bb732bb79b4a073d1b42392d43399e100d16271c
[firefly-linux-kernel-4.4.55.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pci.h>
25 #include <linux/pfn.h>
26 #include <linux/poison.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/module.h>
29 #include <linux/memory_hotplug.h>
30 #include <linux/nmi.h>
31
32 #include <asm/processor.h>
33 #include <asm/system.h>
34 #include <asm/uaccess.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgalloc.h>
37 #include <asm/dma.h>
38 #include <asm/fixmap.h>
39 #include <asm/e820.h>
40 #include <asm/apic.h>
41 #include <asm/tlb.h>
42 #include <asm/mmu_context.h>
43 #include <asm/proto.h>
44 #include <asm/smp.h>
45 #include <asm/sections.h>
46 #include <asm/kdebug.h>
47 #include <asm/numa.h>
48
49 #ifndef Dprintk
50 # define Dprintk(x...)
51 #endif
52
53 const struct dma_mapping_ops *dma_ops;
54 EXPORT_SYMBOL(dma_ops);
55
56 static unsigned long dma_reserve __initdata;
57
58 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
59
60 /*
61  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
62  * physical space so we can cache the place of the first one and move
63  * around without checking the pgd every time.
64  */
65
66 void show_mem(void)
67 {
68         long i, total = 0, reserved = 0;
69         long shared = 0, cached = 0;
70         struct page *page;
71         pg_data_t *pgdat;
72
73         printk(KERN_INFO "Mem-info:\n");
74         show_free_areas();
75         printk(KERN_INFO "Free swap:       %6ldkB\n",
76                 nr_swap_pages << (PAGE_SHIFT-10));
77
78         for_each_online_pgdat(pgdat) {
79                 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
80                         /*
81                          * This loop can take a while with 256 GB and
82                          * 4k pages so defer the NMI watchdog:
83                          */
84                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
85                                 touch_nmi_watchdog();
86
87                         if (!pfn_valid(pgdat->node_start_pfn + i))
88                                 continue;
89
90                         page = pfn_to_page(pgdat->node_start_pfn + i);
91                         total++;
92                         if (PageReserved(page))
93                                 reserved++;
94                         else if (PageSwapCache(page))
95                                 cached++;
96                         else if (page_count(page))
97                                 shared += page_count(page) - 1;
98                 }
99         }
100         printk(KERN_INFO "%lu pages of RAM\n",          total);
101         printk(KERN_INFO "%lu reserved pages\n",        reserved);
102         printk(KERN_INFO "%lu pages shared\n",          shared);
103         printk(KERN_INFO "%lu pages swap cached\n",     cached);
104 }
105
106 int after_bootmem;
107
108 static __init void *spp_getpage(void)
109 {
110         void *ptr;
111
112         if (after_bootmem)
113                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
114         else
115                 ptr = alloc_bootmem_pages(PAGE_SIZE);
116
117         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
118                 panic("set_pte_phys: cannot allocate page data %s\n",
119                         after_bootmem ? "after bootmem" : "");
120         }
121
122         Dprintk("spp_getpage %p\n", ptr);
123
124         return ptr;
125 }
126
127 static __init void
128 set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot)
129 {
130         pgd_t *pgd;
131         pud_t *pud;
132         pmd_t *pmd;
133         pte_t *pte, new_pte;
134
135         Dprintk("set_pte_phys %lx to %lx\n", vaddr, phys);
136
137         pgd = pgd_offset_k(vaddr);
138         if (pgd_none(*pgd)) {
139                 printk("PGD FIXMAP MISSING, it should be setup in head.S!\n");
140                 return;
141         }
142         pud = pud_offset(pgd, vaddr);
143         if (pud_none(*pud)) {
144                 pmd = (pmd_t *) spp_getpage();
145                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
146                 if (pmd != pmd_offset(pud, 0)) {
147                         printk("PAGETABLE BUG #01! %p <-> %p\n",
148                                 pmd, pmd_offset(pud, 0));
149                         return;
150                 }
151         }
152         pmd = pmd_offset(pud, vaddr);
153         if (pmd_none(*pmd)) {
154                 pte = (pte_t *) spp_getpage();
155                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
156                 if (pte != pte_offset_kernel(pmd, 0)) {
157                         printk("PAGETABLE BUG #02!\n");
158                         return;
159                 }
160         }
161         new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
162
163         pte = pte_offset_kernel(pmd, vaddr);
164         if (!pte_none(*pte) &&
165             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
166                 pte_ERROR(*pte);
167         set_pte(pte, new_pte);
168
169         /*
170          * It's enough to flush this one mapping.
