KVM: x86: Check non-canonical addresses upon WRMSR
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
91
92 struct kvm_x86_ops *kvm_x86_ops;
93 EXPORT_SYMBOL_GPL(kvm_x86_ops);
94
95 static bool ignore_msrs = 0;
96 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
97
98 unsigned int min_timer_period_us = 500;
99 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
100
101 bool kvm_has_tsc_control;
102 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
103 u32  kvm_max_guest_tsc_khz;
104 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
105
106 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
107 static u32 tsc_tolerance_ppm = 250;
108 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
109
110 static bool backwards_tsc_observed = false;
111
112 #define KVM_NR_SHARED_MSRS 16
113
114 struct kvm_shared_msrs_global {
115         int nr;
116         u32 msrs[KVM_NR_SHARED_MSRS];
117 };
118
119 struct kvm_shared_msrs {
120         struct user_return_notifier urn;
121         bool registered;
122         struct kvm_shared_msr_values {
123                 u64 host;
124                 u64 curr;
125         } values[KVM_NR_SHARED_MSRS];
126 };
127
128 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
129 static struct kvm_shared_msrs __percpu *shared_msrs;
130
131 struct kvm_stats_debugfs_item debugfs_entries[] = {
132         { "pf_fixed", VCPU_STAT(pf_fixed) },
133         { "pf_guest", VCPU_STAT(pf_guest) },
134         { "tlb_flush", VCPU_STAT(tlb_flush) },
135         { "invlpg", VCPU_STAT(invlpg) },
136         { "exits", VCPU_STAT(exits) },
137         { "io_exits", VCPU_STAT(io_exits) },
138         { "mmio_exits", VCPU_STAT(mmio_exits) },
139         { "signal_exits", VCPU_STAT(signal_exits) },
140         { "irq_window", VCPU_STAT(irq_window_exits) },
141         { "nmi_window", VCPU_STAT(nmi_window_exits) },
142         { "halt_exits", VCPU_STAT(halt_exits) },
143         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
144         { "hypercalls", VCPU_STAT(hypercalls) },
145         { "request_irq", VCPU_STAT(request_irq_exits) },
146         { "irq_exits", VCPU_STAT(irq_exits) },
147         { "host_state_reload", VCPU_STAT(host_state_reload) },
148         { "efer_reload", VCPU_STAT(efer_reload) },
149         { "fpu_reload", VCPU_STAT(fpu_reload) },
150         { "insn_emulation", VCPU_STAT(insn_emulation) },
151         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
152         { "irq_injections", VCPU_STAT(irq_injections) },
153         { "nmi_injections", VCPU_STAT(nmi_injections) },
154         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
155         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
156         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
157         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
158         { "mmu_flooded", VM_STAT(mmu_flooded) },
159         { "mmu_recycled", VM_STAT(mmu_recycled) },
160         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
161         { "mmu_unsync", VM_STAT(mmu_unsync) },
162         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
163         { "largepages", VM_STAT(lpages) },
164         { NULL }
165 };
166
167 u64 __read_mostly host_xcr0;
168
169 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
170
171 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
172 {
173         int i;
174         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
175                 vcpu->arch.apf.gfns[i] = ~0;
176 }
177
178 static void kvm_on_user_return(struct user_return_notifier *urn)
179 {
180         unsigned slot;
181         struct kvm_shared_msrs *locals
182                 = container_of(urn, struct kvm_shared_msrs, urn);
183         struct kvm_shared_msr_values *values;
184
185         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
186                 values = &locals->values[slot];
187                 if (values->host != values->curr) {
188                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
189                         values->curr = values->host;
190                 }
191         }
192         locals->registered = false;
193         user_return_notifier_unregister(urn);
194 }
195
196 static void shared_msr_update(unsigned slot, u32 msr)
197 {
198         u64 value;
199         unsigned int cpu = smp_processor_id();
200         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
201
202         /* only read, and nobody should modify it at this time,
203          * so don't need lock */
204         if (slot >= shared_msrs_global.nr) {
205                 printk(KERN_ERR "kvm: invalid MSR slot!");
206                 return;
207         }
208         rdmsrl_safe(msr, &value);
209         smsr->values[slot].host = value;
210         smsr->values[slot].curr = value;
211 }
212
213 void kvm_define_shared_msr(unsigned slot, u32 msr)
214 {
215         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
216         if (slot >= shared_msrs_global.nr)
217                 shared_msrs_global.nr = slot + 1;
218         shared_msrs_global.msrs[slot] = msr;
219         /* we need ensured the shared_msr_global have been updated */
220         smp_wmb();
221 }
222 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
223
224 static void kvm_shared_msr_cpu_online(void)
225 {
226         unsigned i;
227
228         for (i = 0; i < shared_msrs_global.nr; ++i)
229                 shared_msr_update(i, shared_msrs_global.msrs[i]);
230 }
231
232 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
233 {
234         unsigned int cpu = smp_processor_id();
235         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
236
237         if (((value ^ smsr->values[slot].curr) & mask) == 0)
238                 return;
239         smsr->values[slot].curr = value;
240         wrmsrl(shared_msrs_global.msrs[slot], value);
241         if (!smsr->registered) {
242                 smsr->urn.on_user_return = kvm_on_user_return;
243                 user_return_notifier_register(&smsr->urn);
244                 smsr->registered = true;
245         }
246 }
247 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
248
249 static void drop_user_return_notifiers(void)
250 {
251         unsigned int cpu = smp_processor_id();
252         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
253
254         if (smsr->registered)
255                 kvm_on_user_return(&smsr->urn);
256 }
257
258 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
259 {
260         return vcpu->arch.apic_base;
261 }
262 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
263
264 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
265 {
266         u64 old_state = vcpu->arch.apic_base &
267                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
268         u64 new_state = msr_info->data &
269                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
270         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
271                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
272
273         if (!msr_info->host_initiated &&
274             ((msr_info->data & reserved_bits) != 0 ||
275              new_state == X2APIC_ENABLE ||
276              (new_state == MSR_IA32_APICBASE_ENABLE &&
277               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
278              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
279               old_state == 0)))
280                 return 1;
281
282         kvm_lapic_set_base(vcpu, msr_info->data);
283         return 0;
284 }
285 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
286
287 asmlinkage __visible void kvm_spurious_fault(void)
288 {
289         /* Fault while not rebooting.  We want the trace. */
290         BUG();
291 }
292 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
293
294 #define EXCPT_BENIGN            0
295 #define EXCPT_CONTRIBUTORY      1
296 #define EXCPT_PF                2
297
298 static int exception_class(int vector)
299 {
300         switch (vector) {
301         case PF_VECTOR:
302                 return EXCPT_PF;
303         case DE_VECTOR:
304         case TS_VECTOR:
305         case NP_VECTOR:
306         case SS_VECTOR:
307         case GP_VECTOR:
308                 return EXCPT_CONTRIBUTORY;
309         default:
310                 break;
311         }
312         return EXCPT_BENIGN;
313 }
314
315 #define EXCPT_FAULT             0
316 #define EXCPT_TRAP              1
317 #define EXCPT_ABORT             2
318 #define EXCPT_INTERRUPT         3
319
320 static int exception_type(int vector)
321 {
322         unsigned int mask;
323
324         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
325                 return EXCPT_INTERRUPT;
326
327         mask = 1 << vector;
328
329         /* #DB is trap, as instruction watchpoints are handled elsewhere */
330         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
331                 return EXCPT_TRAP;
332
333         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
334                 return EXCPT_ABORT;
335
336         /* Reserved exceptions will result in fault */
337         return EXCPT_FAULT;
338 }
339
340 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
341                 unsigned nr, bool has_error, u32 error_code,
342                 bool reinject)
343 {
344         u32 prev_nr;
345         int class1, class2;
346
347         kvm_make_request(KVM_REQ_EVENT, vcpu);
348
349         if (!vcpu->arch.exception.pending) {
350         queue:
351                 vcpu->arch.exception.pending = true;
352                 vcpu->arch.exception.has_error_code = has_error;
353                 vcpu->arch.exception.nr = nr;
354                 vcpu->arch.exception.error_code = error_code;
355                 vcpu->arch.exception.reinject = reinject;
356                 return;
357         }
358
359         /* to check exception */
360         prev_nr = vcpu->arch.exception.nr;
361         if (prev_nr == DF_VECTOR) {
362                 /* triple fault -> shutdown */
363                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
364                 return;
365         }
366         class1 = exception_class(prev_nr);
367         class2 = exception_class(nr);
368         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
369                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
370                 /* generate double fault per SDM Table 5-5 */
371                 vcpu->arch.exception.pending = true;
372                 vcpu->arch.exception.has_error_code = true;
373                 vcpu->arch.exception.nr = DF_VECTOR;
374                 vcpu->arch.exception.error_code = 0;
375         } else
376                 /* replace previous exception with a new one in a hope
377                    that instruction re-execution will regenerate lost
378                    exception */
379                 goto queue;
380 }
381
382 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
383 {
384         kvm_multiple_exception(vcpu, nr, false, 0, false);
385 }
386 EXPORT_SYMBOL_GPL(kvm_queue_exception);
387
388 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
389 {
390         kvm_multiple_exception(vcpu, nr, false, 0, true);
391 }
392 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
393
394 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
395 {
396         if (err)
397                 kvm_inject_gp(vcpu, 0);
398         else
399                 kvm_x86_ops->skip_emulated_instruction(vcpu);
400 }
401 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
402
403 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
404 {
405         ++vcpu->stat.pf_guest;
406         vcpu->arch.cr2 = fault->address;
407         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
408 }
409 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
410
411 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
412 {
413         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
414                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
415         else
416                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
417
418         return fault->nested_page_fault;
419 }
420
421 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
422 {
423         atomic_inc(&vcpu->arch.nmi_queued);
424         kvm_make_request(KVM_REQ_NMI, vcpu);
425 }
426 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
427
428 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
429 {
430         kvm_multiple_exception(vcpu, nr, true, error_code, false);
431 }
432 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
433
434 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
435 {
436         kvm_multiple_exception(vcpu, nr, true, error_code, true);
437 }
438 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
439
440 /*
441  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
442  * a #GP and return false.
443  */
444 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
445 {
446         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
447                 return true;
448         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
449         return false;
450 }
451 EXPORT_SYMBOL_GPL(kvm_require_cpl);
452
453 /*
454  * This function will be used to read from the physical memory of the currently
455  * running guest. The difference to kvm_read_guest_page is that this function
456  * can read from guest physical or from the guest's guest physical memory.
457  */
458 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
459                             gfn_t ngfn, void *data, int offset, int len,
460                             u32 access)
461 {
462         struct x86_exception exception;
463         gfn_t real_gfn;
464         gpa_t ngpa;
465
466         ngpa     = gfn_to_gpa(ngfn);
467         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
468         if (real_gfn == UNMAPPED_GVA)
469                 return -EFAULT;
470
471         real_gfn = gpa_to_gfn(real_gfn);
472
473         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
474 }
475 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
476
477 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
478                                void *data, int offset, int len, u32 access)
479 {
480         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
481                                        data, offset, len, access);
482 }
483
484 /*
485  * Load the pae pdptrs.  Return true is they are all valid.
486  */
487 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
488 {
489         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
490         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
491         int i;
492         int ret;
493         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
494
495         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
496                                       offset * sizeof(u64), sizeof(pdpte),
497                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
498         if (ret < 0) {
499                 ret = 0;
500                 goto out;
501         }
502         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
503                 if (is_present_gpte(pdpte[i]) &&
504                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
505                         ret = 0;
506                         goto out;
507                 }
508         }
509         ret = 1;
510
511         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
512         __set_bit(VCPU_EXREG_PDPTR,
513                   (unsigned long *)&vcpu->arch.regs_avail);
514         __set_bit(VCPU_EXREG_PDPTR,
515                   (unsigned long *)&vcpu->arch.regs_dirty);
516 out:
517
518         return ret;
519 }
520 EXPORT_SYMBOL_GPL(load_pdptrs);
521
522 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
523 {
524         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
525         bool changed = true;
526         int offset;
527         gfn_t gfn;
528         int r;
529
530         if (is_long_mode(vcpu) || !is_pae(vcpu))
531                 return false;
532
533         if (!test_bit(VCPU_EXREG_PDPTR,
534                       (unsigned long *)&vcpu->arch.regs_avail))
535                 return true;
536
537         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
538         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
539         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
540                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
541         if (r < 0)
542                 goto out;
543         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
544 out:
545
546         return changed;
547 }
548
549 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
550 {
551         unsigned long old_cr0 = kvm_read_cr0(vcpu);
552         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
553                                     X86_CR0_CD | X86_CR0_NW;
554
555         cr0 |= X86_CR0_ET;
556
557 #ifdef CONFIG_X86_64
558         if (cr0 & 0xffffffff00000000UL)
559                 return 1;
560 #endif
561
562         cr0 &= ~CR0_RESERVED_BITS;
563
564         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
565                 return 1;
566
567         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
568                 return 1;
569
570         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
571 #ifdef CONFIG_X86_64
572                 if ((vcpu->arch.efer & EFER_LME)) {
573                         int cs_db, cs_l;
574
575                         if (!is_pae(vcpu))
576                                 return 1;
577                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
578                         if (cs_l)
579                                 return 1;
580                 } else
581 #endif
582                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
583                                                  kvm_read_cr3(vcpu)))
584                         return 1;
585         }
586
587         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
588                 return 1;
589
590         kvm_x86_ops->set_cr0(vcpu, cr0);
591
592         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
593                 kvm_clear_async_pf_completion_queue(vcpu);
594                 kvm_async_pf_hash_reset(vcpu);
595         }
596
597         if ((cr0 ^ old_cr0) & update_bits)
598                 kvm_mmu_reset_context(vcpu);
599         return 0;
600 }
601 EXPORT_SYMBOL_GPL(kvm_set_cr0);
602
603 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
604 {
605         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
606 }
607 EXPORT_SYMBOL_GPL(kvm_lmsw);
608
609 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
610 {
611         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
612                         !vcpu->guest_xcr0_loaded) {
613                 /* kvm_set_xcr() also depends on this */
614                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
615                 vcpu->guest_xcr0_loaded = 1;
616         }
617 }
618
619 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
620 {
621         if (vcpu->guest_xcr0_loaded) {
622                 if (vcpu->arch.xcr0 != host_xcr0)
623                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
624                 vcpu->guest_xcr0_loaded = 0;
625         }
626 }
627
628 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
629 {
630         u64 xcr0 = xcr;
631         u64 old_xcr0 = vcpu->arch.xcr0;
632         u64 valid_bits;
633
634         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
635         if (index != XCR_XFEATURE_ENABLED_MASK)
636                 return 1;
637         if (!(xcr0 & XSTATE_FP))
638                 return 1;
639         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
640                 return 1;
641
642         /*
643          * Do not allow the guest to set bits that we do not support
644          * saving.  However, xcr0 bit 0 is always set, even if the
645          * emulated CPU does not support XSAVE (see fx_init).
646          */
647         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
648         if (xcr0 & ~valid_bits)
649                 return 1;
650
651         if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
652                 return 1;
653
654         kvm_put_guest_xcr0(vcpu);
655         vcpu->arch.xcr0 = xcr0;
656
657         if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
658                 kvm_update_cpuid(vcpu);
659         return 0;
660 }
661
662 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
663 {
664         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
665             __kvm_set_xcr(vcpu, index, xcr)) {
666                 kvm_inject_gp(vcpu, 0);
667                 return 1;
668         }
669         return 0;
670 }
671 EXPORT_SYMBOL_GPL(kvm_set_xcr);
672
673 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
674 {
675         unsigned long old_cr4 = kvm_read_cr4(vcpu);
676         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
677                                    X86_CR4_PAE | X86_CR4_SMEP;
678         if (cr4 & CR4_RESERVED_BITS)
679                 return 1;
680
681         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
682                 return 1;
683
684         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
685                 return 1;
686
687         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
688                 return 1;
689
690         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
691                 return 1;
692
693         if (is_long_mode(vcpu)) {
694                 if (!(cr4 & X86_CR4_PAE))
695                         return 1;
696         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
697                    && ((cr4 ^ old_cr4) & pdptr_bits)
698                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
699                                    kvm_read_cr3(vcpu)))
700                 return 1;
701
702         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
703                 if (!guest_cpuid_has_pcid(vcpu))
704                         return 1;
705
706                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
707                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
708                         return 1;
709         }
710
711         if (kvm_x86_ops->set_cr4(vcpu, cr4))
712                 return 1;
713
714         if (((cr4 ^ old_cr4) & pdptr_bits) ||
715             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
716                 kvm_mmu_reset_context(vcpu);
717
718         if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
719                 update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
720
721         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
722                 kvm_update_cpuid(vcpu);
723
724         return 0;
725 }
726 EXPORT_SYMBOL_GPL(kvm_set_cr4);
727
728 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
729 {
730         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
731                 kvm_mmu_sync_roots(vcpu);
732                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
733                 return 0;
734         }
735
736         if (is_long_mode(vcpu)) {
737                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
738                         return 1;
739         } else if (is_pae(vcpu) && is_paging(vcpu) &&
740                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
741                 return 1;
742
743         vcpu->arch.cr3 = cr3;
744         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
745         kvm_mmu_new_cr3(vcpu);
746         return 0;
747 }
748 EXPORT_SYMBOL_GPL(kvm_set_cr3);
749
750 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
751 {
752         if (cr8 & CR8_RESERVED_BITS)
753                 return 1;
754         if (irqchip_in_kernel(vcpu->kvm))
755                 kvm_lapic_set_tpr(vcpu, cr8);
756         else
757                 vcpu->arch.cr8 = cr8;
758         return 0;
759 }
760 EXPORT_SYMBOL_GPL(kvm_set_cr8);
761
762 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
763 {
764         if (irqchip_in_kernel(vcpu->kvm))
765                 return kvm_lapic_get_cr8(vcpu);
766         else
767                 return vcpu->arch.cr8;
768 }
769 EXPORT_SYMBOL_GPL(kvm_get_cr8);
770
771 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
772 {
773         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
774                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
775 }
776
777 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
778 {
779         unsigned long dr7;
780
781         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
782                 dr7 = vcpu->arch.guest_debug_dr7;
783         else
784                 dr7 = vcpu->arch.dr7;
785         kvm_x86_ops->set_dr7(vcpu, dr7);
786         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
787         if (dr7 & DR7_BP_EN_MASK)
788                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
789 }
790
791 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
792 {
793         u64 fixed = DR6_FIXED_1;
794
795         if (!guest_cpuid_has_rtm(vcpu))
796                 fixed |= DR6_RTM;
797         return fixed;
798 }
799
800 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
801 {
802         switch (dr) {
803         case 0 ... 3:
804                 vcpu->arch.db[dr] = val;
805                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
806                         vcpu->arch.eff_db[dr] = val;
807                 break;
808         case 4:
809                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
810                         return 1; /* #UD */
811                 /* fall through */
812         case 6:
813                 if (val & 0xffffffff00000000ULL)
814                         return -1; /* #GP */
815                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
816                 kvm_update_dr6(vcpu);
817                 break;
818         case 5:
819                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
820                         return 1; /* #UD */
821                 /* fall through */
822         default: /* 7 */
823                 if (val & 0xffffffff00000000ULL)
824                         return -1; /* #GP */
825                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
826                 kvm_update_dr7(vcpu);
827                 break;
828         }
829
830         return 0;
831 }
832
833 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
834 {
835         int res;
836
837         res = __kvm_set_dr(vcpu, dr, val);
838         if (res > 0)
839                 kvm_queue_exception(vcpu, UD_VECTOR);
840         else if (res < 0)
841                 kvm_inject_gp(vcpu, 0);
842
843         return res;
844 }
845 EXPORT_SYMBOL_GPL(kvm_set_dr);
846
847 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
848 {
849         switch (dr) {
850         case 0 ... 3:
851                 *val = vcpu->arch.db[dr];
852                 break;
853         case 4:
854                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
855                         return 1;
856                 /* fall through */
857         case 6:
858                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
859                         *val = vcpu->arch.dr6;
860                 else
861                         *val = kvm_x86_ops->get_dr6(vcpu);
862                 break;
863         case 5:
864                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
865                         return 1;
866                 /* fall through */
867         default: /* 7 */
868                 *val = vcpu->arch.dr7;
869                 break;
870         }
871
872         return 0;
873 }
874
875 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
876 {
877         if (_kvm_get_dr(vcpu, dr, val)) {
878                 kvm_queue_exception(vcpu, UD_VECTOR);
879                 return 1;
880         }
881         return 0;
882 }
883 EXPORT_SYMBOL_GPL(kvm_get_dr);
884
885 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
886 {
887         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
888         u64 data;
889         int err;
890
891         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
892         if (err)
893                 return err;
894         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
895         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
896         return err;
897 }
898 EXPORT_SYMBOL_GPL(kvm_rdpmc);
899
900 /*
901  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
902  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
903  *
904  * This list is modified at module load time to reflect the
905  * capabilities of the host cpu. This capabilities test skips MSRs that are
906  * kvm-specific. Those are put in the beginning of the list.
907  */
908
909 #define KVM_SAVE_MSRS_BEGIN     12
910 static u32 msrs_to_save[] = {
911         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
912         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
913         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
914         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
915         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
916         MSR_KVM_PV_EOI_EN,
917         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
918         MSR_STAR,
919 #ifdef CONFIG_X86_64
920         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
921 #endif
922         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
923         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
924 };
925
926 static unsigned num_msrs_to_save;
927
928 static const u32 emulated_msrs[] = {
929         MSR_IA32_TSC_ADJUST,
930         MSR_IA32_TSCDEADLINE,
931         MSR_IA32_MISC_ENABLE,
932         MSR_IA32_MCG_STATUS,
933         MSR_IA32_MCG_CTL,
934 };
935
936 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
937 {
938         if (efer & efer_reserved_bits)
939                 return false;
940
941         if (efer & EFER_FFXSR) {
942                 struct kvm_cpuid_entry2 *feat;
943
944                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
945                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
946                         return false;
947         }
948
949         if (efer & EFER_SVME) {
950                 struct kvm_cpuid_entry2 *feat;
951
952                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
953                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
954                         return false;
955         }
956
957         return true;
958 }
959 EXPORT_SYMBOL_GPL(kvm_valid_efer);
960
961 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
962 {
963         u64 old_efer = vcpu->arch.efer;
964
965         if (!kvm_valid_efer(vcpu, efer))
966                 return 1;
967
968         if (is_paging(vcpu)
969             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
970                 return 1;
971
972         efer &= ~EFER_LMA;
973         efer |= vcpu->arch.efer & EFER_LMA;
974
975         kvm_x86_ops->set_efer(vcpu, efer);
976
977         /* Update reserved bits */
978         if ((efer ^ old_efer) & EFER_NX)
979                 kvm_mmu_reset_context(vcpu);
980
981         return 0;
982 }
983
984 void kvm_enable_efer_bits(u64 mask)
985 {
986        efer_reserved_bits &= ~mask;
987 }
988 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
989
990 /*
991  * Writes msr value into into the appropriate "register".
992  * Returns 0 on success, non-0 otherwise.
993  * Assumes vcpu_load() was already called.
994  */
995 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
996 {
997         switch (msr->index) {
998         case MSR_FS_BASE:
999         case MSR_GS_BASE:
1000         case MSR_KERNEL_GS_BASE:
1001         case MSR_CSTAR:
1002         case MSR_LSTAR:
1003                 if (is_noncanonical_address(msr->data))
1004                         return 1;
1005                 break;
1006         case MSR_IA32_SYSENTER_EIP:
1007         case MSR_IA32_SYSENTER_ESP:
1008                 /*
1009                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1010                  * non-canonical address is written on Intel but not on
1011                  * AMD (which ignores the top 32-bits, because it does
1012                  * not implement 64-bit SYSENTER).
1013                  *
1014                  * 64-bit code should hence be able to write a non-canonical
1015                  * value on AMD.  Making the address canonical ensures that
1016                  * vmentry does not fail on Intel after writing a non-canonical
1017                  * value, and that something deterministic happens if the guest
1018                  * invokes 64-bit SYSENTER.
1019                  */
1020                 msr->data = get_canonical(msr->data);
1021         }
1022         return kvm_x86_ops->set_msr(vcpu, msr);
1023 }
1024 EXPORT_SYMBOL_GPL(kvm_set_msr);
1025
1026 /*
1027  * Adapt set_msr() to msr_io()'s calling convention
1028  */
1029 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1030 {
1031         struct msr_data msr;
1032
1033         msr.data = *data;
1034         msr.index = index;
1035         msr.host_initiated = true;
1036         return kvm_set_msr(vcpu, &msr);
1037 }
1038
1039 #ifdef CONFIG_X86_64
1040 struct pvclock_gtod_data {
1041         seqcount_t      seq;
1042
1043         struct { /* extract of a clocksource struct */
1044                 int vclock_mode;
1045                 cycle_t cycle_last;
1046                 cycle_t mask;
1047                 u32     mult;
1048                 u32     shift;
1049         } clock;
1050
1051         u64             boot_ns;
1052         u64             nsec_base;
1053 };
1054
1055 static struct pvclock_gtod_data pvclock_gtod_data;
1056
1057 static void update_pvclock_gtod(struct timekeeper *tk)
1058 {
1059         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1060         u64 boot_ns;
1061
1062         boot_ns = ktime_to_ns(ktime_add(tk->tkr.base_mono, tk->offs_boot));
1063
1064         write_seqcount_begin(&vdata->seq);
1065
1066         /* copy pvclock gtod data */
1067         vdata->clock.vclock_mode        = tk->tkr.clock->archdata.vclock_mode;
1068         vdata->clock.cycle_last         = tk->tkr.cycle_last;
1069         vdata->clock.mask               = tk->tkr.mask;
1070         vdata->clock.mult               = tk->tkr.mult;
1071         vdata->clock.shift              = tk->tkr.shift;
1072
1073         vdata->boot_ns                  = boot_ns;
1074         vdata->nsec_base                = tk->tkr.xtime_nsec;
1075
1076         write_seqcount_end(&vdata->seq);
1077 }
1078 #endif
1079
1080
1081 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1082 {
1083         int version;
1084         int r;
1085         struct pvclock_wall_clock wc;
1086         struct timespec boot;
1087
1088         if (!wall_clock)
1089                 return;
1090
1091         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1092         if (r)
1093                 return;
1094
1095         if (version & 1)
1096                 ++version;  /* first time write, random junk */
1097
1098         ++version;
1099
1100         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1101
1102         /*
1103          * The guest calculates current wall clock time by adding
1104          * system time (updated by kvm_guest_time_update below) to the
1105          * wall clock specified here.  guest system time equals host
1106          * system time for us, thus we must fill in host boot time here.
