5454
5455         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5456                 return kvm_hv_hypercall(vcpu);
5457
5458         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5459         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5460         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5461         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5462         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5463
5464         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5465
5466         if (!is_long_mode(vcpu)) {
5467                 nr &= 0xFFFFFFFF;
5468                 a0 &= 0xFFFFFFFF;
5469                 a1 &= 0xFFFFFFFF;
5470                 a2 &= 0xFFFFFFFF;
5471                 a3 &= 0xFFFFFFFF;
5472         }
5473
5474         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5475                 ret = -KVM_EPERM;
5476                 goto out;
5477         }
5478
5479         switch (nr) {
5480         case KVM_HC_VAPIC_POLL_IRQ:
5481                 ret = 0;
5482                 break;
5483         default:
5484                 ret = -KVM_ENOSYS;
5485                 break;
5486         }
5487 out:
5488         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5489         ++vcpu->stat.hypercalls;
5490         return r;
5491 }
5492 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5493
5494 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5495 {
5496         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5497         char instruction[3];
5498         unsigned long rip = kvm_rip_read(vcpu);
5499
5500         /*
5501          * Blow out the MMU to ensure that no other VCPU has an active mapping
5502          * to ensure that the updated hypercall appears atomically across all
5503          * VCPUs.
5504          */
5505         kvm_mmu_zap_all(vcpu->kvm);
5506
5507         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5508
5509         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5510 }
5511
5512 /*
5513  * Check if userspace requested an interrupt window, and that the
5514  * interrupt window is open.
5515  *
5516  * No need to exit to userspace if we already have an interrupt queued.
5517  */
5518 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5519 {
5520         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5521                 vcpu->run->request_interrupt_window &&
5522                 kvm_arch_interrupt_allowed(vcpu));
5523 }
5524
5525 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5526 {
5527         struct kvm_run *kvm_run = vcpu->run;
5528
5529         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5530         kvm_run->cr8 = kvm_get_cr8(vcpu);
5531         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5532         if (irqchip_in_kernel(vcpu->kvm))
5533                 kvm_run->ready_for_interrupt_injection = 1;
5534         else
5535                 kvm_run->ready_for_interrupt_injection =
5536                         kvm_arch_interrupt_allowed(vcpu) &&
5537                         !kvm_cpu_has_interrupt(vcpu) &&
5538                         !kvm_event_needs_reinjection(vcpu);
5539 }
5540
5541 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5542 {
5543         int max_irr, tpr;
5544
5545         if (!kvm_x86_ops->update_cr8_intercept)
5546                 return;
5547
5548         if (!vcpu->arch.apic)
5549                 return;
5550
5551         if (!vcpu->arch.apic->vapic_addr)
5552                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5553         else
5554                 max_irr = -1;
5555
5556         if (max_irr != -1)
5557                 max_irr >>= 4;
5558
5559         tpr = kvm_lapic_get_cr8(vcpu);
5560
5561         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5562 }
5563
5564 static void inject_pending_event(struct kvm_vcpu *vcpu)
5565 {
5566         /* try to reinject previous events if any */
5567         if (vcpu->arch.exception.pending) {
5568                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5569                                         vcpu->arch.exception.has_error_code,
5570                                         vcpu->arch.exception.error_code);
5571                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5572                                           vcpu->arch.exception.has_error_code,
5573                                           vcpu->arch.exception.error_code,
5574                                           vcpu->arch.exception.reinject);
5575                 return;
5576         }
5577
5578         if (vcpu->arch.nmi_injected) {
5579                 kvm_x86_ops->set_nmi(vcpu);
5580                 return;
5581         }
5582
5583         if (vcpu->arch.interrupt.pending) {
5584                 kvm_x86_ops->set_irq(vcpu);
5585                 return;
5586         }
5587
5588         /* try to inject new event if pending */
5589         if (vcpu->arch.nmi_pending) {
5590                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5591                         --vcpu->arch.nmi_pending;
5592                         vcpu->arch.nmi_injected = true;
5593                         kvm_x86_ops->set_nmi(vcpu);
5594                 }
5595         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5596                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5597                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5598                                             false);
5599                         kvm_x86_ops->set_irq(vcpu);
5600                 }
5601         }
5602 }
5603
5604 static void process_nmi(struct kvm_vcpu *vcpu)
5605 {
5606         unsigned limit = 2;
5607
5608         /*
5609          * x86 is limited to one NMI running, and one NMI pending after it.
5610          * If an NMI is already in progress, limit further NMIs to just one.
5611          * Otherwise, allow two (and we'll inject the first one immediately).
5612          */
5613         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5614                 limit = 1;
5615
5616         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5617         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5618         kvm_make_request(KVM_REQ_EVENT, vcpu);
5619 }
5620
5621 static void kvm_gen_update_masterclock(struct kvm *kvm)
5622 {
5623 #ifdef CONFIG_X86_64
5624         int i;
5625         struct kvm_vcpu *vcpu;
5626         struct kvm_arch *ka = &kvm->arch;
5627
5628         spin_lock(&ka->pvclock_gtod_sync_lock);
5629         kvm_make_mclock_inprogress_request(kvm);
5630         /* no guest entries from this point */
5631         pvclock_update_vm_gtod_copy(kvm);
5632
5633         kvm_for_each_vcpu(i, vcpu, kvm)
5634                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5635
5636         /* guest entries allowed */
5637         kvm_for_each_vcpu(i, vcpu, kvm)
5638                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5639
5640         spin_unlock(&ka->pvclock_gtod_sync_lock);
5641 #endif
5642 }
5643
5644 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5645 {
5646         u64 eoi_exit_bitmap[4];
5647         u32 tmr[8];
5648
5649         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5650                 return;
5651
5652         memset(eoi_exit_bitmap, 0, 32);
5653         memset(tmr, 0, 32);
5654
5655         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5656         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5657         kvm_apic_update_tmr(vcpu, tmr);
5658 }
5659
5660 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5661 {
5662         int r;
5663         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5664                 vcpu->run->request_interrupt_window;
5665         bool req_immediate_exit = false;
5666
5667         if (vcpu->requests) {
5668                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5669                         kvm_mmu_unload(vcpu);
5670                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5671                         __kvm_migrate_timers(vcpu);
5672                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5673                         kvm_gen_update_masterclock(vcpu->kvm);
5674                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5675                         r = kvm_guest_time_update(vcpu);
5676                         if (unlikely(r))
5677                                 goto out;
5678                 }
5679                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5680                         kvm_mmu_sync_roots(vcpu);
5681                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5682                         kvm_x86_ops->tlb_flush(vcpu);
5683                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5684                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5685                         r = 0;
5686                         goto out;
5687                 }
5688                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5689                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5690                         r = 0;
5691                         goto out;
5692                 }
5693                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5694                         vcpu->fpu_active = 0;
5695                         kvm_x86_ops->fpu_deactivate(vcpu);
5696                 }
5697                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5698                         /* Page is swapped out. Do synthetic halt */
5699                         vcpu->arch.apf.halted = true;
5700                         r = 1;
5701                         goto out;
5702                 }
5703                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5704                         record_steal_time(vcpu);
5705                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5706                         process_nmi(vcpu);
5707                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5708                         kvm_handle_pmu_event(vcpu);
5709                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5710                         kvm_deliver_pmi(vcpu);
5711                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5712                         vcpu_scan_ioapic(vcpu);
5713         }
5714
5715         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5716                 kvm_apic_accept_events(vcpu);
5717                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5718                         r = 1;
5719                         goto out;
5720                 }
5721
5722                 inject_pending_event(vcpu);
5723
5724                 /* enable NMI/IRQ window open exits if needed */
5725                 if (vcpu->arch.nmi_pending)
5726                         req_immediate_exit =
5727                                 kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5728                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5729                         req_immediate_exit =
5730                                 kvm_x86_ops->enable_irq_window(vcpu) != 0;
5731
5732                 if (kvm_lapic_enabled(vcpu)) {
5733                         /*
5734                          * Update architecture specific hints for APIC
5735                          * virtual interrupt delivery.
