2 * linux/arch/x86_64/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
43 #include <asm/fixmap.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
53 #include <asm/cacheflush.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
58 #include "mm_internal.h"
60 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
61 unsigned long addr, unsigned long end)
64 for (; addr < end; addr += PMD_SIZE) {
65 pmd_t *pmd = pmd_page + pmd_index(addr);
67 if (!pmd_present(*pmd))
68 set_pmd(pmd, __pmd(addr | pmd_flag));
71 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
72 unsigned long addr, unsigned long end)
76 for (; addr < end; addr = next) {
77 pud_t *pud = pud_page + pud_index(addr);
80 next = (addr & PUD_MASK) + PUD_SIZE;
84 if (pud_present(*pud)) {
85 pmd = pmd_offset(pud, 0);
86 ident_pmd_init(info->pmd_flag, pmd, addr, next);
89 pmd = (pmd_t *)info->alloc_pgt_page(info->context);
92 ident_pmd_init(info->pmd_flag, pmd, addr, next);
93 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
99 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
100 unsigned long addr, unsigned long end)
104 int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
106 for (; addr < end; addr = next) {
107 pgd_t *pgd = pgd_page + pgd_index(addr) + off;
110 next = (addr & PGDIR_MASK) + PGDIR_SIZE;
114 if (pgd_present(*pgd)) {
115 pud = pud_offset(pgd, 0);
116 result = ident_pud_init(info, pud, addr, next);
122 pud = (pud_t *)info->alloc_pgt_page(info->context);
125 result = ident_pud_init(info, pud, addr, next);
128 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
134 static int __init parse_direct_gbpages_off(char *arg)
139 early_param("nogbpages", parse_direct_gbpages_off);
141 static int __init parse_direct_gbpages_on(char *arg)
146 early_param("gbpages", parse_direct_gbpages_on);
149 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
150 * physical space so we can cache the place of the first one and move
151 * around without checking the pgd every time.
154 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
155 EXPORT_SYMBOL_GPL(__supported_pte_mask);
157 int force_personality32;
161 * Control non executable heap for 32bit processes.
162 * To control the stack too use noexec=off
164 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
165 * off PROT_READ implies PROT_EXEC
167 static int __init nonx32_setup(char *str)
169 if (!strcmp(str, "on"))
170 force_personality32 &= ~READ_IMPLIES_EXEC;
171 else if (!strcmp(str, "off"))
172 force_personality32 |= READ_IMPLIES_EXEC;
175 __setup("noexec32=", nonx32_setup);
178 * When memory was added/removed make sure all the processes MM have
179 * suitable PGD entries in the local PGD level page.
181 void sync_global_pgds(unsigned long start, unsigned long end)
183 unsigned long address;
185 for (address = start; address <= end; address += PGDIR_SIZE) {
186 const pgd_t *pgd_ref = pgd_offset_k(address);
189 if (pgd_none(*pgd_ref))
192 spin_lock(&pgd_lock);
193 list_for_each_entry(page, &pgd_list, lru) {
195 spinlock_t *pgt_lock;
197 pgd = (pgd_t *)page_address(page) + pgd_index(address);
198 /* the pgt_lock only for Xen */
199 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
203 set_pgd(pgd, *pgd_ref);
205 BUG_ON(pgd_page_vaddr(*pgd)
206 != pgd_page_vaddr(*pgd_ref));
208 spin_unlock(pgt_lock);
210 spin_unlock(&pgd_lock);
215 * NOTE: This function is marked __ref because it calls __init function
216 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
218 static __ref void *spp_getpage(void)
223 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
225 ptr = alloc_bootmem_pages(PAGE_SIZE);
227 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
228 panic("set_pte_phys: cannot allocate page data %s\n",
229 after_bootmem ? "after bootmem" : "");
232 pr_debug("spp_getpage %p\n", ptr);
237 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
239 if (pgd_none(*pgd)) {
240 pud_t *pud = (pud_t *)spp_getpage();
241 pgd_populate(&init_mm, pgd, pud);
242 if (pud != pud_offset(pgd, 0))
243 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
244 pud, pud_offset(pgd, 0));
246 return pud_offset(pgd, vaddr);
249 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
251 if (pud_none(*pud)) {
252 pmd_t *pmd = (pmd_t *) spp_getpage();
253 pud_populate(&init_mm, pud, pmd);
254 if (pmd != pmd_offset(pud, 0))
255 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
256 pmd, pmd_offset(pud, 0));
258 return pmd_offset(pud, vaddr);
261 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
263 if (pmd_none(*pmd)) {
264 pte_t *pte = (pte_t *) spp_getpage();
265 pmd_populate_kernel(&init_mm, pmd, pte);
266 if (pte != pte_offset_kernel(pmd, 0))
267 printk(KERN_ERR "PAGETABLE BUG #02!\n");
269 return pte_offset_kernel(pmd, vaddr);
272 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
278 pud = pud_page + pud_index(vaddr);
279 pmd = fill_pmd(pud, vaddr);
280 pte = fill_pte(pmd, vaddr);
282 set_pte(pte, new_pte);
285 * It's enough to flush this one mapping.