1107          */
1108         getboottime(&boot);
1109
1110         if (kvm->arch.kvmclock_offset) {
1111                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1112                 boot = timespec_sub(boot, ts);
1113         }
1114         wc.sec = boot.tv_sec;
1115         wc.nsec = boot.tv_nsec;
1116         wc.version = version;
1117
1118         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1119
1120         version++;
1121         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1122 }
1123
1124 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1125 {
1126         uint32_t quotient, remainder;
1127
1128         /* Don't try to replace with do_div(), this one calculates
1129          * "(dividend << 32) / divisor" */
1130         __asm__ ( "divl %4"
1131                   : "=a" (quotient), "=d" (remainder)
1132                   : "0" (0), "1" (dividend), "r" (divisor) );
1133         return quotient;
1134 }
1135
1136 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1137                                s8 *pshift, u32 *pmultiplier)
1138 {
1139         uint64_t scaled64;
1140         int32_t  shift = 0;
1141         uint64_t tps64;
1142         uint32_t tps32;
1143
1144         tps64 = base_khz * 1000LL;
1145         scaled64 = scaled_khz * 1000LL;
1146         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1147                 tps64 >>= 1;
1148                 shift--;
1149         }
1150
1151         tps32 = (uint32_t)tps64;
1152         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1153                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1154                         scaled64 >>= 1;
1155                 else
1156                         tps32 <<= 1;
1157                 shift++;
1158         }
1159
1160         *pshift = shift;
1161         *pmultiplier = div_frac(scaled64, tps32);
1162
1163         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1164                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1165 }
1166
1167 static inline u64 get_kernel_ns(void)
1168 {
1169         return ktime_get_boot_ns();
1170 }
1171
1172 #ifdef CONFIG_X86_64
1173 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1174 #endif
1175
1176 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1177 unsigned long max_tsc_khz;
1178
1179 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1180 {
1181         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1182                                    vcpu->arch.virtual_tsc_shift);
1183 }
1184
1185 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1186 {
1187         u64 v = (u64)khz * (1000000 + ppm);
1188         do_div(v, 1000000);
1189         return v;
1190 }
1191
1192 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1193 {
1194         u32 thresh_lo, thresh_hi;
1195         int use_scaling = 0;
1196
1197         /* tsc_khz can be zero if TSC calibration fails */
1198         if (this_tsc_khz == 0)
1199                 return;
1200
1201         /* Compute a scale to convert nanoseconds in TSC cycles */
1202         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1203                            &vcpu->arch.virtual_tsc_shift,
1204                            &vcpu->arch.virtual_tsc_mult);
1205         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1206
1207         /*
1208          * Compute the variation in TSC rate which is acceptable
1209          * within the range of tolerance and decide if the
1210          * rate being applied is within that bounds of the hardware
1211          * rate.  If so, no scaling or compensation need be done.
1212          */
1213         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1214         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1215         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1216                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1217                 use_scaling = 1;
1218         }
1219         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1220 }
1221
1222 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1223 {
1224         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1225                                       vcpu->arch.virtual_tsc_mult,
1226                                       vcpu->arch.virtual_tsc_shift);
1227         tsc += vcpu->arch.this_tsc_write;
1228         return tsc;
1229 }
1230
1231 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1232 {
1233 #ifdef CONFIG_X86_64
1234         bool vcpus_matched;
1235         bool do_request = false;
1236         struct kvm_arch *ka = &vcpu->kvm->arch;
1237         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1238
1239         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1240                          atomic_read(&vcpu->kvm->online_vcpus));
1241
1242         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1243                 if (!ka->use_master_clock)
1244                         do_request = 1;
1245
1246         if (!vcpus_matched && ka->use_master_clock)
1247                         do_request = 1;
1248
1249         if (do_request)
1250                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1251
1252         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1253                             atomic_read(&vcpu->kvm->online_vcpus),
1254                             ka->use_master_clock, gtod->clock.vclock_mode);
1255 #endif
1256 }
1257
1258 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1259 {
1260         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1261         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1262 }
1263
1264 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1265 {
1266         struct kvm *kvm = vcpu->kvm;
1267         u64 offset, ns, elapsed;
1268         unsigned long flags;
1269         s64 usdiff;
1270         bool matched;
1271         bool already_matched;
1272         u64 data = msr->data;
1273
1274         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1275         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1276         ns = get_kernel_ns();
1277         elapsed = ns - kvm->arch.last_tsc_nsec;
1278
1279         if (vcpu->arch.virtual_tsc_khz) {
1280                 int faulted = 0;
1281
1282                 /* n.b - signed multiplication and division required */
1283                 usdiff = data - kvm->arch.last_tsc_write;
1284 #ifdef CONFIG_X86_64
1285                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1286 #else
1287                 /* do_div() only does unsigned */
1288                 asm("1: idivl %[divisor]\n"
1289                     "2: xor %%edx, %%edx\n"
1290                     "   movl $0, %[faulted]\n"
1291                     "3:\n"
1292                     ".section .fixup,\"ax\"\n"
1293                     "4: movl $1, %[faulted]\n"
1294                     "   jmp  3b\n"
1295                     ".previous\n"
1296
1297                 _ASM_EXTABLE(1b, 4b)
1298
1299                 : "=A"(usdiff), [faulted] "=r" (faulted)
1300                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1301
1302 #endif
1303                 do_div(elapsed, 1000);
1304                 usdiff -= elapsed;
1305                 if (usdiff < 0)
1306                         usdiff = -usdiff;
1307
1308                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1309                 if (faulted)
1310                         usdiff = USEC_PER_SEC;
1311         } else
1312                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1313
1314         /*
1315          * Special case: TSC write with a small delta (1 second) of virtual
1316          * cycle time against real time is interpreted as an attempt to
1317          * synchronize the CPU.
1318          *
1319          * For a reliable TSC, we can match TSC offsets, and for an unstable
1320          * TSC, we add elapsed time in this computation.  We could let the
1321          * compensation code attempt to catch up if we fall behind, but
1322          * it's better to try to match offsets from the beginning.
1323          */
1324         if (usdiff < USEC_PER_SEC &&
1325             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1326                 if (!check_tsc_unstable()) {
1327                         offset = kvm->arch.cur_tsc_offset;
1328                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1329                 } else {
1330                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1331                         data += delta;
1332                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1333                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1334                 }
1335                 matched = true;
1336                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1337         } else {
1338                 /*
1339                  * We split periods of matched TSC writes into generations.
1340                  * For each generation, we track the original measured
1341                  * nanosecond time, offset, and write, so if TSCs are in
1342                  * sync, we can match exact offset, and if not, we can match
1343                  * exact software computation in compute_guest_tsc()
1344                  *
1345                  * These values are tracked in kvm->arch.cur_xxx variables.
1346                  */
1347                 kvm->arch.cur_tsc_generation++;
1348                 kvm->arch.cur_tsc_nsec = ns;
1349                 kvm->arch.cur_tsc_write = data;
1350                 kvm->arch.cur_tsc_offset = offset;
1351                 matched = false;
1352                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1353                          kvm->arch.cur_tsc_generation, data);
1354         }
1355
1356         /*
1357          * We also track th most recent recorded KHZ, write and time to
1358          * allow the matching interval to be extended at each write.
1359          */
1360         kvm->arch.last_tsc_nsec = ns;
1361         kvm->arch.last_tsc_write = data;
1362         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1363
1364         vcpu->arch.last_guest_tsc = data;
1365
1366         /* Keep track of which generation this VCPU has synchronized to */
1367         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1368         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1369         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1370
1371         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1372                 update_ia32_tsc_adjust_msr(vcpu, offset);
1373         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1374         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1375
1376         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1377         if (!matched) {
1378                 kvm->arch.nr_vcpus_matched_tsc = 0;
1379         } else if (!already_matched) {
1380                 kvm->arch.nr_vcpus_matched_tsc++;
1381         }
1382
1383         kvm_track_tsc_matching(vcpu);
1384         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1385 }
1386
1387 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1388
1389 #ifdef CONFIG_X86_64
1390
1391 static cycle_t read_tsc(void)
1392 {
1393         cycle_t ret;
1394         u64 last;
1395
1396         /*
1397          * Empirically, a fence (of type that depends on the CPU)
1398          * before rdtsc is enough to ensure that rdtsc is ordered
1399          * with respect to loads.  The various CPU manuals are unclear
1400          * as to whether rdtsc can be reordered with later loads,
1401          * but no one has ever seen it happen.
1402          */
1403         rdtsc_barrier();
1404         ret = (cycle_t)vget_cycles();
1405
1406         last = pvclock_gtod_data.clock.cycle_last;
1407
1408         if (likely(ret >= last))
1409                 return ret;
1410
1411         /*
1412          * GCC likes to generate cmov here, but this branch is extremely
1413          * predictable (it's just a funciton of time and the likely is
1414          * very likely) and there's a data dependence, so force GCC
1415          * to generate a branch instead.  I don't barrier() because
1416          * we don't actually need a barrier, and if this function
1417          * ever gets inlined it will generate worse code.
1418          */
1419         asm volatile ("");
1420         return last;
1421 }
1422
1423 static inline u64 vgettsc(cycle_t *cycle_now)
1424 {
1425         long v;
1426         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1427
1428         *cycle_now = read_tsc();
1429
1430         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1431         return v * gtod->clock.mult;
1432 }
1433
1434 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1435 {
1436         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1437         unsigned long seq;
1438         int mode;
1439         u64 ns;
1440
1441         do {
1442                 seq = read_seqcount_begin(&gtod->seq);
1443                 mode = gtod->clock.vclock_mode;
1444                 ns = gtod->nsec_base;
1445                 ns += vgettsc(cycle_now);
1446                 ns >>= gtod->clock.shift;
1447                 ns += gtod->boot_ns;
1448         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1449         *t = ns;
1450
1451         return mode;
1452 }
1453
1454 /* returns true if host is using tsc clocksource */
1455 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1456 {
1457         /* checked again under seqlock below */
1458         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1459                 return false;
1460
1461         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1462 }
1463 #endif
1464
1465 /*
1466  *
1467  * Assuming a stable TSC across physical CPUS, and a stable TSC
1468  * across virtual CPUs, the following condition is possible.
1469  * Each numbered line represents an event visible to both
1470  * CPUs at the next numbered event.
1471  *
1472  * "timespecX" represents host monotonic time. "tscX" represents
1473  * RDTSC value.
1474  *
1475  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1476  *
1477  * 1.  read timespec0,tsc0
1478  * 2.                                   | timespec1 = timespec0 + N
1479  *                                      | tsc1 = tsc0 + M
1480  * 3. transition to guest               | transition to guest
1481  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1482  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1483  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1484  *
1485  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1486  *
1487  *      - ret0 < ret1
1488  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1489  *              ...
1490  *      - 0 < N - M => M < N
1491  *
1492  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1493  * always the case (the difference between two distinct xtime instances
1494  * might be smaller then the difference between corresponding TSC reads,
1495  * when updating guest vcpus pvclock areas).
1496  *
1497  * To avoid that problem, do not allow visibility of distinct
1498  * system_timestamp/tsc_timestamp values simultaneously: use a master
1499  * copy of host monotonic time values. Update that master copy
1500  * in lockstep.
1501  *
1502  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1503  *
1504  */
1505
1506 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1507 {
1508 #ifdef CONFIG_X86_64
1509         struct kvm_arch *ka = &kvm->arch;
1510         int vclock_mode;
1511         bool host_tsc_clocksource, vcpus_matched;
1512
1513         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1514                         atomic_read(&kvm->online_vcpus));
1515
1516         /*
1517          * If the host uses TSC clock, then passthrough TSC as stable
1518          * to the guest.
1519          */
1520         host_tsc_clocksource = kvm_get_time_and_clockread(
1521                                         &ka->master_kernel_ns,
1522                                         &ka->master_cycle_now);
1523
1524         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1525                                 && !backwards_tsc_observed;
1526
1527         if (ka->use_master_clock)
1528                 atomic_set(&kvm_guest_has_master_clock, 1);
1529
1530         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1531         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1532                                         vcpus_matched);
1533 #endif
1534 }
1535
1536 static void kvm_gen_update_masterclock(struct kvm *kvm)
1537 {
1538 #ifdef CONFIG_X86_64
1539         int i;
1540         struct kvm_vcpu *vcpu;
1541         struct kvm_arch *ka = &kvm->arch;
1542
1543         spin_lock(&ka->pvclock_gtod_sync_lock);
1544         kvm_make_mclock_inprogress_request(kvm);
1545         /* no guest entries from this point */
1546         pvclock_update_vm_gtod_copy(kvm);
1547
1548         kvm_for_each_vcpu(i, vcpu, kvm)
1549                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1550
1551         /* guest entries allowed */
1552         kvm_for_each_vcpu(i, vcpu, kvm)
1553                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1554
1555         spin_unlock(&ka->pvclock_gtod_sync_lock);
1556 #endif
1557 }
1558
1559 static int kvm_guest_time_update(struct kvm_vcpu *v)
1560 {
1561         unsigned long flags, this_tsc_khz;
1562         struct kvm_vcpu_arch *vcpu = &v->arch;
1563         struct kvm_arch *ka = &v->kvm->arch;
1564         s64 kernel_ns;
1565         u64 tsc_timestamp, host_tsc;
1566         struct pvclock_vcpu_time_info guest_hv_clock;
1567         u8 pvclock_flags;
1568         bool use_master_clock;
1569
1570         kernel_ns = 0;
1571         host_tsc = 0;
1572
1573         /*
1574          * If the host uses TSC clock, then passthrough TSC as stable
1575          * to the guest.
1576          */
1577         spin_lock(&ka->pvclock_gtod_sync_lock);
1578         use_master_clock = ka->use_master_clock;
1579         if (use_master_clock) {
1580                 host_tsc = ka->master_cycle_now;
1581                 kernel_ns = ka->master_kernel_ns;
1582         }
1583         spin_unlock(&ka->pvclock_gtod_sync_lock);
1584
1585         /* Keep irq disabled to prevent changes to the clock */
1586         local_irq_save(flags);
1587         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1588         if (unlikely(this_tsc_khz == 0)) {
1589                 local_irq_restore(flags);
1590                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1591                 return 1;
1592         }
1593         if (!use_master_clock) {
1594                 host_tsc = native_read_tsc();
1595                 kernel_ns = get_kernel_ns();
1596         }
1597
1598         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1599
1600         /*
1601          * We may have to catch up the TSC to match elapsed wall clock
1602          * time for two reasons, even if kvmclock is used.
1603          *   1) CPU could have been running below the maximum TSC rate
1604          *   2) Broken TSC compensation resets the base at each VCPU
1605          *      entry to avoid unknown leaps of TSC even when running
1606          *      again on the same CPU.  This may cause apparent elapsed
1607          *      time to disappear, and the guest to stand still or run
1608          *      very slowly.
1609          */
1610         if (vcpu->tsc_catchup) {
1611                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1612                 if (tsc > tsc_timestamp) {
1613                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1614                         tsc_timestamp = tsc;
1615                 }
1616         }
1617
1618         local_irq_restore(flags);
1619
1620         if (!vcpu->pv_time_enabled)
1621                 return 0;
1622
1623         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1624                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1625                                    &vcpu->hv_clock.tsc_shift,
1626                                    &vcpu->hv_clock.tsc_to_system_mul);
1627                 vcpu->hw_tsc_khz = this_tsc_khz;
1628         }
1629
1630         /* With all the info we got, fill in the values */
1631         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1632         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1633         vcpu->last_guest_tsc = tsc_timestamp;
1634
1635         /*
1636          * The interface expects us to write an even number signaling that the
1637          * update is finished. Since the guest won't see the intermediate
1638          * state, we just increase by 2 at the end.
1639          */
1640         vcpu->hv_clock.version += 2;
1641
1642         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1643                 &guest_hv_clock, sizeof(guest_hv_clock))))
1644                 return 0;
1645
1646         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1647         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1648
1649         if (vcpu->pvclock_set_guest_stopped_request) {
1650                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1651                 vcpu->pvclock_set_guest_stopped_request = false;
1652         }
1653
1654         /* If the host uses TSC clocksource, then it is stable */
1655         if (use_master_clock)
1656                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1657
1658         vcpu->hv_clock.flags = pvclock_flags;
1659
1660         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1661                                 &vcpu->hv_clock,
1662                                 sizeof(vcpu->hv_clock));
1663         return 0;
1664 }
1665
1666 /*
1667  * kvmclock updates which are isolated to a given vcpu, such as
1668  * vcpu->cpu migration, should not allow system_timestamp from
1669  * the rest of the vcpus to remain static. Otherwise ntp frequency
1670  * correction applies to one vcpu's system_timestamp but not
1671  * the others.
1672  *
1673  * So in those cases, request a kvmclock update for all vcpus.
1674  * We need to rate-limit these requests though, as they can
1675  * considerably slow guests that have a large number of vcpus.
1676  * The time for a remote vcpu to update its kvmclock is bound
1677  * by the delay we use to rate-limit the updates.
1678  */
1679
1680 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1681
1682 static void kvmclock_update_fn(struct work_struct *work)
1683 {
1684         int i;
1685         struct delayed_work *dwork = to_delayed_work(work);
1686         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1687                                            kvmclock_update_work);
1688         struct kvm *kvm = container_of(ka, struct kvm, arch);
1689         struct kvm_vcpu *vcpu;
1690
1691         kvm_for_each_vcpu(i, vcpu, kvm) {
1692                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1693                 kvm_vcpu_kick(vcpu);
1694         }
1695 }
1696
1697 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1698 {
1699         struct kvm *kvm = v->kvm;
1700
1701         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1702         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1703                                         KVMCLOCK_UPDATE_DELAY);
1704 }
1705
1706 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1707
1708 static void kvmclock_sync_fn(struct work_struct *work)
1709 {
1710         struct delayed_work *dwork = to_delayed_work(work);
1711         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1712                                            kvmclock_sync_work);
1713         struct kvm *kvm = container_of(ka, struct kvm, arch);
1714
1715         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1716         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1717                                         KVMCLOCK_SYNC_PERIOD);
1718 }
1719
1720 static bool msr_mtrr_valid(unsigned msr)
1721 {
1722         switch (msr) {
1723         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1724         case MSR_MTRRfix64K_00000:
1725         case MSR_MTRRfix16K_80000:
1726         case MSR_MTRRfix16K_A0000:
1727         case MSR_MTRRfix4K_C0000:
1728         case MSR_MTRRfix4K_C8000:
1729         case MSR_MTRRfix4K_D0000:
1730         case MSR_MTRRfix4K_D8000:
1731         case MSR_MTRRfix4K_E0000:
1732         case MSR_MTRRfix4K_E8000:
1733         case MSR_MTRRfix4K_F0000:
1734         case MSR_MTRRfix4K_F8000:
1735         case MSR_MTRRdefType:
1736         case MSR_IA32_CR_PAT:
1737                 return true;
1738         case 0x2f8:
1739                 return true;
1740         }
1741         return false;
1742 }
1743
1744 static bool valid_pat_type(unsigned t)
1745 {
1746         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1747 }
1748
1749 static bool valid_mtrr_type(unsigned t)
1750 {
1751         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1752 }
1753
1754 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1755 {
1756         int i;
1757         u64 mask;
1758
1759         if (!msr_mtrr_valid(msr))
1760                 return false;
1761
1762         if (msr == MSR_IA32_CR_PAT) {
1763                 for (i = 0; i < 8; i++)
1764                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1765                                 return false;
1766                 return true;
1767         } else if (msr == MSR_MTRRdefType) {
1768                 if (data & ~0xcff)
1769                         return false;
1770                 return valid_mtrr_type(data & 0xff);
1771         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1772                 for (i = 0; i < 8 ; i++)
1773                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1774                                 return false;
1775                 return true;
1776         }
1777
1778         /* variable MTRRs */
1779         WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1780
1781         mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1782         if ((msr & 1) == 0) {
1783                 /* MTRR base */
1784                 if (!valid_mtrr_type(data & 0xff))
1785                         return false;
1786                 mask |= 0xf00;
1787         } else
1788                 /* MTRR mask */
1789                 mask |= 0x7ff;
1790         if (data & mask) {
1791                 kvm_inject_gp(vcpu, 0);
1792                 return false;
1793         }
1794
1795         return true;
1796 }
1797 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1798
1799 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1800 {
1801         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1802
1803         if (!kvm_mtrr_valid(vcpu, msr, data))
1804                 return 1;
1805
1806         if (msr == MSR_MTRRdefType) {
1807                 vcpu->arch.mtrr_state.def_type = data;
1808                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1809         } else if (msr == MSR_MTRRfix64K_00000)
1810                 p[0] = data;
1811         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1812                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1813         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1814                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1815         else if (msr == MSR_IA32_CR_PAT)
1816                 vcpu->arch.pat = data;
1817         else {  /* Variable MTRRs */
1818                 int idx, is_mtrr_mask;
1819                 u64 *pt;
1820
1821                 idx = (msr - 0x200) / 2;
1822                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1823                 if (!is_mtrr_mask)
1824                         pt =
1825                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1826                 else
1827                         pt =
1828                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1829                 *pt = data;
1830         }
1831
1832         kvm_mmu_reset_context(vcpu);
1833         return 0;
1834 }
1835
1836 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1837 {
1838         u64 mcg_cap = vcpu->arch.mcg_cap;
1839         unsigned bank_num = mcg_cap & 0xff;
1840
1841         switch (msr) {
1842         case MSR_IA32_MCG_STATUS:
1843                 vcpu->arch.mcg_status = data;
1844                 break;
1845         case MSR_IA32_MCG_CTL:
1846                 if (!(mcg_cap & MCG_CTL_P))
1847                         return 1;
1848                 if (data != 0 && data != ~(u64)0)
1849                         return -1;
1850                 vcpu->arch.mcg_ctl = data;
1851                 break;
1852         default:
1853                 if (msr >= MSR_IA32_MC0_CTL &&
1854                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1855                         u32 offset = msr - MSR_IA32_MC0_CTL;
1856                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1857                          * some Linux kernels though clear bit 10 in bank 4 to
1858                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1859                          * this to avoid an uncatched #GP in the guest
1860                          */
1861                         if ((offset & 0x3) == 0 &&
1862                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1863                                 return -1;
1864                         vcpu->arch.mce_banks[offset] = data;
1865                         break;
1866                 }
1867                 return 1;
1868         }
1869         return 0;
1870 }
1871
1872 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1873 {
1874         struct kvm *kvm = vcpu->kvm;
1875         int lm = is_long_mode(vcpu);
1876         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1877                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1878         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1879                 : kvm->arch.xen_hvm_config.blob_size_32;
1880         u32 page_num = data & ~PAGE_MASK;
1881         u64 page_addr = data & PAGE_MASK;
1882         u8 *page;
1883         int r;
1884
1885         r = -E2BIG;
1886         if (page_num >= blob_size)
1887                 goto out;
1888         r = -ENOMEM;
1889         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1890         if (IS_ERR(page)) {
1891                 r = PTR_ERR(page);
1892                 goto out;
1893         }
1894         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1895                 goto out_free;
1896         r = 0;
1897 out_free:
1898         kfree(page);
1899 out:
1900         return r;
1901 }
1902
1903 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1904 {
1905         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1906 }
1907
1908 static bool kvm_hv_msr_partition_wide(u32 msr)
1909 {
1910         bool r = false;
1911         switch (msr) {
1912         case HV_X64_MSR_GUEST_OS_ID:
1913         case HV_X64_MSR_HYPERCALL:
1914         case HV_X64_MSR_REFERENCE_TSC:
1915         case HV_X64_MSR_TIME_REF_COUNT:
1916                 r = true;
1917                 break;
1918         }
1919
1920         return r;
1921 }
1922
1923 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1924 {
1925         struct kvm *kvm = vcpu->kvm;
1926
1927         switch (msr) {
1928         case HV_X64_MSR_GUEST_OS_ID:
1929                 kvm->arch.hv_guest_os_id = data;
1930                 /* setting guest os id to zero disables hypercall page */
1931                 if (!kvm->arch.hv_guest_os_id)
1932                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1933                 break;
1934         case HV_X64_MSR_HYPERCALL: {
1935                 u64 gfn;
1936                 unsigned long addr;
1937                 u8 instructions[4];
1938
1939                 /* if guest os id is not set hypercall should remain disabled */
1940                 if (!kvm->arch.hv_guest_os_id)
1941                         break;
1942                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1943                         kvm->arch.hv_hypercall = data;
1944                         break;
1945                 }
1946                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1947                 addr = gfn_to_hva(kvm, gfn);
1948                 if (kvm_is_error_hva(addr))
1949                         return 1;
1950                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1951                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1952                 if (__copy_to_user((void __user *)addr, instructions, 4))
1953                         return 1;
1954                 kvm->arch.hv_hypercall = data;
1955                 mark_page_dirty(kvm, gfn);
1956                 break;
1957         }
1958         case HV_X64_MSR_REFERENCE_TSC: {
1959                 u64 gfn;
1960                 HV_REFERENCE_TSC_PAGE tsc_ref;
1961                 memset(&tsc_ref, 0, sizeof(tsc_ref));
1962                 kvm->arch.hv_tsc_page = data;
1963                 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1964                         break;
1965                 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1966                 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1967                         &tsc_ref, sizeof(tsc_ref)))
1968                         return 1;
1969                 mark_page_dirty(kvm, gfn);
1970                 break;
1971         }
1972         default:
1973                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1974                             "data 0x%llx\n", msr, data);
1975                 return 1;
1976         }
1977         return 0;
1978 }
1979
1980 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1981 {
1982         switch (msr) {
1983         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1984                 u64 gfn;
1985                 unsigned long addr;
1986
1987                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1988                         vcpu->arch.hv_vapic = data;
1989                         if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1990                                 return 1;
1991                         break;
1992                 }
1993                 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1994                 addr = gfn_to_hva(vcpu->kvm, gfn);
1995                 if (kvm_is_error_hva(addr))
1996                         return 1;
1997                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1998                         return 1;
1999                 vcpu->arch.hv_vapic = data;
2000                 mark_page_dirty(vcpu->kvm, gfn);
2001                 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2002                         return 1;
2003                 break;
2004         }
2005         case HV_X64_MSR_EOI:
2006                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2007         case HV_X64_MSR_ICR:
2008                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2009         case HV_X64_MSR_TPR:
2010                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2011         default:
2012                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2013                             "data 0x%llx\n", msr, data);
2014                 return 1;
2015         }
2016
2017         return 0;
2018 }
2019
2020 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2021 {
2022         gpa_t gpa = data & ~0x3f;
2023
2024         /* Bits 2:5 are reserved, Should be zero */
2025         if (data & 0x3c)
2026                 return 1;
2027
2028         vcpu->arch.apf.msr_val = data;
2029
2030         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2031                 kvm_clear_async_pf_completion_queue(vcpu);
2032                 kvm_async_pf_hash_reset(vcpu);
2033                 return 0;
2034         }
2035
2036         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2037                                         sizeof(u32)))
2038                 return 1;
2039
2040         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2041         kvm_async_pf_wakeup_all(vcpu);
2042         return 0;
2043 }
2044
2045 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2046 {
2047         vcpu->arch.pv_time_enabled = false;
2048 }
2049
2050 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2051 {
2052         u64 delta;
2053
2054         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2055                 return;
2056
2057         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2058         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2059         vcpu->arch.st.accum_steal = delta;
2060 }
2061
2062 static void record_steal_time(struct kvm_vcpu *vcpu)
2063 {
2064         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2065                 return;
2066
2067         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2068                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2069                 return;
2070
2071         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2072         vcpu->arch.st.steal.version += 2;
2073         vcpu->arch.st.accum_steal = 0;
2074
2075         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2076                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2077 }
2078
2079 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2080 {
2081         bool pr = false;
2082         u32 msr = msr_info->index;
2083         u64 data = msr_info->data;
2084
2085         switch (msr) {
2086         case MSR_AMD64_NB_CFG:
2087         case MSR_IA32_UCODE_REV:
2088         case MSR_IA32_UCODE_WRITE:
2089         case MSR_VM_HSAVE_PA:
2090         case MSR_AMD64_PATCH_LOADER:
2091         case MSR_AMD64_BU_CFG2:
2092                 break;
2093
2094         case MSR_EFER:
2095                 return set_efer(vcpu, data);
2096         case MSR_K7_HWCR:
2097                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2098                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2099                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2100                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2101                 if (data != 0) {
2102                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2103                                     data);
2104                         return 1;
2105                 }
2106                 break;
2107         case MSR_FAM10H_MMIO_CONF_BASE:
2108                 if (data != 0) {
2109                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2110                                     "0x%llx\n", data);
2111                         return 1;
2112                 }
2113                 break;
2114         case MSR_IA32_DEBUGCTLMSR:
2115                 if (!data) {
2116                         /* We support the non-activated case already */
2117                         break;
2118                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2119                         /* Values other than LBR and BTF are vendor-specific,
2120                            thus reserved and should throw a #GP */
2121                         return 1;
2122                 }
2123                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2124                             __func__, data);
2125                 break;
2126         case 0x200 ... 0x2ff:
2127                 return set_msr_mtrr(vcpu, msr, data);
2128         case MSR_IA32_APICBASE:
2129                 return kvm_set_apic_base(vcpu, msr_info);
2130         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2131                 return kvm_x2apic_msr_write(vcpu, msr, data);
2132         case MSR_IA32_TSCDEADLINE:
2133                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2134                 break;
2135         case MSR_IA32_TSC_ADJUST:
2136                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2137                         if (!msr_info->host_initiated) {
2138                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2139                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2140                         }
2141                         vcpu->arch.ia32_tsc_adjust_msr = data;
2142                 }
2143                 break;
2144         case MSR_IA32_MISC_ENABLE:
2145                 vcpu->arch.ia32_misc_enable_msr = data;
2146                 break;
2147         case MSR_KVM_WALL_CLOCK_NEW:
2148         case MSR_KVM_WALL_CLOCK:
2149                 vcpu->kvm->arch.wall_clock = data;
2150                 kvm_write_wall_clock(vcpu->kvm, data);
2151                 break;
2152         case MSR_KVM_SYSTEM_TIME_NEW:
2153         case MSR_KVM_SYSTEM_TIME: {
2154                 u64 gpa_offset;
2155                 kvmclock_reset(vcpu);
2156
2157                 vcpu->arch.time = data;
2158                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2159
2160                 /* we verify if the enable bit is set... */
2161                 if (!(data & 1))
2162                         break;
2163
2164                 gpa_offset = data & ~(PAGE_MASK | 1);
2165
2166                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2167                      &vcpu->arch.pv_time, data & ~1ULL,
2168                      sizeof(struct pvclock_vcpu_time_info)))
2169                         vcpu->arch.pv_time_enabled = false;
2170                 else
2171                         vcpu->arch.pv_time_enabled = true;
2172
2173                 break;
2174         }
2175         case MSR_KVM_ASYNC_PF_EN:
2176                 if (kvm_pv_enable_async_pf(vcpu, data))
2177                         return 1;
2178                 break;
2179         case MSR_KVM_STEAL_TIME:
2180
2181                 if (unlikely(!sched_info_on()))
2182                         return 1;
2183
2184                 if (data & KVM_STEAL_RESERVED_MASK)
2185                         return 1;
2186
2187                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2188                                                 data & KVM_STEAL_VALID_BITS,
2189                                                 sizeof(struct kvm_steal_time)))
2190                         return 1;
2191
2192                 vcpu->arch.st.msr_val = data;
2193
2194                 if (!(data & KVM_MSR_ENABLED))
2195                         break;
2196
2197                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2198
2199                 preempt_disable();
2200                 accumulate_steal_time(vcpu);
2201                 preempt_enable();
2202
2203                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2204
2205                 break;
2206         case MSR_KVM_PV_EOI_EN:
2207                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2208                         return 1;
2209                 break;
2210
2211         case MSR_IA32_MCG_CTL:
2212         case MSR_IA32_MCG_STATUS:
2213         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2214                 return set_msr_mce(vcpu, msr, data);
2215
2216         /* Performance counters are not protected by a CPUID bit,
2217          * so we should check all of them in the generic path for the sake of
2218          * cross vendor migration.
