x86, mm: Remove parameter in alloc_low_page for 64bit
[firefly-linux-kernel-4.4.55.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35
36 #include <asm/processor.h>
37 #include <asm/bios_ebda.h>
38 #include <asm/uaccess.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/dma.h>
42 #include <asm/fixmap.h>
43 #include <asm/e820.h>
44 #include <asm/apic.h>
45 #include <asm/tlb.h>
46 #include <asm/mmu_context.h>
47 #include <asm/proto.h>
48 #include <asm/smp.h>
49 #include <asm/sections.h>
50 #include <asm/kdebug.h>
51 #include <asm/numa.h>
52 #include <asm/cacheflush.h>
53 #include <asm/init.h>
54 #include <asm/uv/uv.h>
55 #include <asm/setup.h>
56
57 static int __init parse_direct_gbpages_off(char *arg)
58 {
59         direct_gbpages = 0;
60         return 0;
61 }
62 early_param("nogbpages", parse_direct_gbpages_off);
63
64 static int __init parse_direct_gbpages_on(char *arg)
65 {
66         direct_gbpages = 1;
67         return 0;
68 }
69 early_param("gbpages", parse_direct_gbpages_on);
70
71 /*
72  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
73  * physical space so we can cache the place of the first one and move
74  * around without checking the pgd every time.
75  */
76
77 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
78 EXPORT_SYMBOL_GPL(__supported_pte_mask);
79
80 int force_personality32;
81
82 /*
83  * noexec32=on|off
84  * Control non executable heap for 32bit processes.
85  * To control the stack too use noexec=off
86  *
87  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
88  * off  PROT_READ implies PROT_EXEC
89  */
90 static int __init nonx32_setup(char *str)
91 {
92         if (!strcmp(str, "on"))
93                 force_personality32 &= ~READ_IMPLIES_EXEC;
94         else if (!strcmp(str, "off"))
95                 force_personality32 |= READ_IMPLIES_EXEC;
96         return 1;
97 }
98 __setup("noexec32=", nonx32_setup);
99
100 /*
101  * When memory was added/removed make sure all the processes MM have
102  * suitable PGD entries in the local PGD level page.
103  */
104 void sync_global_pgds(unsigned long start, unsigned long end)
105 {
106         unsigned long address;
107
108         for (address = start; address <= end; address += PGDIR_SIZE) {
109                 const pgd_t *pgd_ref = pgd_offset_k(address);
110                 struct page *page;
111
112                 if (pgd_none(*pgd_ref))
113                         continue;
114
115                 spin_lock(&pgd_lock);
116                 list_for_each_entry(page, &pgd_list, lru) {
117                         pgd_t *pgd;
118                         spinlock_t *pgt_lock;
119
120                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
121                         /* the pgt_lock only for Xen */
122                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
123                         spin_lock(pgt_lock);
124
125                         if (pgd_none(*pgd))
126                                 set_pgd(pgd, *pgd_ref);
127                         else
128                                 BUG_ON(pgd_page_vaddr(*pgd)
129                                        != pgd_page_vaddr(*pgd_ref));
130
131                         spin_unlock(pgt_lock);
132                 }
133                 spin_unlock(&pgd_lock);
134         }
135 }
136
137 /*
138  * NOTE: This function is marked __ref because it calls __init function
139  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
140  */
141 static __ref void *spp_getpage(void)
142 {
143         void *ptr;
144
145         if (after_bootmem)
146                 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
147         else
148                 ptr = alloc_bootmem_pages(PAGE_SIZE);
149
150         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
151                 panic("set_pte_phys: cannot allocate page data %s\n",
152                         after_bootmem ? "after bootmem" : "");
153         }
154
155         pr_debug("spp_getpage %p\n", ptr);
156
157         return ptr;
158 }
159
160 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
161 {
162         if (pgd_none(*pgd)) {
163                 pud_t *pud = (pud_t *)spp_getpage();
164                 pgd_populate(&init_mm, pgd, pud);
165                 if (pud != pud_offset(pgd, 0))
166                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
