1cbdbbc35b47cbac0d082cdf7f3cbd76073fd3ee
[firefly-linux-kernel-4.4.55.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32         unsigned long   *vaddr;
33         pgd_t           *pgd;
34         pgprot_t        mask_set;
35         pgprot_t        mask_clr;
36         int             numpages;
37         int             flags;
38         unsigned long   pfn;
39         unsigned        force_split : 1;
40         int             curpage;
41         struct page     **pages;
42 };
43
44 /*
45  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47  * entries change the page attribute in parallel to some other cpu
48  * splitting a large page entry along with changing the attribute.
49  */
50 static DEFINE_SPINLOCK(cpa_lock);
51
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55
56 #ifdef CONFIG_PROC_FS
57 static unsigned long direct_pages_count[PG_LEVEL_NUM];
58
59 void update_page_count(int level, unsigned long pages)
60 {
61         /* Protect against CPA */
62         spin_lock(&pgd_lock);
63         direct_pages_count[level] += pages;
64         spin_unlock(&pgd_lock);
65 }
66
67 static void split_page_count(int level)
68 {
69         direct_pages_count[level]--;
70         direct_pages_count[level - 1] += PTRS_PER_PTE;
71 }
72
73 void arch_report_meminfo(struct seq_file *m)
74 {
75         seq_printf(m, "DirectMap4k:    %8lu kB\n",
76                         direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78         seq_printf(m, "DirectMap2M:    %8lu kB\n",
79                         direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81         seq_printf(m, "DirectMap4M:    %8lu kB\n",
82                         direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84 #ifdef CONFIG_X86_64
85         if (direct_gbpages)
86                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
87                         direct_pages_count[PG_LEVEL_1G] << 20);
88 #endif
89 }
90 #else
91 static inline void split_page_count(int level) { }
92 #endif
93
94 #ifdef CONFIG_X86_64
95
96 static inline unsigned long highmap_start_pfn(void)
97 {
98         return __pa_symbol(_text) >> PAGE_SHIFT;
99 }
100
101 static inline unsigned long highmap_end_pfn(void)
102 {
103         return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
104 }
105
106 #endif
107
108 #ifdef CONFIG_DEBUG_PAGEALLOC
109 # define debug_pagealloc 1
110 #else
111 # define debug_pagealloc 0
112 #endif
113
114 static inline int
115 within(unsigned long addr, unsigned long start, unsigned long end)
116 {
117         return addr >= start && addr < end;
118 }
119
120 /*
121  * Flushing functions
122  */
123
124 /**
125  * clflush_cache_range - flush a cache range with clflush
126  * @vaddr:      virtual start address
127  * @size:       number of bytes to flush
128  *
129  * clflush is an unordered instruction which needs fencing with mfence
130  * to avoid ordering issues.
131  */
132 void clflush_cache_range(void *vaddr, unsigned int size)
133 {
134         void *vend = vaddr + size - 1;
135
136         mb();
137
138         for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
139                 clflush(vaddr);
140         /*
141          * Flush any possible final partial cacheline:
142          */
143         clflush(vend);
144
145         mb();
146 }
147 EXPORT_SYMBOL_GPL(clflush_cache_range);
148
149 static void __cpa_flush_all(void *arg)
150 {
151         unsigned long cache = (unsigned long)arg;
152
153         /*
154          * Flush all to work around Errata in early athlons regarding
155          * large page flushing.
156          */
157         __flush_tlb_all();
158
159         if (cache && boot_cpu_data.x86 >= 4)
160                 wbinvd();
161 }
162
163 static void cpa_flush_all(unsigned long cache)
164 {
165         BUG_ON(irqs_disabled());
166
167         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
168 }
169
170 static void __cpa_flush_range(void *arg)
171 {
172         /*
173          * We could optimize that further and do individual per page
174          * tlb invalidates for a low number of pages. Caveat: we must
175          * flush the high aliases on 64bit as well.