171          * (PGE mappings get flushed as well)
172          */
173         __flush_tlb_one(vaddr);
174 }
175
176 /* NOTE: this is meant to be run only at boot */
177 void __init
178 __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
179 {
180         unsigned long address = __fix_to_virt(idx);
181
182         if (idx >= __end_of_fixed_addresses) {
183                 printk("Invalid __set_fixmap\n");
184                 return;
185         }
186         set_pte_phys(address, phys, prot);
187 }
188
189 static unsigned long __initdata table_start;
190 static unsigned long __meminitdata table_end;
191
192 static __meminit void *alloc_low_page(unsigned long *phys)
193 {
194         unsigned long pfn = table_end++;
195         void *adr;
196
197         if (after_bootmem) {
198                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
199                 *phys = __pa(adr);
200
201                 return adr;
202         }
203
204         if (pfn >= end_pfn)
205                 panic("alloc_low_page: ran out of memory");
206
207         adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
208         memset(adr, 0, PAGE_SIZE);
209         *phys  = pfn * PAGE_SIZE;
210         return adr;
211 }
212
213 static __meminit void unmap_low_page(void *adr)
214 {
215         if (after_bootmem)
216                 return;
217
218         early_iounmap(adr, PAGE_SIZE);
219 }
220
221 /* Must run before zap_low_mappings */
222 __meminit void *early_ioremap(unsigned long addr, unsigned long size)
223 {
224         pmd_t *pmd, *last_pmd;
225         unsigned long vaddr;
226         int i, pmds;
227
228         pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
229         vaddr = __START_KERNEL_map;
230         pmd = level2_kernel_pgt;
231         last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
232
233         for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
234                 for (i = 0; i < pmds; i++) {
235                         if (pmd_present(pmd[i]))
236                                 goto continue_outer_loop;
237                 }
238                 vaddr += addr & ~PMD_MASK;
239                 addr &= PMD_MASK;
240
241                 for (i = 0; i < pmds; i++, addr += PMD_SIZE)
242                         set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
243                 __flush_tlb_all();
244
245                 return (void *)vaddr;
246 continue_outer_loop:
247                 ;
248         }
249         printk("early_ioremap(0x%lx, %lu) failed\n", addr, size);
250
251         return NULL;
252 }
253
254 /*
255  * To avoid virtual aliases later:
256  */
257 __meminit void early_iounmap(void *addr, unsigned long size)
258 {
259         unsigned long vaddr;
260         pmd_t *pmd;
261         int i, pmds;
262
263         vaddr = (unsigned long)addr;
264         pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
265         pmd = level2_kernel_pgt + pmd_index(vaddr);
266
267         for (i = 0; i < pmds; i++)
268                 pmd_clear(pmd + i);
269
270         __flush_tlb_all();
271 }
272
273 static void __meminit
274 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
275 {
276         int i = pmd_index(address);
277
278         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
279                 unsigned long entry;
280                 pmd_t *pmd = pmd_page + pmd_index(address);
281
282                 if (address >= end) {
283                         if (!after_bootmem) {
284                                 for (; i < PTRS_PER_PMD; i++, pmd++)
285                                         set_pmd(pmd, __pmd(0));
286                         }
287                         break;
288                 }
289
290                 if (pmd_val(*pmd))
291                         continue;
292
293                 entry = __PAGE_KERNEL_LARGE|_PAGE_GLOBAL|address;
294                 entry &= __supported_pte_mask;
295                 set_pmd(pmd, __pmd(entry));
296         }
297 }
298
299 static void __meminit
300 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
301 {
302         pmd_t *pmd = pmd_offset(pud, 0);
303         spin_lock(&init_mm.page_table_lock);
304         phys_pmd_init(pmd, address, end);
305         spin_unlock(&init_mm.page_table_lock);
306         __flush_tlb_all();
307 }
308
309 static void __meminit
310 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
311 {
312         int i = pud_index(addr);
313
314         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
315                 unsigned long pmd_phys;