2219          * Writing a zero into the event select MSRs disables them,
2220          * which we perfectly emulate ;-). Any other value should be at least
2221          * reported, some guests depend on them.
2222          */
2223         case MSR_K7_EVNTSEL0:
2224         case MSR_K7_EVNTSEL1:
2225         case MSR_K7_EVNTSEL2:
2226         case MSR_K7_EVNTSEL3:
2227                 if (data != 0)
2228                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2229                                     "0x%x data 0x%llx\n", msr, data);
2230                 break;
2231         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2232          * so we ignore writes to make it happy.
2233          */
2234         case MSR_K7_PERFCTR0:
2235         case MSR_K7_PERFCTR1:
2236         case MSR_K7_PERFCTR2:
2237         case MSR_K7_PERFCTR3:
2238                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2239                             "0x%x data 0x%llx\n", msr, data);
2240                 break;
2241         case MSR_P6_PERFCTR0:
2242         case MSR_P6_PERFCTR1:
2243                 pr = true;
2244         case MSR_P6_EVNTSEL0:
2245         case MSR_P6_EVNTSEL1:
2246                 if (kvm_pmu_msr(vcpu, msr))
2247                         return kvm_pmu_set_msr(vcpu, msr_info);
2248
2249                 if (pr || data != 0)
2250                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2251                                     "0x%x data 0x%llx\n", msr, data);
2252                 break;
2253         case MSR_K7_CLK_CTL:
2254                 /*
2255                  * Ignore all writes to this no longer documented MSR.
2256                  * Writes are only relevant for old K7 processors,
2257                  * all pre-dating SVM, but a recommended workaround from
2258                  * AMD for these chips. It is possible to specify the
2259                  * affected processor models on the command line, hence
2260                  * the need to ignore the workaround.
2261                  */
2262                 break;
2263         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2264                 if (kvm_hv_msr_partition_wide(msr)) {
2265                         int r;
2266                         mutex_lock(&vcpu->kvm->lock);
2267                         r = set_msr_hyperv_pw(vcpu, msr, data);
2268                         mutex_unlock(&vcpu->kvm->lock);
2269                         return r;
2270                 } else
2271                         return set_msr_hyperv(vcpu, msr, data);
2272                 break;
2273         case MSR_IA32_BBL_CR_CTL3:
2274                 /* Drop writes to this legacy MSR -- see rdmsr
2275                  * counterpart for further detail.
2276                  */
2277                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2278                 break;
2279         case MSR_AMD64_OSVW_ID_LENGTH:
2280                 if (!guest_cpuid_has_osvw(vcpu))
2281                         return 1;
2282                 vcpu->arch.osvw.length = data;
2283                 break;
2284         case MSR_AMD64_OSVW_STATUS:
2285                 if (!guest_cpuid_has_osvw(vcpu))
2286                         return 1;
2287                 vcpu->arch.osvw.status = data;
2288                 break;
2289         default:
2290                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2291                         return xen_hvm_config(vcpu, data);
2292                 if (kvm_pmu_msr(vcpu, msr))
2293                         return kvm_pmu_set_msr(vcpu, msr_info);
2294                 if (!ignore_msrs) {
2295                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2296                                     msr, data);
2297                         return 1;
2298                 } else {
2299                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2300                                     msr, data);
2301                         break;
2302                 }
2303         }
2304         return 0;
2305 }
2306 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2307
2308
2309 /*
2310  * Reads an msr value (of 'msr_index') into 'pdata'.
2311  * Returns 0 on success, non-0 otherwise.
2312  * Assumes vcpu_load() was already called.
2313  */
2314 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2315 {
2316         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2317 }
2318
2319 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2320 {
2321         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2322
2323         if (!msr_mtrr_valid(msr))
2324                 return 1;
2325
2326         if (msr == MSR_MTRRdefType)
2327                 *pdata = vcpu->arch.mtrr_state.def_type +
2328                          (vcpu->arch.mtrr_state.enabled << 10);
2329         else if (msr == MSR_MTRRfix64K_00000)
2330                 *pdata = p[0];
2331         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2332                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2333         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2334                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2335         else if (msr == MSR_IA32_CR_PAT)
2336                 *pdata = vcpu->arch.pat;
2337         else {  /* Variable MTRRs */
2338                 int idx, is_mtrr_mask;
2339                 u64 *pt;
2340
2341                 idx = (msr - 0x200) / 2;
2342                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2343                 if (!is_mtrr_mask)
2344                         pt =
2345                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2346                 else
2347                         pt =
2348                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2349                 *pdata = *pt;
2350         }
2351
2352         return 0;
2353 }
2354
2355 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2356 {
2357         u64 data;
2358         u64 mcg_cap = vcpu->arch.mcg_cap;
2359         unsigned bank_num = mcg_cap & 0xff;
2360
2361         switch (msr) {
2362         case MSR_IA32_P5_MC_ADDR:
2363         case MSR_IA32_P5_MC_TYPE:
2364                 data = 0;
2365                 break;
2366         case MSR_IA32_MCG_CAP:
2367                 data = vcpu->arch.mcg_cap;
2368                 break;
2369         case MSR_IA32_MCG_CTL:
2370                 if (!(mcg_cap & MCG_CTL_P))
2371                         return 1;
2372                 data = vcpu->arch.mcg_ctl;
2373                 break;
2374         case MSR_IA32_MCG_STATUS:
2375                 data = vcpu->arch.mcg_status;
2376                 break;
2377         default:
2378                 if (msr >= MSR_IA32_MC0_CTL &&
2379                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2380                         u32 offset = msr - MSR_IA32_MC0_CTL;
2381                         data = vcpu->arch.mce_banks[offset];
2382                         break;
2383                 }
2384                 return 1;
2385         }
2386         *pdata = data;
2387         return 0;
2388 }
2389
2390 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2391 {
2392         u64 data = 0;
2393         struct kvm *kvm = vcpu->kvm;
2394
2395         switch (msr) {
2396         case HV_X64_MSR_GUEST_OS_ID:
2397                 data = kvm->arch.hv_guest_os_id;
2398                 break;
2399         case HV_X64_MSR_HYPERCALL:
2400                 data = kvm->arch.hv_hypercall;
2401                 break;
2402         case HV_X64_MSR_TIME_REF_COUNT: {
2403                 data =
2404                      div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2405                 break;
2406         }
2407         case HV_X64_MSR_REFERENCE_TSC:
2408                 data = kvm->arch.hv_tsc_page;
2409                 break;
2410         default:
2411                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2412                 return 1;
2413         }
2414
2415         *pdata = data;
2416         return 0;
2417 }
2418
2419 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2420 {
2421         u64 data = 0;
2422
2423         switch (msr) {
2424         case HV_X64_MSR_VP_INDEX: {
2425                 int r;
2426                 struct kvm_vcpu *v;
2427                 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2428                         if (v == vcpu) {
2429                                 data = r;
2430                                 break;
2431                         }
2432                 }
2433                 break;
2434         }
2435         case HV_X64_MSR_EOI:
2436                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2437         case HV_X64_MSR_ICR:
2438                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2439         case HV_X64_MSR_TPR:
2440                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2441         case HV_X64_MSR_APIC_ASSIST_PAGE:
2442                 data = vcpu->arch.hv_vapic;
2443                 break;
2444         default:
2445                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2446                 return 1;
2447         }
2448         *pdata = data;
2449         return 0;
2450 }
2451
2452 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2453 {
2454         u64 data;
2455
2456         switch (msr) {
2457         case MSR_IA32_PLATFORM_ID:
2458         case MSR_IA32_EBL_CR_POWERON:
2459         case MSR_IA32_DEBUGCTLMSR:
2460         case MSR_IA32_LASTBRANCHFROMIP:
2461         case MSR_IA32_LASTBRANCHTOIP:
2462         case MSR_IA32_LASTINTFROMIP:
2463         case MSR_IA32_LASTINTTOIP:
2464         case MSR_K8_SYSCFG:
2465         case MSR_K7_HWCR:
2466         case MSR_VM_HSAVE_PA:
2467         case MSR_K7_EVNTSEL0:
2468         case MSR_K7_EVNTSEL1:
2469         case MSR_K7_EVNTSEL2:
2470         case MSR_K7_EVNTSEL3:
2471         case MSR_K7_PERFCTR0:
2472         case MSR_K7_PERFCTR1:
2473         case MSR_K7_PERFCTR2:
2474         case MSR_K7_PERFCTR3:
2475         case MSR_K8_INT_PENDING_MSG:
2476         case MSR_AMD64_NB_CFG:
2477         case MSR_FAM10H_MMIO_CONF_BASE:
2478         case MSR_AMD64_BU_CFG2:
2479                 data = 0;
2480                 break;
2481         case MSR_P6_PERFCTR0:
2482         case MSR_P6_PERFCTR1:
2483         case MSR_P6_EVNTSEL0:
2484         case MSR_P6_EVNTSEL1:
2485                 if (kvm_pmu_msr(vcpu, msr))
2486                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2487                 data = 0;
2488                 break;
2489         case MSR_IA32_UCODE_REV:
2490                 data = 0x100000000ULL;
2491                 break;
2492         case MSR_MTRRcap:
2493                 data = 0x500 | KVM_NR_VAR_MTRR;
2494                 break;
2495         case 0x200 ... 0x2ff:
2496                 return get_msr_mtrr(vcpu, msr, pdata);
2497         case 0xcd: /* fsb frequency */
2498                 data = 3;
2499                 break;
2500                 /*
2501                  * MSR_EBC_FREQUENCY_ID
2502                  * Conservative value valid for even the basic CPU models.
2503                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2504                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2505                  * and 266MHz for model 3, or 4. Set Core Clock
2506                  * Frequency to System Bus Frequency Ratio to 1 (bits
2507                  * 31:24) even though these are only valid for CPU
2508                  * models > 2, however guests may end up dividing or
2509                  * multiplying by zero otherwise.
2510                  */
2511         case MSR_EBC_FREQUENCY_ID:
2512                 data = 1 << 24;
2513                 break;
2514         case MSR_IA32_APICBASE:
2515                 data = kvm_get_apic_base(vcpu);
2516                 break;
2517         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2518                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2519                 break;
2520         case MSR_IA32_TSCDEADLINE:
2521                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2522                 break;
2523         case MSR_IA32_TSC_ADJUST:
2524                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2525                 break;
2526         case MSR_IA32_MISC_ENABLE:
2527                 data = vcpu->arch.ia32_misc_enable_msr;
2528                 break;
2529         case MSR_IA32_PERF_STATUS:
2530                 /* TSC increment by tick */
2531                 data = 1000ULL;
2532                 /* CPU multiplier */
2533                 data |= (((uint64_t)4ULL) << 40);
2534                 break;
2535         case MSR_EFER:
2536                 data = vcpu->arch.efer;
2537                 break;
2538         case MSR_KVM_WALL_CLOCK:
2539         case MSR_KVM_WALL_CLOCK_NEW:
2540                 data = vcpu->kvm->arch.wall_clock;
2541                 break;
2542         case MSR_KVM_SYSTEM_TIME:
2543         case MSR_KVM_SYSTEM_TIME_NEW:
2544                 data = vcpu->arch.time;
2545                 break;
2546         case MSR_KVM_ASYNC_PF_EN:
2547                 data = vcpu->arch.apf.msr_val;
2548                 break;
2549         case MSR_KVM_STEAL_TIME:
2550                 data = vcpu->arch.st.msr_val;
2551                 break;
2552         case MSR_KVM_PV_EOI_EN:
2553                 data = vcpu->arch.pv_eoi.msr_val;
2554                 break;
2555         case MSR_IA32_P5_MC_ADDR:
2556         case MSR_IA32_P5_MC_TYPE:
2557         case MSR_IA32_MCG_CAP:
2558         case MSR_IA32_MCG_CTL:
2559         case MSR_IA32_MCG_STATUS:
2560         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2561                 return get_msr_mce(vcpu, msr, pdata);
2562         case MSR_K7_CLK_CTL:
2563                 /*
2564                  * Provide expected ramp-up count for K7. All other
2565                  * are set to zero, indicating minimum divisors for
2566                  * every field.
2567                  *
2568                  * This prevents guest kernels on AMD host with CPU
2569                  * type 6, model 8 and higher from exploding due to
2570                  * the rdmsr failing.
2571                  */
2572                 data = 0x20000000;
2573                 break;
2574         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2575                 if (kvm_hv_msr_partition_wide(msr)) {
2576                         int r;
2577                         mutex_lock(&vcpu->kvm->lock);
2578                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2579                         mutex_unlock(&vcpu->kvm->lock);
2580                         return r;
2581                 } else
2582                         return get_msr_hyperv(vcpu, msr, pdata);
2583                 break;
2584         case MSR_IA32_BBL_CR_CTL3:
2585                 /* This legacy MSR exists but isn't fully documented in current
2586                  * silicon.  It is however accessed by winxp in very narrow
2587                  * scenarios where it sets bit #19, itself documented as
2588                  * a "reserved" bit.  Best effort attempt to source coherent
2589                  * read data here should the balance of the register be
2590                  * interpreted by the guest:
2591                  *
2592                  * L2 cache control register 3: 64GB range, 256KB size,
2593                  * enabled, latency 0x1, configured
2594                  */
2595                 data = 0xbe702111;
2596                 break;
2597         case MSR_AMD64_OSVW_ID_LENGTH:
2598                 if (!guest_cpuid_has_osvw(vcpu))
2599                         return 1;
2600                 data = vcpu->arch.osvw.length;
2601                 break;
2602         case MSR_AMD64_OSVW_STATUS:
2603                 if (!guest_cpuid_has_osvw(vcpu))
2604                         return 1;
2605                 data = vcpu->arch.osvw.status;
2606                 break;
2607         default:
2608                 if (kvm_pmu_msr(vcpu, msr))
2609                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2610                 if (!ignore_msrs) {
2611                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2612                         return 1;
2613                 } else {
2614                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2615                         data = 0;
2616                 }
2617                 break;
2618         }
2619         *pdata = data;
2620         return 0;
2621 }
2622 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2623
2624 /*
2625  * Read or write a bunch of msrs. All parameters are kernel addresses.
2626  *
2627  * @return number of msrs set successfully.
2628  */
2629 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2630                     struct kvm_msr_entry *entries,
2631                     int (*do_msr)(struct kvm_vcpu *vcpu,
2632                                   unsigned index, u64 *data))
2633 {
2634         int i, idx;
2635
2636         idx = srcu_read_lock(&vcpu->kvm->srcu);
2637         for (i = 0; i < msrs->nmsrs; ++i)
2638                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2639                         break;
2640         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2641
2642         return i;
2643 }
2644
2645 /*
2646  * Read or write a bunch of msrs. Parameters are user addresses.
2647  *
2648  * @return number of msrs set successfully.