176          */
177         __flush_tlb_all();
178 }
179
180 static void cpa_flush_range(unsigned long start, int numpages, int cache)
181 {
182         unsigned int i, level;
183         unsigned long addr;
184
185         BUG_ON(irqs_disabled());
186         WARN_ON(PAGE_ALIGN(start) != start);
187
188         on_each_cpu(__cpa_flush_range, NULL, 1);
189
190         if (!cache)
191                 return;
192
193         /*
194          * We only need to flush on one CPU,
195          * clflush is a MESI-coherent instruction that
196          * will cause all other CPUs to flush the same
197          * cachelines:
198          */
199         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
200                 pte_t *pte = lookup_address(addr, &level);
201
202                 /*
203                  * Only flush present addresses:
204                  */
205                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
206                         clflush_cache_range((void *) addr, PAGE_SIZE);
207         }
208 }
209
210 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
211                             int in_flags, struct page **pages)
212 {
213         unsigned int i, level;
214         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
215
216         BUG_ON(irqs_disabled());
217
218         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
219
220         if (!cache || do_wbinvd)
221                 return;
222
223         /*
224          * We only need to flush on one CPU,
225          * clflush is a MESI-coherent instruction that
226          * will cause all other CPUs to flush the same
227          * cachelines:
228          */
229         for (i = 0; i < numpages; i++) {
230                 unsigned long addr;
231                 pte_t *pte;
232
233                 if (in_flags & CPA_PAGES_ARRAY)
234                         addr = (unsigned long)page_address(pages[i]);
235                 else
236                         addr = start[i];
237
238                 pte = lookup_address(addr, &level);
239
240                 /*
241                  * Only flush present addresses:
242                  */
243                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
244                         clflush_cache_range((void *)addr, PAGE_SIZE);
245         }
246 }
247
248 /*
249  * Certain areas of memory on x86 require very specific protection flags,
250  * for example the BIOS area or kernel text. Callers don't always get this
251  * right (again, ioremap() on BIOS memory is not uncommon) so this function
252  * checks and fixes these known static required protection bits.
253  */
254 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
255                                    unsigned long pfn)
256 {
257         pgprot_t forbidden = __pgprot(0);
258
259         /*
260          * The BIOS area between 640k and 1Mb needs to be executable for
261          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
262          */
263 #ifdef CONFIG_PCI_BIOS
264         if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
265                 pgprot_val(forbidden) |= _PAGE_NX;
266 #endif
267
268         /*
269          * The kernel text needs to be executable for obvious reasons
270          * Does not cover __inittext since that is gone later on. On
271          * 64bit we do not enforce !NX on the low mapping
272          */
273         if (within(address, (unsigned long)_text, (unsigned long)_etext))
274                 pgprot_val(forbidden) |= _PAGE_NX;
275
276         /*
277          * The .rodata section needs to be read-only. Using the pfn
278          * catches all aliases.
279          */
280         if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
281                    __pa_symbol(__end_rodata) >> PAGE_SHIFT))
282                 pgprot_val(forbidden) |= _PAGE_RW;
283
284 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
285         /*
286          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
287          * kernel text mappings for the large page aligned text, rodata sections
288          * will be always read-only. For the kernel identity mappings covering
289          * the holes caused by this alignment can be anything that user asks.
290          *
291          * This will preserve the large page mappings for kernel text/data
292          * at no extra cost.
293          */
294         if (kernel_set_to_readonly &&
295             within(address, (unsigned long)_text,
296                    (unsigned long)__end_rodata_hpage_align)) {
297                 unsigned int level;
298
299                 /*
300                  * Don't enforce the !RW mapping for the kernel text mapping,
301                  * if the current mapping is already using small page mapping.
302                  * No need to work hard to preserve large page mappings in this
303                  * case.
304                  *
305                  * This also fixes the Linux Xen paravirt guest boot failure
306                  * (because of unexpected read-only mappings for kernel identity
307                  * mappings). In this paravirt guest case, the kernel text
308                  * mapping and the kernel identity mapping share the same
309                  * page-table pages. Thus we can't really use different
310                  * protections for the kernel text and identity mappings. Also,
311                  * these shared mappings are made of small page mappings.