286 * (PGE mappings get flushed as well)
288 __flush_tlb_one(vaddr);
291 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
296 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
298 pgd = pgd_offset_k(vaddr);
299 if (pgd_none(*pgd)) {
301 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
304 pud_page = (pud_t*)pgd_page_vaddr(*pgd);
305 set_pte_vaddr_pud(pud_page, vaddr, pteval);
308 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
313 pgd = pgd_offset_k(vaddr);
314 pud = fill_pud(pgd, vaddr);
315 return fill_pmd(pud, vaddr);
318 pte_t * __init populate_extra_pte(unsigned long vaddr)
322 pmd = populate_extra_pmd(vaddr);
323 return fill_pte(pmd, vaddr);
327 * Create large page table mappings for a range of physical addresses.
329 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
336 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
337 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
338 pgd = pgd_offset_k((unsigned long)__va(phys));
339 if (pgd_none(*pgd)) {
340 pud = (pud_t *) spp_getpage();
341 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
344 pud = pud_offset(pgd, (unsigned long)__va(phys));
345 if (pud_none(*pud)) {
346 pmd = (pmd_t *) spp_getpage();
347 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
350 pmd = pmd_offset(pud, phys);
351 BUG_ON(!pmd_none(*pmd));
352 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
356 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
358 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
361 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
363 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
367 * The head.S code sets up the kernel high mapping:
369 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
371 * phys_base holds the negative offset to the kernel, which is added
372 * to the compile time generated pmds. This results in invalid pmds up
373 * to the point where we hit the physaddr 0 mapping.
375 * We limit the mappings to the region from _text to _brk_end. _brk_end
376 * is rounded up to the 2MB boundary. This catches the invalid pmds as
377 * well, as they are located before _text:
379 void __init cleanup_highmap(void)
381 unsigned long vaddr = __START_KERNEL_map;
382 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
383 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
384 pmd_t *pmd = level2_kernel_pgt;
387 * Native path, max_pfn_mapped is not set yet.
388 * Xen has valid max_pfn_mapped set in
389 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
392 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
394 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
397 if (vaddr < (unsigned long) _text || vaddr > end)
398 set_pmd(pmd, __pmd(0));
402 static unsigned long __meminit
403 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
406 unsigned long pages = 0, next;
407 unsigned long last_map_addr = end;
410 pte_t *pte = pte_page + pte_index(addr);
412 for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
413 next = (addr & PAGE_MASK) + PAGE_SIZE;
415 if (!after_bootmem &&
416 !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
417 !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
418 set_pte(pte, __pte(0));
423 * We will re-use the existing mapping.
424 * Xen for example has some special requirements, like mapping
425 * pagetable pages as RO. So assume someone who pre-setup
426 * these mappings are more intelligent.