5736                          */
5737                         if (kvm_x86_ops->hwapic_irr_update)
5738                                 kvm_x86_ops->hwapic_irr_update(vcpu,
5739                                         kvm_lapic_find_highest_irr(vcpu));
5740                         update_cr8_intercept(vcpu);
5741                         kvm_lapic_sync_to_vapic(vcpu);
5742                 }
5743         }
5744
5745         r = kvm_mmu_reload(vcpu);
5746         if (unlikely(r)) {
5747                 goto cancel_injection;
5748         }
5749
5750         preempt_disable();
5751
5752         kvm_x86_ops->prepare_guest_switch(vcpu);
5753         if (vcpu->fpu_active)
5754                 kvm_load_guest_fpu(vcpu);
5755         kvm_load_guest_xcr0(vcpu);
5756
5757         vcpu->mode = IN_GUEST_MODE;
5758
5759         /* We should set ->mode before check ->requests,
5760          * see the comment in make_all_cpus_request.
5761          */
5762         smp_mb();
5763
5764         local_irq_disable();
5765
5766         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5767             || need_resched() || signal_pending(current)) {
5768                 vcpu->mode = OUTSIDE_GUEST_MODE;
5769                 smp_wmb();
5770                 local_irq_enable();
5771                 preempt_enable();
5772                 r = 1;
5773                 goto cancel_injection;
5774         }
5775
5776         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5777
5778         if (req_immediate_exit)
5779                 smp_send_reschedule(vcpu->cpu);
5780
5781         kvm_guest_enter();
5782
5783         if (unlikely(vcpu->arch.switch_db_regs)) {
5784                 set_debugreg(0, 7);
5785                 set_debugreg(vcpu->arch.eff_db[0], 0);
5786                 set_debugreg(vcpu->arch.eff_db[1], 1);
5787                 set_debugreg(vcpu->arch.eff_db[2], 2);
5788                 set_debugreg(vcpu->arch.eff_db[3], 3);
5789         }
5790
5791         trace_kvm_entry(vcpu->vcpu_id);
5792         kvm_x86_ops->run(vcpu);
5793
5794         /*
5795          * If the guest has used debug registers, at least dr7
5796          * will be disabled while returning to the host.
5797          * If we don't have active breakpoints in the host, we don't
5798          * care about the messed up debug address registers. But if
5799          * we have some of them active, restore the old state.
5800          */
5801         if (hw_breakpoint_active())
5802                 hw_breakpoint_restore();
5803
5804         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5805                                                            native_read_tsc());
5806
5807         vcpu->mode = OUTSIDE_GUEST_MODE;
5808         smp_wmb();
5809
5810         /* Interrupt is enabled by handle_external_intr() */
5811         kvm_x86_ops->handle_external_intr(vcpu);
5812
5813         ++vcpu->stat.exits;
5814
5815         /*
5816          * We must have an instruction between local_irq_enable() and
5817          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5818          * the interrupt shadow.  The stat.exits increment will do nicely.