312                  * Thus this don't enforce !RW mapping for small page kernel
313                  * text mapping logic will help Linux Xen parvirt guest boot
314                  * as well.
315                  */
316                 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
317                         pgprot_val(forbidden) |= _PAGE_RW;
318         }
319 #endif
320
321         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
322
323         return prot;
324 }
325
326 static pte_t *__lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
327                                       unsigned int *level)
328 {
329         pud_t *pud;
330         pmd_t *pmd;
331
332         *level = PG_LEVEL_NONE;
333
334         if (pgd_none(*pgd))
335                 return NULL;
336
337         pud = pud_offset(pgd, address);
338         if (pud_none(*pud))
339                 return NULL;
340
341         *level = PG_LEVEL_1G;
342         if (pud_large(*pud) || !pud_present(*pud))
343                 return (pte_t *)pud;
344
345         pmd = pmd_offset(pud, address);
346         if (pmd_none(*pmd))
347                 return NULL;
348
349         *level = PG_LEVEL_2M;
350         if (pmd_large(*pmd) || !pmd_present(*pmd))
351                 return (pte_t *)pmd;
352
353         *level = PG_LEVEL_4K;
354
355         return pte_offset_kernel(pmd, address);
356 }
357
358 /*
359  * Lookup the page table entry for a virtual address. Return a pointer
360  * to the entry and the level of the mapping.
361  *
362  * Note: We return pud and pmd either when the entry is marked large
363  * or when the present bit is not set. Otherwise we would return a
364  * pointer to a nonexisting mapping.
365  */
366 pte_t *lookup_address(unsigned long address, unsigned int *level)
367 {
368         return __lookup_address_in_pgd(pgd_offset_k(address), address, level);
369 }
370 EXPORT_SYMBOL_GPL(lookup_address);
371
372 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
373                                   unsigned int *level)
374 {
375         if (cpa->pgd)
376                 return __lookup_address_in_pgd(cpa->pgd + pgd_index(address),
377                                                address, level);
378
379         return lookup_address(address, level);
380 }
381
382 /*
383  * This is necessary because __pa() does not work on some
384  * kinds of memory, like vmalloc() or the alloc_remap()
385  * areas on 32-bit NUMA systems.  The percpu areas can
386  * end up in this kind of memory, for instance.
387  *
388  * This could be optimized, but it is only intended to be
389  * used at inititalization time, and keeping it
390  * unoptimized should increase the testing coverage for
391  * the more obscure platforms.
392  */
393 phys_addr_t slow_virt_to_phys(void *__virt_addr)
394 {
395         unsigned long virt_addr = (unsigned long)__virt_addr;
396         phys_addr_t phys_addr;
397         unsigned long offset;
398         enum pg_level level;
399         unsigned long psize;
400         unsigned long pmask;
401         pte_t *pte;
402
403         pte = lookup_address(virt_addr, &level);
404         BUG_ON(!pte);
405         psize = page_level_size(level);
406         pmask = page_level_mask(level);
407         offset = virt_addr & ~pmask;
408         phys_addr = pte_pfn(*pte) << PAGE_SHIFT;
409         return (phys_addr | offset);
410 }
411 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
412
413 /*
414  * Set the new pmd in all the pgds we know about:
415  */
416 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
417 {
418         /* change init_mm */
419         set_pte_atomic(kpte, pte);
420 #ifdef CONFIG_X86_32
421         if (!SHARED_KERNEL_PMD) {
422                 struct page *page;
423
424                 list_for_each_entry(page, &pgd_list, lru) {
425                         pgd_t *pgd;
426                         pud_t *pud;
427                         pmd_t *pmd;
428
429                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
430                         pud = pud_offset(pgd, address);
431                         pmd = pmd_offset(pud, address);
432                         set_pte_atomic((pte_t *)pmd, pte);
433                 }
434         }
435 #endif
436 }
437
438 static int
439 try_preserve_large_page(pte_t *kpte, unsigned long address,
440                         struct cpa_data *cpa)
441 {
442         unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
443         pte_t new_pte, old_pte, *tmp;
444         pgprot_t old_prot, new_prot, req_prot;
445         int i, do_split = 1;
446         enum pg_level level;
447
448         if (cpa->force_split)
449                 return 1;
450
451         spin_lock(&pgd_lock);
452         /*
453          * Check for races, another CPU might have split this page
454          * up already:
455          */
456         tmp = lookup_address(address, &level);
457         if (tmp != kpte)
458                 goto out_unlock;
459
460         switch (level) {
461         case PG_LEVEL_2M:
462 #ifdef CONFIG_X86_64
463         case PG_LEVEL_1G:
464 #endif