435 printk(" pte=%p addr=%lx pte=%016lx\n",
436 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
438 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
439 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
442 update_page_count(PG_LEVEL_4K, pages);
444 return last_map_addr;
447 static unsigned long __meminit
448 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
449 unsigned long page_size_mask, pgprot_t prot)
451 unsigned long pages = 0, next;
452 unsigned long last_map_addr = end;
454 int i = pmd_index(address);
456 for (; i < PTRS_PER_PMD; i++, address = next) {
457 pmd_t *pmd = pmd_page + pmd_index(address);
459 pgprot_t new_prot = prot;
461 next = (address & PMD_MASK) + PMD_SIZE;
462 if (address >= end) {
463 if (!after_bootmem &&
464 !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
465 !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
466 set_pmd(pmd, __pmd(0));
471 if (!pmd_large(*pmd)) {
472 spin_lock(&init_mm.page_table_lock);
473 pte = (pte_t *)pmd_page_vaddr(*pmd);
474 last_map_addr = phys_pte_init(pte, address,
476 spin_unlock(&init_mm.page_table_lock);
480 * If we are ok with PG_LEVEL_2M mapping, then we will
481 * use the existing mapping,
483 * Otherwise, we will split the large page mapping but
484 * use the same existing protection bits except for
485 * large page, so that we don't violate Intel's TLB
486 * Application note (317080) which says, while changing
487 * the page sizes, new and old translations should
488 * not differ with respect to page frame and
491 if (page_size_mask & (1 << PG_LEVEL_2M)) {
494 last_map_addr = next;
497 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
500 if (page_size_mask & (1<<PG_LEVEL_2M)) {
502 spin_lock(&init_mm.page_table_lock);
503 set_pte((pte_t *)pmd,
504 pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
505 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
506 spin_unlock(&init_mm.page_table_lock);
507 last_map_addr = next;
511 pte = alloc_low_page();
512 last_map_addr = phys_pte_init(pte, address, end, new_prot);
514 spin_lock(&init_mm.page_table_lock);
515 pmd_populate_kernel(&init_mm, pmd, pte);
516 spin_unlock(&init_mm.page_table_lock);
518 update_page_count(PG_LEVEL_2M, pages);
519 return last_map_addr;
522 static unsigned long __meminit
523 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
524 unsigned long page_size_mask)
526 unsigned long pages = 0, next;
527 unsigned long last_map_addr = end;
528 int i = pud_index(addr);
530 for (; i < PTRS_PER_PUD; i++, addr = next) {
531 pud_t *pud = pud_page + pud_index(addr);
533 pgprot_t prot = PAGE_KERNEL;
535 next = (addr & PUD_MASK) + PUD_SIZE;
537 if (!after_bootmem &&
538 !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
539 !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
540 set_pud(pud, __pud(0));
545 if (!pud_large(*pud)) {
546 pmd = pmd_offset(pud, 0);
547 last_map_addr = phys_pmd_init(pmd, addr, end,
548 page_size_mask, prot);
553 * If we are ok with PG_LEVEL_1G mapping, then we will
554 * use the existing mapping.
556 * Otherwise, we will split the gbpage mapping but use
557 * the same existing protection bits except for large
558 * page, so that we don't violate Intel's TLB
559 * Application note (317080) which says, while changing
560 * the page sizes, new and old translations should
561 * not differ with respect to page frame and
564 if (page_size_mask & (1 << PG_LEVEL_1G)) {
567 last_map_addr = next;
570 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
573 if (page_size_mask & (1<<PG_LEVEL_1G)) {
575 spin_lock(&init_mm.page_table_lock);
576 set_pte((pte_t *)pud,
577 pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
579 spin_unlock(&init_mm.page_table_lock);
580 last_map_addr = next;
584 pmd = alloc_low_page();
585 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
588 spin_lock(&init_mm.page_table_lock);
589 pud_populate(&init_mm, pud, pmd);
590 spin_unlock(&init_mm.page_table_lock);
594 update_page_count(PG_LEVEL_1G, pages);
596 return last_map_addr;
599 unsigned long __meminit
600 kernel_physical_mapping_init(unsigned long start,
602 unsigned long page_size_mask)
604 bool pgd_changed = false;
605 unsigned long next, last_map_addr = end;
608 start = (unsigned long)__va(start);
609 end = (unsigned long)__va(end);
612 for (; start < end; start = next) {
613 pgd_t *pgd = pgd_offset_k(start);
616 next = (start & PGDIR_MASK) + PGDIR_SIZE;
619 pud = (pud_t *)pgd_page_vaddr(*pgd);
620 last_map_addr = phys_pud_init(pud, __pa(start),
621 __pa(end), page_size_mask);
625 pud = alloc_low_page();
626 last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
629 spin_lock(&init_mm.page_table_lock);
630 pgd_populate(&init_mm, pgd, pud);
631 spin_unlock(&init_mm.page_table_lock);
636 sync_global_pgds(addr, end - 1);
640 return last_map_addr;
644 void __init initmem_init(void)
646 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
650 void __init paging_init(void)
652 sparse_memory_present_with_active_regions(MAX_NUMNODES);
656 * clear the default setting with node 0
657 * note: don't use nodes_clear here, that is really clearing when
658 * numa support is not compiled in, and later node_set_state
659 * will not set it back.