5819          * But we need to prevent reordering, hence this barrier():
5820          */
5821         barrier();
5822
5823         kvm_guest_exit();
5824
5825         preempt_enable();
5826
5827         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5828
5829         /*
5830          * Profile KVM exit RIPs:
5831          */
5832         if (unlikely(prof_on == KVM_PROFILING)) {
5833                 unsigned long rip = kvm_rip_read(vcpu);
5834                 profile_hit(KVM_PROFILING, (void *)rip);
5835         }
5836
5837         if (unlikely(vcpu->arch.tsc_always_catchup))
5838                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5839
5840         if (vcpu->arch.apic_attention)
5841                 kvm_lapic_sync_from_vapic(vcpu);
5842
5843         r = kvm_x86_ops->handle_exit(vcpu);
5844         return r;
5845
5846 cancel_injection:
5847         kvm_x86_ops->cancel_injection(vcpu);
5848         if (unlikely(vcpu->arch.apic_attention))
5849                 kvm_lapic_sync_from_vapic(vcpu);
5850 out:
5851         return r;
5852 }
5853
5854
5855 static int __vcpu_run(struct kvm_vcpu *vcpu)
5856 {
5857         int r;
5858         struct kvm *kvm = vcpu->kvm;
5859
5860         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5861
5862         r = 1;
5863         while (r > 0) {
5864                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5865                     !vcpu->arch.apf.halted)
5866                         r = vcpu_enter_guest(vcpu);
5867                 else {
5868                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5869                         kvm_vcpu_block(vcpu);
5870                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5871                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
5872                                 kvm_apic_accept_events(vcpu);
5873                                 switch(vcpu->arch.mp_state) {
5874                                 case KVM_MP_STATE_HALTED:
5875                                         vcpu->arch.mp_state =
5876                                                 KVM_MP_STATE_RUNNABLE;
5877                                 case KVM_MP_STATE_RUNNABLE:
5878                                         vcpu->arch.apf.halted = false;
5879                                         break;
5880                                 case KVM_MP_STATE_INIT_RECEIVED:
5881                                         break;
5882                                 default:
5883                                         r = -EINTR;
5884                                         break;
5885                                 }
5886                         }
5887                 }
5888
5889                 if (r <= 0)
5890                         break;
5891
5892                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5893                 if (kvm_cpu_has_pending_timer(vcpu))
5894                         kvm_inject_pending_timer_irqs(vcpu);
5895
5896                 if (dm_request_for_irq_injection(vcpu)) {
5897                         r = -EINTR;
5898                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5899                         ++vcpu->stat.request_irq_exits;
5900                 }
5901
5902                 kvm_check_async_pf_completion(vcpu);
5903
5904                 if (signal_pending(current)) {
5905                         r = -EINTR;
5906                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5907                         ++vcpu->stat.signal_exits;
5908                 }
5909                 if (need_resched()) {
5910                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5911                         kvm_resched(vcpu);
5912                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5913                 }
5914         }
5915
5916         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5917
5918         return r;
5919 }
5920
5921 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5922 {
5923         int r;
5924         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5925         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5926         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5927         if (r != EMULATE_DONE)
5928                 return 0;
5929         return 1;
5930 }
5931
5932 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5933 {
5934         BUG_ON(!vcpu->arch.pio.count);
5935
5936         return complete_emulated_io(vcpu);
5937 }
5938
5939 /*
5940  * Implements the following, as a state machine:
5941  *
5942  * read:
5943  *   for each fragment
5944  *     for each mmio piece in the fragment
5945  *       write gpa, len
5946  *       exit
5947  *       copy data
5948  *   execute insn
5949  *
5950  * write:
5951  *   for each fragment
5952  *     for each mmio piece in the fragment
5953  *       write gpa, len
5954  *       copy data
5955  *       exit
5956  */
5957 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5958 {
5959         struct kvm_run *run = vcpu->run;
5960         struct kvm_mmio_fragment *frag;
5961         unsigned len;
5962
5963         BUG_ON(!vcpu->mmio_needed);
5964
5965         /* Complete previous fragment */
5966         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
5967         len = min(8u, frag->len);
5968         if (!vcpu->mmio_is_write)
5969                 memcpy(frag->data, run->mmio.data, len);
5970
5971         if (frag->len <= 8) {
5972                 /* Switch to the next fragment. */
5973                 frag++;
5974                 vcpu->mmio_cur_fragment++;
5975         } else {
5976                 /* Go forward to the next mmio piece. */
5977                 frag->data += len;
5978                 frag->gpa += len;
5979                 frag->len -= len;
5980         }
5981
5982         if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5983                 vcpu->mmio_needed = 0;
5984                 if (vcpu->mmio_is_write)
5985                         return 1;
5986                 vcpu->mmio_read_completed = 1;
5987                 return complete_emulated_io(vcpu);
5988         }
5989
5990         run->exit_reason = KVM_EXIT_MMIO;
5991         run->mmio.phys_addr = frag->gpa;
5992         if (vcpu->mmio_is_write)
5993                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
5994         run->mmio.len = min(8u, frag->len);
5995         run->mmio.is_write = vcpu->mmio_is_write;
5996         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5997         return 0;
5998 }
5999
6000
6001 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6002 {
6003         int r;
6004         sigset_t sigsaved;
6005
6006         if (!tsk_used_math(current) && init_fpu(current))
6007                 return -ENOMEM;
6008
6009         if (vcpu->sigset_active)
6010                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6011
6012         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6013                 kvm_vcpu_block(vcpu);
6014                 kvm_apic_accept_events(vcpu);
6015                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6016                 r = -EAGAIN;
6017                 goto out;
6018         }
6019
6020         /* re-sync apic's tpr */
6021         if (!irqchip_in_kernel(vcpu->kvm)) {
6022                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6023                         r = -EINVAL;
6024                         goto out;
6025                 }
6026         }
6027
6028         if (unlikely(vcpu->arch.complete_userspace_io)) {
6029                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6030                 vcpu->arch.complete_userspace_io = NULL;
6031                 r = cui(vcpu);
6032                 if (r <= 0)
6033                         goto out;
6034         } else
6035                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6036
6037         r = __vcpu_run(vcpu);
6038
6039 out:
6040         post_kvm_run_save(vcpu);
6041         if (vcpu->sigset_active)
6042                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6043
6044         return r;
6045 }
6046
6047 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6048 {
6049         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6050                 /*
6051                  * We are here if userspace calls get_regs() in the middle of
6052                  * instruction emulation. Registers state needs to be copied
6053                  * back from emulation context to vcpu. Userspace shouldn't do
6054                  * that usually, but some bad designed PV devices (vmware
6055                  * backdoor interface) need this to work
6056                  */
6057                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6058                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6059         }
6060         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6061         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6062         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6063         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6064         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6065         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6066         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6067         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6068 #ifdef CONFIG_X86_64
6069         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6070         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6071         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6072         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6073         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6074         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6075         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6076         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6077 #endif
6078
6079         regs->rip = kvm_rip_read(vcpu);
6080         regs->rflags = kvm_get_rflags(vcpu);
6081
6082         return 0;
6083 }
6084
6085 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6086 {
6087         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6088         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6089