465                 psize = page_level_size(level);
466                 pmask = page_level_mask(level);
467                 break;
468         default:
469                 do_split = -EINVAL;
470                 goto out_unlock;
471         }
472
473         /*
474          * Calculate the number of pages, which fit into this large
475          * page starting at address:
476          */
477         nextpage_addr = (address + psize) & pmask;
478         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
479         if (numpages < cpa->numpages)
480                 cpa->numpages = numpages;
481
482         /*
483          * We are safe now. Check whether the new pgprot is the same:
484          */
485         old_pte = *kpte;
486         old_prot = req_prot = pte_pgprot(old_pte);
487
488         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
489         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
490
491         /*
492          * Set the PSE and GLOBAL flags only if the PRESENT flag is
493          * set otherwise pmd_present/pmd_huge will return true even on
494          * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
495          * for the ancient hardware that doesn't support it.
496          */
497         if (pgprot_val(req_prot) & _PAGE_PRESENT)
498                 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
499         else
500                 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
501
502         req_prot = canon_pgprot(req_prot);
503
504         /*
505          * old_pte points to the large page base address. So we need
506          * to add the offset of the virtual address:
507          */
508         pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
509         cpa->pfn = pfn;
510
511         new_prot = static_protections(req_prot, address, pfn);
512
513         /*
514          * We need to check the full range, whether
515          * static_protection() requires a different pgprot for one of
516          * the pages in the range we try to preserve:
517          */
518         addr = address & pmask;
519         pfn = pte_pfn(old_pte);
520         for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
521                 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
522
523                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
524                         goto out_unlock;
525         }
526
527         /*
528          * If there are no changes, return. maxpages has been updated
529          * above:
530          */
531         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
532                 do_split = 0;
533                 goto out_unlock;
534         }
535
536         /*
537          * We need to change the attributes. Check, whether we can
538          * change the large page in one go. We request a split, when
539          * the address is not aligned and the number of pages is
540          * smaller than the number of pages in the large page. Note
541          * that we limited the number of possible pages already to
542          * the number of pages in the large page.
543          */
544         if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
545                 /*
546                  * The address is aligned and the number of pages
547                  * covers the full page.
548                  */
549                 new_pte = pfn_pte(pte_pfn(old_pte), new_prot);
550                 __set_pmd_pte(kpte, address, new_pte);
551                 cpa->flags |= CPA_FLUSHTLB;
552                 do_split = 0;
553         }
554
555 out_unlock:
556         spin_unlock(&pgd_lock);
557
558         return do_split;
559 }
560
561 static int
562 __split_large_page(pte_t *kpte, unsigned long address, struct page *base)
563 {
564         pte_t *pbase = (pte_t *)page_address(base);
565         unsigned long pfn, pfninc = 1;
566         unsigned int i, level;
567         pte_t *tmp;
568         pgprot_t ref_prot;
569
570         spin_lock(&pgd_lock);
571         /*
572          * Check for races, another CPU might have split this page
573          * up for us already:
574          */
575         tmp = lookup_address(address, &level);
576         if (tmp != kpte) {
577                 spin_unlock(&pgd_lock);
578                 return 1;
579         }
580
581         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
582         ref_prot = pte_pgprot(pte_clrhuge(*kpte));
583         /*
584          * If we ever want to utilize the PAT bit, we need to
585          * update this function to make sure it's converted from
586          * bit 12 to bit 7 when we cross from the 2MB level to
587          * the 4K level:
588          */
589         WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
590
591 #ifdef CONFIG_X86_64
592         if (level == PG_LEVEL_1G) {
593                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
594                 /*
595                  * Set the PSE flags only if the PRESENT flag is set
596                  * otherwise pmd_present/pmd_huge will return true
597                  * even on a non present pmd.