2649  */
2650 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2651                   int (*do_msr)(struct kvm_vcpu *vcpu,
2652                                 unsigned index, u64 *data),
2653                   int writeback)
2654 {
2655         struct kvm_msrs msrs;
2656         struct kvm_msr_entry *entries;
2657         int r, n;
2658         unsigned size;
2659
2660         r = -EFAULT;
2661         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2662                 goto out;
2663
2664         r = -E2BIG;
2665         if (msrs.nmsrs >= MAX_IO_MSRS)
2666                 goto out;
2667
2668         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2669         entries = memdup_user(user_msrs->entries, size);
2670         if (IS_ERR(entries)) {
2671                 r = PTR_ERR(entries);
2672                 goto out;
2673         }
2674
2675         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2676         if (r < 0)
2677                 goto out_free;
2678
2679         r = -EFAULT;
2680         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2681                 goto out_free;
2682
2683         r = n;
2684
2685 out_free:
2686         kfree(entries);
2687 out:
2688         return r;
2689 }
2690
2691 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2692 {
2693         int r;
2694
2695         switch (ext) {
2696         case KVM_CAP_IRQCHIP:
2697         case KVM_CAP_HLT:
2698         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2699         case KVM_CAP_SET_TSS_ADDR:
2700         case KVM_CAP_EXT_CPUID:
2701         case KVM_CAP_EXT_EMUL_CPUID:
2702         case KVM_CAP_CLOCKSOURCE:
2703         case KVM_CAP_PIT:
2704         case KVM_CAP_NOP_IO_DELAY:
2705         case KVM_CAP_MP_STATE:
2706         case KVM_CAP_SYNC_MMU:
2707         case KVM_CAP_USER_NMI:
2708         case KVM_CAP_REINJECT_CONTROL:
2709         case KVM_CAP_IRQ_INJECT_STATUS:
2710         case KVM_CAP_IRQFD:
2711         case KVM_CAP_IOEVENTFD:
2712         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2713         case KVM_CAP_PIT2:
2714         case KVM_CAP_PIT_STATE2:
2715         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2716         case KVM_CAP_XEN_HVM:
2717         case KVM_CAP_ADJUST_CLOCK:
2718         case KVM_CAP_VCPU_EVENTS:
2719         case KVM_CAP_HYPERV:
2720         case KVM_CAP_HYPERV_VAPIC:
2721         case KVM_CAP_HYPERV_SPIN:
2722         case KVM_CAP_PCI_SEGMENT:
2723         case KVM_CAP_DEBUGREGS:
2724         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2725         case KVM_CAP_XSAVE:
2726         case KVM_CAP_ASYNC_PF:
2727         case KVM_CAP_GET_TSC_KHZ:
2728         case KVM_CAP_KVMCLOCK_CTRL:
2729         case KVM_CAP_READONLY_MEM:
2730         case KVM_CAP_HYPERV_TIME:
2731         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2732 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2733         case KVM_CAP_ASSIGN_DEV_IRQ:
2734         case KVM_CAP_PCI_2_3:
2735 #endif
2736                 r = 1;
2737                 break;
2738         case KVM_CAP_COALESCED_MMIO:
2739                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2740                 break;
2741         case KVM_CAP_VAPIC:
2742                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2743                 break;
2744         case KVM_CAP_NR_VCPUS:
2745                 r = KVM_SOFT_MAX_VCPUS;
2746                 break;
2747         case KVM_CAP_MAX_VCPUS:
2748                 r = KVM_MAX_VCPUS;
2749                 break;
2750         case KVM_CAP_NR_MEMSLOTS:
2751                 r = KVM_USER_MEM_SLOTS;
2752                 break;
2753         case KVM_CAP_PV_MMU:    /* obsolete */
2754                 r = 0;
2755                 break;
2756 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2757         case KVM_CAP_IOMMU:
2758                 r = iommu_present(&pci_bus_type);
2759                 break;
2760 #endif
2761         case KVM_CAP_MCE:
2762                 r = KVM_MAX_MCE_BANKS;
2763                 break;
2764         case KVM_CAP_XCRS:
2765                 r = cpu_has_xsave;
2766                 break;
2767         case KVM_CAP_TSC_CONTROL:
2768                 r = kvm_has_tsc_control;
2769                 break;
2770         case KVM_CAP_TSC_DEADLINE_TIMER:
2771                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2772                 break;
2773         default:
2774                 r = 0;
2775                 break;
2776         }
2777         return r;
2778
2779 }
2780
2781 long kvm_arch_dev_ioctl(struct file *filp,
2782                         unsigned int ioctl, unsigned long arg)
2783 {
2784         void __user *argp = (void __user *)arg;
2785         long r;
2786
2787         switch (ioctl) {
2788         case KVM_GET_MSR_INDEX_LIST: {
2789                 struct kvm_msr_list __user *user_msr_list = argp;
2790                 struct kvm_msr_list msr_list;
2791                 unsigned n;
2792
2793                 r = -EFAULT;
2794                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2795                         goto out;
2796                 n = msr_list.nmsrs;
2797                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2798                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2799                         goto out;
2800                 r = -E2BIG;
2801                 if (n < msr_list.nmsrs)
2802                         goto out;
2803                 r = -EFAULT;
2804                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2805                                  num_msrs_to_save * sizeof(u32)))
2806                         goto out;
2807                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2808                                  &emulated_msrs,
2809                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2810                         goto out;
2811                 r = 0;
2812                 break;
2813         }
2814         case KVM_GET_SUPPORTED_CPUID:
2815         case KVM_GET_EMULATED_CPUID: {
2816                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2817                 struct kvm_cpuid2 cpuid;
2818
2819                 r = -EFAULT;
2820                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2821                         goto out;
2822
2823                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2824                                             ioctl);
2825                 if (r)
2826                         goto out;
2827
2828                 r = -EFAULT;
2829                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2830                         goto out;
2831                 r = 0;
2832                 break;
2833         }
2834         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2835                 u64 mce_cap;
2836
2837                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2838                 r = -EFAULT;
2839                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2840                         goto out;
2841                 r = 0;
2842                 break;
2843         }
2844         default:
2845                 r = -EINVAL;
2846         }
2847 out:
2848         return r;
2849 }
2850
2851 static void wbinvd_ipi(void *garbage)
2852 {
2853         wbinvd();
2854 }
2855
2856 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2857 {
2858         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2859 }
2860
2861 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2862 {
2863         /* Address WBINVD may be executed by guest */
2864         if (need_emulate_wbinvd(vcpu)) {
2865                 if (kvm_x86_ops->has_wbinvd_exit())
2866                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2867                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2868                         smp_call_function_single(vcpu->cpu,
2869                                         wbinvd_ipi, NULL, 1);
2870         }
2871
2872         kvm_x86_ops->vcpu_load(vcpu, cpu);
2873
2874         /* Apply any externally detected TSC adjustments (due to suspend) */
2875         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2876                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2877                 vcpu->arch.tsc_offset_adjustment = 0;
2878                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2879         }
2880
2881         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2882                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2883                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2884                 if (tsc_delta < 0)
2885                         mark_tsc_unstable("KVM discovered backwards TSC");
2886                 if (check_tsc_unstable()) {
2887                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2888                                                 vcpu->arch.last_guest_tsc);
2889                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2890                         vcpu->arch.tsc_catchup = 1;
2891                 }
2892                 /*
2893                  * On a host with synchronized TSC, there is no need to update
2894                  * kvmclock on vcpu->cpu migration
2895                  */
2896                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2897                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2898                 if (vcpu->cpu != cpu)
2899                         kvm_migrate_timers(vcpu);
2900                 vcpu->cpu = cpu;
2901         }
2902
2903         accumulate_steal_time(vcpu);
2904         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2905 }
2906
2907 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2908 {
2909         kvm_x86_ops->vcpu_put(vcpu);
2910         kvm_put_guest_fpu(vcpu);
2911         vcpu->arch.last_host_tsc = native_read_tsc();
2912 }
2913
2914 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2915                                     struct kvm_lapic_state *s)
2916 {
2917         kvm_x86_ops->sync_pir_to_irr(vcpu);
2918         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2919
2920         return 0;
2921 }
2922
2923 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2924                                     struct kvm_lapic_state *s)
2925 {
2926         kvm_apic_post_state_restore(vcpu, s);
2927         update_cr8_intercept(vcpu);
2928
2929         return 0;
2930 }
2931
2932 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2933                                     struct kvm_interrupt *irq)
2934 {
2935         if (irq->irq >= KVM_NR_INTERRUPTS)
2936                 return -EINVAL;
2937         if (irqchip_in_kernel(vcpu->kvm))
2938                 return -ENXIO;
2939
2940         kvm_queue_interrupt(vcpu, irq->irq, false);
2941         kvm_make_request(KVM_REQ_EVENT, vcpu);
2942
2943         return 0;
2944 }
2945
2946 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2947 {
2948         kvm_inject_nmi(vcpu);
2949
2950         return 0;
2951 }
2952
2953 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2954                                            struct kvm_tpr_access_ctl *tac)
2955 {
2956         if (tac->flags)
2957                 return -EINVAL;
2958         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2959         return 0;
2960 }
2961
2962 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2963                                         u64 mcg_cap)
2964 {
2965         int r;
2966         unsigned bank_num = mcg_cap & 0xff, bank;
2967
2968         r = -EINVAL;
2969         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2970                 goto out;
2971         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2972                 goto out;
2973         r = 0;
2974         vcpu->arch.mcg_cap = mcg_cap;
2975         /* Init IA32_MCG_CTL to all 1s */
2976         if (mcg_cap & MCG_CTL_P)
2977                 vcpu->arch.mcg_ctl = ~(u64)0;
2978         /* Init IA32_MCi_CTL to all 1s */
2979         for (bank = 0; bank < bank_num; bank++)
2980                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2981 out:
2982         return r;
2983 }
2984
2985 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2986                                       struct kvm_x86_mce *mce)
2987 {
2988         u64 mcg_cap = vcpu->arch.mcg_cap;
2989         unsigned bank_num = mcg_cap & 0xff;
2990         u64 *banks = vcpu->arch.mce_banks;
2991
2992         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2993                 return -EINVAL;
2994         /*
2995          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2996          * reporting is disabled
2997          */
2998         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2999             vcpu->arch.mcg_ctl != ~(u64)0)
3000                 return 0;
3001         banks += 4 * mce->bank;
3002         /*
3003          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3004          * reporting is disabled for the bank
3005          */
3006         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3007                 return 0;
3008         if (mce->status & MCI_STATUS_UC) {
3009                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3010                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3011                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3012                         return 0;
3013                 }
3014                 if (banks[1] & MCI_STATUS_VAL)
3015                         mce->status |= MCI_STATUS_OVER;
3016                 banks[2] = mce->addr;
3017                 banks[3] = mce->misc;
3018                 vcpu->arch.mcg_status = mce->mcg_status;
3019                 banks[1] = mce->status;
3020                 kvm_queue_exception(vcpu, MC_VECTOR);
3021         } else if (!(banks[1] & MCI_STATUS_VAL)
3022                    || !(banks[1] & MCI_STATUS_UC)) {
3023                 if (banks[1] & MCI_STATUS_VAL)
3024                         mce->status |= MCI_STATUS_OVER;
3025                 banks[2] = mce->addr;
3026                 banks[3] = mce->misc;
3027                 banks[1] = mce->status;
3028         } else
3029                 banks[1] |= MCI_STATUS_OVER;
3030         return 0;
3031 }
3032
3033 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3034                                                struct kvm_vcpu_events *events)
3035 {
3036         process_nmi(vcpu);
3037         events->exception.injected =
3038                 vcpu->arch.exception.pending &&
3039                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3040         events->exception.nr = vcpu->arch.exception.nr;
3041         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3042         events->exception.pad = 0;
3043         events->exception.error_code = vcpu->arch.exception.error_code;
3044
3045         events->interrupt.injected =
3046                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3047         events->interrupt.nr = vcpu->arch.interrupt.nr;
3048         events->interrupt.soft = 0;
3049         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3050
3051         events->nmi.injected = vcpu->arch.nmi_injected;
3052         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3053         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3054         events->nmi.pad = 0;
3055
3056         events->sipi_vector = 0; /* never valid when reporting to user space */
3057
3058         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3059                          | KVM_VCPUEVENT_VALID_SHADOW);
3060         memset(&events->reserved, 0, sizeof(events->reserved));
3061 }
3062
3063 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3064                                               struct kvm_vcpu_events *events)
3065 {
3066         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3067                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3068                               | KVM_VCPUEVENT_VALID_SHADOW))
3069                 return -EINVAL;
3070
3071         process_nmi(vcpu);
3072         vcpu->arch.exception.pending = events->exception.injected;
3073         vcpu->arch.exception.nr = events->exception.nr;
3074         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3075         vcpu->arch.exception.error_code = events->exception.error_code;
3076
3077         vcpu->arch.interrupt.pending = events->interrupt.injected;
3078         vcpu->arch.interrupt.nr = events->interrupt.nr;
3079         vcpu->arch.interrupt.soft = events->interrupt.soft;
3080         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3081                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3082                                                   events->interrupt.shadow);
3083
3084         vcpu->arch.nmi_injected = events->nmi.injected;
3085         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3086                 vcpu->arch.nmi_pending = events->nmi.pending;
3087         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3088
3089         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3090             kvm_vcpu_has_lapic(vcpu))
3091                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3092
3093         kvm_make_request(KVM_REQ_EVENT, vcpu);
3094
3095         return 0;
3096 }
3097
3098 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3099                                              struct kvm_debugregs *dbgregs)
3100 {
3101         unsigned long val;
3102
3103         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3104         _kvm_get_dr(vcpu, 6, &val);
3105         dbgregs->dr6 = val;
3106         dbgregs->dr7 = vcpu->arch.dr7;
3107         dbgregs->flags = 0;
3108         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3109 }
3110
3111 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3112                                             struct kvm_debugregs *dbgregs)
3113 {
3114         if (dbgregs->flags)
3115                 return -EINVAL;
3116
3117         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3118         vcpu->arch.dr6 = dbgregs->dr6;
3119         kvm_update_dr6(vcpu);
3120         vcpu->arch.dr7 = dbgregs->dr7;
3121         kvm_update_dr7(vcpu);
3122
3123         return 0;
3124 }
3125
3126 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3127                                          struct kvm_xsave *guest_xsave)
3128 {
3129         if (cpu_has_xsave) {
3130                 memcpy(guest_xsave->region,
3131                         &vcpu->arch.guest_fpu.state->xsave,
3132                         vcpu->arch.guest_xstate_size);
3133                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
3134                         vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
3135         } else {
3136                 memcpy(guest_xsave->region,
3137                         &vcpu->arch.guest_fpu.state->fxsave,
3138                         sizeof(struct i387_fxsave_struct));
3139                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3140                         XSTATE_FPSSE;
3141         }
3142 }
3143
3144 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3145                                         struct kvm_xsave *guest_xsave)
3146 {
3147         u64 xstate_bv =
3148                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3149
3150         if (cpu_has_xsave) {
3151                 /*
3152                  * Here we allow setting states that are not present in
3153                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3154                  * with old userspace.
3155                  */
3156                 if (xstate_bv & ~kvm_supported_xcr0())
3157                         return -EINVAL;
3158                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
3159                         guest_xsave->region, vcpu->arch.guest_xstate_size);
3160         } else {
3161                 if (xstate_bv & ~XSTATE_FPSSE)
3162                         return -EINVAL;
3163                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3164                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
3165         }
3166         return 0;
3167 }
3168
3169 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3170                                         struct kvm_xcrs *guest_xcrs)
3171 {
3172         if (!cpu_has_xsave) {
3173                 guest_xcrs->nr_xcrs = 0;
3174                 return;
3175         }
3176
3177         guest_xcrs->nr_xcrs = 1;
3178         guest_xcrs->flags = 0;
3179         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3180         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3181 }
3182
3183 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3184                                        struct kvm_xcrs *guest_xcrs)
3185 {
3186         int i, r = 0;
3187
3188         if (!cpu_has_xsave)
3189                 return -EINVAL;
3190
3191         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3192                 return -EINVAL;
3193
3194         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3195                 /* Only support XCR0 currently */
3196                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3197                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3198                                 guest_xcrs->xcrs[i].value);
3199                         break;
3200                 }
3201         if (r)
3202                 r = -EINVAL;
3203         return r;
3204 }
3205
3206 /*
3207  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3208  * stopped by the hypervisor.  This function will be called from the host only.
3209  * EINVAL is returned when the host attempts to set the flag for a guest that
3210  * does not support pv clocks.
3211  */
3212 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3213 {
3214         if (!vcpu->arch.pv_time_enabled)
3215                 return -EINVAL;
3216         vcpu->arch.pvclock_set_guest_stopped_request = true;
3217         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3218         return 0;
3219 }
3220
3221 long kvm_arch_vcpu_ioctl(struct file *filp,
3222                          unsigned int ioctl, unsigned long arg)
3223 {
3224         struct kvm_vcpu *vcpu = filp->private_data;
3225         void __user *argp = (void __user *)arg;
3226         int r;
3227         union {
3228                 struct kvm_lapic_state *lapic;
3229                 struct kvm_xsave *xsave;
3230                 struct kvm_xcrs *xcrs;
3231                 void *buffer;
3232         } u;
3233
3234         u.buffer = NULL;
3235         switch (ioctl) {
3236         case KVM_GET_LAPIC: {
3237                 r = -EINVAL;
3238                 if (!vcpu->arch.apic)
3239                         goto out;
3240                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3241
3242                 r = -ENOMEM;
3243                 if (!u.lapic)
3244                         goto out;
3245                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3246                 if (r)
3247                         goto out;
3248                 r = -EFAULT;
3249                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3250                         goto out;
3251                 r = 0;
3252                 break;
3253         }
3254         case KVM_SET_LAPIC: {
3255                 r = -EINVAL;
3256                 if (!vcpu->arch.apic)
3257                         goto out;
3258                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3259                 if (IS_ERR(u.lapic))
3260                         return PTR_ERR(u.lapic);
3261
3262                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3263                 break;
3264         }
3265         case KVM_INTERRUPT: {
3266                 struct kvm_interrupt irq;
3267
3268                 r = -EFAULT;
3269                 if (copy_from_user(&irq, argp, sizeof irq))
3270                         goto out;
3271                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3272                 break;
3273         }
3274         case KVM_NMI: {
3275                 r = kvm_vcpu_ioctl_nmi(vcpu);
3276                 break;
3277         }
3278         case KVM_SET_CPUID: {
3279                 struct kvm_cpuid __user *cpuid_arg = argp;
3280                 struct kvm_cpuid cpuid;
3281
3282                 r = -EFAULT;
3283                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3284                         goto out;
3285                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3286                 break;
3287         }
3288         case KVM_SET_CPUID2: {
3289                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3290                 struct kvm_cpuid2 cpuid;
3291
3292                 r = -EFAULT;
3293                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3294                         goto out;
3295                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3296                                               cpuid_arg->entries);
3297                 break;
3298         }
3299         case KVM_GET_CPUID2: {
3300                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3301                 struct kvm_cpuid2 cpuid;
3302
3303                 r = -EFAULT;
3304                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3305                         goto out;
3306                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3307                                               cpuid_arg->entries);
3308                 if (r)
3309                         goto out;
3310                 r = -EFAULT;
3311                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3312                         goto out;
3313                 r = 0;
3314                 break;
3315         }
3316         case KVM_GET_MSRS:
3317                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3318                 break;
3319         case KVM_SET_MSRS:
3320                 r = msr_io(vcpu, argp, do_set_msr, 0);
3321                 break;
3322         case KVM_TPR_ACCESS_REPORTING: {
3323                 struct kvm_tpr_access_ctl tac;
3324
3325                 r = -EFAULT;
3326                 if (copy_from_user(&tac, argp, sizeof tac))
3327                         goto out;
3328                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3329                 if (r)
3330                         goto out;
3331                 r = -EFAULT;
3332                 if (copy_to_user(argp, &tac, sizeof tac))
3333                         goto out;
3334                 r = 0;
3335                 break;
3336         };
3337         case KVM_SET_VAPIC_ADDR: {
3338                 struct kvm_vapic_addr va;
3339
3340                 r = -EINVAL;
3341                 if (!irqchip_in_kernel(vcpu->kvm))
3342                         goto out;
3343                 r = -EFAULT;
3344                 if (copy_from_user(&va, argp, sizeof va))
3345                         goto out;
3346                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3347                 break;
3348         }
3349         case KVM_X86_SETUP_MCE: {
3350                 u64 mcg_cap;
3351
3352                 r = -EFAULT;
3353                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3354                         goto out;
3355                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3356                 break;
3357         }
3358         case KVM_X86_SET_MCE: {
3359                 struct kvm_x86_mce mce;
3360
3361                 r = -EFAULT;
3362                 if (copy_from_user(&mce, argp, sizeof mce))
3363                         goto out;
3364                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3365                 break;
3366         }
3367         case KVM_GET_VCPU_EVENTS: {
3368                 struct kvm_vcpu_events events;
3369
3370                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3371
3372                 r = -EFAULT;
3373                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3374                         break;
3375                 r = 0;
3376                 break;
3377         }
3378         case KVM_SET_VCPU_EVENTS: {
3379                 struct kvm_vcpu_events events;
3380
3381                 r = -EFAULT;
3382                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3383                         break;
3384
3385                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3386                 break;
3387         }
3388         case KVM_GET_DEBUGREGS: {
3389                 struct kvm_debugregs dbgregs;
3390
3391                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3392
3393                 r = -EFAULT;
3394                 if (copy_to_user(argp, &dbgregs,
3395                                  sizeof(struct kvm_debugregs)))
3396                         break;
3397                 r = 0;
3398                 break;
3399         }
3400         case KVM_SET_DEBUGREGS: {
3401                 struct kvm_debugregs dbgregs;
3402
3403                 r = -EFAULT;
3404                 if (copy_from_user(&dbgregs, argp,
3405                                    sizeof(struct kvm_debugregs)))
3406                         break;
3407
3408                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3409                 break;
3410         }
3411         case KVM_GET_XSAVE: {
3412                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3413                 r = -ENOMEM;
3414                 if (!u.xsave)
3415                         break;
3416
3417                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3418
3419                 r = -EFAULT;
3420                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3421                         break;
3422                 r = 0;
3423                 break;
3424         }
3425         case KVM_SET_XSAVE: {
3426                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3427                 if (IS_ERR(u.xsave))
3428                         return PTR_ERR(u.xsave);
3429
3430                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3431                 break;
3432         }
3433         case KVM_GET_XCRS: {
3434                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3435                 r = -ENOMEM;
3436                 if (!u.xcrs)
3437                         break;
3438
3439                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3440
3441                 r = -EFAULT;
3442                 if (copy_to_user(argp, u.xcrs,
3443                                  sizeof(struct kvm_xcrs)))
3444                         break;
3445                 r = 0;
3446                 break;
3447         }
3448         case KVM_SET_XCRS: {
3449                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3450                 if (IS_ERR(u.xcrs))
3451                         return PTR_ERR(u.xcrs);
3452
3453                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3454                 break;
3455         }
3456         case KVM_SET_TSC_KHZ: {
3457                 u32 user_tsc_khz;
3458
3459                 r = -EINVAL;
3460                 user_tsc_khz = (u32)arg;
3461
3462                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3463                         goto out;
3464
3465                 if (user_tsc_khz == 0)
3466                         user_tsc_khz = tsc_khz;
3467
3468                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3469
3470                 r = 0;
3471                 goto out;
3472         }
3473         case KVM_GET_TSC_KHZ: {
3474                 r = vcpu->arch.virtual_tsc_khz;
3475                 goto out;
3476         }
3477         case KVM_KVMCLOCK_CTRL: {
3478                 r = kvm_set_guest_paused(vcpu);
3479                 goto out;
3480         }
3481         default:
3482                 r = -EINVAL;
3483         }
3484 out:
3485         kfree(u.buffer);
3486         return r;
3487 }
3488
3489 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3490 {
3491         return VM_FAULT_SIGBUS;
3492 }
3493
3494 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3495 {
3496         int ret;
3497
3498         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3499                 return -EINVAL;
3500         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3501         return ret;
3502 }
3503
3504 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3505                                               u64 ident_addr)
3506 {
3507         kvm->arch.ept_identity_map_addr = ident_addr;
3508         return 0;
3509 }
3510
3511 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3512                                           u32 kvm_nr_mmu_pages)
3513 {
3514         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3515                 return -EINVAL;
3516
3517         mutex_lock(&kvm->slots_lock);
3518
3519         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3520         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3521
3522         mutex_unlock(&kvm->slots_lock);
3523         return 0;
3524 }
3525
3526 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3527 {
3528         return kvm->arch.n_max_mmu_pages;
3529 }
3530
3531 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3532 {
3533         int r;
3534
3535         r = 0;
3536         switch (chip->chip_id) {
3537         case KVM_IRQCHIP_PIC_MASTER:
3538                 memcpy(&chip->chip.pic,
3539                         &pic_irqchip(kvm)->pics[0],
3540                         sizeof(struct kvm_pic_state));
3541                 break;
3542         case KVM_IRQCHIP_PIC_SLAVE:
3543                 memcpy(&chip->chip.pic,
3544                         &pic_irqchip(kvm)->pics[1],
3545                         sizeof(struct kvm_pic_state));
3546                 break;
3547         case KVM_IRQCHIP_IOAPIC:
3548                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3549                 break;
3550         default:
3551                 r = -EINVAL;
3552                 break;
3553         }
3554         return r;
3555 }
3556
3557 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3558 {
3559         int r;
3560
3561         r = 0;
3562         switch (chip->chip_id) {
3563         case KVM_IRQCHIP_PIC_MASTER:
3564                 spin_lock(&pic_irqchip(kvm)->lock);
3565                 memcpy(&pic_irqchip(kvm)->pics[0],
3566                         &chip->chip.pic,
3567                         sizeof(struct kvm_pic_state));
3568                 spin_unlock(&pic_irqchip(kvm)->lock);
3569                 break;
3570         case KVM_IRQCHIP_PIC_SLAVE:
3571                 spin_lock(&pic_irqchip(kvm)->lock);
3572                 memcpy(&pic_irqchip(kvm)->pics[1],
3573                         &chip->chip.pic,
3574                         sizeof(struct kvm_pic_state));
3575                 spin_unlock(&pic_irqchip(kvm)->lock);
3576                 break;
3577         case KVM_IRQCHIP_IOAPIC:
3578                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3579                 break;
3580         default:
3581                 r = -EINVAL;
3582                 break;
3583         }
3584         kvm_pic_update_irq(pic_irqchip(kvm));
3585         return r;
3586 }
3587
3588 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3589 {
3590         int r = 0;
3591
3592         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3593         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3594         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3595         return r;
3596 }
3597
3598 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3599 {
3600         int r = 0;
3601
3602         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3603         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3604         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3605         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3606         return r;
3607 }
3608
3609 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3610 {
3611         int r = 0;
3612
3613         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3614         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3615                 sizeof(ps->channels));
3616         ps->flags = kvm->arch.vpit->pit_state.flags;
3617         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3618         memset(&ps->reserved, 0, sizeof(ps->reserved));
3619         return r;
3620 }
3621
3622 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3623 {
3624         int r = 0, start = 0;
3625         u32 prev_legacy, cur_legacy;
3626         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3627         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3628         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3629         if (!prev_legacy && cur_legacy)
3630                 start = 1;
3631         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3632                sizeof(kvm->arch.vpit->pit_state.channels));
3633         kvm->arch.vpit->pit_state.flags = ps->flags;
3634         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3635         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3636         return r;
3637 }
3638
3639 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3640                                  struct kvm_reinject_control *control)
3641 {
3642         if (!kvm->arch.vpit)
3643                 return -ENXIO;
3644         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3645         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3646         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3647         return 0;
3648 }
3649
3650 /**
3651  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3652  * @kvm: kvm instance
3653  * @log: slot id and address to which we copy the log
3654  *
3655  * We need to keep it in mind that VCPU threads can write to the bitmap
3656  * concurrently.  So, to avoid losing data, we keep the following order for
3657  * each bit:
3658  *
3659  *   1. Take a snapshot of the bit and clear it if needed.
3660  *   2. Write protect the corresponding page.
3661  *   3. Flush TLB's if needed.
3662  *   4. Copy the snapshot to the userspace.
3663  *
3664  * Between 2 and 3, the guest may write to the page using the remaining TLB
3665  * entry.  This is not a problem because the page will be reported dirty at
3666  * step 4 using the snapshot taken before and step 3 ensures that successive
3667  * writes will be logged for the next call.
3668  */
3669 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3670 {
3671         int r;
3672         struct kvm_memory_slot *memslot;
3673         unsigned long n, i;
3674         unsigned long *dirty_bitmap;
3675         unsigned long *dirty_bitmap_buffer;
3676         bool is_dirty = false;
3677
3678         mutex_lock(&kvm->slots_lock);
3679
3680         r = -EINVAL;
3681         if (log->slot >= KVM_USER_MEM_SLOTS)
3682                 goto out;
3683
3684         memslot = id_to_memslot(kvm->memslots, log->slot);
3685
3686         dirty_bitmap = memslot->dirty_bitmap;
3687         r = -ENOENT;
3688         if (!dirty_bitmap)
3689                 goto out;
3690
3691         n = kvm_dirty_bitmap_bytes(memslot);
3692
3693         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3694         memset(dirty_bitmap_buffer, 0, n);
3695
3696         spin_lock(&kvm->mmu_lock);
3697
3698         for (i = 0; i < n / sizeof(long); i++) {
3699                 unsigned long mask;
3700                 gfn_t offset;
3701
3702                 if (!dirty_bitmap[i])
3703                         continue;
3704
3705                 is_dirty = true;
3706
3707                 mask = xchg(&dirty_bitmap[i], 0);
3708                 dirty_bitmap_buffer[i] = mask;
3709
3710                 offset = i * BITS_PER_LONG;
3711                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3712         }
3713
3714         spin_unlock(&kvm->mmu_lock);
3715
3716         /* See the comments in kvm_mmu_slot_remove_write_access(). */
3717         lockdep_assert_held(&kvm->slots_lock);
3718
3719         /*
3720          * All the TLBs can be flushed out of mmu lock, see the comments in
3721          * kvm_mmu_slot_remove_write_access().
3722          */
3723         if (is_dirty)
3724                 kvm_flush_remote_tlbs(kvm);
3725
3726         r = -EFAULT;
3727         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3728                 goto out;
3729
3730         r = 0;
3731 out:
3732         mutex_unlock(&kvm->slots_lock);
3733         return r;
3734 }
3735
3736 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3737                         bool line_status)
3738 {
3739         if (!irqchip_in_kernel(kvm))
3740                 return -ENXIO;
3741
3742         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3743                                         irq_event->irq, irq_event->level,
3744                                         line_status);
3745         return 0;
3746 }
3747
3748 long kvm_arch_vm_ioctl(struct file *filp,
3749                        unsigned int ioctl, unsigned long arg)
3750 {
3751         struct kvm *kvm = filp->private_data;
3752         void __user *argp = (void __user *)arg;
3753         int r = -ENOTTY;
3754         /*
3755          * This union makes it completely explicit to gcc-3.x
3756          * that these two variables' stack usage should be
3757          * combined, not added together.