167                                pud, pud_offset(pgd, 0));
168         }
169         return pud_offset(pgd, vaddr);
170 }
171
172 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
173 {
174         if (pud_none(*pud)) {
175                 pmd_t *pmd = (pmd_t *) spp_getpage();
176                 pud_populate(&init_mm, pud, pmd);
177                 if (pmd != pmd_offset(pud, 0))
178                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
179                                pmd, pmd_offset(pud, 0));
180         }
181         return pmd_offset(pud, vaddr);
182 }
183
184 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
185 {
186         if (pmd_none(*pmd)) {
187                 pte_t *pte = (pte_t *) spp_getpage();
188                 pmd_populate_kernel(&init_mm, pmd, pte);
189                 if (pte != pte_offset_kernel(pmd, 0))
190                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
191         }
192         return pte_offset_kernel(pmd, vaddr);
193 }
194
195 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
196 {
197         pud_t *pud;
198         pmd_t *pmd;
199         pte_t *pte;
200
201         pud = pud_page + pud_index(vaddr);
202         pmd = fill_pmd(pud, vaddr);
203         pte = fill_pte(pmd, vaddr);
204
205         set_pte(pte, new_pte);
206
207         /*
208          * It's enough to flush this one mapping.
209          * (PGE mappings get flushed as well)
210          */
211         __flush_tlb_one(vaddr);
212 }
213
214 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
215 {
216         pgd_t *pgd;
217         pud_t *pud_page;
218
219         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
220
221         pgd = pgd_offset_k(vaddr);
222         if (pgd_none(*pgd)) {
223                 printk(KERN_ERR
224                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
225                 return;
226         }
227         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
228         set_pte_vaddr_pud(pud_page, vaddr, pteval);
229 }
230
231 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
232 {
233         pgd_t *pgd;
234         pud_t *pud;
235
236         pgd = pgd_offset_k(vaddr);
237         pud = fill_pud(pgd, vaddr);
238         return fill_pmd(pud, vaddr);
239 }
240
241 pte_t * __init populate_extra_pte(unsigned long vaddr)
242 {
243         pmd_t *pmd;
244
245         pmd = populate_extra_pmd(vaddr);
246         return fill_pte(pmd, vaddr);
247 }
248
249 /*
250  * Create large page table mappings for a range of physical addresses.
251  */
252 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
253                                                 pgprot_t prot)
254 {
255         pgd_t *pgd;
256         pud_t *pud;
257         pmd_t *pmd;
258
259         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
260         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
261                 pgd = pgd_offset_k((unsigned long)__va(phys));
262                 if (pgd_none(*pgd)) {
263                         pud = (pud_t *) spp_getpage();
264                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
265                                                 _PAGE_USER));
266                 }
267                 pud = pud_offset(pgd, (unsigned long)__va(phys));
268                 if (pud_none(*pud)) {
269                         pmd = (pmd_t *) spp_getpage();
270                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
271                                                 _PAGE_USER));
272                 }
273                 pmd = pmd_offset(pud, phys);
274                 BUG_ON(!pmd_none(*pmd));
275                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
276         }
277 }
278
279 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
280 {
281         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
282 }
283
284 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
285 {
286         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
287 }
288
289 /*
290  * The head.S code sets up the kernel high mapping:
291  *
292  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
293  *
294  * phys_addr holds the negative offset to the kernel, which is added
295  * to the compile time generated pmds. This results in invalid pmds up
296  * to the point where we hit the physaddr 0 mapping.