316                 pud_t *pud = pud_page + pud_index(addr);
317                 pmd_t *pmd;
318
319                 if (addr >= end)
320                         break;
321
322                 if (!after_bootmem &&
323                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
324                         set_pud(pud, __pud(0));
325                         continue;
326                 }
327
328                 if (pud_val(*pud)) {
329                         phys_pmd_update(pud, addr, end);
330                         continue;
331                 }
332
333                 pmd = alloc_low_page(&pmd_phys);
334
335                 spin_lock(&init_mm.page_table_lock);
336                 set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
337                 phys_pmd_init(pmd, addr, end);
338                 spin_unlock(&init_mm.page_table_lock);
339
340                 unmap_low_page(pmd);
341         }
342         __flush_tlb_all();
343 }
344
345 static void __init find_early_table_space(unsigned long end)
346 {
347         unsigned long puds, pmds, tables, start;
348
349         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
350         pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
351         tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) +
352                  round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
353
354         /*
355          * RED-PEN putting page tables only on node 0 could
356          * cause a hotspot and fill up ZONE_DMA. The page tables
357          * need roughly 0.5KB per GB.
358          */
359         start = 0x8000;
360         table_start = find_e820_area(start, end, tables);
361         if (table_start == -1UL)
362                 panic("Cannot find space for the kernel page tables");
363
364         table_start >>= PAGE_SHIFT;
365         table_end = table_start;
366
367         early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
368                 end, table_start << PAGE_SHIFT,
369                 (table_start << PAGE_SHIFT) + tables);
370 }
371
372 /*
373  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
374  * This runs before bootmem is initialized and gets pages directly from
375  * the physical memory. To access them they are temporarily mapped.
376  */
377 void __init_refok init_memory_mapping(unsigned long start, unsigned long end)
378 {
379         unsigned long next;
380
381         Dprintk("init_memory_mapping\n");
382
383         /*
384          * Find space for the kernel direct mapping tables.
385          *
386          * Later we should allocate these tables in the local node of the
387          * memory mapped. Unfortunately this is done currently before the
388          * nodes are discovered.
389          */
390         if (!after_bootmem)
391                 find_early_table_space(end);
392
393         start = (unsigned long)__va(start);
394         end = (unsigned long)__va(end);
395
396         for (; start < end; start = next) {
397                 pgd_t *pgd = pgd_offset_k(start);
398                 unsigned long pud_phys;
399                 pud_t *pud;
400
401                 if (after_bootmem)
402                         pud = pud_offset(pgd, start & PGDIR_MASK);
403                 else
404                         pud = alloc_low_page(&pud_phys);
405
406                 next = start + PGDIR_SIZE;
407                 if (next > end)
408                         next = end;
409                 phys_pud_init(pud, __pa(start), __pa(next));
410                 if (!after_bootmem)
411                         set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
412                 unmap_low_page(pud);
413         }
414
415         if (!after_bootmem)
416                 mmu_cr4_features = read_cr4();
417         __flush_tlb_all();
418
419         reserve_early(table_start << PAGE_SHIFT, table_end << PAGE_SHIFT);
420 }
421
422 #ifndef CONFIG_NUMA
423 void __init paging_init(void)
424 {
425         unsigned long max_zone_pfns[MAX_NR_ZONES];
426
427         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
428         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
429         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
430         max_zone_pfns[ZONE_NORMAL] = end_pfn;
431
432         memory_present(0, 0, end_pfn);
433         sparse_init();
434         free_area_init_nodes(max_zone_pfns);
435 }
436 #endif
437
438 /*
439  * Unmap a kernel mapping if it exists. This is useful to avoid
440  * prefetches from the CPU leading to inconsistent cache lines.