3758          */
3759         union {
3760                 struct kvm_pit_state ps;
3761                 struct kvm_pit_state2 ps2;
3762                 struct kvm_pit_config pit_config;
3763         } u;
3764
3765         switch (ioctl) {
3766         case KVM_SET_TSS_ADDR:
3767                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3768                 break;
3769         case KVM_SET_IDENTITY_MAP_ADDR: {
3770                 u64 ident_addr;
3771
3772                 r = -EFAULT;
3773                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3774                         goto out;
3775                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3776                 break;
3777         }
3778         case KVM_SET_NR_MMU_PAGES:
3779                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3780                 break;
3781         case KVM_GET_NR_MMU_PAGES:
3782                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3783                 break;
3784         case KVM_CREATE_IRQCHIP: {
3785                 struct kvm_pic *vpic;
3786
3787                 mutex_lock(&kvm->lock);
3788                 r = -EEXIST;
3789                 if (kvm->arch.vpic)
3790                         goto create_irqchip_unlock;
3791                 r = -EINVAL;
3792                 if (atomic_read(&kvm->online_vcpus))
3793                         goto create_irqchip_unlock;
3794                 r = -ENOMEM;
3795                 vpic = kvm_create_pic(kvm);
3796                 if (vpic) {
3797                         r = kvm_ioapic_init(kvm);
3798                         if (r) {
3799                                 mutex_lock(&kvm->slots_lock);
3800                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3801                                                           &vpic->dev_master);
3802                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3803                                                           &vpic->dev_slave);
3804                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3805                                                           &vpic->dev_eclr);
3806                                 mutex_unlock(&kvm->slots_lock);
3807                                 kfree(vpic);
3808                                 goto create_irqchip_unlock;
3809                         }
3810                 } else
3811                         goto create_irqchip_unlock;
3812                 smp_wmb();
3813                 kvm->arch.vpic = vpic;
3814                 smp_wmb();
3815                 r = kvm_setup_default_irq_routing(kvm);
3816                 if (r) {
3817                         mutex_lock(&kvm->slots_lock);
3818                         mutex_lock(&kvm->irq_lock);
3819                         kvm_ioapic_destroy(kvm);
3820                         kvm_destroy_pic(kvm);
3821                         mutex_unlock(&kvm->irq_lock);
3822                         mutex_unlock(&kvm->slots_lock);
3823                 }
3824         create_irqchip_unlock:
3825                 mutex_unlock(&kvm->lock);
3826                 break;
3827         }
3828         case KVM_CREATE_PIT:
3829                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3830                 goto create_pit;
3831         case KVM_CREATE_PIT2:
3832                 r = -EFAULT;
3833                 if (copy_from_user(&u.pit_config, argp,
3834                                    sizeof(struct kvm_pit_config)))
3835                         goto out;
3836         create_pit:
3837                 mutex_lock(&kvm->slots_lock);
3838                 r = -EEXIST;
3839                 if (kvm->arch.vpit)
3840                         goto create_pit_unlock;
3841                 r = -ENOMEM;
3842                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3843                 if (kvm->arch.vpit)
3844                         r = 0;
3845         create_pit_unlock:
3846                 mutex_unlock(&kvm->slots_lock);
3847                 break;
3848         case KVM_GET_IRQCHIP: {
3849                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3850                 struct kvm_irqchip *chip;
3851
3852                 chip = memdup_user(argp, sizeof(*chip));
3853                 if (IS_ERR(chip)) {
3854                         r = PTR_ERR(chip);
3855                         goto out;
3856                 }
3857
3858                 r = -ENXIO;
3859                 if (!irqchip_in_kernel(kvm))
3860                         goto get_irqchip_out;
3861                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3862                 if (r)
3863                         goto get_irqchip_out;
3864                 r = -EFAULT;
3865                 if (copy_to_user(argp, chip, sizeof *chip))
3866                         goto get_irqchip_out;
3867                 r = 0;
3868         get_irqchip_out:
3869                 kfree(chip);
3870                 break;
3871         }
3872         case KVM_SET_IRQCHIP: {
3873                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3874                 struct kvm_irqchip *chip;
3875
3876                 chip = memdup_user(argp, sizeof(*chip));
3877                 if (IS_ERR(chip)) {
3878                         r = PTR_ERR(chip);
3879                         goto out;
3880                 }
3881
3882                 r = -ENXIO;
3883                 if (!irqchip_in_kernel(kvm))
3884                         goto set_irqchip_out;
3885                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3886                 if (r)
3887                         goto set_irqchip_out;
3888                 r = 0;
3889         set_irqchip_out:
3890                 kfree(chip);
3891                 break;
3892         }
3893         case KVM_GET_PIT: {
3894                 r = -EFAULT;
3895                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3896                         goto out;
3897                 r = -ENXIO;
3898                 if (!kvm->arch.vpit)
3899                         goto out;
3900                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3901                 if (r)
3902                         goto out;
3903                 r = -EFAULT;
3904                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3905                         goto out;
3906                 r = 0;
3907                 break;
3908         }
3909         case KVM_SET_PIT: {
3910                 r = -EFAULT;
3911                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3912                         goto out;
3913                 r = -ENXIO;
3914                 if (!kvm->arch.vpit)
3915                         goto out;
3916                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3917                 break;
3918         }
3919         case KVM_GET_PIT2: {
3920                 r = -ENXIO;
3921                 if (!kvm->arch.vpit)
3922                         goto out;
3923                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3924                 if (r)
3925                         goto out;
3926                 r = -EFAULT;
3927                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3928                         goto out;
3929                 r = 0;
3930                 break;
3931         }
3932         case KVM_SET_PIT2: {
3933                 r = -EFAULT;
3934                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3935                         goto out;
3936                 r = -ENXIO;
3937                 if (!kvm->arch.vpit)
3938                         goto out;
3939                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3940                 break;
3941         }
3942         case KVM_REINJECT_CONTROL: {
3943                 struct kvm_reinject_control control;
3944                 r =  -EFAULT;
3945                 if (copy_from_user(&control, argp, sizeof(control)))
3946                         goto out;
3947                 r = kvm_vm_ioctl_reinject(kvm, &control);
3948                 break;
3949         }
3950         case KVM_XEN_HVM_CONFIG: {
3951                 r = -EFAULT;
3952                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3953                                    sizeof(struct kvm_xen_hvm_config)))
3954                         goto out;
3955                 r = -EINVAL;
3956                 if (kvm->arch.xen_hvm_config.flags)
3957                         goto out;
3958                 r = 0;
3959                 break;
3960         }
3961         case KVM_SET_CLOCK: {
3962                 struct kvm_clock_data user_ns;
3963                 u64 now_ns;
3964                 s64 delta;
3965
3966                 r = -EFAULT;
3967                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3968                         goto out;
3969
3970                 r = -EINVAL;
3971                 if (user_ns.flags)
3972                         goto out;
3973
3974                 r = 0;
3975                 local_irq_disable();
3976                 now_ns = get_kernel_ns();
3977                 delta = user_ns.clock - now_ns;
3978                 local_irq_enable();
3979                 kvm->arch.kvmclock_offset = delta;
3980                 kvm_gen_update_masterclock(kvm);
3981                 break;
3982         }
3983         case KVM_GET_CLOCK: {
3984                 struct kvm_clock_data user_ns;
3985                 u64 now_ns;
3986
3987                 local_irq_disable();
3988                 now_ns = get_kernel_ns();
3989                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3990                 local_irq_enable();
3991                 user_ns.flags = 0;
3992                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3993
3994                 r = -EFAULT;
3995                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3996                         goto out;
3997                 r = 0;
3998                 break;
3999         }
4000
4001         default:
4002                 ;
4003         }
4004 out:
4005         return r;
4006 }
4007
4008 static void kvm_init_msr_list(void)
4009 {
4010         u32 dummy[2];
4011         unsigned i, j;
4012
4013         /* skip the first msrs in the list. KVM-specific */
4014         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4015                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4016                         continue;
4017
4018                 /*
4019                  * Even MSRs that are valid in the host may not be exposed
4020                  * to the guests in some cases.  We could work around this
4021                  * in VMX with the generic MSR save/load machinery, but it
4022                  * is not really worthwhile since it will really only
4023                  * happen with nested virtualization.
4024                  */
4025                 switch (msrs_to_save[i]) {
4026                 case MSR_IA32_BNDCFGS:
4027                         if (!kvm_x86_ops->mpx_supported())
4028                                 continue;
4029                         break;
4030                 default:
4031                         break;
4032                 }
4033
4034                 if (j < i)
4035                         msrs_to_save[j] = msrs_to_save[i];
4036                 j++;
4037         }
4038         num_msrs_to_save = j;
4039 }
4040
4041 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4042                            const void *v)
4043 {
4044         int handled = 0;
4045         int n;
4046
4047         do {
4048                 n = min(len, 8);
4049                 if (!(vcpu->arch.apic &&
4050                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
4051                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4052                         break;
4053                 handled += n;
4054                 addr += n;
4055                 len -= n;
4056                 v += n;
4057         } while (len);
4058
4059         return handled;
4060 }
4061
4062 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4063 {
4064         int handled = 0;
4065         int n;
4066
4067         do {
4068                 n = min(len, 8);
4069                 if (!(vcpu->arch.apic &&
4070                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
4071                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4072                         break;
4073                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4074                 handled += n;
4075                 addr += n;
4076                 len -= n;
4077                 v += n;
4078         } while (len);
4079
4080         return handled;
4081 }
4082
4083 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4084                         struct kvm_segment *var, int seg)
4085 {
4086         kvm_x86_ops->set_segment(vcpu, var, seg);
4087 }
4088
4089 void kvm_get_segment(struct kvm_vcpu *vcpu,
4090                      struct kvm_segment *var, int seg)
4091 {
4092         kvm_x86_ops->get_segment(vcpu, var, seg);
4093 }
4094
4095 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4096                            struct x86_exception *exception)
4097 {
4098         gpa_t t_gpa;
4099
4100         BUG_ON(!mmu_is_nested(vcpu));
4101
4102         /* NPT walks are always user-walks */
4103         access |= PFERR_USER_MASK;
4104         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4105
4106         return t_gpa;
4107 }
4108
4109 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4110                               struct x86_exception *exception)
4111 {
4112         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4113         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4114 }
4115
4116  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4117                                 struct x86_exception *exception)
4118 {
4119         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4120         access |= PFERR_FETCH_MASK;
4121         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4122 }
4123
4124 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4125                                struct x86_exception *exception)
4126 {
4127         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4128         access |= PFERR_WRITE_MASK;
4129         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4130 }
4131
4132 /* uses this to access any guest's mapped memory without checking CPL */
4133 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4134                                 struct x86_exception *exception)
4135 {
4136         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4137 }
4138
4139 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4140                                       struct kvm_vcpu *vcpu, u32 access,
4141                                       struct x86_exception *exception)
4142 {
4143         void *data = val;
4144         int r = X86EMUL_CONTINUE;
4145
4146         while (bytes) {
4147                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4148                                                             exception);
4149                 unsigned offset = addr & (PAGE_SIZE-1);
4150                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4151                 int ret;
4152
4153                 if (gpa == UNMAPPED_GVA)
4154                         return X86EMUL_PROPAGATE_FAULT;
4155                 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4156                                           offset, toread);
4157                 if (ret < 0) {
4158                         r = X86EMUL_IO_NEEDED;
4159                         goto out;
4160                 }
4161
4162                 bytes -= toread;
4163                 data += toread;
4164                 addr += toread;
4165         }
4166 out:
4167         return r;
4168 }
4169
4170 /* used for instruction fetching */
4171 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4172                                 gva_t addr, void *val, unsigned int bytes,
4173                                 struct x86_exception *exception)
4174 {
4175         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4176         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4177         unsigned offset;
4178         int ret;
4179
4180         /* Inline kvm_read_guest_virt_helper for speed.  */
4181         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4182                                                     exception);
4183         if (unlikely(gpa == UNMAPPED_GVA))
4184                 return X86EMUL_PROPAGATE_FAULT;
4185
4186         offset = addr & (PAGE_SIZE-1);
4187         if (WARN_ON(offset + bytes > PAGE_SIZE))
4188                 bytes = (unsigned)PAGE_SIZE - offset;
4189         ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4190                                   offset, bytes);
4191         if (unlikely(ret < 0))
4192                 return X86EMUL_IO_NEEDED;
4193
4194         return X86EMUL_CONTINUE;
4195 }
4196
4197 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4198                                gva_t addr, void *val, unsigned int bytes,
4199                                struct x86_exception *exception)
4200 {
4201         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4202         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4203
4204         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4205                                           exception);
4206 }
4207 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4208
4209 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4210                                       gva_t addr, void *val, unsigned int bytes,
4211                                       struct x86_exception *exception)
4212 {
4213         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4214         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4215 }
4216
4217 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4218                                        gva_t addr, void *val,
4219                                        unsigned int bytes,
4220                                        struct x86_exception *exception)
4221 {
4222         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4223         void *data = val;
4224         int r = X86EMUL_CONTINUE;
4225
4226         while (bytes) {
4227                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4228                                                              PFERR_WRITE_MASK,
4229                                                              exception);
4230                 unsigned offset = addr & (PAGE_SIZE-1);
4231                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4232                 int ret;
4233
4234                 if (gpa == UNMAPPED_GVA)
4235                         return X86EMUL_PROPAGATE_FAULT;
4236                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4237                 if (ret < 0) {
4238                         r = X86EMUL_IO_NEEDED;
4239                         goto out;
4240                 }
4241
4242                 bytes -= towrite;
4243                 data += towrite;
4244                 addr += towrite;
4245         }
4246 out:
4247         return r;
4248 }
4249 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4250
4251 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4252                                 gpa_t *gpa, struct x86_exception *exception,
4253                                 bool write)
4254 {
4255         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4256                 | (write ? PFERR_WRITE_MASK : 0);
4257
4258         if (vcpu_match_mmio_gva(vcpu, gva)
4259             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4260                                  vcpu->arch.access, access)) {
4261                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4262                                         (gva & (PAGE_SIZE - 1));
4263                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4264                 return 1;
4265         }
4266
4267         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4268
4269         if (*gpa == UNMAPPED_GVA)
4270                 return -1;
4271
4272         /* For APIC access vmexit */
4273         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4274                 return 1;
4275
4276         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4277                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4278                 return 1;
4279         }
4280
4281         return 0;
4282 }
4283
4284 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4285                         const void *val, int bytes)
4286 {
4287         int ret;
4288
4289         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4290         if (ret < 0)
4291                 return 0;
4292         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4293         return 1;
4294 }
4295
4296 struct read_write_emulator_ops {
4297         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4298                                   int bytes);
4299         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4300                                   void *val, int bytes);
4301         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4302                                int bytes, void *val);
4303         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4304                                     void *val, int bytes);
4305         bool write;
4306 };
4307
4308 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4309 {
4310         if (vcpu->mmio_read_completed) {
4311                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4312                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4313                 vcpu->mmio_read_completed = 0;
4314                 return 1;
4315         }
4316
4317         return 0;
4318 }
4319
4320 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4321                         void *val, int bytes)
4322 {
4323         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4324 }
4325
4326 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4327                          void *val, int bytes)
4328 {
4329         return emulator_write_phys(vcpu, gpa, val, bytes);
4330 }
4331
4332 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4333 {
4334         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4335         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4336 }
4337
4338 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4339                           void *val, int bytes)
4340 {
4341         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4342         return X86EMUL_IO_NEEDED;
4343 }
4344
4345 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4346                            void *val, int bytes)
4347 {
4348         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4349
4350         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4351         return X86EMUL_CONTINUE;
4352 }
4353
4354 static const struct read_write_emulator_ops read_emultor = {
4355         .read_write_prepare = read_prepare,
4356         .read_write_emulate = read_emulate,
4357         .read_write_mmio = vcpu_mmio_read,
4358         .read_write_exit_mmio = read_exit_mmio,
4359 };
4360
4361 static const struct read_write_emulator_ops write_emultor = {
4362         .read_write_emulate = write_emulate,
4363         .read_write_mmio = write_mmio,
4364         .read_write_exit_mmio = write_exit_mmio,
4365         .write = true,
4366 };
4367
4368 static int emulator_read_write_onepage(unsigned long addr, void *val,
4369                                        unsigned int bytes,
4370                                        struct x86_exception *exception,
4371                                        struct kvm_vcpu *vcpu,
4372                                        const struct read_write_emulator_ops *ops)
4373 {
4374         gpa_t gpa;
4375         int handled, ret;
4376         bool write = ops->write;
4377         struct kvm_mmio_fragment *frag;
4378
4379         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4380
4381         if (ret < 0)
4382                 return X86EMUL_PROPAGATE_FAULT;
4383
4384         /* For APIC access vmexit */
4385         if (ret)
4386                 goto mmio;
4387
4388         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4389                 return X86EMUL_CONTINUE;
4390
4391 mmio:
4392         /*
4393          * Is this MMIO handled locally?
4394          */
4395         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4396         if (handled == bytes)
4397                 return X86EMUL_CONTINUE;
4398
4399         gpa += handled;
4400         bytes -= handled;
4401         val += handled;
4402
4403         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4404         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4405         frag->gpa = gpa;
4406         frag->data = val;
4407         frag->len = bytes;
4408         return X86EMUL_CONTINUE;
4409 }
4410
4411 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4412                         void *val, unsigned int bytes,
4413                         struct x86_exception *exception,
4414                         const struct read_write_emulator_ops *ops)
4415 {
4416         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4417         gpa_t gpa;
4418         int rc;
4419
4420         if (ops->read_write_prepare &&
4421                   ops->read_write_prepare(vcpu, val, bytes))
4422                 return X86EMUL_CONTINUE;
4423
4424         vcpu->mmio_nr_fragments = 0;
4425
4426         /* Crossing a page boundary? */
4427         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4428                 int now;
4429
4430                 now = -addr & ~PAGE_MASK;
4431                 rc = emulator_read_write_onepage(addr, val, now, exception,
4432                                                  vcpu, ops);
4433
4434                 if (rc != X86EMUL_CONTINUE)
4435                         return rc;
4436                 addr += now;
4437                 val += now;
4438                 bytes -= now;
4439         }
4440
4441         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4442                                          vcpu, ops);
4443         if (rc != X86EMUL_CONTINUE)
4444                 return rc;
4445
4446         if (!vcpu->mmio_nr_fragments)
4447                 return rc;
4448
4449         gpa = vcpu->mmio_fragments[0].gpa;
4450
4451         vcpu->mmio_needed = 1;
4452         vcpu->mmio_cur_fragment = 0;
4453
4454         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4455         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4456         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4457         vcpu->run->mmio.phys_addr = gpa;
4458
4459         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4460 }
4461
4462 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4463                                   unsigned long addr,
4464                                   void *val,
4465                                   unsigned int bytes,
4466                                   struct x86_exception *exception)
4467 {
4468         return emulator_read_write(ctxt, addr, val, bytes,
4469                                    exception, &read_emultor);
4470 }
4471
4472 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4473                             unsigned long addr,
4474                             const void *val,
4475                             unsigned int bytes,
4476                             struct x86_exception *exception)
4477 {
4478         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4479                                    exception, &write_emultor);
4480 }
4481
4482 #define CMPXCHG_TYPE(t, ptr, old, new) \
4483         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4484
4485 #ifdef CONFIG_X86_64
4486 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4487 #else
4488 #  define CMPXCHG64(ptr, old, new) \
4489         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4490 #endif
4491
4492 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4493                                      unsigned long addr,
4494                                      const void *old,
4495                                      const void *new,
4496                                      unsigned int bytes,
4497                                      struct x86_exception *exception)
4498 {
4499         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4500         gpa_t gpa;
4501         struct page *page;
4502         char *kaddr;
4503         bool exchanged;
4504
4505         /* guests cmpxchg8b have to be emulated atomically */
4506         if (bytes > 8 || (bytes & (bytes - 1)))
4507                 goto emul_write;
4508
4509         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4510
4511         if (gpa == UNMAPPED_GVA ||
4512             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4513                 goto emul_write;
4514
4515         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4516                 goto emul_write;
4517
4518         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4519         if (is_error_page(page))
4520                 goto emul_write;
4521
4522         kaddr = kmap_atomic(page);
4523         kaddr += offset_in_page(gpa);
4524         switch (bytes) {
4525         case 1:
4526                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4527                 break;
4528         case 2:
4529                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4530                 break;
4531         case 4:
4532                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4533                 break;
4534         case 8:
4535                 exchanged = CMPXCHG64(kaddr, old, new);
4536                 break;
4537         default:
4538                 BUG();
4539         }
4540         kunmap_atomic(kaddr);
4541         kvm_release_page_dirty(page);
4542
4543         if (!exchanged)
4544                 return X86EMUL_CMPXCHG_FAILED;
4545
4546         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4547         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4548
4549         return X86EMUL_CONTINUE;
4550
4551 emul_write:
4552         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4553
4554         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4555 }
4556
4557 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4558 {
4559         /* TODO: String I/O for in kernel device */
4560         int r;
4561
4562         if (vcpu->arch.pio.in)
4563                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4564                                     vcpu->arch.pio.size, pd);
4565         else
4566                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4567                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4568                                      pd);
4569         return r;
4570 }
4571
4572 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4573                                unsigned short port, void *val,
4574                                unsigned int count, bool in)
4575 {
4576         vcpu->arch.pio.port = port;
4577         vcpu->arch.pio.in = in;
4578         vcpu->arch.pio.count  = count;
4579         vcpu->arch.pio.size = size;
4580
4581         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4582                 vcpu->arch.pio.count = 0;
4583                 return 1;
4584         }
4585
4586         vcpu->run->exit_reason = KVM_EXIT_IO;
4587         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4588         vcpu->run->io.size = size;
4589         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4590         vcpu->run->io.count = count;
4591         vcpu->run->io.port = port;
4592
4593         return 0;
4594 }
4595
4596 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4597                                     int size, unsigned short port, void *val,
4598                                     unsigned int count)
4599 {
4600         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4601         int ret;
4602
4603         if (vcpu->arch.pio.count)
4604                 goto data_avail;
4605
4606         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4607         if (ret) {
4608 data_avail:
4609                 memcpy(val, vcpu->arch.pio_data, size * count);
4610                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4611                 vcpu->arch.pio.count = 0;
4612                 return 1;
4613         }
4614
4615         return 0;
4616 }
4617
4618 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4619                                      int size, unsigned short port,
4620                                      const void *val, unsigned int count)
4621 {
4622         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4623
4624         memcpy(vcpu->arch.pio_data, val, size * count);
4625         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4626         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4627 }
4628
4629 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4630 {
4631         return kvm_x86_ops->get_segment_base(vcpu, seg);
4632 }
4633
4634 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4635 {
4636         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4637 }
4638
4639 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4640 {
4641         if (!need_emulate_wbinvd(vcpu))
4642                 return X86EMUL_CONTINUE;
4643
4644         if (kvm_x86_ops->has_wbinvd_exit()) {
4645                 int cpu = get_cpu();
4646
4647                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4648                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4649                                 wbinvd_ipi, NULL, 1);
4650                 put_cpu();
4651                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4652         } else
4653                 wbinvd();
4654         return X86EMUL_CONTINUE;
4655 }
4656 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4657
4658 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4659 {
4660         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4661 }
4662
4663 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4664 {
4665         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4666 }
4667
4668 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4669 {
4670
4671         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4672 }
4673
4674 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4675 {
4676         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4677 }
4678
4679 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4680 {
4681         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4682         unsigned long value;
4683
4684         switch (cr) {
4685         case 0:
4686                 value = kvm_read_cr0(vcpu);
4687                 break;
4688         case 2:
4689                 value = vcpu->arch.cr2;
4690                 break;
4691         case 3:
4692                 value = kvm_read_cr3(vcpu);
4693                 break;
4694         case 4:
4695                 value = kvm_read_cr4(vcpu);
4696                 break;
4697         case 8:
4698                 value = kvm_get_cr8(vcpu);
4699                 break;
4700         default:
4701                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4702                 return 0;
4703         }
4704
4705         return value;
4706 }
4707
4708 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4709 {
4710         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4711         int res = 0;
4712
4713         switch (cr) {
4714         case 0:
4715                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4716                 break;
4717         case 2:
4718                 vcpu->arch.cr2 = val;
4719                 break;
4720         case 3:
4721                 res = kvm_set_cr3(vcpu, val);
4722                 break;
4723         case 4:
4724                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4725                 break;
4726         case 8:
4727                 res = kvm_set_cr8(vcpu, val);
4728                 break;
4729         default:
4730                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4731                 res = -1;
4732         }
4733
4734         return res;
4735 }
4736
4737 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4738 {
4739         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4740 }
4741
4742 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4743 {
4744         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4745 }
4746
4747 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4748 {
4749         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4750 }
4751
4752 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4753 {
4754         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4755 }
4756
4757 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4758 {
4759         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4760 }
4761
4762 static unsigned long emulator_get_cached_segment_base(
4763         struct x86_emulate_ctxt *ctxt, int seg)
4764 {
4765         return get_segment_base(emul_to_vcpu(ctxt), seg);
4766 }
4767
4768 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4769                                  struct desc_struct *desc, u32 *base3,
4770                                  int seg)
4771 {
4772         struct kvm_segment var;
4773
4774         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4775         *selector = var.selector;
4776
4777         if (var.unusable) {
4778                 memset(desc, 0, sizeof(*desc));
4779                 return false;
4780         }
4781
4782         if (var.g)
4783                 var.limit >>= 12;
4784         set_desc_limit(desc, var.limit);
4785         set_desc_base(desc, (unsigned long)var.base);
4786 #ifdef CONFIG_X86_64
4787         if (base3)
4788                 *base3 = var.base >> 32;
4789 #endif
4790         desc->type = var.type;
4791         desc->s = var.s;
4792         desc->dpl = var.dpl;
4793         desc->p = var.present;
4794         desc->avl = var.avl;
4795         desc->l = var.l;
4796         desc->d = var.db;
4797         desc->g = var.g;
4798
4799         return true;
4800 }
4801
4802 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4803                                  struct desc_struct *desc, u32 base3,
4804                                  int seg)
4805 {
4806         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4807         struct kvm_segment var;
4808
4809         var.selector = selector;
4810         var.base = get_desc_base(desc);
4811 #ifdef CONFIG_X86_64
4812         var.base |= ((u64)base3) << 32;
4813 #endif
4814         var.limit = get_desc_limit(desc);
4815         if (desc->g)
4816                 var.limit = (var.limit << 12) | 0xfff;
4817         var.type = desc->type;
4818         var.dpl = desc->dpl;
4819         var.db = desc->d;
4820         var.s = desc->s;
4821         var.l = desc->l;
4822         var.g = desc->g;
4823         var.avl = desc->avl;
4824         var.present = desc->p;
4825         var.unusable = !var.present;
4826         var.padding = 0;
4827
4828         kvm_set_segment(vcpu, &var, seg);
4829         return;
4830 }
4831
4832 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4833                             u32 msr_index, u64 *pdata)
4834 {
4835         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4836 }
4837
4838 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4839                             u32 msr_index, u64 data)
4840 {
4841         struct msr_data msr;
4842
4843         msr.data = data;
4844         msr.index = msr_index;
4845         msr.host_initiated = false;
4846         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4847 }
4848
4849 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4850                               u32 pmc)
4851 {
4852         return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4853 }
4854
4855 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4856                              u32 pmc, u64 *pdata)
4857 {
4858         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4859 }
4860
4861 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4862 {
4863         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4864 }
4865
4866 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4867 {
4868         preempt_disable();
4869         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4870         /*
4871          * CR0.TS may reference the host fpu state, not the guest fpu state,
4872          * so it may be clear at this point.