661 node_clear_state(0, N_MEMORY);
662 if (N_MEMORY != N_NORMAL_MEMORY)
663 node_clear_state(0, N_NORMAL_MEMORY);
669 * Memory hotplug specific functions
671 #ifdef CONFIG_MEMORY_HOTPLUG
673 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
676 static void update_end_of_memory_vars(u64 start, u64 size)
678 unsigned long end_pfn = PFN_UP(start + size);
680 if (end_pfn > max_pfn) {
682 max_low_pfn = end_pfn;
683 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
688 * Memory is added always to NORMAL zone. This means you will never get
689 * additional DMA/DMA32 memory.
691 int arch_add_memory(int nid, u64 start, u64 size)
693 struct pglist_data *pgdat = NODE_DATA(nid);
694 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
695 unsigned long start_pfn = start >> PAGE_SHIFT;
696 unsigned long nr_pages = size >> PAGE_SHIFT;
699 init_memory_mapping(start, start + size);
701 ret = __add_pages(nid, zone, start_pfn, nr_pages);
704 /* update max_pfn, max_low_pfn and high_memory */
705 update_end_of_memory_vars(start, size);
709 EXPORT_SYMBOL_GPL(arch_add_memory);
711 #define PAGE_INUSE 0xFD
713 static void __meminit free_pagetable(struct page *page, int order)
716 unsigned int nr_pages = 1 << order;
718 /* bootmem page has reserved flag */
719 if (PageReserved(page)) {
720 __ClearPageReserved(page);
722 magic = (unsigned long)page->lru.next;
723 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
725 put_page_bootmem(page++);
728 free_reserved_page(page++);
730 free_pages((unsigned long)page_address(page), order);
733 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
738 for (i = 0; i < PTRS_PER_PTE; i++) {
744 /* free a pte talbe */
745 free_pagetable(pmd_page(*pmd), 0);
746 spin_lock(&init_mm.page_table_lock);
748 spin_unlock(&init_mm.page_table_lock);
751 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
756 for (i = 0; i < PTRS_PER_PMD; i++) {
762 /* free a pmd talbe */
763 free_pagetable(pud_page(*pud), 0);
764 spin_lock(&init_mm.page_table_lock);
766 spin_unlock(&init_mm.page_table_lock);
769 /* Return true if pgd is changed, otherwise return false. */
770 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
775 for (i = 0; i < PTRS_PER_PUD; i++) {
781 /* free a pud table */
782 free_pagetable(pgd_page(*pgd), 0);
783 spin_lock(&init_mm.page_table_lock);
785 spin_unlock(&init_mm.page_table_lock);
790 static void __meminit
791 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
794 unsigned long next, pages = 0;
797 phys_addr_t phys_addr;
799 pte = pte_start + pte_index(addr);
800 for (; addr < end; addr = next, pte++) {
801 next = (addr + PAGE_SIZE) & PAGE_MASK;
805 if (!pte_present(*pte))
809 * We mapped [0,1G) memory as identity mapping when
810 * initializing, in arch/x86/kernel/head_64.S. These
811 * pagetables cannot be removed.
813 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
814 if (phys_addr < (phys_addr_t)0x40000000)
817 if (IS_ALIGNED(addr, PAGE_SIZE) &&
818 IS_ALIGNED(next, PAGE_SIZE)) {
820 * Do not free direct mapping pages since they were
821 * freed when offlining, or simplely not in use.