598                  */
599                 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
600                         pgprot_val(ref_prot) |= _PAGE_PSE;
601                 else
602                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
603         }
604 #endif
605
606         /*
607          * Set the GLOBAL flags only if the PRESENT flag is set
608          * otherwise pmd/pte_present will return true even on a non
609          * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
610          * for the ancient hardware that doesn't support it.
611          */
612         if (pgprot_val(ref_prot) & _PAGE_PRESENT)
613                 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
614         else
615                 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
616
617         /*
618          * Get the target pfn from the original entry:
619          */
620         pfn = pte_pfn(*kpte);
621         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
622                 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
623
624         if (pfn_range_is_mapped(PFN_DOWN(__pa(address)),
625                                 PFN_DOWN(__pa(address)) + 1))
626                 split_page_count(level);
627
628         /*
629          * Install the new, split up pagetable.
630          *
631          * We use the standard kernel pagetable protections for the new
632          * pagetable protections, the actual ptes set above control the
633          * primary protection behavior:
634          */
635         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
636
637         /*
638          * Intel Atom errata AAH41 workaround.
639          *
640          * The real fix should be in hw or in a microcode update, but
641          * we also probabilistically try to reduce the window of having
642          * a large TLB mixed with 4K TLBs while instruction fetches are
643          * going on.
644          */
645         __flush_tlb_all();
646         spin_unlock(&pgd_lock);
647
648         return 0;
649 }
650
651 static int split_large_page(pte_t *kpte, unsigned long address)
652 {
653         struct page *base;
654
655         if (!debug_pagealloc)
656                 spin_unlock(&cpa_lock);
657         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
658         if (!debug_pagealloc)
659                 spin_lock(&cpa_lock);
660         if (!base)
661                 return -ENOMEM;
662
663         if (__split_large_page(kpte, address, base))
664                 __free_page(base);
665
666         return 0;
667 }
668
669 #define unmap_pmd_range(pud, start, pre_end)            do {} while (0)
670
671 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
672 {
673         pud_t *pud = pud_offset(pgd, start);
674
675         /*
676          * Not on a GB page boundary?
677          */
678         if (start & (PUD_SIZE - 1)) {
679                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
680                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
681
682                 unmap_pmd_range(pud, start, pre_end);
683
684                 start = pre_end;
685                 pud++;
686         }
687
688         /*
689          * Try to unmap in 1G chunks?
690          */
691         while (end - start >= PUD_SIZE) {
692
693                 if (pud_large(*pud))
694                         pud_clear(pud);
695                 else
696                         unmap_pmd_range(pud, start, start + PUD_SIZE);
697
698                 start += PUD_SIZE;
699                 pud++;
700         }
701
702         /*
703          * 2M leftovers?
704          */
705         if (start < end)
706                 unmap_pmd_range(pud, start, end);
707
708         /*
709          * No need to try to free the PUD page because we'll free it in
710          * populate_pgd's error path
711          */
712 }
713
714 static int alloc_pte_page(pmd_t *pmd)
715 {
716         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
717         if (!pte)
718                 return -1;
719
720         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
721         return 0;
722 }
723
724 static int alloc_pmd_page(pud_t *pud)
725 {
726         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
727         if (!pmd)
728                 return -1;
729
730         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
731         return 0;
732 }
733
734 static void populate_pte(struct cpa_data *cpa,
735                          unsigned long start, unsigned long end,
736                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
737 {
738         pte_t *pte;
739
740         pte = pte_offset_kernel(pmd, start);
741
742         while (num_pages-- && start < end) {
743
744                 /* deal with the NX bit */
745                 if (!(pgprot_val(pgprot) & _PAGE_NX))
746                         cpa->pfn &= ~_PAGE_NX;
747
748                 set_pte(pte, pfn_pte(cpa->pfn >> PAGE_SHIFT, pgprot));
749
750                 start    += PAGE_SIZE;
751                 cpa->pfn += PAGE_SIZE;
752                 pte++;
753         }
754 }
755
756 static int populate_pmd(struct cpa_data *cpa,
757                         unsigned long start, unsigned long end,
758                         unsigned num_pages, pud_t *pud, pgprot_t pgprot)
759 {
760         unsigned int cur_pages = 0;
761         pmd_t *pmd;
762
763         /*
764          * Not on a 2M boundary?