4873          */
4874         clts();
4875 }
4876
4877 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4878 {
4879         preempt_enable();
4880 }
4881
4882 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4883                               struct x86_instruction_info *info,
4884                               enum x86_intercept_stage stage)
4885 {
4886         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4887 }
4888
4889 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4890                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4891 {
4892         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4893 }
4894
4895 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4896 {
4897         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4898 }
4899
4900 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4901 {
4902         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4903 }
4904
4905 static const struct x86_emulate_ops emulate_ops = {
4906         .read_gpr            = emulator_read_gpr,
4907         .write_gpr           = emulator_write_gpr,
4908         .read_std            = kvm_read_guest_virt_system,
4909         .write_std           = kvm_write_guest_virt_system,
4910         .fetch               = kvm_fetch_guest_virt,
4911         .read_emulated       = emulator_read_emulated,
4912         .write_emulated      = emulator_write_emulated,
4913         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4914         .invlpg              = emulator_invlpg,
4915         .pio_in_emulated     = emulator_pio_in_emulated,
4916         .pio_out_emulated    = emulator_pio_out_emulated,
4917         .get_segment         = emulator_get_segment,
4918         .set_segment         = emulator_set_segment,
4919         .get_cached_segment_base = emulator_get_cached_segment_base,
4920         .get_gdt             = emulator_get_gdt,
4921         .get_idt             = emulator_get_idt,
4922         .set_gdt             = emulator_set_gdt,
4923         .set_idt             = emulator_set_idt,
4924         .get_cr              = emulator_get_cr,
4925         .set_cr              = emulator_set_cr,
4926         .cpl                 = emulator_get_cpl,
4927         .get_dr              = emulator_get_dr,
4928         .set_dr              = emulator_set_dr,
4929         .set_msr             = emulator_set_msr,
4930         .get_msr             = emulator_get_msr,
4931         .check_pmc           = emulator_check_pmc,
4932         .read_pmc            = emulator_read_pmc,
4933         .halt                = emulator_halt,
4934         .wbinvd              = emulator_wbinvd,
4935         .fix_hypercall       = emulator_fix_hypercall,
4936         .get_fpu             = emulator_get_fpu,
4937         .put_fpu             = emulator_put_fpu,
4938         .intercept           = emulator_intercept,
4939         .get_cpuid           = emulator_get_cpuid,
4940 };
4941
4942 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4943 {
4944         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
4945         /*
4946          * an sti; sti; sequence only disable interrupts for the first
4947          * instruction. So, if the last instruction, be it emulated or
4948          * not, left the system with the INT_STI flag enabled, it
4949          * means that the last instruction is an sti. We should not
4950          * leave the flag on in this case. The same goes for mov ss
4951          */
4952         if (int_shadow & mask)
4953                 mask = 0;
4954         if (unlikely(int_shadow || mask)) {
4955                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4956                 if (!mask)
4957                         kvm_make_request(KVM_REQ_EVENT, vcpu);
4958         }
4959 }
4960
4961 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
4962 {
4963         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4964         if (ctxt->exception.vector == PF_VECTOR)
4965                 return kvm_propagate_fault(vcpu, &ctxt->exception);
4966
4967         if (ctxt->exception.error_code_valid)
4968                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4969                                       ctxt->exception.error_code);
4970         else
4971                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4972         return false;
4973 }
4974
4975 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4976 {
4977         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4978         int cs_db, cs_l;
4979
4980         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4981
4982         ctxt->eflags = kvm_get_rflags(vcpu);
4983         ctxt->eip = kvm_rip_read(vcpu);
4984         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4985                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4986                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
4987                      cs_db                              ? X86EMUL_MODE_PROT32 :
4988                                                           X86EMUL_MODE_PROT16;
4989         ctxt->guest_mode = is_guest_mode(vcpu);
4990
4991         init_decode_cache(ctxt);
4992         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4993 }
4994
4995 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4996 {
4997         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4998         int ret;
4999
5000         init_emulate_ctxt(vcpu);
5001
5002         ctxt->op_bytes = 2;
5003         ctxt->ad_bytes = 2;
5004         ctxt->_eip = ctxt->eip + inc_eip;
5005         ret = emulate_int_real(ctxt, irq);
5006
5007         if (ret != X86EMUL_CONTINUE)
5008                 return EMULATE_FAIL;
5009
5010         ctxt->eip = ctxt->_eip;
5011         kvm_rip_write(vcpu, ctxt->eip);
5012         kvm_set_rflags(vcpu, ctxt->eflags);
5013
5014         if (irq == NMI_VECTOR)
5015                 vcpu->arch.nmi_pending = 0;
5016         else
5017                 vcpu->arch.interrupt.pending = false;
5018
5019         return EMULATE_DONE;
5020 }
5021 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5022
5023 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5024 {
5025         int r = EMULATE_DONE;
5026
5027         ++vcpu->stat.insn_emulation_fail;
5028         trace_kvm_emulate_insn_failed(vcpu);
5029         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5030                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5031                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5032                 vcpu->run->internal.ndata = 0;
5033                 r = EMULATE_FAIL;
5034         }
5035         kvm_queue_exception(vcpu, UD_VECTOR);
5036
5037         return r;
5038 }
5039
5040 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5041                                   bool write_fault_to_shadow_pgtable,
5042                                   int emulation_type)
5043 {
5044         gpa_t gpa = cr2;
5045         pfn_t pfn;
5046
5047         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5048                 return false;
5049
5050         if (!vcpu->arch.mmu.direct_map) {
5051                 /*
5052                  * Write permission should be allowed since only
5053                  * write access need to be emulated.
5054                  */
5055                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5056
5057                 /*
5058                  * If the mapping is invalid in guest, let cpu retry
5059                  * it to generate fault.
5060                  */
5061                 if (gpa == UNMAPPED_GVA)
5062                         return true;
5063         }
5064
5065         /*
5066          * Do not retry the unhandleable instruction if it faults on the
5067          * readonly host memory, otherwise it will goto a infinite loop:
5068          * retry instruction -> write #PF -> emulation fail -> retry
5069          * instruction -> ...
5070          */
5071         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5072
5073         /*
5074          * If the instruction failed on the error pfn, it can not be fixed,
5075          * report the error to userspace.
5076          */
5077         if (is_error_noslot_pfn(pfn))
5078                 return false;
5079
5080         kvm_release_pfn_clean(pfn);
5081
5082         /* The instructions are well-emulated on direct mmu. */
5083         if (vcpu->arch.mmu.direct_map) {
5084                 unsigned int indirect_shadow_pages;
5085
5086                 spin_lock(&vcpu->kvm->mmu_lock);
5087                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5088                 spin_unlock(&vcpu->kvm->mmu_lock);
5089
5090                 if (indirect_shadow_pages)
5091                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5092
5093                 return true;
5094         }
5095
5096         /*
5097          * if emulation was due to access to shadowed page table
5098          * and it failed try to unshadow page and re-enter the
5099          * guest to let CPU execute the instruction.
5100          */
5101         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5102
5103         /*
5104          * If the access faults on its page table, it can not
5105          * be fixed by unprotecting shadow page and it should
5106          * be reported to userspace.
5107          */
5108         return !write_fault_to_shadow_pgtable;
5109 }
5110
5111 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5112                               unsigned long cr2,  int emulation_type)
5113 {
5114         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5115         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5116
5117         last_retry_eip = vcpu->arch.last_retry_eip;
5118         last_retry_addr = vcpu->arch.last_retry_addr;
5119
5120         /*
5121          * If the emulation is caused by #PF and it is non-page_table
5122          * writing instruction, it means the VM-EXIT is caused by shadow
5123          * page protected, we can zap the shadow page and retry this
5124          * instruction directly.
5125          *
5126          * Note: if the guest uses a non-page-table modifying instruction
5127          * on the PDE that points to the instruction, then we will unmap
5128          * the instruction and go to an infinite loop. So, we cache the
5129          * last retried eip and the last fault address, if we meet the eip
5130          * and the address again, we can break out of the potential infinite
5131          * loop.
5132          */
5133         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5134
5135         if (!(emulation_type & EMULTYPE_RETRY))
5136                 return false;
5137
5138         if (x86_page_table_writing_insn(ctxt))
5139                 return false;
5140
5141         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5142                 return false;
5143
5144         vcpu->arch.last_retry_eip = ctxt->eip;
5145         vcpu->arch.last_retry_addr = cr2;
5146
5147         if (!vcpu->arch.mmu.direct_map)
5148                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5149
5150         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5151
5152         return true;
5153 }
5154
5155 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5156 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5157
5158 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5159                                 unsigned long *db)
5160 {
5161         u32 dr6 = 0;
5162         int i;
5163         u32 enable, rwlen;
5164
5165         enable = dr7;
5166         rwlen = dr7 >> 16;
5167         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5168                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5169                         dr6 |= (1 << i);
5170         return dr6;
5171 }
5172
5173 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5174 {
5175         struct kvm_run *kvm_run = vcpu->run;
5176
5177         /*
5178          * rflags is the old, "raw" value of the flags.  The new value has
5179          * not been saved yet.
5180          *
5181          * This is correct even for TF set by the guest, because "the
5182          * processor will not generate this exception after the instruction
5183          * that sets the TF flag".
5184          */
5185         if (unlikely(rflags & X86_EFLAGS_TF)) {
5186                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5187                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5188                                                   DR6_RTM;
5189                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5190                         kvm_run->debug.arch.exception = DB_VECTOR;
5191                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5192                         *r = EMULATE_USER_EXIT;
5193                 } else {
5194                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5195                         /*
5196                          * "Certain debug exceptions may clear bit 0-3.  The
5197                          * remaining contents of the DR6 register are never
5198                          * cleared by the processor".
5199                          */
5200                         vcpu->arch.dr6 &= ~15;
5201                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5202                         kvm_queue_exception(vcpu, DB_VECTOR);
5203                 }
5204         }
5205 }
5206
5207 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5208 {
5209         struct kvm_run *kvm_run = vcpu->run;
5210         unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5211         u32 dr6 = 0;
5212
5213         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5214             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5215                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5216                                            vcpu->arch.guest_debug_dr7,
5217                                            vcpu->arch.eff_db);
5218
5219                 if (dr6 != 0) {
5220                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5221                         kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5222                                 get_segment_base(vcpu, VCPU_SREG_CS);
5223
5224                         kvm_run->debug.arch.exception = DB_VECTOR;
5225                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5226                         *r = EMULATE_USER_EXIT;
5227                         return true;
5228                 }
5229         }
5230
5231         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5232             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5233                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5234                                            vcpu->arch.dr7,
5235                                            vcpu->arch.db);
5236
5237                 if (dr6 != 0) {
5238                         vcpu->arch.dr6 &= ~15;
5239                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5240                         kvm_queue_exception(vcpu, DB_VECTOR);
5241                         *r = EMULATE_DONE;
5242                         return true;
5243                 }
5244         }
5245
5246         return false;
5247 }
5248
5249 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5250                             unsigned long cr2,
5251                             int emulation_type,
5252                             void *insn,
5253                             int insn_len)
5254 {
5255         int r;
5256         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5257         bool writeback = true;
5258         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5259
5260         /*
5261          * Clear write_fault_to_shadow_pgtable here to ensure it is
5262          * never reused.
5263          */
5264         vcpu->arch.write_fault_to_shadow_pgtable = false;
5265         kvm_clear_exception_queue(vcpu);
5266
5267         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5268                 init_emulate_ctxt(vcpu);
5269
5270                 /*
5271                  * We will reenter on the same instruction since
5272                  * we do not set complete_userspace_io.  This does not
5273                  * handle watchpoints yet, those would be handled in
5274                  * the emulate_ops.
5275                  */
5276                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5277                         return r;
5278
5279                 ctxt->interruptibility = 0;
5280                 ctxt->have_exception = false;
5281                 ctxt->exception.vector = -1;
5282                 ctxt->perm_ok = false;
5283
5284                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5285
5286                 r = x86_decode_insn(ctxt, insn, insn_len);
5287
5288                 trace_kvm_emulate_insn_start(vcpu);
5289                 ++vcpu->stat.insn_emulation;
5290                 if (r != EMULATION_OK)  {
5291                         if (emulation_type & EMULTYPE_TRAP_UD)
5292                                 return EMULATE_FAIL;
5293                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5294                                                 emulation_type))
5295                                 return EMULATE_DONE;
5296                         if (emulation_type & EMULTYPE_SKIP)
5297                                 return EMULATE_FAIL;
5298                         return handle_emulation_failure(vcpu);
5299                 }
5300         }
5301
5302         if (emulation_type & EMULTYPE_SKIP) {
5303                 kvm_rip_write(vcpu, ctxt->_eip);
5304                 if (ctxt->eflags & X86_EFLAGS_RF)
5305                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5306                 return EMULATE_DONE;
5307         }
5308
5309         if (retry_instruction(ctxt, cr2, emulation_type))
5310                 return EMULATE_DONE;
5311
5312         /* this is needed for vmware backdoor interface to work since it
5313            changes registers values  during IO operation */
5314         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5315                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5316                 emulator_invalidate_register_cache(ctxt);
5317         }
5318
5319 restart:
5320         r = x86_emulate_insn(ctxt);
5321
5322         if (r == EMULATION_INTERCEPTED)
5323                 return EMULATE_DONE;
5324
5325         if (r == EMULATION_FAILED) {
5326                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5327                                         emulation_type))
5328                         return EMULATE_DONE;
5329
5330                 return handle_emulation_failure(vcpu);
5331         }
5332
5333         if (ctxt->have_exception) {
5334                 r = EMULATE_DONE;
5335                 if (inject_emulated_exception(vcpu))
5336                         return r;
5337         } else if (vcpu->arch.pio.count) {
5338                 if (!vcpu->arch.pio.in) {
5339                         /* FIXME: return into emulator if single-stepping.  */
5340                         vcpu->arch.pio.count = 0;
5341                 } else {
5342                         writeback = false;
5343                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5344                 }
5345                 r = EMULATE_USER_EXIT;
5346         } else if (vcpu->mmio_needed) {
5347                 if (!vcpu->mmio_is_write)
5348                         writeback = false;
5349                 r = EMULATE_USER_EXIT;
5350                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5351         } else if (r == EMULATION_RESTART)
5352                 goto restart;
5353         else
5354                 r = EMULATE_DONE;
5355
5356         if (writeback) {
5357                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5358                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5359                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5360                 kvm_rip_write(vcpu, ctxt->eip);
5361                 if (r == EMULATE_DONE)
5362                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5363                 __kvm_set_rflags(vcpu, ctxt->eflags);
5364
5365                 /*
5366                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5367                  * do nothing, and it will be requested again as soon as
5368                  * the shadow expires.  But we still need to check here,
5369                  * because POPF has no interrupt shadow.
5370                  */
5371                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5372                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5373         } else
5374                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5375
5376         return r;
5377 }
5378 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5379
5380 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5381 {
5382         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5383         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5384                                             size, port, &val, 1);
5385         /* do not return to emulator after return from userspace */
5386         vcpu->arch.pio.count = 0;
5387         return ret;
5388 }
5389 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5390
5391 static void tsc_bad(void *info)
5392 {
5393         __this_cpu_write(cpu_tsc_khz, 0);
5394 }
5395
5396 static void tsc_khz_changed(void *data)
5397 {
5398         struct cpufreq_freqs *freq = data;
5399         unsigned long khz = 0;
5400
5401         if (data)
5402                 khz = freq->new;
5403         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5404                 khz = cpufreq_quick_get(raw_smp_processor_id());
5405         if (!khz)
5406                 khz = tsc_khz;
5407         __this_cpu_write(cpu_tsc_khz, khz);
5408 }
5409
5410 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5411                                      void *data)
5412 {
5413         struct cpufreq_freqs *freq = data;
5414         struct kvm *kvm;
5415         struct kvm_vcpu *vcpu;
5416         int i, send_ipi = 0;
5417
5418         /*
5419          * We allow guests to temporarily run on slowing clocks,
5420          * provided we notify them after, or to run on accelerating
5421          * clocks, provided we notify them before.  Thus time never
5422          * goes backwards.
5423          *
5424          * However, we have a problem.  We can't atomically update
5425          * the frequency of a given CPU from this function; it is
5426          * merely a notifier, which can be called from any CPU.
5427          * Changing the TSC frequency at arbitrary points in time
5428          * requires a recomputation of local variables related to
5429          * the TSC for each VCPU.  We must flag these local variables
5430          * to be updated and be sure the update takes place with the
5431          * new frequency before any guests proceed.
5432          *
5433          * Unfortunately, the combination of hotplug CPU and frequency
5434          * change creates an intractable locking scenario; the order
5435          * of when these callouts happen is undefined with respect to
5436          * CPU hotplug, and they can race with each other.  As such,
5437          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5438          * undefined; you can actually have a CPU frequency change take
5439          * place in between the computation of X and the setting of the
5440          * variable.  To protect against this problem, all updates of
5441          * the per_cpu tsc_khz variable are done in an interrupt
5442          * protected IPI, and all callers wishing to update the value
5443          * must wait for a synchronous IPI to complete (which is trivial
5444          * if the caller is on the CPU already).  This establishes the
5445          * necessary total order on variable updates.
5446          *
5447          * Note that because a guest time update may take place
5448          * anytime after the setting of the VCPU's request bit, the
5449          * correct TSC value must be set before the request.  However,
5450          * to ensure the update actually makes it to any guest which
5451          * starts running in hardware virtualization between the set
5452          * and the acquisition of the spinlock, we must also ping the
5453          * CPU after setting the request bit.
5454          *
5455          */
5456
5457         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5458                 return 0;
5459         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5460                 return 0;
5461
5462         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5463
5464         spin_lock(&kvm_lock);
5465         list_for_each_entry(kvm, &vm_list, vm_list) {
5466                 kvm_for_each_vcpu(i, vcpu, kvm) {
5467                         if (vcpu->cpu != freq->cpu)
5468                                 continue;
5469                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5470                         if (vcpu->cpu != smp_processor_id())
5471                                 send_ipi = 1;
5472                 }
5473         }
5474         spin_unlock(&kvm_lock);
5475
5476         if (freq->old < freq->new && send_ipi) {
5477                 /*
5478                  * We upscale the frequency.  Must make the guest
5479                  * doesn't see old kvmclock values while running with
5480                  * the new frequency, otherwise we risk the guest sees
5481                  * time go backwards.
5482                  *
5483                  * In case we update the frequency for another cpu
5484                  * (which might be in guest context) send an interrupt
5485                  * to kick the cpu out of guest context.  Next time
5486                  * guest context is entered kvmclock will be updated,
5487                  * so the guest will not see stale values.
5488                  */
5489                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5490         }
5491         return 0;
5492 }
5493
5494 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5495         .notifier_call  = kvmclock_cpufreq_notifier
5496 };
5497
5498 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5499                                         unsigned long action, void *hcpu)
5500 {
5501         unsigned int cpu = (unsigned long)hcpu;
5502
5503         switch (action) {
5504                 case CPU_ONLINE:
5505                 case CPU_DOWN_FAILED:
5506                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5507                         break;
5508                 case CPU_DOWN_PREPARE:
5509                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5510                         break;
5511         }
5512         return NOTIFY_OK;
5513 }
5514
5515 static struct notifier_block kvmclock_cpu_notifier_block = {
5516         .notifier_call  = kvmclock_cpu_notifier,
5517         .priority = -INT_MAX
5518 };
5519
5520 static void kvm_timer_init(void)
5521 {
5522         int cpu;
5523
5524         max_tsc_khz = tsc_khz;
5525
5526         cpu_notifier_register_begin();
5527         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5528 #ifdef CONFIG_CPU_FREQ
5529                 struct cpufreq_policy policy;
5530                 memset(&policy, 0, sizeof(policy));
5531                 cpu = get_cpu();
5532                 cpufreq_get_policy(&policy, cpu);
5533                 if (policy.cpuinfo.max_freq)
5534                         max_tsc_khz = policy.cpuinfo.max_freq;
5535                 put_cpu();
5536 #endif
5537                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5538                                           CPUFREQ_TRANSITION_NOTIFIER);
5539         }
5540         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5541         for_each_online_cpu(cpu)
5542                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5543
5544         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5545         cpu_notifier_register_done();
5546
5547 }
5548
5549 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5550
5551 int kvm_is_in_guest(void)
5552 {
5553         return __this_cpu_read(current_vcpu) != NULL;
5554 }
5555
5556 static int kvm_is_user_mode(void)
5557 {
5558         int user_mode = 3;
5559
5560         if (__this_cpu_read(current_vcpu))
5561                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5562
5563         return user_mode != 0;
5564 }
5565
5566 static unsigned long kvm_get_guest_ip(void)
5567 {
5568         unsigned long ip = 0;
5569
5570         if (__this_cpu_read(current_vcpu))
5571                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5572
5573         return ip;
5574 }
5575
5576 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5577         .is_in_guest            = kvm_is_in_guest,
5578         .is_user_mode           = kvm_is_user_mode,
5579         .get_guest_ip           = kvm_get_guest_ip,
5580 };
5581
5582 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5583 {
5584         __this_cpu_write(current_vcpu, vcpu);
5585 }
5586 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5587
5588 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5589 {
5590         __this_cpu_write(current_vcpu, NULL);
5591 }
5592 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5593
5594 static void kvm_set_mmio_spte_mask(void)
5595 {
5596         u64 mask;
5597         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5598
5599         /*
5600          * Set the reserved bits and the present bit of an paging-structure
5601          * entry to generate page fault with PFER.RSV = 1.
5602          */
5603          /* Mask the reserved physical address bits. */
5604         mask = rsvd_bits(maxphyaddr, 51);
5605
5606         /* Bit 62 is always reserved for 32bit host. */
5607         mask |= 0x3ull << 62;
5608
5609         /* Set the present bit. */
5610         mask |= 1ull;
5611
5612 #ifdef CONFIG_X86_64
5613         /*
5614          * If reserved bit is not supported, clear the present bit to disable
5615          * mmio page fault.
5616          */
5617         if (maxphyaddr == 52)
5618                 mask &= ~1ull;
5619 #endif
5620
5621         kvm_mmu_set_mmio_spte_mask(mask);
5622 }
5623
5624 #ifdef CONFIG_X86_64
5625 static void pvclock_gtod_update_fn(struct work_struct *work)
5626 {
5627         struct kvm *kvm;
5628
5629         struct kvm_vcpu *vcpu;
5630         int i;
5631
5632         spin_lock(&kvm_lock);
5633         list_for_each_entry(kvm, &vm_list, vm_list)
5634                 kvm_for_each_vcpu(i, vcpu, kvm)
5635                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5636         atomic_set(&kvm_guest_has_master_clock, 0);
5637         spin_unlock(&kvm_lock);
5638 }
5639
5640 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5641
5642 /*
5643  * Notification about pvclock gtod data update.
5644  */
5645 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5646                                void *priv)
5647 {
5648         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5649         struct timekeeper *tk = priv;
5650
5651         update_pvclock_gtod(tk);
5652
5653         /* disable master clock if host does not trust, or does not
5654          * use, TSC clocksource
5655          */
5656         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5657             atomic_read(&kvm_guest_has_master_clock) != 0)
5658                 queue_work(system_long_wq, &pvclock_gtod_work);
5659
5660         return 0;
5661 }
5662
5663 static struct notifier_block pvclock_gtod_notifier = {
5664         .notifier_call = pvclock_gtod_notify,
5665 };
5666 #endif
5667
5668 int kvm_arch_init(void *opaque)
5669 {
5670         int r;
5671         struct kvm_x86_ops *ops = opaque;
5672
5673         if (kvm_x86_ops) {
5674                 printk(KERN_ERR "kvm: already loaded the other module\n");
5675                 r = -EEXIST;
5676                 goto out;
5677         }
5678
5679         if (!ops->cpu_has_kvm_support()) {
5680                 printk(KERN_ERR "kvm: no hardware support\n");
5681                 r = -EOPNOTSUPP;
5682                 goto out;
5683         }
5684         if (ops->disabled_by_bios()) {
5685                 printk(KERN_ERR "kvm: disabled by bios\n");
5686                 r = -EOPNOTSUPP;
5687                 goto out;
5688         }
5689
5690         r = -ENOMEM;
5691         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5692         if (!shared_msrs) {
5693                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5694                 goto out;
5695         }
5696
5697         r = kvm_mmu_module_init();
5698         if (r)
5699                 goto out_free_percpu;
5700
5701         kvm_set_mmio_spte_mask();
5702
5703         kvm_x86_ops = ops;
5704         kvm_init_msr_list();
5705
5706         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5707                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5708
5709         kvm_timer_init();
5710
5711         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5712
5713         if (cpu_has_xsave)
5714                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5715
5716         kvm_lapic_init();
5717 #ifdef CONFIG_X86_64
5718         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5719 #endif
5720
5721         return 0;
5722
5723 out_free_percpu:
5724         free_percpu(shared_msrs);
5725 out:
5726         return r;
5727 }
5728
5729 void kvm_arch_exit(void)
5730 {
5731         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5732
5733         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5734                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5735                                             CPUFREQ_TRANSITION_NOTIFIER);
5736         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5737 #ifdef CONFIG_X86_64
5738         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5739 #endif
5740         kvm_x86_ops = NULL;
5741         kvm_mmu_module_exit();
5742         free_percpu(shared_msrs);
5743 }
5744
5745 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5746 {
5747         ++vcpu->stat.halt_exits;
5748         if (irqchip_in_kernel(vcpu->kvm)) {
5749                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5750                 return 1;
5751         } else {
5752                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5753                 return 0;
5754         }
5755 }
5756 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5757
5758 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5759 {
5760         u64 param, ingpa, outgpa, ret;
5761         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5762         bool fast, longmode;
5763
5764         /*
5765          * hypercall generates UD from non zero cpl and real mode
5766          * per HYPER-V spec
5767          */
5768         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5769                 kvm_queue_exception(vcpu, UD_VECTOR);
5770                 return 0;
5771         }
5772
5773         longmode = is_64_bit_mode(vcpu);
5774
5775         if (!longmode) {
5776                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5777                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5778                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5779                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5780                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5781                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5782         }
5783 #ifdef CONFIG_X86_64
5784         else {
5785                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5786                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5787                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5788         }
5789 #endif
5790
5791         code = param & 0xffff;
5792         fast = (param >> 16) & 0x1;
5793         rep_cnt = (param >> 32) & 0xfff;
5794         rep_idx = (param >> 48) & 0xfff;
5795
5796         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5797
5798         switch (code) {
5799         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5800                 kvm_vcpu_on_spin(vcpu);
5801                 break;
5802         default:
5803                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5804                 break;
5805         }
5806
5807         ret = res | (((u64)rep_done & 0xfff) << 32);
5808         if (longmode) {
5809                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5810         } else {
5811                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5812                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5813         }
5814
5815         return 1;
5816 }
5817
5818 /*
5819  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5820  *
5821  * @apicid - apicid of vcpu to be kicked.