6090         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6091         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6092         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6093         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6094         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6095         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6096         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6097         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6098 #ifdef CONFIG_X86_64
6099         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6100         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6101         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6102         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6103         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6104         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6105         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6106         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6107 #endif
6108
6109         kvm_rip_write(vcpu, regs->rip);
6110         kvm_set_rflags(vcpu, regs->rflags);
6111
6112         vcpu->arch.exception.pending = false;
6113
6114         kvm_make_request(KVM_REQ_EVENT, vcpu);
6115
6116         return 0;
6117 }
6118
6119 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6120 {
6121         struct kvm_segment cs;
6122
6123         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6124         *db = cs.db;
6125         *l = cs.l;
6126 }
6127 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6128
6129 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6130                                   struct kvm_sregs *sregs)
6131 {
6132         struct desc_ptr dt;
6133
6134         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6135         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6136         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6137         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6138         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6139         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6140
6141         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6142         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6143
6144         kvm_x86_ops->get_idt(vcpu, &dt);
6145         sregs->idt.limit = dt.size;
6146         sregs->idt.base = dt.address;
6147         kvm_x86_ops->get_gdt(vcpu, &dt);
6148         sregs->gdt.limit = dt.size;
6149         sregs->gdt.base = dt.address;
6150
6151         sregs->cr0 = kvm_read_cr0(vcpu);
6152         sregs->cr2 = vcpu->arch.cr2;
6153         sregs->cr3 = kvm_read_cr3(vcpu);
6154         sregs->cr4 = kvm_read_cr4(vcpu);
6155         sregs->cr8 = kvm_get_cr8(vcpu);
6156         sregs->efer = vcpu->arch.efer;
6157         sregs->apic_base = kvm_get_apic_base(vcpu);
6158
6159         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6160
6161         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6162                 set_bit(vcpu->arch.interrupt.nr,
6163                         (unsigned long *)sregs->interrupt_bitmap);
6164
6165         return 0;
6166 }
6167
6168 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6169                                     struct kvm_mp_state *mp_state)
6170 {
6171         kvm_apic_accept_events(vcpu);
6172         mp_state->mp_state = vcpu->arch.mp_state;
6173         return 0;
6174 }
6175
6176 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6177                                     struct kvm_mp_state *mp_state)
6178 {
6179         if (!kvm_vcpu_has_lapic(vcpu) &&
6180             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6181                 return -EINVAL;
6182
6183         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6184                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6185                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6186         } else
6187                 vcpu->arch.mp_state = mp_state->mp_state;
6188         kvm_make_request(KVM_REQ_EVENT, vcpu);
6189         return 0;
6190 }
6191
6192 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6193                     int reason, bool has_error_code, u32 error_code)
6194 {
6195         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6196         int ret;
6197
6198         init_emulate_ctxt(vcpu);
6199
6200         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6201                                    has_error_code, error_code);
6202
6203         if (ret)
6204                 return EMULATE_FAIL;
6205
6206         kvm_rip_write(vcpu, ctxt->eip);
6207         kvm_set_rflags(vcpu, ctxt->eflags);
6208         kvm_make_request(KVM_REQ_EVENT, vcpu);
6209         return EMULATE_DONE;
6210 }
6211 EXPORT_SYMBOL_GPL(kvm_task_switch);
6212
6213 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6214                                   struct kvm_sregs *sregs)
6215 {
6216         int mmu_reset_needed = 0;
6217         int pending_vec, max_bits, idx;
6218         struct desc_ptr dt;
6219
6220         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6221                 return -EINVAL;
6222
6223         dt.size = sregs->idt.limit;
6224         dt.address = sregs->idt.base;
6225         kvm_x86_ops->set_idt(vcpu, &dt);
6226         dt.size = sregs->gdt.limit;
6227         dt.address = sregs->gdt.base;
6228         kvm_x86_ops->set_gdt(vcpu, &dt);
6229
6230         vcpu->arch.cr2 = sregs->cr2;
6231         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6232         vcpu->arch.cr3 = sregs->cr3;
6233         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6234
6235         kvm_set_cr8(vcpu, sregs->cr8);
6236
6237         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6238         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6239         kvm_set_apic_base(vcpu, sregs->apic_base);
6240
6241         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6242         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6243         vcpu->arch.cr0 = sregs->cr0;
6244
6245         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6246         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6247         if (sregs->cr4 & X86_CR4_OSXSAVE)
6248                 kvm_update_cpuid(vcpu);
6249
6250         idx = srcu_read_lock(&vcpu->kvm->srcu);
6251         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6252                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6253                 mmu_reset_needed = 1;
6254         }
6255         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6256
6257         if (mmu_reset_needed)
6258                 kvm_mmu_reset_context(vcpu);
6259
6260         max_bits = KVM_NR_INTERRUPTS;
6261         pending_vec = find_first_bit(
6262                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6263         if (pending_vec < max_bits) {
6264                 kvm_queue_interrupt(vcpu, pending_vec, false);
6265                 pr_debug("Set back pending irq %d\n", pending_vec);
6266         }
6267
6268         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6269         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6270         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6271         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6272         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6273         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6274
6275         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6276         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6277
6278         update_cr8_intercept(vcpu);
6279
6280         /* Older userspace won't unhalt the vcpu on reset. */
6281         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6282             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6283             !is_protmode(vcpu))
6284                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6285
6286         kvm_make_request(KVM_REQ_EVENT, vcpu);
6287
6288         return 0;
6289 }
6290
6291 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6292                                         struct kvm_guest_debug *dbg)
6293 {
6294         unsigned long rflags;
6295         int i, r;
6296
6297         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6298                 r = -EBUSY;
6299                 if (vcpu->arch.exception.pending)
6300                         goto out;
6301                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6302                         kvm_queue_exception(vcpu, DB_VECTOR);
6303                 else
6304                         kvm_queue_exception(vcpu, BP_VECTOR);
6305         }
6306
6307         /*
6308          * Read rflags as long as potentially injected trace flags are still
6309          * filtered out.
6310          */
6311         rflags = kvm_get_rflags(vcpu);
6312
6313         vcpu->guest_debug = dbg->control;
6314         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6315                 vcpu->guest_debug = 0;
6316
6317         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6318                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6319                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6320                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6321         } else {
6322                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6323                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6324         }
6325         kvm_update_dr7(vcpu);
6326
6327         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6328                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6329                         get_segment_base(vcpu, VCPU_SREG_CS);
6330
6331         /*
6332          * Trigger an rflags update that will inject or remove the trace
6333          * flags.
6334          */
6335         kvm_set_rflags(vcpu, rflags);
6336
6337         kvm_x86_ops->update_db_bp_intercept(vcpu);
6338
6339         r = 0;
6340
6341 out:
6342
6343         return r;
6344 }
6345
6346 /*
6347  * Translate a guest virtual address to a guest physical address.