824 free_pagetable(pte_page(*pte), 0);
826 spin_lock(&init_mm.page_table_lock);
827 pte_clear(&init_mm, addr, pte);
828 spin_unlock(&init_mm.page_table_lock);
830 /* For non-direct mapping, pages means nothing. */
834 * If we are here, we are freeing vmemmap pages since
835 * direct mapped memory ranges to be freed are aligned.
837 * If we are not removing the whole page, it means
838 * other page structs in this page are being used and
839 * we canot remove them. So fill the unused page_structs
840 * with 0xFD, and remove the page when it is wholly
843 memset((void *)addr, PAGE_INUSE, next - addr);
845 page_addr = page_address(pte_page(*pte));
846 if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
847 free_pagetable(pte_page(*pte), 0);
849 spin_lock(&init_mm.page_table_lock);
850 pte_clear(&init_mm, addr, pte);
851 spin_unlock(&init_mm.page_table_lock);
856 /* Call free_pte_table() in remove_pmd_table(). */
859 update_page_count(PG_LEVEL_4K, -pages);
862 static void __meminit
863 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
866 unsigned long next, pages = 0;
871 pmd = pmd_start + pmd_index(addr);
872 for (; addr < end; addr = next, pmd++) {
873 next = pmd_addr_end(addr, end);
875 if (!pmd_present(*pmd))
878 if (pmd_large(*pmd)) {
879 if (IS_ALIGNED(addr, PMD_SIZE) &&
880 IS_ALIGNED(next, PMD_SIZE)) {
882 free_pagetable(pmd_page(*pmd),
883 get_order(PMD_SIZE));
885 spin_lock(&init_mm.page_table_lock);
887 spin_unlock(&init_mm.page_table_lock);
890 /* If here, we are freeing vmemmap pages. */
891 memset((void *)addr, PAGE_INUSE, next - addr);
893 page_addr = page_address(pmd_page(*pmd));
894 if (!memchr_inv(page_addr, PAGE_INUSE,
896 free_pagetable(pmd_page(*pmd),
897 get_order(PMD_SIZE));
899 spin_lock(&init_mm.page_table_lock);
901 spin_unlock(&init_mm.page_table_lock);
908 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
909 remove_pte_table(pte_base, addr, next, direct);
910 free_pte_table(pte_base, pmd);
913 /* Call free_pmd_table() in remove_pud_table(). */
915 update_page_count(PG_LEVEL_2M, -pages);
918 static void __meminit
919 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
922 unsigned long next, pages = 0;
927 pud = pud_start + pud_index(addr);
928 for (; addr < end; addr = next, pud++) {
929 next = pud_addr_end(addr, end);
931 if (!pud_present(*pud))
934 if (pud_large(*pud)) {
935 if (IS_ALIGNED(addr, PUD_SIZE) &&
936 IS_ALIGNED(next, PUD_SIZE)) {
938 free_pagetable(pud_page(*pud),
939 get_order(PUD_SIZE));
941 spin_lock(&init_mm.page_table_lock);
943 spin_unlock(&init_mm.page_table_lock);
946 /* If here, we are freeing vmemmap pages. */
947 memset((void *)addr, PAGE_INUSE, next - addr);
949 page_addr = page_address(pud_page(*pud));
950 if (!memchr_inv(page_addr, PAGE_INUSE,
952 free_pagetable(pud_page(*pud),
953 get_order(PUD_SIZE));
955 spin_lock(&init_mm.page_table_lock);
957 spin_unlock(&init_mm.page_table_lock);
964 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
965 remove_pmd_table(pmd_base, addr, next, direct);
966 free_pmd_table(pmd_base, pud);
970 update_page_count(PG_LEVEL_1G, -pages);
973 /* start and end are both virtual address. */
974 static void __meminit
975 remove_pagetable(unsigned long start, unsigned long end, bool direct)