5822  */
5823 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5824 {
5825         struct kvm_lapic_irq lapic_irq;
5826
5827         lapic_irq.shorthand = 0;
5828         lapic_irq.dest_mode = 0;
5829         lapic_irq.dest_id = apicid;
5830
5831         lapic_irq.delivery_mode = APIC_DM_REMRD;
5832         kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5833 }
5834
5835 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5836 {
5837         unsigned long nr, a0, a1, a2, a3, ret;
5838         int op_64_bit, r = 1;
5839
5840         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5841                 return kvm_hv_hypercall(vcpu);
5842
5843         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5844         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5845         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5846         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5847         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5848
5849         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5850
5851         op_64_bit = is_64_bit_mode(vcpu);
5852         if (!op_64_bit) {
5853                 nr &= 0xFFFFFFFF;
5854                 a0 &= 0xFFFFFFFF;
5855                 a1 &= 0xFFFFFFFF;
5856                 a2 &= 0xFFFFFFFF;
5857                 a3 &= 0xFFFFFFFF;
5858         }
5859
5860         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5861                 ret = -KVM_EPERM;
5862                 goto out;
5863         }
5864
5865         switch (nr) {
5866         case KVM_HC_VAPIC_POLL_IRQ:
5867                 ret = 0;
5868                 break;
5869         case KVM_HC_KICK_CPU:
5870                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5871                 ret = 0;
5872                 break;
5873         default:
5874                 ret = -KVM_ENOSYS;
5875                 break;
5876         }
5877 out:
5878         if (!op_64_bit)
5879                 ret = (u32)ret;
5880         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5881         ++vcpu->stat.hypercalls;
5882         return r;
5883 }
5884 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5885
5886 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5887 {
5888         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5889         char instruction[3];
5890         unsigned long rip = kvm_rip_read(vcpu);
5891
5892         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5893
5894         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5895 }
5896
5897 /*
5898  * Check if userspace requested an interrupt window, and that the
5899  * interrupt window is open.
5900  *
5901  * No need to exit to userspace if we already have an interrupt queued.
5902  */
5903 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5904 {
5905         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5906                 vcpu->run->request_interrupt_window &&
5907                 kvm_arch_interrupt_allowed(vcpu));
5908 }
5909
5910 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5911 {
5912         struct kvm_run *kvm_run = vcpu->run;
5913
5914         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5915         kvm_run->cr8 = kvm_get_cr8(vcpu);
5916         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5917         if (irqchip_in_kernel(vcpu->kvm))
5918                 kvm_run->ready_for_interrupt_injection = 1;
5919         else
5920                 kvm_run->ready_for_interrupt_injection =
5921                         kvm_arch_interrupt_allowed(vcpu) &&
5922                         !kvm_cpu_has_interrupt(vcpu) &&
5923                         !kvm_event_needs_reinjection(vcpu);
5924 }
5925
5926 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5927 {
5928         int max_irr, tpr;
5929
5930         if (!kvm_x86_ops->update_cr8_intercept)
5931                 return;
5932
5933         if (!vcpu->arch.apic)
5934                 return;
5935
5936         if (!vcpu->arch.apic->vapic_addr)
5937                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5938         else
5939                 max_irr = -1;
5940
5941         if (max_irr != -1)
5942                 max_irr >>= 4;
5943
5944         tpr = kvm_lapic_get_cr8(vcpu);
5945
5946         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5947 }
5948
5949 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5950 {
5951         int r;
5952
5953         /* try to reinject previous events if any */
5954         if (vcpu->arch.exception.pending) {
5955                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5956                                         vcpu->arch.exception.has_error_code,
5957                                         vcpu->arch.exception.error_code);
5958
5959                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
5960                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
5961                                              X86_EFLAGS_RF);
5962
5963                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5964                                           vcpu->arch.exception.has_error_code,
5965                                           vcpu->arch.exception.error_code,
5966                                           vcpu->arch.exception.reinject);
5967                 return 0;
5968         }
5969
5970         if (vcpu->arch.nmi_injected) {
5971                 kvm_x86_ops->set_nmi(vcpu);
5972                 return 0;
5973         }
5974
5975         if (vcpu->arch.interrupt.pending) {
5976                 kvm_x86_ops->set_irq(vcpu);
5977                 return 0;
5978         }
5979
5980         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5981                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5982                 if (r != 0)
5983                         return r;
5984         }
5985
5986         /* try to inject new event if pending */
5987         if (vcpu->arch.nmi_pending) {
5988                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5989                         --vcpu->arch.nmi_pending;
5990                         vcpu->arch.nmi_injected = true;
5991                         kvm_x86_ops->set_nmi(vcpu);
5992                 }
5993         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5994                 /*
5995                  * Because interrupts can be injected asynchronously, we are
5996                  * calling check_nested_events again here to avoid a race condition.
5997                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
5998                  * proposal and current concerns.  Perhaps we should be setting
5999                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6000                  */
6001                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6002                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6003                         if (r != 0)
6004                                 return r;
6005                 }
6006                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6007                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6008                                             false);
6009                         kvm_x86_ops->set_irq(vcpu);
6010                 }
6011         }
6012         return 0;
6013 }
6014
6015 static void process_nmi(struct kvm_vcpu *vcpu)
6016 {
6017         unsigned limit = 2;
6018
6019         /*
6020          * x86 is limited to one NMI running, and one NMI pending after it.
6021          * If an NMI is already in progress, limit further NMIs to just one.
6022          * Otherwise, allow two (and we'll inject the first one immediately).
6023          */
6024         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6025                 limit = 1;
6026
6027         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6028         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6029         kvm_make_request(KVM_REQ_EVENT, vcpu);
6030 }
6031
6032 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6033 {
6034         u64 eoi_exit_bitmap[4];
6035         u32 tmr[8];
6036
6037         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6038                 return;
6039
6040         memset(eoi_exit_bitmap, 0, 32);
6041         memset(tmr, 0, 32);
6042
6043         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6044         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6045         kvm_apic_update_tmr(vcpu, tmr);
6046 }
6047
6048 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6049 {
6050         ++vcpu->stat.tlb_flush;
6051         kvm_x86_ops->tlb_flush(vcpu);
6052 }
6053
6054 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6055 {
6056         struct page *page = NULL;
6057
6058         if (!irqchip_in_kernel(vcpu->kvm))
6059                 return;
6060
6061         if (!kvm_x86_ops->set_apic_access_page_addr)
6062                 return;
6063
6064         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6065         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6066
6067         /*
6068          * Do not pin apic access page in memory, the MMU notifier
6069          * will call us again if it is migrated or swapped out.
6070          */
6071         put_page(page);
6072 }
6073 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6074
6075 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6076                                            unsigned long address)
6077 {
6078         /*
6079          * The physical address of apic access page is stored in the VMCS.
6080          * Update it when it becomes invalid.
6081          */
6082         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6083                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6084 }
6085
6086 /*
6087  * Returns 1 to let __vcpu_run() continue the guest execution loop without
6088  * exiting to the userspace.  Otherwise, the value will be returned to the
6089  * userspace.
6090  */
6091 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6092 {
6093         int r;
6094         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6095                 vcpu->run->request_interrupt_window;
6096         bool req_immediate_exit = false;
6097
6098         if (vcpu->requests) {
6099                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6100                         kvm_mmu_unload(vcpu);
6101                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6102                         __kvm_migrate_timers(vcpu);
6103                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6104                         kvm_gen_update_masterclock(vcpu->kvm);
6105                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6106                         kvm_gen_kvmclock_update(vcpu);
6107                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6108                         r = kvm_guest_time_update(vcpu);
6109                         if (unlikely(r))
6110                                 goto out;
6111                 }
6112                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6113                         kvm_mmu_sync_roots(vcpu);
6114                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6115                         kvm_vcpu_flush_tlb(vcpu);
6116                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6117                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6118                         r = 0;
6119                         goto out;
6120                 }
6121                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6122                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6123                         r = 0;
6124                         goto out;
6125                 }
6126                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6127                         vcpu->fpu_active = 0;
6128                         kvm_x86_ops->fpu_deactivate(vcpu);
6129                 }
6130                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6131                         /* Page is swapped out. Do synthetic halt */
6132                         vcpu->arch.apf.halted = true;
6133                         r = 1;
6134                         goto out;
6135                 }
6136                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6137                         record_steal_time(vcpu);
6138                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6139                         process_nmi(vcpu);
6140                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6141                         kvm_handle_pmu_event(vcpu);
6142                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6143                         kvm_deliver_pmi(vcpu);
6144                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6145                         vcpu_scan_ioapic(vcpu);
6146                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6147                         kvm_vcpu_reload_apic_access_page(vcpu);
6148         }
6149
6150         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6151                 kvm_apic_accept_events(vcpu);
6152                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6153                         r = 1;
6154                         goto out;
6155                 }
6156
6157                 if (inject_pending_event(vcpu, req_int_win) != 0)
6158                         req_immediate_exit = true;
6159                 /* enable NMI/IRQ window open exits if needed */
6160                 else if (vcpu->arch.nmi_pending)
6161                         kvm_x86_ops->enable_nmi_window(vcpu);
6162                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6163                         kvm_x86_ops->enable_irq_window(vcpu);
6164
6165                 if (kvm_lapic_enabled(vcpu)) {
6166                         /*
6167                          * Update architecture specific hints for APIC
6168                          * virtual interrupt delivery.
6169                          */
6170                         if (kvm_x86_ops->hwapic_irr_update)
6171                                 kvm_x86_ops->hwapic_irr_update(vcpu,
6172                                         kvm_lapic_find_highest_irr(vcpu));
6173                         update_cr8_intercept(vcpu);
6174                         kvm_lapic_sync_to_vapic(vcpu);
6175                 }
6176         }
6177
6178         r = kvm_mmu_reload(vcpu);
6179         if (unlikely(r)) {
6180                 goto cancel_injection;
6181         }
6182
6183         preempt_disable();
6184
6185         kvm_x86_ops->prepare_guest_switch(vcpu);
6186         if (vcpu->fpu_active)
6187                 kvm_load_guest_fpu(vcpu);
6188         kvm_load_guest_xcr0(vcpu);
6189
6190         vcpu->mode = IN_GUEST_MODE;
6191
6192         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6193
6194         /* We should set ->mode before check ->requests,
6195          * see the comment in make_all_cpus_request.
6196          */
6197         smp_mb__after_srcu_read_unlock();
6198
6199         local_irq_disable();
6200
6201         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6202             || need_resched() || signal_pending(current)) {
6203                 vcpu->mode = OUTSIDE_GUEST_MODE;
6204                 smp_wmb();
6205                 local_irq_enable();
6206                 preempt_enable();
6207                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6208                 r = 1;
6209                 goto cancel_injection;
6210         }
6211
6212         if (req_immediate_exit)
6213                 smp_send_reschedule(vcpu->cpu);
6214
6215         kvm_guest_enter();
6216
6217         if (unlikely(vcpu->arch.switch_db_regs)) {
6218                 set_debugreg(0, 7);
6219                 set_debugreg(vcpu->arch.eff_db[0], 0);
6220                 set_debugreg(vcpu->arch.eff_db[1], 1);
6221                 set_debugreg(vcpu->arch.eff_db[2], 2);
6222                 set_debugreg(vcpu->arch.eff_db[3], 3);
6223                 set_debugreg(vcpu->arch.dr6, 6);
6224         }
6225
6226         trace_kvm_entry(vcpu->vcpu_id);
6227         kvm_x86_ops->run(vcpu);
6228
6229         /*
6230          * Do this here before restoring debug registers on the host.  And
6231          * since we do this before handling the vmexit, a DR access vmexit
6232          * can (a) read the correct value of the debug registers, (b) set
6233          * KVM_DEBUGREG_WONT_EXIT again.
6234          */
6235         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6236                 int i;
6237
6238                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6239                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6240                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6241                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6242         }
6243
6244         /*
6245          * If the guest has used debug registers, at least dr7
6246          * will be disabled while returning to the host.
6247          * If we don't have active breakpoints in the host, we don't
6248          * care about the messed up debug address registers. But if
6249          * we have some of them active, restore the old state.
6250          */
6251         if (hw_breakpoint_active())
6252                 hw_breakpoint_restore();
6253
6254         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6255                                                            native_read_tsc());
6256
6257         vcpu->mode = OUTSIDE_GUEST_MODE;
6258         smp_wmb();
6259
6260         /* Interrupt is enabled by handle_external_intr() */
6261         kvm_x86_ops->handle_external_intr(vcpu);
6262
6263         ++vcpu->stat.exits;
6264
6265         /*
6266          * We must have an instruction between local_irq_enable() and
6267          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6268          * the interrupt shadow.  The stat.exits increment will do nicely.
6269          * But we need to prevent reordering, hence this barrier():
6270          */
6271         barrier();
6272
6273         kvm_guest_exit();
6274
6275         preempt_enable();
6276
6277         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6278
6279         /*
6280          * Profile KVM exit RIPs:
6281          */
6282         if (unlikely(prof_on == KVM_PROFILING)) {
6283                 unsigned long rip = kvm_rip_read(vcpu);
6284                 profile_hit(KVM_PROFILING, (void *)rip);
6285         }
6286
6287         if (unlikely(vcpu->arch.tsc_always_catchup))
6288                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6289
6290         if (vcpu->arch.apic_attention)
6291                 kvm_lapic_sync_from_vapic(vcpu);
6292
6293         r = kvm_x86_ops->handle_exit(vcpu);
6294         return r;
6295
6296 cancel_injection:
6297         kvm_x86_ops->cancel_injection(vcpu);
6298         if (unlikely(vcpu->arch.apic_attention))
6299                 kvm_lapic_sync_from_vapic(vcpu);
6300 out:
6301         return r;
6302 }
6303
6304
6305 static int __vcpu_run(struct kvm_vcpu *vcpu)
6306 {
6307         int r;
6308         struct kvm *kvm = vcpu->kvm;
6309
6310         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6311
6312         r = 1;
6313         while (r > 0) {
6314                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6315                     !vcpu->arch.apf.halted)
6316                         r = vcpu_enter_guest(vcpu);
6317                 else {
6318                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6319                         kvm_vcpu_block(vcpu);
6320                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6321                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6322                                 kvm_apic_accept_events(vcpu);
6323                                 switch(vcpu->arch.mp_state) {
6324                                 case KVM_MP_STATE_HALTED:
6325                                         vcpu->arch.pv.pv_unhalted = false;
6326                                         vcpu->arch.mp_state =
6327                                                 KVM_MP_STATE_RUNNABLE;
6328                                 case KVM_MP_STATE_RUNNABLE:
6329                                         vcpu->arch.apf.halted = false;
6330                                         break;
6331                                 case KVM_MP_STATE_INIT_RECEIVED:
6332                                         break;
6333                                 default:
6334                                         r = -EINTR;
6335                                         break;
6336                                 }
6337                         }
6338                 }
6339
6340                 if (r <= 0)
6341                         break;
6342
6343                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6344                 if (kvm_cpu_has_pending_timer(vcpu))
6345                         kvm_inject_pending_timer_irqs(vcpu);
6346
6347                 if (dm_request_for_irq_injection(vcpu)) {
6348                         r = -EINTR;
6349                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6350                         ++vcpu->stat.request_irq_exits;
6351                 }
6352
6353                 kvm_check_async_pf_completion(vcpu);
6354
6355                 if (signal_pending(current)) {
6356                         r = -EINTR;
6357                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6358                         ++vcpu->stat.signal_exits;
6359                 }
6360                 if (need_resched()) {
6361                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6362                         cond_resched();
6363                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6364                 }
6365         }
6366
6367         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6368
6369         return r;
6370 }
6371
6372 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6373 {
6374         int r;
6375         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6376         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6377         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6378         if (r != EMULATE_DONE)
6379                 return 0;
6380         return 1;
6381 }
6382
6383 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6384 {
6385         BUG_ON(!vcpu->arch.pio.count);
6386
6387         return complete_emulated_io(vcpu);
6388 }
6389
6390 /*
6391  * Implements the following, as a state machine:
6392  *
6393  * read:
6394  *   for each fragment
6395  *     for each mmio piece in the fragment
6396  *       write gpa, len
6397  *       exit
6398  *       copy data
6399  *   execute insn
6400  *
6401  * write:
6402  *   for each fragment
6403  *     for each mmio piece in the fragment
6404  *       write gpa, len
6405  *       copy data
6406  *       exit
6407  */
6408 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6409 {
6410         struct kvm_run *run = vcpu->run;
6411         struct kvm_mmio_fragment *frag;
6412         unsigned len;
6413
6414         BUG_ON(!vcpu->mmio_needed);
6415
6416         /* Complete previous fragment */
6417         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6418         len = min(8u, frag->len);
6419         if (!vcpu->mmio_is_write)
6420                 memcpy(frag->data, run->mmio.data, len);
6421
6422         if (frag->len <= 8) {
6423                 /* Switch to the next fragment. */
6424                 frag++;
6425                 vcpu->mmio_cur_fragment++;
6426         } else {
6427                 /* Go forward to the next mmio piece. */
6428                 frag->data += len;
6429                 frag->gpa += len;
6430                 frag->len -= len;
6431         }
6432
6433         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6434                 vcpu->mmio_needed = 0;
6435
6436                 /* FIXME: return into emulator if single-stepping.  */
6437                 if (vcpu->mmio_is_write)
6438                         return 1;
6439                 vcpu->mmio_read_completed = 1;
6440                 return complete_emulated_io(vcpu);
6441         }
6442
6443         run->exit_reason = KVM_EXIT_MMIO;
6444         run->mmio.phys_addr = frag->gpa;
6445         if (vcpu->mmio_is_write)
6446                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6447         run->mmio.len = min(8u, frag->len);
6448         run->mmio.is_write = vcpu->mmio_is_write;
6449         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6450         return 0;
6451 }
6452
6453
6454 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6455 {
6456         int r;
6457         sigset_t sigsaved;
6458
6459         if (!tsk_used_math(current) && init_fpu(current))
6460                 return -ENOMEM;
6461
6462         if (vcpu->sigset_active)
6463                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6464
6465         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6466                 kvm_vcpu_block(vcpu);
6467                 kvm_apic_accept_events(vcpu);
6468                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6469                 r = -EAGAIN;
6470                 goto out;
6471         }
6472
6473         /* re-sync apic's tpr */
6474         if (!irqchip_in_kernel(vcpu->kvm)) {
6475                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6476                         r = -EINVAL;
6477                         goto out;
6478                 }
6479         }
6480
6481         if (unlikely(vcpu->arch.complete_userspace_io)) {
6482                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6483                 vcpu->arch.complete_userspace_io = NULL;
6484                 r = cui(vcpu);
6485                 if (r <= 0)
6486                         goto out;
6487         } else
6488                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6489
6490         r = __vcpu_run(vcpu);
6491
6492 out:
6493         post_kvm_run_save(vcpu);
6494         if (vcpu->sigset_active)
6495                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6496
6497         return r;
6498 }
6499
6500 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6501 {
6502         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6503                 /*
6504                  * We are here if userspace calls get_regs() in the middle of
6505                  * instruction emulation. Registers state needs to be copied
6506                  * back from emulation context to vcpu. Userspace shouldn't do
6507                  * that usually, but some bad designed PV devices (vmware
6508                  * backdoor interface) need this to work
6509                  */
6510                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6511                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6512         }
6513         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6514         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6515         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6516         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6517         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6518         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6519         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6520         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6521 #ifdef CONFIG_X86_64
6522         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6523         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6524         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6525         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6526         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6527         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6528         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6529         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6530 #endif
6531
6532         regs->rip = kvm_rip_read(vcpu);
6533         regs->rflags = kvm_get_rflags(vcpu);
6534
6535         return 0;
6536 }
6537
6538 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6539 {
6540         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6541         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6542
6543         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6544         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6545         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6546         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6547         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6548         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6549         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6550         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6551 #ifdef CONFIG_X86_64
6552         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6553         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6554         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6555         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6556         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6557         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6558         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6559         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6560 #endif
6561
6562         kvm_rip_write(vcpu, regs->rip);
6563         kvm_set_rflags(vcpu, regs->rflags);
6564
6565         vcpu->arch.exception.pending = false;
6566
6567         kvm_make_request(KVM_REQ_EVENT, vcpu);
6568
6569         return 0;
6570 }
6571
6572 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6573 {
6574         struct kvm_segment cs;
6575
6576         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6577         *db = cs.db;
6578         *l = cs.l;
6579 }
6580 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6581
6582 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6583                                   struct kvm_sregs *sregs)
6584 {
6585         struct desc_ptr dt;
6586
6587         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6588         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6589         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6590         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6591         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6592         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6593
6594         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6595         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6596
6597         kvm_x86_ops->get_idt(vcpu, &dt);
6598         sregs->idt.limit = dt.size;
6599         sregs->idt.base = dt.address;
6600         kvm_x86_ops->get_gdt(vcpu, &dt);
6601         sregs->gdt.limit = dt.size;
6602         sregs->gdt.base = dt.address;
6603
6604         sregs->cr0 = kvm_read_cr0(vcpu);
6605         sregs->cr2 = vcpu->arch.cr2;
6606         sregs->cr3 = kvm_read_cr3(vcpu);
6607         sregs->cr4 = kvm_read_cr4(vcpu);
6608         sregs->cr8 = kvm_get_cr8(vcpu);
6609         sregs->efer = vcpu->arch.efer;
6610         sregs->apic_base = kvm_get_apic_base(vcpu);
6611
6612         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6613
6614         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6615                 set_bit(vcpu->arch.interrupt.nr,
6616                         (unsigned long *)sregs->interrupt_bitmap);
6617
6618         return 0;
6619 }
6620
6621 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6622                                     struct kvm_mp_state *mp_state)
6623 {
6624         kvm_apic_accept_events(vcpu);
6625         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6626                                         vcpu->arch.pv.pv_unhalted)
6627                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6628         else
6629                 mp_state->mp_state = vcpu->arch.mp_state;
6630
6631         return 0;
6632 }
6633
6634 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6635                                     struct kvm_mp_state *mp_state)
6636 {
6637         if (!kvm_vcpu_has_lapic(vcpu) &&
6638             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6639                 return -EINVAL;
6640
6641         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6642                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6643                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6644         } else
6645                 vcpu->arch.mp_state = mp_state->mp_state;
6646         kvm_make_request(KVM_REQ_EVENT, vcpu);
6647         return 0;
6648 }
6649
6650 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6651                     int reason, bool has_error_code, u32 error_code)
6652 {
6653         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6654         int ret;
6655
6656         init_emulate_ctxt(vcpu);
6657
6658         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6659                                    has_error_code, error_code);
6660
6661         if (ret)
6662                 return EMULATE_FAIL;
6663
6664         kvm_rip_write(vcpu, ctxt->eip);
6665         kvm_set_rflags(vcpu, ctxt->eflags);
6666         kvm_make_request(KVM_REQ_EVENT, vcpu);
6667         return EMULATE_DONE;
6668 }
6669 EXPORT_SYMBOL_GPL(kvm_task_switch);
6670
6671 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6672                                   struct kvm_sregs *sregs)
6673 {
6674         struct msr_data apic_base_msr;
6675         int mmu_reset_needed = 0;
6676         int pending_vec, max_bits, idx;
6677         struct desc_ptr dt;
6678
6679         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6680                 return -EINVAL;
6681
6682         dt.size = sregs->idt.limit;
6683         dt.address = sregs->idt.base;
6684         kvm_x86_ops->set_idt(vcpu, &dt);
6685         dt.size = sregs->gdt.limit;
6686         dt.address = sregs->gdt.base;
6687         kvm_x86_ops->set_gdt(vcpu, &dt);
6688
6689         vcpu->arch.cr2 = sregs->cr2;
6690         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6691         vcpu->arch.cr3 = sregs->cr3;
6692         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6693
6694         kvm_set_cr8(vcpu, sregs->cr8);
6695
6696         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6697         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6698         apic_base_msr.data = sregs->apic_base;
6699         apic_base_msr.host_initiated = true;
6700         kvm_set_apic_base(vcpu, &apic_base_msr);
6701
6702         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6703         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6704         vcpu->arch.cr0 = sregs->cr0;
6705
6706         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6707         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6708         if (sregs->cr4 & X86_CR4_OSXSAVE)
6709                 kvm_update_cpuid(vcpu);
6710
6711         idx = srcu_read_lock(&vcpu->kvm->srcu);
6712         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6713                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6714                 mmu_reset_needed = 1;
6715         }
6716         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6717
6718         if (mmu_reset_needed)
6719                 kvm_mmu_reset_context(vcpu);
6720
6721         max_bits = KVM_NR_INTERRUPTS;
6722         pending_vec = find_first_bit(
6723                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6724         if (pending_vec < max_bits) {
6725                 kvm_queue_interrupt(vcpu, pending_vec, false);
6726                 pr_debug("Set back pending irq %d\n", pending_vec);
6727         }
6728
6729         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6730         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6731         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6732         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6733         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6734         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6735
6736         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6737         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6738
6739         update_cr8_intercept(vcpu);
6740
6741         /* Older userspace won't unhalt the vcpu on reset. */
6742         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6743             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6744             !is_protmode(vcpu))
6745                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6746
6747         kvm_make_request(KVM_REQ_EVENT, vcpu);
6748
6749         return 0;
6750 }
6751
6752 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6753                                         struct kvm_guest_debug *dbg)
6754 {
6755         unsigned long rflags;
6756         int i, r;
6757
6758         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6759                 r = -EBUSY;
6760                 if (vcpu->arch.exception.pending)
6761                         goto out;
6762                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6763                         kvm_queue_exception(vcpu, DB_VECTOR);
6764                 else
6765                         kvm_queue_exception(vcpu, BP_VECTOR);
6766         }
6767
6768         /*
6769          * Read rflags as long as potentially injected trace flags are still
6770          * filtered out.
6771          */
6772         rflags = kvm_get_rflags(vcpu);
6773
6774         vcpu->guest_debug = dbg->control;
6775         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6776                 vcpu->guest_debug = 0;
6777
6778         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6779                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6780                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6781                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6782         } else {
6783                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6784                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6785         }
6786         kvm_update_dr7(vcpu);
6787
6788         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6789                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6790                         get_segment_base(vcpu, VCPU_SREG_CS);
6791
6792         /*
6793          * Trigger an rflags update that will inject or remove the trace
6794          * flags.
6795          */
6796         kvm_set_rflags(vcpu, rflags);
6797
6798         kvm_x86_ops->update_db_bp_intercept(vcpu);
6799
6800         r = 0;
6801
6802 out:
6803
6804         return r;
6805 }
6806
6807 /*
6808  * Translate a guest virtual address to a guest physical address.