297  *
298  * We limit the mappings to the region from _text to _brk_end.  _brk_end
299  * is rounded up to the 2MB boundary. This catches the invalid pmds as
300  * well, as they are located before _text:
301  */
302 void __init cleanup_highmap(void)
303 {
304         unsigned long vaddr = __START_KERNEL_map;
305         unsigned long vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
306         unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
307         pmd_t *pmd = level2_kernel_pgt;
308
309         for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
310                 if (pmd_none(*pmd))
311                         continue;
312                 if (vaddr < (unsigned long) _text || vaddr > end)
313                         set_pmd(pmd, __pmd(0));
314         }
315 }
316
317 static __ref void *alloc_low_page(void)
318 {
319         unsigned long pfn;
320         void *adr;
321
322         if (after_bootmem) {
323                 adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
324
325                 return adr;
326         }
327
328         if ((pgt_buf_end + 1) >= pgt_buf_top) {
329                 unsigned long ret;
330                 if (min_pfn_mapped >= max_pfn_mapped)
331                         panic("alloc_low_page: ran out of memory");
332                 ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
333                                         max_pfn_mapped << PAGE_SHIFT,
334                                         PAGE_SIZE, PAGE_SIZE);
335                 if (!ret)
336                         panic("alloc_low_page: can not alloc memory");
337                 memblock_reserve(ret, PAGE_SIZE);
338                 pfn = ret >> PAGE_SHIFT;
339         } else
340                 pfn = pgt_buf_end++;
341
342         adr = __va(pfn * PAGE_SIZE);
343         clear_page(adr);
344         return adr;
345 }
346
347 static unsigned long __meminit
348 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
349               pgprot_t prot)
350 {
351         unsigned long pages = 0, next;
352         unsigned long last_map_addr = end;
353         int i;
354
355         pte_t *pte = pte_page + pte_index(addr);
356
357         for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
358                 next = (addr & PAGE_MASK) + PAGE_SIZE;
359                 if (addr >= end) {
360                         if (!after_bootmem &&
361                             !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
362                             !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
363                                 set_pte(pte, __pte(0));
364                         continue;
365                 }
366
367                 /*
368                  * We will re-use the existing mapping.
369                  * Xen for example has some special requirements, like mapping
370                  * pagetable pages as RO. So assume someone who pre-setup
371                  * these mappings are more intelligent.
372                  */
373                 if (pte_val(*pte)) {
374                         if (!after_bootmem)
375                                 pages++;
376                         continue;
377                 }
378
379                 if (0)
380                         printk("   pte=%p addr=%lx pte=%016lx\n",
381                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
382                 pages++;
383                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
384                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
385         }
386
387         update_page_count(PG_LEVEL_4K, pages);
388
389         return last_map_addr;
390 }
391
392 static unsigned long __meminit
393 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
394               unsigned long page_size_mask, pgprot_t prot)
395 {
396         unsigned long pages = 0, next;
397         unsigned long last_map_addr = end;
398
399         int i = pmd_index(address);
400
401         for (; i < PTRS_PER_PMD; i++, address = next) {
402                 pmd_t *pmd = pmd_page + pmd_index(address);
403                 pte_t *pte;
404                 pgprot_t new_prot = prot;
405
406                 next = (address & PMD_MASK) + PMD_SIZE;
407                 if (address >= end) {
408                         if (!after_bootmem &&
409                             !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
410                             !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
411                                 set_pmd(pmd, __pmd(0));
412                         continue;
413                 }
414
415                 if (pmd_val(*pmd)) {
416                         if (!pmd_large(*pmd)) {
417                                 spin_lock(&init_mm.page_table_lock);
418                                 pte = (pte_t *)pmd_page_vaddr(*pmd);
419                                 last_map_addr = phys_pte_init(pte, address,
420                                                                 end, prot);
421                                 spin_unlock(&init_mm.page_table_lock);
422                                 continue;
423                         }
424                         /*
425                          * If we are ok with PG_LEVEL_2M mapping, then we will
426                          * use the existing mapping,
427                          *
428                          * Otherwise, we will split the large page mapping but
429                          * use the same existing protection bits except for
430                          * large page, so that we don't violate Intel's TLB
431                          * Application note (317080) which says, while changing
432                          * the page sizes, new and old translations should
433                          * not differ with respect to page frame and
434                          * attributes.