441  * address and size must be aligned to 2MB boundaries.
442  * Does nothing when the mapping doesn't exist.
443  */
444 void __init clear_kernel_mapping(unsigned long address, unsigned long size)
445 {
446         unsigned long end = address + size;
447
448         BUG_ON(address & ~LARGE_PAGE_MASK);
449         BUG_ON(size & ~LARGE_PAGE_MASK);
450
451         for (; address < end; address += LARGE_PAGE_SIZE) {
452                 pgd_t *pgd = pgd_offset_k(address);
453                 pud_t *pud;
454                 pmd_t *pmd;
455
456                 if (pgd_none(*pgd))
457                         continue;
458
459                 pud = pud_offset(pgd, address);
460                 if (pud_none(*pud))
461                         continue;
462
463                 pmd = pmd_offset(pud, address);
464                 if (!pmd || pmd_none(*pmd))
465                         continue;
466
467                 if (!(pmd_val(*pmd) & _PAGE_PSE)) {
468                         /*
469                          * Could handle this, but it should not happen
470                          * currently:
471                          */
472                         printk(KERN_ERR "clear_kernel_mapping: "
473                                 "mapping has been split. will leak memory\n");
474                         pmd_ERROR(*pmd);
475                 }
476                 set_pmd(pmd, __pmd(0));
477         }
478         __flush_tlb_all();
479 }
480
481 /*
482  * Memory hotplug specific functions
483  */
484 void online_page(struct page *page)
485 {
486         ClearPageReserved(page);
487         init_page_count(page);
488         __free_page(page);
489         totalram_pages++;
490         num_physpages++;
491 }
492
493 #ifdef CONFIG_MEMORY_HOTPLUG
494 /*
495  * Memory is added always to NORMAL zone. This means you will never get
496  * additional DMA/DMA32 memory.
497  */
498 int arch_add_memory(int nid, u64 start, u64 size)
499 {
500         struct pglist_data *pgdat = NODE_DATA(nid);
501         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
502         unsigned long start_pfn = start >> PAGE_SHIFT;
503         unsigned long nr_pages = size >> PAGE_SHIFT;
504         int ret;
505
506         init_memory_mapping(start, start + size-1);
507
508         ret = __add_pages(zone, start_pfn, nr_pages);
509         if (ret)
510                 printk("%s: Problem encountered in __add_pages!\n", __func__);
511
512         return ret;
513 }
514 EXPORT_SYMBOL_GPL(arch_add_memory);
515
516 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
517 int memory_add_physaddr_to_nid(u64 start)
518 {
519         return 0;
520 }
521 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
522 #endif
523
524 #endif /* CONFIG_MEMORY_HOTPLUG */
525
526 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
527                          kcore_modules, kcore_vsyscall;
528
529 void __init mem_init(void)
530 {
531         long codesize, reservedpages, datasize, initsize;
532
533         pci_iommu_alloc();
534
535         /* clear_bss() already clear the empty_zero_page */
536
537         /* temporary debugging - double check it's true: */
538         {
539                 int i;
540
541                 for (i = 0; i < 1024; i++)
542                         WARN_ON_ONCE(empty_zero_page[i]);
543         }
544
545         reservedpages = 0;
546
547         /* this will put all low memory onto the freelists */
548 #ifdef CONFIG_NUMA
549         totalram_pages = numa_free_all_bootmem();
550 #else
551         totalram_pages = free_all_bootmem();
552 #endif
553         reservedpages = end_pfn - totalram_pages -
554                                         absent_pages_in_range(0, end_pfn);
555         after_bootmem = 1;
556
557         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
558         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
559         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
560
561         /* Register memory areas for /proc/kcore */
562         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
563         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
564                    VMALLOC_END-VMALLOC_START);
565         kclist_add(&kcore_kernel, &_stext, _end - _stext);