980 bool pgd_changed = false;
982 for (; start < end; start = next) {
983 next = pgd_addr_end(start, end);
985 pgd = pgd_offset_k(start);
986 if (!pgd_present(*pgd))
989 pud = (pud_t *)pgd_page_vaddr(*pgd);
990 remove_pud_table(pud, start, next, direct);
991 if (free_pud_table(pud, pgd))
996 sync_global_pgds(start, end - 1);
1001 void __ref vmemmap_free(unsigned long start, unsigned long end)
1003 remove_pagetable(start, end, false);
1006 #ifdef CONFIG_MEMORY_HOTREMOVE
1007 static void __meminit
1008 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1010 start = (unsigned long)__va(start);
1011 end = (unsigned long)__va(end);
1013 remove_pagetable(start, end, true);
1016 int __ref arch_remove_memory(u64 start, u64 size)
1018 unsigned long start_pfn = start >> PAGE_SHIFT;
1019 unsigned long nr_pages = size >> PAGE_SHIFT;
1023 zone = page_zone(pfn_to_page(start_pfn));
1024 kernel_physical_mapping_remove(start, start + size);
1025 ret = __remove_pages(zone, start_pfn, nr_pages);
1031 #endif /* CONFIG_MEMORY_HOTPLUG */
1033 static struct kcore_list kcore_vsyscall;
1035 static void __init register_page_bootmem_info(void)
1040 for_each_online_node(i)
1041 register_page_bootmem_info_node(NODE_DATA(i));
1045 void __init mem_init(void)
1049 /* clear_bss() already clear the empty_zero_page */
1051 register_page_bootmem_info();
1053 /* this will put all memory onto the freelists */
1057 /* Register memory areas for /proc/kcore */
1058 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
1059 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
1061 mem_init_print_info(NULL);
1064 #ifdef CONFIG_DEBUG_RODATA
1065 const int rodata_test_data = 0xC3;
1066 EXPORT_SYMBOL_GPL(rodata_test_data);
1068 int kernel_set_to_readonly;
1070 void set_kernel_text_rw(void)
1072 unsigned long start = PFN_ALIGN(_text);
1073 unsigned long end = PFN_ALIGN(__stop___ex_table);
1075 if (!kernel_set_to_readonly)
1078 pr_debug("Set kernel text: %lx - %lx for read write\n",
1082 * Make the kernel identity mapping for text RW. Kernel text
1083 * mapping will always be RO. Refer to the comment in
1084 * static_protections() in pageattr.c
1086 set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1089 void set_kernel_text_ro(void)
1091 unsigned long start = PFN_ALIGN(_text);
1092 unsigned long end = PFN_ALIGN(__stop___ex_table);
1094 if (!kernel_set_to_readonly)
1097 pr_debug("Set kernel text: %lx - %lx for read only\n",
1101 * Set the kernel identity mapping for text RO.
1103 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1106 void mark_rodata_ro(void)
1108 unsigned long start = PFN_ALIGN(_text);
1109 unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1110 unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1111 unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1112 unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1113 unsigned long all_end = PFN_ALIGN(&_end);
1115 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1116 (end - start) >> 10);
1117 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1119 kernel_set_to_readonly = 1;
1122 * The rodata/data/bss/brk section (but not the kernel text!)
1123 * should also be not-executable.