6348  */
6349 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6350                                     struct kvm_translation *tr)
6351 {
6352         unsigned long vaddr = tr->linear_address;
6353         gpa_t gpa;
6354         int idx;
6355
6356         idx = srcu_read_lock(&vcpu->kvm->srcu);
6357         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6358         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6359         tr->physical_address = gpa;
6360         tr->valid = gpa != UNMAPPED_GVA;
6361         tr->writeable = 1;
6362         tr->usermode = 0;
6363
6364         return 0;
6365 }
6366
6367 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6368 {
6369         struct i387_fxsave_struct *fxsave =
6370                         &vcpu->arch.guest_fpu.state->fxsave;
6371
6372         memcpy(fpu->fpr, fxsave->st_space, 128);
6373         fpu->fcw = fxsave->cwd;
6374         fpu->fsw = fxsave->swd;
6375         fpu->ftwx = fxsave->twd;
6376         fpu->last_opcode = fxsave->fop;
6377         fpu->last_ip = fxsave->rip;
6378         fpu->last_dp = fxsave->rdp;
6379         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6380
6381         return 0;
6382 }
6383
6384 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6385 {
6386         struct i387_fxsave_struct *fxsave =
6387                         &vcpu->arch.guest_fpu.state->fxsave;
6388
6389         memcpy(fxsave->st_space, fpu->fpr, 128);
6390         fxsave->cwd = fpu->fcw;
6391         fxsave->swd = fpu->fsw;
6392         fxsave->twd = fpu->ftwx;
6393         fxsave->fop = fpu->last_opcode;
6394         fxsave->rip = fpu->last_ip;
6395         fxsave->rdp = fpu->last_dp;
6396         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6397
6398         return 0;
6399 }
6400
6401 int fx_init(struct kvm_vcpu *vcpu)
6402 {
6403         int err;
6404
6405         err = fpu_alloc(&vcpu->arch.guest_fpu);
6406         if (err)
6407                 return err;
6408
6409         fpu_finit(&vcpu->arch.guest_fpu);
6410
6411         /*
6412          * Ensure guest xcr0 is valid for loading
6413          */
6414         vcpu->arch.xcr0 = XSTATE_FP;
6415
6416         vcpu->arch.cr0 |= X86_CR0_ET;
6417
6418         return 0;
6419 }
6420 EXPORT_SYMBOL_GPL(fx_init);
6421
6422 static void fx_free(struct kvm_vcpu *vcpu)
6423 {
6424         fpu_free(&vcpu->arch.guest_fpu);
6425 }
6426
6427 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6428 {
6429         if (vcpu->guest_fpu_loaded)
6430                 return;
6431
6432         /*
6433          * Restore all possible states in the guest,
6434          * and assume host would use all available bits.
6435          * Guest xcr0 would be loaded later.
6436          */
6437         kvm_put_guest_xcr0(vcpu);
6438         vcpu->guest_fpu_loaded = 1;
6439         __kernel_fpu_begin();
6440         fpu_restore_checking(&vcpu->arch.guest_fpu);
6441         trace_kvm_fpu(1);
6442 }
6443
6444 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6445 {
6446         kvm_put_guest_xcr0(vcpu);
6447
6448         if (!vcpu->guest_fpu_loaded)
6449                 return;
6450
6451         vcpu->guest_fpu_loaded = 0;
6452         fpu_save_init(&vcpu->arch.guest_fpu);
6453         __kernel_fpu_end();
6454         ++vcpu->stat.fpu_reload;
6455         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6456         trace_kvm_fpu(0);
6457 }
6458
6459 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6460 {
6461         kvmclock_reset(vcpu);
6462
6463         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6464         fx_free(vcpu);
6465         kvm_x86_ops->vcpu_free(vcpu);
6466 }
6467
6468 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6469                                                 unsigned int id)
6470 {
6471         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6472                 printk_once(KERN_WARNING
6473                 "kvm: SMP vm created on host with unstable TSC; "
6474                 "guest TSC will not be reliable\n");
6475         return kvm_x86_ops->vcpu_create(kvm, id);
6476 }
6477
6478 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6479 {
6480         int r;
6481
6482         vcpu->arch.mtrr_state.have_fixed = 1;
6483         r = vcpu_load(vcpu);
6484         if (r)
6485                 return r;
6486         kvm_vcpu_reset(vcpu);
6487         r = kvm_mmu_setup(vcpu);
6488         vcpu_put(vcpu);
6489
6490         return r;
6491 }
6492
6493 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6494 {
6495         int r;
6496         struct msr_data msr;
6497
6498         r = vcpu_load(vcpu);
6499         if (r)
6500                 return r;
6501         msr.data = 0x0;
6502         msr.index = MSR_IA32_TSC;
6503         msr.host_initiated = true;
6504         kvm_write_tsc(vcpu, &msr);
6505         vcpu_put(vcpu);
6506
6507         return r;
6508 }
6509
6510 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6511 {
6512         int r;
6513         vcpu->arch.apf.msr_val = 0;
6514
6515         r = vcpu_load(vcpu);
6516         BUG_ON(r);
6517         kvm_mmu_unload(vcpu);
6518         vcpu_put(vcpu);
6519
6520         fx_free(vcpu);
6521         kvm_x86_ops->vcpu_free(vcpu);
6522 }
6523
6524 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6525 {
6526         atomic_set(&vcpu->arch.nmi_queued, 0);
6527         vcpu->arch.nmi_pending = 0;
6528         vcpu->arch.nmi_injected = false;
6529
6530         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6531         vcpu->arch.dr6 = DR6_FIXED_1;
6532         vcpu->arch.dr7 = DR7_FIXED_1;
6533         kvm_update_dr7(vcpu);
6534
6535         kvm_make_request(KVM_REQ_EVENT, vcpu);
6536         vcpu->arch.apf.msr_val = 0;
6537         vcpu->arch.st.msr_val = 0;
6538
6539         kvmclock_reset(vcpu);
6540
6541         kvm_clear_async_pf_completion_queue(vcpu);
6542         kvm_async_pf_hash_reset(vcpu);
6543         vcpu->arch.apf.halted = false;
6544
6545         kvm_pmu_reset(vcpu);
6546
6547         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6548         vcpu->arch.regs_avail = ~0;
6549         vcpu->arch.regs_dirty = ~0;
6550
6551         kvm_x86_ops->vcpu_reset(vcpu);
6552 }
6553
6554 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6555 {
6556         struct kvm_segment cs;
6557
6558         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6559         cs.selector = vector << 8;
6560         cs.base = vector << 12;
6561         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6562         kvm_rip_write(vcpu, 0);
6563 }
6564
6565 int kvm_arch_hardware_enable(void *garbage)
6566 {
6567         struct kvm *kvm;
6568         struct kvm_vcpu *vcpu;
6569         int i;
6570         int ret;
6571         u64 local_tsc;
6572         u64 max_tsc = 0;
6573         bool stable, backwards_tsc = false;
6574
6575         kvm_shared_msr_cpu_online();
6576         ret = kvm_x86_ops->hardware_enable(garbage);
6577         if (ret != 0)
6578                 return ret;
6579
6580         local_tsc = native_read_tsc();
6581         stable = !check_tsc_unstable();
6582         list_for_each_entry(kvm, &vm_list, vm_list) {
6583                 kvm_for_each_vcpu(i, vcpu, kvm) {
6584                         if (!stable && vcpu->cpu == smp_processor_id())
6585                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6586                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6587                                 backwards_tsc = true;
6588                                 if (vcpu->arch.last_host_tsc > max_tsc)
6589                                         max_tsc = vcpu->arch.last_host_tsc;
6590                         }
6591                 }
6592         }
6593
6594         /*
6595          * Sometimes, even reliable TSCs go backwards.  This happens on
6596          * platforms that reset TSC during suspend or hibernate actions, but
6597          * maintain synchronization.  We must compensate.  Fortunately, we can
6598          * detect that condition here, which happens early in CPU bringup,
6599          * before any KVM threads can be running.  Unfortunately, we can't
6600          * bring the TSCs fully up to date with real time, as we aren't yet far
6601          * enough into CPU bringup that we know how much real time has actually
6602          * elapsed; our helper function, get_kernel_ns() will be using boot
6603          * variables that haven't been updated yet.
