x86/mm/pat: Remove pat_enabled() checks
[firefly-linux-kernel-4.4.55.git] / arch / x86 / mm / ioremap.c
1 /*
2  * Re-map IO memory to kernel address space so that we can access it.
3  * This is needed for high PCI addresses that aren't mapped in the
4  * 640k-1MB IO memory area on PC's
5  *
6  * (C) Copyright 1995 1996 Linus Torvalds
7  */
8
9 #include <linux/bootmem.h>
10 #include <linux/init.h>
11 #include <linux/io.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/mmiotrace.h>
16
17 #include <asm/cacheflush.h>
18 #include <asm/e820.h>
19 #include <asm/fixmap.h>
20 #include <asm/pgtable.h>
21 #include <asm/tlbflush.h>
22 #include <asm/pgalloc.h>
23 #include <asm/pat.h>
24
25 #include "physaddr.h"
26
27 /*
28  * Fix up the linear direct mapping of the kernel to avoid cache attribute
29  * conflicts.
30  */
31 int ioremap_change_attr(unsigned long vaddr, unsigned long size,
32                         enum page_cache_mode pcm)
33 {
34         unsigned long nrpages = size >> PAGE_SHIFT;
35         int err;
36
37         switch (pcm) {
38         case _PAGE_CACHE_MODE_UC:
39         default:
40                 err = _set_memory_uc(vaddr, nrpages);
41                 break;
42         case _PAGE_CACHE_MODE_WC:
43                 err = _set_memory_wc(vaddr, nrpages);
44                 break;
45         case _PAGE_CACHE_MODE_WB:
46                 err = _set_memory_wb(vaddr, nrpages);
47                 break;
48         }
49
50         return err;
51 }
52
53 static int __ioremap_check_ram(unsigned long start_pfn, unsigned long nr_pages,
54                                void *arg)
55 {
56         unsigned long i;
57
58         for (i = 0; i < nr_pages; ++i)
59                 if (pfn_valid(start_pfn + i) &&
60                     !PageReserved(pfn_to_page(start_pfn + i)))
61                         return 1;
62
63         WARN_ONCE(1, "ioremap on RAM pfn 0x%lx\n", start_pfn);
64
65         return 0;
66 }
67
68 /*
69  * Remap an arbitrary physical address space into the kernel virtual
70  * address space. It transparently creates kernel huge I/O mapping when
71  * the physical address is aligned by a huge page size (1GB or 2MB) and
72  * the requested size is at least the huge page size.
73  *
74  * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
75  * Therefore, the mapping code falls back to use a smaller page toward 4KB
76  * when a mapping range is covered by non-WB type of MTRRs.
77  *
78  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
79  * have to convert them into an offset in a page-aligned mapping, but the
80  * caller shouldn't need to know that small detail.
81  */
82 static void __iomem *__ioremap_caller(resource_size_t phys_addr,
83                 unsigned long size, enum page_cache_mode pcm, void *caller)
84 {
85         unsigned long offset, vaddr;
86         resource_size_t pfn, last_pfn, last_addr;
87         const resource_size_t unaligned_phys_addr = phys_addr;
88         const unsigned long unaligned_size = size;
89         struct vm_struct *area;
90         enum page_cache_mode new_pcm;
91         pgprot_t prot;
92         int retval;
93         void __iomem *ret_addr;
94         int ram_region;
95
96         /* Don't allow wraparound or zero size */
97         last_addr = phys_addr + size - 1;
98         if (!size || last_addr < phys_addr)
99                 return NULL;
100
101         if (!phys_addr_valid(phys_addr)) {
102                 printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
103                        (unsigned long long)phys_addr);
104                 WARN_ON_ONCE(1);
105                 return NULL;
106         }
107
108         /*
109          * Don't remap the low PCI/ISA area, it's always mapped..
110          */
111         if (is_ISA_range(phys_addr, last_addr))
112                 return (__force void __iomem *)phys_to_virt(phys_addr);
113
114         /*
115          * Don't allow anybody to remap normal RAM that we're using..