435                          */
436                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
437                                 if (!after_bootmem)
438                                         pages++;
439                                 last_map_addr = next;
440                                 continue;
441                         }
442                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
443                 }
444
445                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
446                         pages++;
447                         spin_lock(&init_mm.page_table_lock);
448                         set_pte((pte_t *)pmd,
449                                 pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
450                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
451                         spin_unlock(&init_mm.page_table_lock);
452                         last_map_addr = next;
453                         continue;
454                 }
455
456                 pte = alloc_low_page();
457                 last_map_addr = phys_pte_init(pte, address, end, new_prot);
458
459                 spin_lock(&init_mm.page_table_lock);
460                 pmd_populate_kernel(&init_mm, pmd, pte);
461                 spin_unlock(&init_mm.page_table_lock);
462         }
463         update_page_count(PG_LEVEL_2M, pages);
464         return last_map_addr;
465 }
466
467 static unsigned long __meminit
468 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
469                          unsigned long page_size_mask)
470 {
471         unsigned long pages = 0, next;
472         unsigned long last_map_addr = end;
473         int i = pud_index(addr);
474
475         for (; i < PTRS_PER_PUD; i++, addr = next) {
476                 pud_t *pud = pud_page + pud_index(addr);
477                 pmd_t *pmd;
478                 pgprot_t prot = PAGE_KERNEL;
479
480                 next = (addr & PUD_MASK) + PUD_SIZE;
481                 if (addr >= end) {
482                         if (!after_bootmem &&
483                             !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
484                             !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
485                                 set_pud(pud, __pud(0));
486                         continue;
487                 }
488
489                 if (pud_val(*pud)) {
490                         if (!pud_large(*pud)) {
491                                 pmd = pmd_offset(pud, 0);
492                                 last_map_addr = phys_pmd_init(pmd, addr, end,
493                                                          page_size_mask, prot);
494                                 __flush_tlb_all();
495                                 continue;
496                         }
497                         /*
498                          * If we are ok with PG_LEVEL_1G mapping, then we will
499                          * use the existing mapping.
500                          *
501                          * Otherwise, we will split the gbpage mapping but use
502                          * the same existing protection  bits except for large
503                          * page, so that we don't violate Intel's TLB
504                          * Application note (317080) which says, while changing
505                          * the page sizes, new and old translations should
506                          * not differ with respect to page frame and
507                          * attributes.
508                          */
509                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
510                                 if (!after_bootmem)
511                                         pages++;
512                                 last_map_addr = next;
513                                 continue;
514                         }
515                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
516                 }
517
518                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
519                         pages++;
520                         spin_lock(&init_mm.page_table_lock);
521                         set_pte((pte_t *)pud,
522                                 pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
523                                         PAGE_KERNEL_LARGE));
524                         spin_unlock(&init_mm.page_table_lock);
525                         last_map_addr = next;
526                         continue;
527                 }
528
529                 pmd = alloc_low_page();
530                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
531                                               prot);
532
533                 spin_lock(&init_mm.page_table_lock);
534                 pud_populate(&init_mm, pud, pmd);
535                 spin_unlock(&init_mm.page_table_lock);
536         }
537         __flush_tlb_all();
538
539         update_page_count(PG_LEVEL_1G, pages);
540
541         return last_map_addr;
542 }
543
544 unsigned long __meminit
545 kernel_physical_mapping_init(unsigned long start,