6604          *
6605          * So we simply find the maximum observed TSC above, then record the
6606          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6607          * the adjustment will be applied.  Note that we accumulate
6608          * adjustments, in case multiple suspend cycles happen before some VCPU
6609          * gets a chance to run again.  In the event that no KVM threads get a
6610          * chance to run, we will miss the entire elapsed period, as we'll have
6611          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6612          * loose cycle time.  This isn't too big a deal, since the loss will be
6613          * uniform across all VCPUs (not to mention the scenario is extremely
6614          * unlikely). It is possible that a second hibernate recovery happens
6615          * much faster than a first, causing the observed TSC here to be
6616          * smaller; this would require additional padding adjustment, which is
6617          * why we set last_host_tsc to the local tsc observed here.
6618          *
6619          * N.B. - this code below runs only on platforms with reliable TSC,
6620          * as that is the only way backwards_tsc is set above.  Also note
6621          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6622          * have the same delta_cyc adjustment applied if backwards_tsc
6623          * is detected.  Note further, this adjustment is only done once,
6624          * as we reset last_host_tsc on all VCPUs to stop this from being
6625          * called multiple times (one for each physical CPU bringup).
6626          *
6627          * Platforms with unreliable TSCs don't have to deal with this, they
6628          * will be compensated by the logic in vcpu_load, which sets the TSC to
6629          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6630          * guarantee that they stay in perfect synchronization.
6631          */
6632         if (backwards_tsc) {
6633                 u64 delta_cyc = max_tsc - local_tsc;
6634                 list_for_each_entry(kvm, &vm_list, vm_list) {
6635                         kvm_for_each_vcpu(i, vcpu, kvm) {
6636                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6637                                 vcpu->arch.last_host_tsc = local_tsc;
6638                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6639                                         &vcpu->requests);
6640                         }
6641
6642                         /*
6643                          * We have to disable TSC offset matching.. if you were
6644                          * booting a VM while issuing an S4 host suspend....
6645                          * you may have some problem.  Solving this issue is
6646                          * left as an exercise to the reader.
6647                          */
6648                         kvm->arch.last_tsc_nsec = 0;
6649                         kvm->arch.last_tsc_write = 0;
6650                 }
6651
6652         }
6653         return 0;
6654 }
6655
6656 void kvm_arch_hardware_disable(void *garbage)
6657 {
6658         kvm_x86_ops->hardware_disable(garbage);
6659         drop_user_return_notifiers(garbage);
6660 }
6661
6662 int kvm_arch_hardware_setup(void)
6663 {
6664         return kvm_x86_ops->hardware_setup();
6665 }
6666
6667 void kvm_arch_hardware_unsetup(void)
6668 {
6669         kvm_x86_ops->hardware_unsetup();
6670 }
6671
6672 void kvm_arch_check_processor_compat(void *rtn)
6673 {
6674         kvm_x86_ops->check_processor_compatibility(rtn);
6675 }
6676
6677 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6678 {
6679         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6680 }
6681
6682 struct static_key kvm_no_apic_vcpu __read_mostly;
6683
6684 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6685 {
6686         struct page *page;
6687         struct kvm *kvm;
6688         int r;
6689
6690         BUG_ON(vcpu->kvm == NULL);
6691         kvm = vcpu->kvm;
6692
6693         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6694         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6695                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6696         else
6697                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6698
6699         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6700         if (!page) {
6701                 r = -ENOMEM;
6702                 goto fail;
6703         }
6704         vcpu->arch.pio_data = page_address(page);
6705
6706         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6707
6708         r = kvm_mmu_create(vcpu);
6709         if (r < 0)
6710                 goto fail_free_pio_data;
6711
6712         if (irqchip_in_kernel(kvm)) {
6713                 r = kvm_create_lapic(vcpu);
6714                 if (r < 0)
6715                         goto fail_mmu_destroy;
6716         } else
6717                 static_key_slow_inc(&kvm_no_apic_vcpu);
6718
6719         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6720                                        GFP_KERNEL);
6721         if (!vcpu->arch.mce_banks) {
6722                 r = -ENOMEM;
6723                 goto fail_free_lapic;
6724         }
6725         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6726
6727         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6728                 r = -ENOMEM;
6729                 goto fail_free_mce_banks;
6730         }
6731
6732         r = fx_init(vcpu);
6733         if (r)
6734                 goto fail_free_wbinvd_dirty_mask;
6735
6736         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6737         vcpu->arch.pv_time_enabled = false;
6738         kvm_async_pf_hash_reset(vcpu);
6739         kvm_pmu_init(vcpu);
6740
6741         return 0;
6742 fail_free_wbinvd_dirty_mask:
6743         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6744 fail_free_mce_banks:
6745         kfree(vcpu->arch.mce_banks);
6746 fail_free_lapic:
6747         kvm_free_lapic(vcpu);
6748 fail_mmu_destroy:
6749         kvm_mmu_destroy(vcpu);
6750 fail_free_pio_data:
6751         free_page((unsigned long)vcpu->arch.pio_data);
6752 fail:
6753         return r;
6754 }
6755
6756 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6757 {
6758         int idx;
6759
6760         kvm_pmu_destroy(vcpu);
6761         kfree(vcpu->arch.mce_banks);
6762         kvm_free_lapic(vcpu);
6763         idx = srcu_read_lock(&vcpu->kvm->srcu);
6764         kvm_mmu_destroy(vcpu);
6765         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6766         free_page((unsigned long)vcpu->arch.pio_data);
6767         if (!irqchip_in_kernel(vcpu->kvm))
6768                 static_key_slow_dec(&kvm_no_apic_vcpu);
6769 }
6770
6771 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6772 {
6773         if (type)
6774                 return -EINVAL;
6775
6776         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6777         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6778
6779         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6780         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6781         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6782         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6783                 &kvm->arch.irq_sources_bitmap);
6784
6785         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6786         mutex_init(&kvm->arch.apic_map_lock);
6787         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6788
6789         pvclock_update_vm_gtod_copy(kvm);
6790
6791         return 0;
6792 }
6793
6794 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6795 {
6796         int r;
6797         r = vcpu_load(vcpu);
6798         BUG_ON(r);
6799         kvm_mmu_unload(vcpu);
6800         vcpu_put(vcpu);
6801 }
6802
6803 static void kvm_free_vcpus(struct kvm *kvm)
6804 {
6805         unsigned int i;
6806         struct kvm_vcpu *vcpu;
6807
6808         /*
6809          * Unpin any mmu pages first.