6809  */
6810 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6811                                     struct kvm_translation *tr)
6812 {
6813         unsigned long vaddr = tr->linear_address;
6814         gpa_t gpa;
6815         int idx;
6816
6817         idx = srcu_read_lock(&vcpu->kvm->srcu);
6818         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6819         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6820         tr->physical_address = gpa;
6821         tr->valid = gpa != UNMAPPED_GVA;
6822         tr->writeable = 1;
6823         tr->usermode = 0;
6824
6825         return 0;
6826 }
6827
6828 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6829 {
6830         struct i387_fxsave_struct *fxsave =
6831                         &vcpu->arch.guest_fpu.state->fxsave;
6832
6833         memcpy(fpu->fpr, fxsave->st_space, 128);
6834         fpu->fcw = fxsave->cwd;
6835         fpu->fsw = fxsave->swd;
6836         fpu->ftwx = fxsave->twd;
6837         fpu->last_opcode = fxsave->fop;
6838         fpu->last_ip = fxsave->rip;
6839         fpu->last_dp = fxsave->rdp;
6840         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6841
6842         return 0;
6843 }
6844
6845 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6846 {
6847         struct i387_fxsave_struct *fxsave =
6848                         &vcpu->arch.guest_fpu.state->fxsave;
6849
6850         memcpy(fxsave->st_space, fpu->fpr, 128);
6851         fxsave->cwd = fpu->fcw;
6852         fxsave->swd = fpu->fsw;
6853         fxsave->twd = fpu->ftwx;
6854         fxsave->fop = fpu->last_opcode;
6855         fxsave->rip = fpu->last_ip;
6856         fxsave->rdp = fpu->last_dp;
6857         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6858
6859         return 0;
6860 }
6861
6862 int fx_init(struct kvm_vcpu *vcpu)
6863 {
6864         int err;
6865
6866         err = fpu_alloc(&vcpu->arch.guest_fpu);
6867         if (err)
6868                 return err;
6869
6870         fpu_finit(&vcpu->arch.guest_fpu);
6871
6872         /*
6873          * Ensure guest xcr0 is valid for loading
6874          */
6875         vcpu->arch.xcr0 = XSTATE_FP;
6876
6877         vcpu->arch.cr0 |= X86_CR0_ET;
6878
6879         return 0;
6880 }
6881 EXPORT_SYMBOL_GPL(fx_init);
6882
6883 static void fx_free(struct kvm_vcpu *vcpu)
6884 {
6885         fpu_free(&vcpu->arch.guest_fpu);
6886 }
6887
6888 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6889 {
6890         if (vcpu->guest_fpu_loaded)
6891                 return;
6892
6893         /*
6894          * Restore all possible states in the guest,
6895          * and assume host would use all available bits.
6896          * Guest xcr0 would be loaded later.
6897          */
6898         kvm_put_guest_xcr0(vcpu);
6899         vcpu->guest_fpu_loaded = 1;
6900         __kernel_fpu_begin();
6901         fpu_restore_checking(&vcpu->arch.guest_fpu);
6902         trace_kvm_fpu(1);
6903 }
6904
6905 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6906 {
6907         kvm_put_guest_xcr0(vcpu);
6908
6909         if (!vcpu->guest_fpu_loaded)
6910                 return;
6911
6912         vcpu->guest_fpu_loaded = 0;
6913         fpu_save_init(&vcpu->arch.guest_fpu);
6914         __kernel_fpu_end();
6915         ++vcpu->stat.fpu_reload;
6916         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6917         trace_kvm_fpu(0);
6918 }
6919
6920 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6921 {
6922         kvmclock_reset(vcpu);
6923
6924         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6925         fx_free(vcpu);
6926         kvm_x86_ops->vcpu_free(vcpu);
6927 }
6928
6929 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6930                                                 unsigned int id)
6931 {
6932         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6933                 printk_once(KERN_WARNING
6934                 "kvm: SMP vm created on host with unstable TSC; "
6935                 "guest TSC will not be reliable\n");
6936         return kvm_x86_ops->vcpu_create(kvm, id);
6937 }
6938
6939 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6940 {
6941         int r;
6942
6943         vcpu->arch.mtrr_state.have_fixed = 1;
6944         r = vcpu_load(vcpu);
6945         if (r)
6946                 return r;
6947         kvm_vcpu_reset(vcpu);
6948         kvm_mmu_setup(vcpu);
6949         vcpu_put(vcpu);
6950
6951         return r;
6952 }
6953
6954 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6955 {
6956         int r;
6957         struct msr_data msr;
6958         struct kvm *kvm = vcpu->kvm;
6959
6960         r = vcpu_load(vcpu);
6961         if (r)
6962                 return r;
6963         msr.data = 0x0;
6964         msr.index = MSR_IA32_TSC;
6965         msr.host_initiated = true;
6966         kvm_write_tsc(vcpu, &msr);
6967         vcpu_put(vcpu);
6968
6969         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
6970                                         KVMCLOCK_SYNC_PERIOD);
6971
6972         return r;
6973 }
6974
6975 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6976 {
6977         int r;
6978         vcpu->arch.apf.msr_val = 0;
6979
6980         r = vcpu_load(vcpu);
6981         BUG_ON(r);
6982         kvm_mmu_unload(vcpu);
6983         vcpu_put(vcpu);
6984
6985         fx_free(vcpu);
6986         kvm_x86_ops->vcpu_free(vcpu);
6987 }
6988
6989 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6990 {
6991         atomic_set(&vcpu->arch.nmi_queued, 0);
6992         vcpu->arch.nmi_pending = 0;
6993         vcpu->arch.nmi_injected = false;
6994         kvm_clear_interrupt_queue(vcpu);
6995         kvm_clear_exception_queue(vcpu);
6996
6997         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6998         vcpu->arch.dr6 = DR6_INIT;
6999         kvm_update_dr6(vcpu);
7000         vcpu->arch.dr7 = DR7_FIXED_1;
7001         kvm_update_dr7(vcpu);
7002
7003         kvm_make_request(KVM_REQ_EVENT, vcpu);
7004         vcpu->arch.apf.msr_val = 0;
7005         vcpu->arch.st.msr_val = 0;
7006
7007         kvmclock_reset(vcpu);
7008
7009         kvm_clear_async_pf_completion_queue(vcpu);
7010         kvm_async_pf_hash_reset(vcpu);
7011         vcpu->arch.apf.halted = false;
7012
7013         kvm_pmu_reset(vcpu);
7014
7015         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7016         vcpu->arch.regs_avail = ~0;
7017         vcpu->arch.regs_dirty = ~0;
7018
7019         kvm_x86_ops->vcpu_reset(vcpu);
7020 }
7021
7022 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
7023 {
7024         struct kvm_segment cs;
7025
7026         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7027         cs.selector = vector << 8;
7028         cs.base = vector << 12;
7029         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7030         kvm_rip_write(vcpu, 0);
7031 }
7032
7033 int kvm_arch_hardware_enable(void)
7034 {
7035         struct kvm *kvm;
7036         struct kvm_vcpu *vcpu;
7037         int i;
7038         int ret;
7039         u64 local_tsc;
7040         u64 max_tsc = 0;
7041         bool stable, backwards_tsc = false;
7042
7043         kvm_shared_msr_cpu_online();
7044         ret = kvm_x86_ops->hardware_enable();
7045         if (ret != 0)
7046                 return ret;
7047
7048         local_tsc = native_read_tsc();
7049         stable = !check_tsc_unstable();
7050         list_for_each_entry(kvm, &vm_list, vm_list) {
7051                 kvm_for_each_vcpu(i, vcpu, kvm) {
7052                         if (!stable && vcpu->cpu == smp_processor_id())
7053                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7054                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7055                                 backwards_tsc = true;
7056                                 if (vcpu->arch.last_host_tsc > max_tsc)
7057                                         max_tsc = vcpu->arch.last_host_tsc;
7058                         }
7059                 }
7060         }
7061
7062         /*
7063          * Sometimes, even reliable TSCs go backwards.  This happens on
7064          * platforms that reset TSC during suspend or hibernate actions, but
7065          * maintain synchronization.  We must compensate.  Fortunately, we can
7066          * detect that condition here, which happens early in CPU bringup,
7067          * before any KVM threads can be running.  Unfortunately, we can't
7068          * bring the TSCs fully up to date with real time, as we aren't yet far
7069          * enough into CPU bringup that we know how much real time has actually
7070          * elapsed; our helper function, get_kernel_ns() will be using boot
7071          * variables that haven't been updated yet.
7072          *
7073          * So we simply find the maximum observed TSC above, then record the
7074          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7075          * the adjustment will be applied.  Note that we accumulate
7076          * adjustments, in case multiple suspend cycles happen before some VCPU
7077          * gets a chance to run again.  In the event that no KVM threads get a
7078          * chance to run, we will miss the entire elapsed period, as we'll have
7079          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7080          * loose cycle time.  This isn't too big a deal, since the loss will be
7081          * uniform across all VCPUs (not to mention the scenario is extremely
7082          * unlikely). It is possible that a second hibernate recovery happens
7083          * much faster than a first, causing the observed TSC here to be
7084          * smaller; this would require additional padding adjustment, which is
7085          * why we set last_host_tsc to the local tsc observed here.
7086          *
7087          * N.B. - this code below runs only on platforms with reliable TSC,
7088          * as that is the only way backwards_tsc is set above.  Also note
7089          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7090          * have the same delta_cyc adjustment applied if backwards_tsc
7091          * is detected.  Note further, this adjustment is only done once,
7092          * as we reset last_host_tsc on all VCPUs to stop this from being
7093          * called multiple times (one for each physical CPU bringup).
7094          *
7095          * Platforms with unreliable TSCs don't have to deal with this, they
7096          * will be compensated by the logic in vcpu_load, which sets the TSC to
7097          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7098          * guarantee that they stay in perfect synchronization.
7099          */
7100         if (backwards_tsc) {
7101                 u64 delta_cyc = max_tsc - local_tsc;
7102                 backwards_tsc_observed = true;
7103                 list_for_each_entry(kvm, &vm_list, vm_list) {
7104                         kvm_for_each_vcpu(i, vcpu, kvm) {
7105                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7106                                 vcpu->arch.last_host_tsc = local_tsc;
7107                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7108                         }
7109
7110                         /*
7111                          * We have to disable TSC offset matching.. if you were
7112                          * booting a VM while issuing an S4 host suspend....
7113                          * you may have some problem.  Solving this issue is
7114                          * left as an exercise to the reader.
7115                          */
7116                         kvm->arch.last_tsc_nsec = 0;
7117                         kvm->arch.last_tsc_write = 0;
7118                 }
7119
7120         }
7121         return 0;
7122 }
7123
7124 void kvm_arch_hardware_disable(void)
7125 {
7126         kvm_x86_ops->hardware_disable();
7127         drop_user_return_notifiers();
7128 }
7129
7130 int kvm_arch_hardware_setup(void)
7131 {
7132         return kvm_x86_ops->hardware_setup();
7133 }
7134
7135 void kvm_arch_hardware_unsetup(void)
7136 {
7137         kvm_x86_ops->hardware_unsetup();
7138 }
7139
7140 void kvm_arch_check_processor_compat(void *rtn)
7141 {
7142         kvm_x86_ops->check_processor_compatibility(rtn);
7143 }
7144
7145 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7146 {
7147         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7148 }
7149
7150 struct static_key kvm_no_apic_vcpu __read_mostly;
7151
7152 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7153 {
7154         struct page *page;
7155         struct kvm *kvm;
7156         int r;
7157
7158         BUG_ON(vcpu->kvm == NULL);
7159         kvm = vcpu->kvm;
7160
7161         vcpu->arch.pv.pv_unhalted = false;
7162         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7163         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
7164                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7165         else
7166                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7167
7168         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7169         if (!page) {
7170                 r = -ENOMEM;
7171                 goto fail;
7172         }
7173         vcpu->arch.pio_data = page_address(page);
7174
7175         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7176
7177         r = kvm_mmu_create(vcpu);
7178         if (r < 0)
7179                 goto fail_free_pio_data;
7180
7181         if (irqchip_in_kernel(kvm)) {
7182                 r = kvm_create_lapic(vcpu);
7183                 if (r < 0)
7184                         goto fail_mmu_destroy;
7185         } else
7186                 static_key_slow_inc(&kvm_no_apic_vcpu);
7187
7188         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7189                                        GFP_KERNEL);
7190         if (!vcpu->arch.mce_banks) {
7191                 r = -ENOMEM;
7192                 goto fail_free_lapic;
7193         }
7194         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7195
7196         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7197                 r = -ENOMEM;
7198                 goto fail_free_mce_banks;
7199         }
7200
7201         r = fx_init(vcpu);
7202         if (r)
7203                 goto fail_free_wbinvd_dirty_mask;
7204
7205         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7206         vcpu->arch.pv_time_enabled = false;
7207
7208         vcpu->arch.guest_supported_xcr0 = 0;
7209         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7210
7211         kvm_async_pf_hash_reset(vcpu);
7212         kvm_pmu_init(vcpu);
7213
7214         return 0;
7215 fail_free_wbinvd_dirty_mask:
7216         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7217 fail_free_mce_banks:
7218         kfree(vcpu->arch.mce_banks);
7219 fail_free_lapic:
7220         kvm_free_lapic(vcpu);
7221 fail_mmu_destroy:
7222         kvm_mmu_destroy(vcpu);
7223 fail_free_pio_data:
7224         free_page((unsigned long)vcpu->arch.pio_data);
7225 fail:
7226         return r;
7227 }
7228
7229 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7230 {
7231         int idx;
7232
7233         kvm_pmu_destroy(vcpu);
7234         kfree(vcpu->arch.mce_banks);
7235         kvm_free_lapic(vcpu);
7236         idx = srcu_read_lock(&vcpu->kvm->srcu);
7237         kvm_mmu_destroy(vcpu);
7238         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7239         free_page((unsigned long)vcpu->arch.pio_data);
7240         if (!irqchip_in_kernel(vcpu->kvm))
7241                 static_key_slow_dec(&kvm_no_apic_vcpu);
7242 }
7243
7244 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7245 {
7246         kvm_x86_ops->sched_in(vcpu, cpu);
7247 }
7248
7249 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7250 {
7251         if (type)
7252                 return -EINVAL;
7253
7254         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7255         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7256         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7257         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7258
7259         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7260         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7261         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7262         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7263                 &kvm->arch.irq_sources_bitmap);
7264
7265         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7266         mutex_init(&kvm->arch.apic_map_lock);
7267         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7268
7269         pvclock_update_vm_gtod_copy(kvm);
7270
7271         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7272         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7273
7274         return 0;
7275 }
7276
7277 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7278 {
7279         int r;
7280         r = vcpu_load(vcpu);
7281         BUG_ON(r);
7282         kvm_mmu_unload(vcpu);
7283         vcpu_put(vcpu);
7284 }
7285
7286 static void kvm_free_vcpus(struct kvm *kvm)
7287 {
7288         unsigned int i;
7289         struct kvm_vcpu *vcpu;
7290
7291         /*
7292          * Unpin any mmu pages first.
7293          */
7294         kvm_for_each_vcpu(i, vcpu, kvm) {
7295                 kvm_clear_async_pf_completion_queue(vcpu);
7296                 kvm_unload_vcpu_mmu(vcpu);
7297         }
7298         kvm_for_each_vcpu(i, vcpu, kvm)
7299                 kvm_arch_vcpu_free(vcpu);
7300
7301         mutex_lock(&kvm->lock);
7302         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7303                 kvm->vcpus[i] = NULL;
7304
7305         atomic_set(&kvm->online_vcpus, 0);
7306         mutex_unlock(&kvm->lock);
7307 }
7308
7309 void kvm_arch_sync_events(struct kvm *kvm)
7310 {
7311         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7312         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7313         kvm_free_all_assigned_devices(kvm);
7314         kvm_free_pit(kvm);
7315 }
7316
7317 void kvm_arch_destroy_vm(struct kvm *kvm)
7318 {
7319         if (current->mm == kvm->mm) {
7320                 /*
7321                  * Free memory regions allocated on behalf of userspace,
7322                  * unless the the memory map has changed due to process exit
7323                  * or fd copying.
7324                  */
7325                 struct kvm_userspace_memory_region mem;
7326                 memset(&mem, 0, sizeof(mem));
7327                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7328                 kvm_set_memory_region(kvm, &mem);
7329
7330                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7331                 kvm_set_memory_region(kvm, &mem);
7332
7333                 mem.slot = TSS_PRIVATE_MEMSLOT;
7334                 kvm_set_memory_region(kvm, &mem);
7335         }
7336         kvm_iommu_unmap_guest(kvm);
7337         kfree(kvm->arch.vpic);
7338         kfree(kvm->arch.vioapic);
7339         kvm_free_vcpus(kvm);
7340         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7341 }
7342
7343 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7344                            struct kvm_memory_slot *dont)
7345 {
7346         int i;
7347
7348         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7349                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7350                         kvm_kvfree(free->arch.rmap[i]);
7351                         free->arch.rmap[i] = NULL;
7352                 }
7353                 if (i == 0)
7354                         continue;
7355
7356                 if (!dont || free->arch.lpage_info[i - 1] !=
7357                              dont->arch.lpage_info[i - 1]) {
7358                         kvm_kvfree(free->arch.lpage_info[i - 1]);
7359                         free->arch.lpage_info[i - 1] = NULL;
7360                 }
7361         }
7362 }
7363
7364 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7365                             unsigned long npages)
7366 {
7367         int i;
7368
7369         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7370                 unsigned long ugfn;
7371                 int lpages;
7372                 int level = i + 1;
7373
7374                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7375                                       slot->base_gfn, level) + 1;
7376
7377                 slot->arch.rmap[i] =
7378                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7379                 if (!slot->arch.rmap[i])
7380                         goto out_free;
7381                 if (i == 0)
7382                         continue;
7383
7384                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7385                                         sizeof(*slot->arch.lpage_info[i - 1]));
7386                 if (!slot->arch.lpage_info[i - 1])
7387                         goto out_free;
7388
7389                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7390                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7391                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7392                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7393                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7394                 /*
7395                  * If the gfn and userspace address are not aligned wrt each
7396                  * other, or if explicitly asked to, disable large page
7397                  * support for this slot
7398                  */
7399                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7400                     !kvm_largepages_enabled()) {
7401                         unsigned long j;
7402
7403                         for (j = 0; j < lpages; ++j)
7404                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7405                 }
7406         }
7407
7408         return 0;
7409
7410 out_free:
7411         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7412                 kvm_kvfree(slot->arch.rmap[i]);
7413                 slot->arch.rmap[i] = NULL;
7414                 if (i == 0)
7415                         continue;
7416
7417                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7418                 slot->arch.lpage_info[i - 1] = NULL;
7419         }
7420         return -ENOMEM;
7421 }
7422
7423 void kvm_arch_memslots_updated(struct kvm *kvm)
7424 {
7425         /*
7426          * memslots->generation has been incremented.
7427          * mmio generation may have reached its maximum value.
7428          */
7429         kvm_mmu_invalidate_mmio_sptes(kvm);
7430 }
7431
7432 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7433                                 struct kvm_memory_slot *memslot,
7434                                 struct kvm_userspace_memory_region *mem,
7435                                 enum kvm_mr_change change)
7436 {
7437         /*
7438          * Only private memory slots need to be mapped here since
7439          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7440          */
7441         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7442                 unsigned long userspace_addr;
7443
7444                 /*
7445                  * MAP_SHARED to prevent internal slot pages from being moved
7446                  * by fork()/COW.
7447                  */
7448                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7449                                          PROT_READ | PROT_WRITE,
7450                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7451
7452                 if (IS_ERR((void *)userspace_addr))
7453                         return PTR_ERR((void *)userspace_addr);
7454
7455                 memslot->userspace_addr = userspace_addr;
7456         }
7457
7458         return 0;
7459 }
7460
7461 void kvm_arch_commit_memory_region(struct kvm *kvm,
7462                                 struct kvm_userspace_memory_region *mem,
7463                                 const struct kvm_memory_slot *old,
7464                                 enum kvm_mr_change change)
7465 {
7466
7467         int nr_mmu_pages = 0;
7468
7469         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7470                 int ret;
7471
7472                 ret = vm_munmap(old->userspace_addr,
7473                                 old->npages * PAGE_SIZE);
7474                 if (ret < 0)
7475                         printk(KERN_WARNING
7476                                "kvm_vm_ioctl_set_memory_region: "
7477                                "failed to munmap memory\n");
7478         }
7479
7480         if (!kvm->arch.n_requested_mmu_pages)
7481                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7482
7483         if (nr_mmu_pages)
7484                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7485         /*
7486          * Write protect all pages for dirty logging.
7487          *
7488          * All the sptes including the large sptes which point to this
7489          * slot are set to readonly. We can not create any new large
7490          * spte on this slot until the end of the logging.
7491          *
7492          * See the comments in fast_page_fault().
7493          */
7494         if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7495                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7496 }
7497
7498 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7499 {
7500         kvm_mmu_invalidate_zap_all_pages(kvm);
7501 }
7502
7503 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7504                                    struct kvm_memory_slot *slot)
7505 {
7506         kvm_mmu_invalidate_zap_all_pages(kvm);
7507 }
7508
7509 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7510 {
7511         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7512                 kvm_x86_ops->check_nested_events(vcpu, false);
7513
7514         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7515                 !vcpu->arch.apf.halted)
7516                 || !list_empty_careful(&vcpu->async_pf.done)
7517                 || kvm_apic_has_events(vcpu)
7518                 || vcpu->arch.pv.pv_unhalted
7519                 || atomic_read(&vcpu->arch.nmi_queued) ||
7520                 (kvm_arch_interrupt_allowed(vcpu) &&
7521                  kvm_cpu_has_interrupt(vcpu));
7522 }
7523
7524 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7525 {
7526         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7527 }
7528
7529 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7530 {
7531         return kvm_x86_ops->interrupt_allowed(vcpu);
7532 }
7533
7534 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7535 {
7536         unsigned long current_rip = kvm_rip_read(vcpu) +
7537                 get_segment_base(vcpu, VCPU_SREG_CS);
7538
7539         return current_rip == linear_rip;
7540 }
7541 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7542
7543 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7544 {
7545         unsigned long rflags;
7546
7547         rflags = kvm_x86_ops->get_rflags(vcpu);
7548         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7549                 rflags &= ~X86_EFLAGS_TF;
7550         return rflags;
7551 }
7552 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7553
7554 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7555 {
7556         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7557             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7558                 rflags |= X86_EFLAGS_TF;
7559         kvm_x86_ops->set_rflags(vcpu, rflags);
7560 }
7561
7562 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7563 {
7564         __kvm_set_rflags(vcpu, rflags);
7565         kvm_make_request(KVM_REQ_EVENT, vcpu);
7566 }
7567 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7568
7569 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7570 {
7571         int r;
7572
7573         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7574               work->wakeup_all)
7575                 return;
7576
7577         r = kvm_mmu_reload(vcpu);
7578         if (unlikely(r))
7579                 return;
7580
7581         if (!vcpu->arch.mmu.direct_map &&
7582               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7583                 return;
7584
7585         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7586 }
7587
7588 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7589 {
7590         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7591 }
7592
7593 static inline u32 kvm_async_pf_next_probe(u32 key)
7594 {
7595         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7596 }
7597
7598 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7599 {
7600         u32 key = kvm_async_pf_hash_fn(gfn);
7601
7602         while (vcpu->arch.apf.gfns[key] != ~0)
7603                 key = kvm_async_pf_next_probe(key);
7604
7605         vcpu->arch.apf.gfns[key] = gfn;
7606 }
7607
7608 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7609 {
7610         int i;
7611         u32 key = kvm_async_pf_hash_fn(gfn);
7612
7613         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7614                      (vcpu->arch.apf.gfns[key] != gfn &&
7615                       vcpu->arch.apf.gfns[key] != ~0); i++)
7616                 key = kvm_async_pf_next_probe(key);
7617
7618         return key;
7619 }
7620
7621 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7622 {
7623         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7624 }
7625
7626 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7627 {
7628         u32 i, j, k;
7629
7630         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7631         while (true) {
7632                 vcpu->arch.apf.gfns[i] = ~0;
7633                 do {
7634                         j = kvm_async_pf_next_probe(j);
7635                         if (vcpu->arch.apf.gfns[j] == ~0)
7636                                 return;
7637                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7638                         /*
7639                          * k lies cyclically in ]i,j]
7640                          * |    i.k.j |
7641                          * |....j i.k.| or  |.k..j i...|
7642                          */
7643                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7644                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7645                 i = j;
7646         }
7647 }
7648
7649 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7650 {
7651
7652         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7653                                       sizeof(val));
7654 }
7655
7656 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7657                                      struct kvm_async_pf *work)
7658 {
7659         struct x86_exception fault;
7660
7661         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7662         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7663
7664         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7665             (vcpu->arch.apf.send_user_only &&
7666              kvm_x86_ops->get_cpl(vcpu) == 0))
7667                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7668         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7669                 fault.vector = PF_VECTOR;
7670                 fault.error_code_valid = true;
7671                 fault.error_code = 0;
7672                 fault.nested_page_fault = false;
7673                 fault.address = work->arch.token;
7674                 kvm_inject_page_fault(vcpu, &fault);
7675         }
7676 }
7677
7678 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7679                                  struct kvm_async_pf *work)
7680 {
7681         struct x86_exception fault;
7682
7683         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7684         if (work->wakeup_all)
7685                 work->arch.token = ~0; /* broadcast wakeup */
7686         else
7687                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7688
7689         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7690             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7691                 fault.vector = PF_VECTOR;
7692                 fault.error_code_valid = true;
7693                 fault.error_code = 0;
7694                 fault.nested_page_fault = false;
7695                 fault.address = work->arch.token;
7696                 kvm_inject_page_fault(vcpu, &fault);
7697         }
7698         vcpu->arch.apf.halted = false;
7699         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7700 }
7701
7702 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7703 {
7704         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7705                 return true;
7706         else
7707                 return !kvm_event_needs_reinjection(vcpu) &&
7708                         kvm_x86_ops->interrupt_allowed(vcpu);
7709 }
7710
7711 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7712 {
7713         atomic_inc(&kvm->arch.noncoherent_dma_count);
7714 }
7715 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7716
7717 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7718 {
7719         atomic_dec(&kvm->arch.noncoherent_dma_count);
7720 }
7721 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7722
7723 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7724 {
7725         return atomic_read(&kvm->arch.noncoherent_dma_count);
7726 }
7727 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7728
7729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7733 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7738 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7739 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7740 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7741 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7742 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);