116          */
117         /* First check if whole region can be identified as RAM or not */
118         ram_region = region_is_ram(phys_addr, size);
119         if (ram_region > 0) {
120                 WARN_ONCE(1, "ioremap on RAM at 0x%lx - 0x%lx\n",
121                                 (unsigned long int)phys_addr,
122                                 (unsigned long int)last_addr);
123                 return NULL;
124         }
125
126         /* If could not be identified(-1), check page by page */
127         if (ram_region < 0) {
128                 pfn      = phys_addr >> PAGE_SHIFT;
129                 last_pfn = last_addr >> PAGE_SHIFT;
130                 if (walk_system_ram_range(pfn, last_pfn - pfn + 1, NULL,
131                                           __ioremap_check_ram) == 1)
132                         return NULL;
133         }
134         /*
135          * Mappings have to be page-aligned
136          */
137         offset = phys_addr & ~PAGE_MASK;
138         phys_addr &= PHYSICAL_PAGE_MASK;
139         size = PAGE_ALIGN(last_addr+1) - phys_addr;
140
141         retval = reserve_memtype(phys_addr, (u64)phys_addr + size,
142                                                 pcm, &new_pcm);
143         if (retval) {
144                 printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval);
145                 return NULL;
146         }
147
148         if (pcm != new_pcm) {
149                 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
150                         printk(KERN_ERR
151                 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
152                                 (unsigned long long)phys_addr,
153                                 (unsigned long long)(phys_addr + size),
154                                 pcm, new_pcm);
155                         goto err_free_memtype;
156                 }
157                 pcm = new_pcm;
158         }
159
160         prot = PAGE_KERNEL_IO;
161         switch (pcm) {
162         case _PAGE_CACHE_MODE_UC:
163         default:
164                 prot = __pgprot(pgprot_val(prot) |
165                                 cachemode2protval(_PAGE_CACHE_MODE_UC));
166                 break;
167         case _PAGE_CACHE_MODE_UC_MINUS:
168                 prot = __pgprot(pgprot_val(prot) |
169                                 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
170                 break;
171         case _PAGE_CACHE_MODE_WC:
172                 prot = __pgprot(pgprot_val(prot) |
173                                 cachemode2protval(_PAGE_CACHE_MODE_WC));
174                 break;
175         case _PAGE_CACHE_MODE_WB:
176                 break;
177         }
178
179         /*
180          * Ok, go for it..
181          */
182         area = get_vm_area_caller(size, VM_IOREMAP, caller);
183         if (!area)
184                 goto err_free_memtype;
185         area->phys_addr = phys_addr;
186         vaddr = (unsigned long) area->addr;
187
188         if (kernel_map_sync_memtype(phys_addr, size, pcm))
189                 goto err_free_area;
190
191         if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
192                 goto err_free_area;
193
194         ret_addr = (void __iomem *) (vaddr + offset);
195         mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
196
197         /*
198          * Check if the request spans more than any BAR in the iomem resource
199          * tree.
200          */
201         WARN_ONCE(iomem_map_sanity_check(unaligned_phys_addr, unaligned_size),
202                   KERN_INFO "Info: mapping multiple BARs. Your kernel is fine.");
203
204         return ret_addr;
205 err_free_area:
206         free_vm_area(area);
207 err_free_memtype:
208         free_memtype(phys_addr, phys_addr + size);
209         return NULL;
210 }
211
212 /**
213  * ioremap_nocache     -   map bus memory into CPU space
214  * @phys_addr:    bus address of the memory
215  * @size:      size of the resource to map
216  *
217  * ioremap_nocache performs a platform specific sequence of operations to
218  * make bus memory CPU accessible via the readb/readw/readl/writeb/
219  * writew/writel functions and the other mmio helpers. The returned
220  * address is not guaranteed to be usable directly as a virtual
221  * address.