6810          */
6811         kvm_for_each_vcpu(i, vcpu, kvm) {
6812                 kvm_clear_async_pf_completion_queue(vcpu);
6813                 kvm_unload_vcpu_mmu(vcpu);
6814         }
6815         kvm_for_each_vcpu(i, vcpu, kvm)
6816                 kvm_arch_vcpu_free(vcpu);
6817
6818         mutex_lock(&kvm->lock);
6819         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6820                 kvm->vcpus[i] = NULL;
6821
6822         atomic_set(&kvm->online_vcpus, 0);
6823         mutex_unlock(&kvm->lock);
6824 }
6825
6826 void kvm_arch_sync_events(struct kvm *kvm)
6827 {
6828         kvm_free_all_assigned_devices(kvm);
6829         kvm_free_pit(kvm);
6830 }
6831
6832 void kvm_arch_destroy_vm(struct kvm *kvm)
6833 {
6834         if (current->mm == kvm->mm) {
6835                 /*
6836                  * Free memory regions allocated on behalf of userspace,
6837                  * unless the the memory map has changed due to process exit
6838                  * or fd copying.
6839                  */
6840                 struct kvm_userspace_memory_region mem;
6841                 memset(&mem, 0, sizeof(mem));
6842                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
6843                 kvm_set_memory_region(kvm, &mem);
6844
6845                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
6846                 kvm_set_memory_region(kvm, &mem);
6847
6848                 mem.slot = TSS_PRIVATE_MEMSLOT;
6849                 kvm_set_memory_region(kvm, &mem);
6850         }
6851         kvm_iommu_unmap_guest(kvm);
6852         kfree(kvm->arch.vpic);
6853         kfree(kvm->arch.vioapic);
6854         kvm_free_vcpus(kvm);
6855         if (kvm->arch.apic_access_page)
6856                 put_page(kvm->arch.apic_access_page);
6857         if (kvm->arch.ept_identity_pagetable)
6858                 put_page(kvm->arch.ept_identity_pagetable);
6859         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6860 }
6861
6862 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6863                            struct kvm_memory_slot *dont)
6864 {
6865         int i;
6866
6867         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6868                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6869                         kvm_kvfree(free->arch.rmap[i]);
6870                         free->arch.rmap[i] = NULL;
6871                 }
6872                 if (i == 0)
6873                         continue;
6874
6875                 if (!dont || free->arch.lpage_info[i - 1] !=
6876                              dont->arch.lpage_info[i - 1]) {
6877                         kvm_kvfree(free->arch.lpage_info[i - 1]);
6878                         free->arch.lpage_info[i - 1] = NULL;
6879                 }
6880         }
6881 }
6882
6883 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6884 {
6885         int i;
6886
6887         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6888                 unsigned long ugfn;
6889                 int lpages;
6890                 int level = i + 1;
6891
6892                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6893                                       slot->base_gfn, level) + 1;
6894
6895                 slot->arch.rmap[i] =
6896                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6897                 if (!slot->arch.rmap[i])
6898                         goto out_free;
6899                 if (i == 0)
6900                         continue;
6901
6902                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6903                                         sizeof(*slot->arch.lpage_info[i - 1]));
6904                 if (!slot->arch.lpage_info[i - 1])
6905                         goto out_free;
6906
6907                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6908                         slot->arch.lpage_info[i - 1][0].write_count = 1;
6909                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6910                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6911                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6912                 /*
6913                  * If the gfn and userspace address are not aligned wrt each
6914                  * other, or if explicitly asked to, disable large page
6915                  * support for this slot
6916                  */
6917                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6918                     !kvm_largepages_enabled()) {
6919                         unsigned long j;
6920
6921                         for (j = 0; j < lpages; ++j)
6922                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
6923                 }
6924         }
6925
6926         return 0;
6927
6928 out_free:
6929         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6930                 kvm_kvfree(slot->arch.rmap[i]);
6931                 slot->arch.rmap[i] = NULL;
6932                 if (i == 0)
6933                         continue;
6934
6935                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
6936                 slot->arch.lpage_info[i - 1] = NULL;
6937         }
6938         return -ENOMEM;
6939 }
6940
6941 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6942                                 struct kvm_memory_slot *memslot,
6943                                 struct kvm_userspace_memory_region *mem,
6944                                 enum kvm_mr_change change)
6945 {
6946         /*
6947          * Only private memory slots need to be mapped here since
6948          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
6949          */
6950         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
6951                 unsigned long userspace_addr;
6952
6953                 /*
6954                  * MAP_SHARED to prevent internal slot pages from being moved
6955                  * by fork()/COW.