1125 set_memory_nx(rodata_start, (all_end - rodata_start) >> PAGE_SHIFT);
1129 #ifdef CONFIG_CPA_DEBUG
1130 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1131 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1133 printk(KERN_INFO "Testing CPA: again\n");
1134 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1137 free_init_pages("unused kernel",
1138 (unsigned long) __va(__pa_symbol(text_end)),
1139 (unsigned long) __va(__pa_symbol(rodata_start)));
1140 free_init_pages("unused kernel",
1141 (unsigned long) __va(__pa_symbol(rodata_end)),
1142 (unsigned long) __va(__pa_symbol(_sdata)));
1147 int kern_addr_valid(unsigned long addr)
1149 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1155 if (above != 0 && above != -1UL)
1158 pgd = pgd_offset_k(addr);
1162 pud = pud_offset(pgd, addr);
1166 if (pud_large(*pud))
1167 return pfn_valid(pud_pfn(*pud));
1169 pmd = pmd_offset(pud, addr);
1173 if (pmd_large(*pmd))
1174 return pfn_valid(pmd_pfn(*pmd));
1176 pte = pte_offset_kernel(pmd, addr);
1180 return pfn_valid(pte_pfn(*pte));
1184 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
1185 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1186 * not need special handling anymore:
1188 static struct vm_area_struct gate_vma = {
1189 .vm_start = VSYSCALL_START,
1190 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
1191 .vm_page_prot = PAGE_READONLY_EXEC,
1192 .vm_flags = VM_READ | VM_EXEC
1195 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1197 #ifdef CONFIG_IA32_EMULATION
1198 if (!mm || mm->context.ia32_compat)
1204 int in_gate_area(struct mm_struct *mm, unsigned long addr)
1206 struct vm_area_struct *vma = get_gate_vma(mm);
1211 return (addr >= vma->vm_start) && (addr < vma->vm_end);
1215 * Use this when you have no reliable mm, typically from interrupt
1216 * context. It is less reliable than using a task's mm and may give
1219 int in_gate_area_no_mm(unsigned long addr)
1221 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1224 const char *arch_vma_name(struct vm_area_struct *vma)
1226 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1228 if (vma == &gate_vma)
1229 return "[vsyscall]";
1233 #ifdef CONFIG_X86_UV
1234 unsigned long memory_block_size_bytes(void)
1236 if (is_uv_system()) {
1237 printk(KERN_INFO "UV: memory block size 2GB\n");
1238 return 2UL * 1024 * 1024 * 1024;
1240 return MIN_MEMORY_BLOCK_SIZE;
1244 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1246 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1248 static long __meminitdata addr_start, addr_end;
1249 static void __meminitdata *p_start, *p_end;
1250 static int __meminitdata node_start;
1252 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1253 unsigned long end, int node)
1261 for (addr = start; addr < end; addr = next) {
1262 next = pmd_addr_end(addr, end);
1264 pgd = vmemmap_pgd_populate(addr, node);
1268 pud = vmemmap_pud_populate(pgd, addr, node);
1272 pmd = pmd_offset(pud, addr);
1273 if (pmd_none(*pmd)) {
1276 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1280 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1282 set_pmd(pmd, __pmd(pte_val(entry)));
1284 /* check to see if we have contiguous blocks */
1285 if (p_end != p || node_start != node) {
1287 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1288 addr_start, addr_end-1, p_start, p_end-1, node_start);
1294 addr_end = addr + PMD_SIZE;
1295 p_end = p + PMD_SIZE;
1298 } else if (pmd_large(*pmd)) {
1299 vmemmap_verify((pte_t *)pmd, node, addr, next);
1302 pr_warn_once("vmemmap: falling back to regular page backing\n");
1303 if (vmemmap_populate_basepages(addr, next, node))
1309 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1314 err = vmemmap_populate_hugepages(start, end, node);
1316 err = vmemmap_populate_basepages(start, end, node);
1318 sync_global_pgds(start, end - 1);
1322 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1323 void register_page_bootmem_memmap(unsigned long section_nr,
1324 struct page *start_page, unsigned long size)
1326 unsigned long addr = (unsigned long)start_page;
1327 unsigned long end = (unsigned long)(start_page + size);
1332 unsigned int nr_pages;
1335 for (; addr < end; addr = next) {
1338 pgd = pgd_offset_k(addr);
1339 if (pgd_none(*pgd)) {
1340 next = (addr + PAGE_SIZE) & PAGE_MASK;
1343 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1345 pud = pud_offset(pgd, addr);
1346 if (pud_none(*pud)) {
1347 next = (addr + PAGE_SIZE) & PAGE_MASK;
1350 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1353 next = (addr + PAGE_SIZE) & PAGE_MASK;
1354 pmd = pmd_offset(pud, addr);
1357 get_page_bootmem(section_nr, pmd_page(*pmd),
1360 pte = pte_offset_kernel(pmd, addr);
1363 get_page_bootmem(section_nr, pte_page(*pte),
1366 next = pmd_addr_end(addr, end);
1368 pmd = pmd_offset(pud, addr);
1372 nr_pages = 1 << (get_order(PMD_SIZE));
1373 page = pmd_page(*pmd);
1375 get_page_bootmem(section_nr, page++,
1382 void __meminit vmemmap_populate_print_last(void)
1385 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1386 addr_start, addr_end-1, p_start, p_end-1, node_start);