546                              unsigned long end,
547                              unsigned long page_size_mask)
548 {
549         bool pgd_changed = false;
550         unsigned long next, last_map_addr = end;
551         unsigned long addr;
552
553         start = (unsigned long)__va(start);
554         end = (unsigned long)__va(end);
555         addr = start;
556
557         for (; start < end; start = next) {
558                 pgd_t *pgd = pgd_offset_k(start);
559                 pud_t *pud;
560
561                 next = (start + PGDIR_SIZE) & PGDIR_MASK;
562                 if (next > end)
563                         next = end;
564
565                 if (pgd_val(*pgd)) {
566                         pud = (pud_t *)pgd_page_vaddr(*pgd);
567                         last_map_addr = phys_pud_init(pud, __pa(start),
568                                                  __pa(end), page_size_mask);
569                         continue;
570                 }
571
572                 pud = alloc_low_page();
573                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
574                                                  page_size_mask);
575
576                 spin_lock(&init_mm.page_table_lock);
577                 pgd_populate(&init_mm, pgd, pud);
578                 spin_unlock(&init_mm.page_table_lock);
579                 pgd_changed = true;
580         }
581
582         if (pgd_changed)
583                 sync_global_pgds(addr, end);
584
585         __flush_tlb_all();
586
587         return last_map_addr;
588 }
589
590 #ifndef CONFIG_NUMA
591 void __init initmem_init(void)
592 {
593         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
594 }
595 #endif
596
597 void __init paging_init(void)
598 {
599         sparse_memory_present_with_active_regions(MAX_NUMNODES);
600         sparse_init();
601
602         /*
603          * clear the default setting with node 0
604          * note: don't use nodes_clear here, that is really clearing when
605          *       numa support is not compiled in, and later node_set_state
606          *       will not set it back.
607          */
608         node_clear_state(0, N_NORMAL_MEMORY);
609
610         zone_sizes_init();
611 }
612
613 /*
614  * Memory hotplug specific functions
615  */
616 #ifdef CONFIG_MEMORY_HOTPLUG
617 /*
618  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
619  * updating.
620  */
621 static void  update_end_of_memory_vars(u64 start, u64 size)
622 {
623         unsigned long end_pfn = PFN_UP(start + size);
624
625         if (end_pfn > max_pfn) {
626                 max_pfn = end_pfn;
627                 max_low_pfn = end_pfn;
628                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
629         }
630 }
631
632 /*
633  * Memory is added always to NORMAL zone. This means you will never get
634  * additional DMA/DMA32 memory.
635  */
636 int arch_add_memory(int nid, u64 start, u64 size)
637 {
638         struct pglist_data *pgdat = NODE_DATA(nid);
639         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
640         unsigned long start_pfn = start >> PAGE_SHIFT;
641         unsigned long nr_pages = size >> PAGE_SHIFT;
642         int ret;
643
644         init_memory_mapping(start, start + size);
645
646         ret = __add_pages(nid, zone, start_pfn, nr_pages);
647         WARN_ON_ONCE(ret);
648
649         /* update max_pfn, max_low_pfn and high_memory */
650         update_end_of_memory_vars(start, size);
651
652         return ret;
653 }
654 EXPORT_SYMBOL_GPL(arch_add_memory);
655
656 #endif /* CONFIG_MEMORY_HOTPLUG */
657
658 static struct kcore_list kcore_vsyscall;
659
660 void __init mem_init(void)
661 {
662         long codesize, reservedpages, datasize, initsize;
663         unsigned long absent_pages;
664
665         pci_iommu_alloc();
666
667         /* clear_bss() already clear the empty_zero_page */
668
669         reservedpages = 0;
670
671         /* this will put all low memory onto the freelists */
672 #ifdef CONFIG_NUMA
673         totalram_pages = numa_free_all_bootmem();
674 #else
675         totalram_pages = free_all_bootmem();
676 #endif
677
678         absent_pages = absent_pages_in_range(0, max_pfn);
679         reservedpages = max_pfn - totalram_pages - absent_pages;
680         after_bootmem = 1;
681
682         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
683         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
684         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
685
686         /* Register memory areas for /proc/kcore */
687         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
688                          VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
689
690         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
691                          "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
692                 nr_free_pages() << (PAGE_SHIFT-10),
693                 max_pfn << (PAGE_SHIFT-10),
694                 codesize >> 10,
695                 absent_pages << (PAGE_SHIFT-10),
696                 reservedpages << (PAGE_SHIFT-10),