566         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
567         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
568                                  VSYSCALL_END - VSYSCALL_START);
569
570         printk("Memory: %luk/%luk available (%ldk kernel code, "
571                                 "%ldk reserved, %ldk data, %ldk init)\n",
572                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
573                 end_pfn << (PAGE_SHIFT-10),
574                 codesize >> 10,
575                 reservedpages << (PAGE_SHIFT-10),
576                 datasize >> 10,
577                 initsize >> 10);
578 }
579
580 void free_init_pages(char *what, unsigned long begin, unsigned long end)
581 {
582         unsigned long addr;
583
584         if (begin >= end)
585                 return;
586
587         /*
588          * If debugging page accesses then do not free this memory but
589          * mark them not present - any buggy init-section access will
590          * create a kernel page fault:
591          */
592 #ifdef CONFIG_DEBUG_PAGEALLOC
593         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
594                 begin, PAGE_ALIGN(end));
595         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
596 #else
597         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
598
599         for (addr = begin; addr < end; addr += PAGE_SIZE) {
600                 ClearPageReserved(virt_to_page(addr));
601                 init_page_count(virt_to_page(addr));
602                 memset((void *)(addr & ~(PAGE_SIZE-1)),
603                         POISON_FREE_INITMEM, PAGE_SIZE);
604                 free_page(addr);
605                 totalram_pages++;
606         }
607 #endif
608 }
609
610 void free_initmem(void)
611 {
612         free_init_pages("unused kernel memory",
613                         (unsigned long)(&__init_begin),
614                         (unsigned long)(&__init_end));
615 }
616
617 #ifdef CONFIG_DEBUG_RODATA
618 const int rodata_test_data = 0xC3;
619 EXPORT_SYMBOL_GPL(rodata_test_data);
620
621 void mark_rodata_ro(void)
622 {
623         unsigned long start = (unsigned long)_stext, end;
624
625 #ifdef CONFIG_HOTPLUG_CPU
626         /* It must still be possible to apply SMP alternatives. */
627         if (num_possible_cpus() > 1)
628                 start = (unsigned long)_etext;
629 #endif
630
631 #ifdef CONFIG_KPROBES
632         start = (unsigned long)__start_rodata;
633 #endif
634
635         end = (unsigned long)__end_rodata;
636         start = (start + PAGE_SIZE - 1) & PAGE_MASK;
637         end &= PAGE_MASK;
638         if (end <= start)
639                 return;
640
641         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
642
643         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
644                (end - start) >> 10);
645
646         rodata_test();
647
648 #ifdef CONFIG_CPA_DEBUG
649         printk("Testing CPA: undo %lx-%lx\n", start, end);
650         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
651
652         printk("Testing CPA: again\n");
653         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
654 #endif
655 }
656 #endif
657
658 #ifdef CONFIG_BLK_DEV_INITRD
659 void free_initrd_mem(unsigned long start, unsigned long end)
660 {
661         free_init_pages("initrd memory", start, end);
662 }
663 #endif
664
665 void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
666 {
667 #ifdef CONFIG_NUMA
668         int nid = phys_to_nid(phys);
669 #endif
670         unsigned long pfn = phys >> PAGE_SHIFT;
671
672         if (pfn >= end_pfn) {
673                 /*
674                  * This can happen with kdump kernels when accessing
675                  * firmware tables:
676                  */
677                 if (pfn < end_pfn_map)
678                         return;
679
680                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
681                                 phys, len);
682                 return;
683         }
684
685         /* Should check here against the e820 map to avoid double free */
686 #ifdef CONFIG_NUMA
687         reserve_bootmem_node(NODE_DATA(nid), phys, len);
688 #else
689         reserve_bootmem(phys, len);
690 #endif
691         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