222  *
223  * This version of ioremap ensures that the memory is marked uncachable
224  * on the CPU as well as honouring existing caching rules from things like
225  * the PCI bus. Note that there are other caches and buffers on many
226  * busses. In particular driver authors should read up on PCI writes
227  *
228  * It's useful if some control registers are in such an area and
229  * write combining or read caching is not desirable:
230  *
231  * Must be freed with iounmap.
232  */
233 void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size)
234 {
235         /*
236          * Ideally, this should be:
237          *      pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
238          *
239          * Till we fix all X drivers to use ioremap_wc(), we will use
240          * UC MINUS. Drivers that are certain they need or can already
241          * be converted over to strong UC can use ioremap_uc().
242          */
243         enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
244
245         return __ioremap_caller(phys_addr, size, pcm,
246                                 __builtin_return_address(0));
247 }
248 EXPORT_SYMBOL(ioremap_nocache);
249
250 /**
251  * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
252  * @phys_addr:    bus address of the memory
253  * @size:      size of the resource to map
254  *
255  * ioremap_uc performs a platform specific sequence of operations to
256  * make bus memory CPU accessible via the readb/readw/readl/writeb/
257  * writew/writel functions and the other mmio helpers. The returned
258  * address is not guaranteed to be usable directly as a virtual
259  * address.
260  *
261  * This version of ioremap ensures that the memory is marked with a strong
262  * preference as completely uncachable on the CPU when possible. For non-PAT
263  * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
264  * systems this will set the PAT entry for the pages as strong UC.  This call
265  * will honor existing caching rules from things like the PCI bus. Note that
266  * there are other caches and buffers on many busses. In particular driver
267  * authors should read up on PCI writes.
268  *
269  * It's useful if some control registers are in such an area and
270  * write combining or read caching is not desirable:
271  *
272  * Must be freed with iounmap.
273  */
274 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
275 {
276         enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
277
278         return __ioremap_caller(phys_addr, size, pcm,
279                                 __builtin_return_address(0));
280 }
281 EXPORT_SYMBOL_GPL(ioremap_uc);
282
283 /**
284  * ioremap_wc   -       map memory into CPU space write combined
285  * @phys_addr:  bus address of the memory
286  * @size:       size of the resource to map
287  *
288  * This version of ioremap ensures that the memory is marked write combining.
289  * Write combining allows faster writes to some hardware devices.
290  *
291  * Must be freed with iounmap.
292  */
293 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
294 {
295         return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
296                                         __builtin_return_address(0));
297 }
298 EXPORT_SYMBOL(ioremap_wc);
299
300 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
301 {
302         return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
303                                 __builtin_return_address(0));
304 }
305 EXPORT_SYMBOL(ioremap_cache);
306
307 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
308                                 unsigned long prot_val)
309 {
310         return __ioremap_caller(phys_addr, size,
311                                 pgprot2cachemode(__pgprot(prot_val)),
312                                 __builtin_return_address(0));
313 }
314 EXPORT_SYMBOL(ioremap_prot);
315
316 /**
317  * iounmap - Free a IO remapping
318  * @addr: virtual address from ioremap_*
319  *
320  * Caller must ensure there is only one unmapping for the same pointer.
321  */
322 void iounmap(volatile void __iomem *addr)
323 {
324         struct vm_struct *p, *o;
325
326         if ((void __force *)addr <= high_memory)
327                 return;
328
329         /*
330          * __ioremap special-cases the PCI/ISA range by not instantiating a
331          * vm_area and by simply returning an address into the kernel mapping
332          * of ISA space.   So handle that here.
333          */
334         if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
335             (void __force *)addr < phys_to_virt(ISA_END_ADDRESS))
336                 return;
337
338         addr = (volatile void __iomem *)
339                 (PAGE_MASK & (unsigned long __force)addr);
340
341         mmiotrace_iounmap(addr);
342
343         /* Use the vm area unlocked, assuming the caller
344            ensures there isn't another iounmap for the same address
345            in parallel. Reuse of the virtual address is prevented by
346            leaving it in the global lists until we're done with it.