6956                  */
6957                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
6958                                          PROT_READ | PROT_WRITE,
6959                                          MAP_SHARED | MAP_ANONYMOUS, 0);
6960
6961                 if (IS_ERR((void *)userspace_addr))
6962                         return PTR_ERR((void *)userspace_addr);
6963
6964                 memslot->userspace_addr = userspace_addr;
6965         }
6966
6967         return 0;
6968 }
6969
6970 void kvm_arch_commit_memory_region(struct kvm *kvm,
6971                                 struct kvm_userspace_memory_region *mem,
6972                                 const struct kvm_memory_slot *old,
6973                                 enum kvm_mr_change change)
6974 {
6975
6976         int nr_mmu_pages = 0;
6977
6978         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
6979                 int ret;
6980
6981                 ret = vm_munmap(old->userspace_addr,
6982                                 old->npages * PAGE_SIZE);
6983                 if (ret < 0)
6984                         printk(KERN_WARNING
6985                                "kvm_vm_ioctl_set_memory_region: "
6986                                "failed to munmap memory\n");
6987         }
6988
6989         if (!kvm->arch.n_requested_mmu_pages)
6990                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6991
6992         if (nr_mmu_pages)
6993                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6994         /*
6995          * Write protect all pages for dirty logging.
6996          * Existing largepage mappings are destroyed here and new ones will
6997          * not be created until the end of the logging.
6998          */
6999         if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7000                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7001         /*
7002          * If memory slot is created, or moved, we need to clear all
7003          * mmio sptes.
7004          */
7005         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
7006                 kvm_mmu_zap_mmio_sptes(kvm);
7007                 kvm_reload_remote_mmus(kvm);
7008         }
7009 }
7010
7011 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7012 {
7013         kvm_mmu_zap_all(kvm);
7014         kvm_reload_remote_mmus(kvm);
7015 }
7016
7017 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7018                                    struct kvm_memory_slot *slot)
7019 {
7020         kvm_arch_flush_shadow_all(kvm);
7021 }
7022
7023 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7024 {
7025         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7026                 !vcpu->arch.apf.halted)
7027                 || !list_empty_careful(&vcpu->async_pf.done)
7028                 || kvm_apic_has_events(vcpu)
7029                 || atomic_read(&vcpu->arch.nmi_queued) ||
7030                 (kvm_arch_interrupt_allowed(vcpu) &&
7031                  kvm_cpu_has_interrupt(vcpu));
7032 }
7033
7034 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7035 {
7036         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7037 }
7038
7039 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7040 {
7041         return kvm_x86_ops->interrupt_allowed(vcpu);
7042 }
7043
7044 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7045 {
7046         unsigned long current_rip = kvm_rip_read(vcpu) +
7047                 get_segment_base(vcpu, VCPU_SREG_CS);
7048
7049         return current_rip == linear_rip;
7050 }
7051 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7052
7053 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7054 {
7055         unsigned long rflags;
7056
7057         rflags = kvm_x86_ops->get_rflags(vcpu);
7058         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7059                 rflags &= ~X86_EFLAGS_TF;
7060         return rflags;
7061 }
7062 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7063
7064 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7065 {
7066         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7067             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7068                 rflags |= X86_EFLAGS_TF;
7069         kvm_x86_ops->set_rflags(vcpu, rflags);
7070         kvm_make_request(KVM_REQ_EVENT, vcpu);
7071 }
7072 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7073
7074 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7075 {
7076         int r;
7077
7078         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7079               is_error_page(work->page))
7080                 return;
7081
7082         r = kvm_mmu_reload(vcpu);
7083         if (unlikely(r))
7084                 return;
7085
7086         if (!vcpu->arch.mmu.direct_map &&
7087               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7088                 return;
7089
7090         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7091 }
7092
7093 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7094 {
7095         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7096 }
7097
7098 static inline u32 kvm_async_pf_next_probe(u32 key)
7099 {
7100         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7101 }
7102
7103 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7104 {
7105         u32 key = kvm_async_pf_hash_fn(gfn);
7106
7107         while (vcpu->arch.apf.gfns[key] != ~0)
7108                 key = kvm_async_pf_next_probe(key);
7109
7110         vcpu->arch.apf.gfns[key] = gfn;
7111 }
7112
7113 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7114 {
7115         int i;
7116         u32 key = kvm_async_pf_hash_fn(gfn);
7117
7118         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7119                      (vcpu->arch.apf.gfns[key] != gfn &&
7120                       vcpu->arch.apf.gfns[key] != ~0); i++)
7121                 key = kvm_async_pf_next_probe(key);
7122
7123         return key;
7124 }
7125
7126 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7127 {
7128         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7129 }
7130
7131 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7132 {
7133         u32 i, j, k;
7134
7135         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7136         while (true) {
7137                 vcpu->arch.apf.gfns[i] = ~0;
7138                 do {
7139                         j = kvm_async_pf_next_probe(j);
7140                         if (vcpu->arch.apf.gfns[j] == ~0)
7141                                 return;
7142                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7143                         /*
7144                          * k lies cyclically in ]i,j]
7145                          * |    i.k.j |
7146                          * |....j i.k.| or  |.k..j i...|
7147                          */
7148                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7149                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7150                 i = j;
7151         }
7152 }
7153
7154 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7155 {
7156
7157         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7158                                       sizeof(val));
7159 }
7160
7161 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7162                                      struct kvm_async_pf *work)
7163 {
7164         struct x86_exception fault;
7165
7166         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7167         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7168
7169         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7170             (vcpu->arch.apf.send_user_only &&
7171              kvm_x86_ops->get_cpl(vcpu) == 0))
7172                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7173         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7174                 fault.vector = PF_VECTOR;
7175                 fault.error_code_valid = true;
7176                 fault.error_code = 0;
7177                 fault.nested_page_fault = false;
7178                 fault.address = work->arch.token;
7179                 kvm_inject_page_fault(vcpu, &fault);
7180         }
7181 }
7182
7183 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7184                                  struct kvm_async_pf *work)
7185 {
7186         struct x86_exception fault;
7187
7188         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7189         if (is_error_page(work->page))
7190                 work->arch.token = ~0; /* broadcast wakeup */
7191         else
7192                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7193
7194         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7195             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7196                 fault.vector = PF_VECTOR;
7197                 fault.error_code_valid = true;
7198                 fault.error_code = 0;
7199                 fault.nested_page_fault = false;
7200                 fault.address = work->arch.token;
7201                 kvm_inject_page_fault(vcpu, &fault);
7202         }
7203         vcpu->arch.apf.halted = false;
7204         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7205 }
7206
7207 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7208 {
7209         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7210                 return true;
7211         else
7212                 return !kvm_event_needs_reinjection(vcpu) &&
7213                         kvm_x86_ops->interrupt_allowed(vcpu);
7214 }
7215
7216 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7217 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7218 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7219 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7220 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7221 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7222 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7223 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7224 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7225 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7226 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7227 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);