697                 datasize >> 10,
698                 initsize >> 10);
699 }
700
701 #ifdef CONFIG_DEBUG_RODATA
702 const int rodata_test_data = 0xC3;
703 EXPORT_SYMBOL_GPL(rodata_test_data);
704
705 int kernel_set_to_readonly;
706
707 void set_kernel_text_rw(void)
708 {
709         unsigned long start = PFN_ALIGN(_text);
710         unsigned long end = PFN_ALIGN(__stop___ex_table);
711
712         if (!kernel_set_to_readonly)
713                 return;
714
715         pr_debug("Set kernel text: %lx - %lx for read write\n",
716                  start, end);
717
718         /*
719          * Make the kernel identity mapping for text RW. Kernel text
720          * mapping will always be RO. Refer to the comment in
721          * static_protections() in pageattr.c
722          */
723         set_memory_rw(start, (end - start) >> PAGE_SHIFT);
724 }
725
726 void set_kernel_text_ro(void)
727 {
728         unsigned long start = PFN_ALIGN(_text);
729         unsigned long end = PFN_ALIGN(__stop___ex_table);
730
731         if (!kernel_set_to_readonly)
732                 return;
733
734         pr_debug("Set kernel text: %lx - %lx for read only\n",
735                  start, end);
736
737         /*
738          * Set the kernel identity mapping for text RO.
739          */
740         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
741 }
742
743 void mark_rodata_ro(void)
744 {
745         unsigned long start = PFN_ALIGN(_text);
746         unsigned long rodata_start =
747                 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
748         unsigned long end = (unsigned long) &__end_rodata_hpage_align;
749         unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
750         unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
751         unsigned long data_start = (unsigned long) &_sdata;
752
753         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
754                (end - start) >> 10);
755         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
756
757         kernel_set_to_readonly = 1;
758
759         /*
760          * The rodata section (but not the kernel text!) should also be
761          * not-executable.
762          */
763         set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
764
765         rodata_test();
766
767 #ifdef CONFIG_CPA_DEBUG
768         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
769         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
770
771         printk(KERN_INFO "Testing CPA: again\n");
772         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
773 #endif
774
775         free_init_pages("unused kernel memory",
776                         (unsigned long) page_address(virt_to_page(text_end)),
777                         (unsigned long)
778                                  page_address(virt_to_page(rodata_start)));
779         free_init_pages("unused kernel memory",
780                         (unsigned long) page_address(virt_to_page(rodata_end)),
781                         (unsigned long) page_address(virt_to_page(data_start)));
782 }
783
784 #endif
785
786 int kern_addr_valid(unsigned long addr)
787 {
788         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
789         pgd_t *pgd;
790         pud_t *pud;
791         pmd_t *pmd;
792         pte_t *pte;
793
794         if (above != 0 && above != -1UL)
795                 return 0;
796
797         pgd = pgd_offset_k(addr);
798         if (pgd_none(*pgd))
799                 return 0;
800
801         pud = pud_offset(pgd, addr);
802         if (pud_none(*pud))
803                 return 0;
804
805         pmd = pmd_offset(pud, addr);
806         if (pmd_none(*pmd))
807                 return 0;
808
809         if (pmd_large(*pmd))
810                 return pfn_valid(pmd_pfn(*pmd));
811
812         pte = pte_offset_kernel(pmd, addr);
813         if (pte_none(*pte))
814                 return 0;
815
816         return pfn_valid(pte_pfn(*pte));
817 }
818
819 /*
820  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
821  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
822  * not need special handling anymore:
823  */
824 static struct vm_area_struct gate_vma = {
825         .vm_start       = VSYSCALL_START,
826         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
827         .vm_page_prot   = PAGE_READONLY_EXEC,
828         .vm_flags       = VM_READ | VM_EXEC
829 };
830
831 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
832 {
833 #ifdef CONFIG_IA32_EMULATION
834         if (!mm || mm->context.ia32_compat)
835                 return NULL;
836 #endif
837         return &gate_vma;
838 }
839
840 int in_gate_area(struct mm_struct *mm, unsigned long addr)
841 {
842         struct vm_area_struct *vma = get_gate_vma(mm);
843
844         if (!vma)
845                 return 0;
846
847         return (addr >= vma->vm_start) && (addr < vma->vm_end);
848 }
849
850 /*
851  * Use this when you have no reliable mm, typically from interrupt
852  * context. It is less reliable than using a task's mm and may give
853  * false positives.