692                 dma_reserve += len / PAGE_SIZE;
693                 set_dma_reserve(dma_reserve);
694         }
695 }
696
697 int kern_addr_valid(unsigned long addr)
698 {
699         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
700         pgd_t *pgd;
701         pud_t *pud;
702         pmd_t *pmd;
703         pte_t *pte;
704
705         if (above != 0 && above != -1UL)
706                 return 0;
707
708         pgd = pgd_offset_k(addr);
709         if (pgd_none(*pgd))
710                 return 0;
711
712         pud = pud_offset(pgd, addr);
713         if (pud_none(*pud))
714                 return 0;
715
716         pmd = pmd_offset(pud, addr);
717         if (pmd_none(*pmd))
718                 return 0;
719
720         if (pmd_large(*pmd))
721                 return pfn_valid(pmd_pfn(*pmd));
722
723         pte = pte_offset_kernel(pmd, addr);
724         if (pte_none(*pte))
725                 return 0;
726
727         return pfn_valid(pte_pfn(*pte));
728 }
729
730 /*
731  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
732  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
733  * not need special handling anymore:
734  */
735 static struct vm_area_struct gate_vma = {
736         .vm_start       = VSYSCALL_START,
737         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
738         .vm_page_prot   = PAGE_READONLY_EXEC,
739         .vm_flags       = VM_READ | VM_EXEC
740 };
741
742 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
743 {
744 #ifdef CONFIG_IA32_EMULATION
745         if (test_tsk_thread_flag(tsk, TIF_IA32))
746                 return NULL;
747 #endif
748         return &gate_vma;
749 }
750
751 int in_gate_area(struct task_struct *task, unsigned long addr)
752 {
753         struct vm_area_struct *vma = get_gate_vma(task);
754
755         if (!vma)
756                 return 0;
757
758         return (addr >= vma->vm_start) && (addr < vma->vm_end);
759 }
760
761 /*
762  * Use this when you have no reliable task/vma, typically from interrupt
763  * context. It is less reliable than using the task's vma and may give
764  * false positives:
765  */
766 int in_gate_area_no_task(unsigned long addr)
767 {
768         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
769 }
770
771 const char *arch_vma_name(struct vm_area_struct *vma)
772 {
773         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
774                 return "[vdso]";
775         if (vma == &gate_vma)
776                 return "[vsyscall]";
777         return NULL;
778 }
779
780 #ifdef CONFIG_SPARSEMEM_VMEMMAP
781 /*
782  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
783  */
784 int __meminit
785 vmemmap_populate(struct page *start_page, unsigned long size, int node)
786 {
787         unsigned long addr = (unsigned long)start_page;
788         unsigned long end = (unsigned long)(start_page + size);
789         unsigned long next;
790         pgd_t *pgd;
791         pud_t *pud;
792         pmd_t *pmd;
793
794         for (; addr < end; addr = next) {
795                 next = pmd_addr_end(addr, end);
796
797                 pgd = vmemmap_pgd_populate(addr, node);
798                 if (!pgd)
799                         return -ENOMEM;
800
801                 pud = vmemmap_pud_populate(pgd, addr, node);
802                 if (!pud)
803                         return -ENOMEM;
804
805                 pmd = pmd_offset(pud, addr);
806                 if (pmd_none(*pmd)) {
807                         pte_t entry;
808                         void *p;
809
810                         p = vmemmap_alloc_block(PMD_SIZE, node);
811                         if (!p)
812                                 return -ENOMEM;
813
814                         entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
815                                                         PAGE_KERNEL_LARGE);
816                         set_pmd(pmd, __pmd(pte_val(entry)));
817
818                         printk(KERN_DEBUG " [%lx-%lx] PMD ->%p on node %d\n",
819                                 addr, addr + PMD_SIZE - 1, p, node);
820                 } else {
821                         vmemmap_verify((pte_t *)pmd, node, addr, next);
822                 }
823         }
824         return 0;
825 }
826 #endif