347            cpa takes care of the direct mappings. */
348         p = find_vm_area((void __force *)addr);
349
350         if (!p) {
351                 printk(KERN_ERR "iounmap: bad address %p\n", addr);
352                 dump_stack();
353                 return;
354         }
355
356         free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p));
357
358         /* Finally remove it */
359         o = remove_vm_area((void __force *)addr);
360         BUG_ON(p != o || o == NULL);
361         kfree(p);
362 }
363 EXPORT_SYMBOL(iounmap);
364
365 int __init arch_ioremap_pud_supported(void)
366 {
367 #ifdef CONFIG_X86_64
368         return cpu_has_gbpages;
369 #else
370         return 0;
371 #endif
372 }
373
374 int __init arch_ioremap_pmd_supported(void)
375 {
376         return cpu_has_pse;
377 }
378
379 /*
380  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
381  * access
382  */
383 void *xlate_dev_mem_ptr(phys_addr_t phys)
384 {
385         unsigned long start  = phys &  PAGE_MASK;
386         unsigned long offset = phys & ~PAGE_MASK;
387         unsigned long vaddr;
388
389         /* If page is RAM, we can use __va. Otherwise ioremap and unmap. */
390         if (page_is_ram(start >> PAGE_SHIFT))
391                 return __va(phys);
392
393         vaddr = (unsigned long)ioremap_cache(start, PAGE_SIZE);
394         /* Only add the offset on success and return NULL if the ioremap() failed: */
395         if (vaddr)
396                 vaddr += offset;
397
398         return (void *)vaddr;
399 }
400
401 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
402 {
403         if (page_is_ram(phys >> PAGE_SHIFT))
404                 return;
405
406         iounmap((void __iomem *)((unsigned long)addr & PAGE_MASK));
407         return;
408 }
409
410 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
411
412 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
413 {
414         /* Don't assume we're using swapper_pg_dir at this point */
415         pgd_t *base = __va(read_cr3());
416         pgd_t *pgd = &base[pgd_index(addr)];
417         pud_t *pud = pud_offset(pgd, addr);
418         pmd_t *pmd = pmd_offset(pud, addr);
419
420         return pmd;
421 }
422
423 static inline pte_t * __init early_ioremap_pte(unsigned long addr)
424 {
425         return &bm_pte[pte_index(addr)];
426 }
427
428 bool __init is_early_ioremap_ptep(pte_t *ptep)
429 {
430         return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
431 }
432
433 void __init early_ioremap_init(void)
434 {
435         pmd_t *pmd;
436
437 #ifdef CONFIG_X86_64
438         BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
439 #else
440         WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
441 #endif
442
443         early_ioremap_setup();
444
445         pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
446         memset(bm_pte, 0, sizeof(bm_pte));
447         pmd_populate_kernel(&init_mm, pmd, bm_pte);
448
449         /*
450          * The boot-ioremap range spans multiple pmds, for which
451          * we are not prepared:
452          */
453 #define __FIXADDR_TOP (-PAGE_SIZE)
454         BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
455                      != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
456 #undef __FIXADDR_TOP
457         if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
458                 WARN_ON(1);
459                 printk(KERN_WARNING "pmd %p != %p\n",
460                        pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
461                 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
462                         fix_to_virt(FIX_BTMAP_BEGIN));
463                 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
464                         fix_to_virt(FIX_BTMAP_END));
465
466                 printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
467                 printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
468                        FIX_BTMAP_BEGIN);
469         }
470 }
471
472 void __init __early_set_fixmap(enum fixed_addresses idx,
473                                phys_addr_t phys, pgprot_t flags)
474 {
475         unsigned long addr = __fix_to_virt(idx);
476         pte_t *pte;
477
478         if (idx >= __end_of_fixed_addresses) {
479                 BUG();
480                 return;
481         }
482         pte = early_ioremap_pte(addr);
483
484         if (pgprot_val(flags))
485                 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
486         else
487                 pte_clear(&init_mm, addr, pte);
488         __flush_tlb_one(addr);
489 }