854  */
855 int in_gate_area_no_mm(unsigned long addr)
856 {
857         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
858 }
859
860 const char *arch_vma_name(struct vm_area_struct *vma)
861 {
862         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
863                 return "[vdso]";
864         if (vma == &gate_vma)
865                 return "[vsyscall]";
866         return NULL;
867 }
868
869 #ifdef CONFIG_X86_UV
870 unsigned long memory_block_size_bytes(void)
871 {
872         if (is_uv_system()) {
873                 printk(KERN_INFO "UV: memory block size 2GB\n");
874                 return 2UL * 1024 * 1024 * 1024;
875         }
876         return MIN_MEMORY_BLOCK_SIZE;
877 }
878 #endif
879
880 #ifdef CONFIG_SPARSEMEM_VMEMMAP
881 /*
882  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
883  */
884 static long __meminitdata addr_start, addr_end;
885 static void __meminitdata *p_start, *p_end;
886 static int __meminitdata node_start;
887
888 int __meminit
889 vmemmap_populate(struct page *start_page, unsigned long size, int node)
890 {
891         unsigned long addr = (unsigned long)start_page;
892         unsigned long end = (unsigned long)(start_page + size);
893         unsigned long next;
894         pgd_t *pgd;
895         pud_t *pud;
896         pmd_t *pmd;
897
898         for (; addr < end; addr = next) {
899                 void *p = NULL;
900
901                 pgd = vmemmap_pgd_populate(addr, node);
902                 if (!pgd)
903                         return -ENOMEM;
904
905                 pud = vmemmap_pud_populate(pgd, addr, node);
906                 if (!pud)
907                         return -ENOMEM;
908
909                 if (!cpu_has_pse) {
910                         next = (addr + PAGE_SIZE) & PAGE_MASK;
911                         pmd = vmemmap_pmd_populate(pud, addr, node);
912
913                         if (!pmd)
914                                 return -ENOMEM;
915
916                         p = vmemmap_pte_populate(pmd, addr, node);
917
918                         if (!p)
919                                 return -ENOMEM;
920
921                         addr_end = addr + PAGE_SIZE;
922                         p_end = p + PAGE_SIZE;
923                 } else {
924                         next = pmd_addr_end(addr, end);
925
926                         pmd = pmd_offset(pud, addr);
927                         if (pmd_none(*pmd)) {
928                                 pte_t entry;
929
930                                 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
931                                 if (!p)
932                                         return -ENOMEM;
933
934                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
935                                                 PAGE_KERNEL_LARGE);
936                                 set_pmd(pmd, __pmd(pte_val(entry)));
937
938                                 /* check to see if we have contiguous blocks */
939                                 if (p_end != p || node_start != node) {
940                                         if (p_start)
941                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
942                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
943                                         addr_start = addr;
944                                         node_start = node;
945                                         p_start = p;
946                                 }
947
948                                 addr_end = addr + PMD_SIZE;
949                                 p_end = p + PMD_SIZE;
950                         } else
951                                 vmemmap_verify((pte_t *)pmd, node, addr, next);
952                 }
953
954         }
955         sync_global_pgds((unsigned long)start_page, end);
956         return 0;
957 }
958
959 void __meminit vmemmap_populate_print_last(void)
960 {
961         if (p_start) {
962                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
963                         addr_start, addr_end-1, p_start, p_end-1, node_start);
964                 p_start = NULL;
965                 p_end = NULL;
966                 node_start = 0;
967         }
968 }
969 #endif