765          */
766         if (start & (PMD_SIZE - 1)) {
767                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
768                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
769
770                 pre_end   = min_t(unsigned long, pre_end, next_page);
771                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
772                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
773
774                 /*
775                  * Need a PTE page?
776                  */
777                 pmd = pmd_offset(pud, start);
778                 if (pmd_none(*pmd))
779                         if (alloc_pte_page(pmd))
780                                 return -1;
781
782                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
783
784                 start = pre_end;
785         }
786
787         /*
788          * We mapped them all?
789          */
790         if (num_pages == cur_pages)
791                 return cur_pages;
792
793         while (end - start >= PMD_SIZE) {
794
795                 /*
796                  * We cannot use a 1G page so allocate a PMD page if needed.
797                  */
798                 if (pud_none(*pud))
799                         if (alloc_pmd_page(pud))
800                                 return -1;
801
802                 pmd = pmd_offset(pud, start);
803
804                 set_pmd(pmd, __pmd(cpa->pfn | _PAGE_PSE | massage_pgprot(pgprot)));
805
806                 start     += PMD_SIZE;
807                 cpa->pfn  += PMD_SIZE;
808                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
809         }
810
811         /*
812          * Map trailing 4K pages.
813          */
814         if (start < end) {
815                 pmd = pmd_offset(pud, start);
816                 if (pmd_none(*pmd))
817                         if (alloc_pte_page(pmd))
818                                 return -1;
819
820                 populate_pte(cpa, start, end, num_pages - cur_pages,
821                              pmd, pgprot);
822         }
823         return num_pages;
824 }
825
826 static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
827                         pgprot_t pgprot)
828 {
829         pud_t *pud;
830         unsigned long end;
831         int cur_pages = 0;
832
833         end = start + (cpa->numpages << PAGE_SHIFT);
834
835         /*
836          * Not on a Gb page boundary? => map everything up to it with
837          * smaller pages.
838          */
839         if (start & (PUD_SIZE - 1)) {
840                 unsigned long pre_end;
841                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
842
843                 pre_end   = min_t(unsigned long, end, next_page);
844                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
845                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
846
847                 pud = pud_offset(pgd, start);
848
849                 /*
850                  * Need a PMD page?
851                  */
852                 if (pud_none(*pud))
853                         if (alloc_pmd_page(pud))
854                                 return -1;
855
856                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
857                                          pud, pgprot);
858                 if (cur_pages < 0)
859                         return cur_pages;
860
861                 start = pre_end;
862         }
863
864         /* We mapped them all? */
865         if (cpa->numpages == cur_pages)
866                 return cur_pages;
867
868         pud = pud_offset(pgd, start);
869
870         /*
871          * Map everything starting from the Gb boundary, possibly with 1G pages
872          */
873         while (end - start >= PUD_SIZE) {
874                 set_pud(pud, __pud(cpa->pfn | _PAGE_PSE | massage_pgprot(pgprot)));
875
876                 start     += PUD_SIZE;
877                 cpa->pfn  += PUD_SIZE;
878                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
879                 pud++;
880         }
881
882         /* Map trailing leftover */
883         if (start < end) {
884                 int tmp;
885
886                 pud = pud_offset(pgd, start);
887                 if (pud_none(*pud))
888                         if (alloc_pmd_page(pud))
889                                 return -1;
890
891                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
892                                    pud, pgprot);
893                 if (tmp < 0)
894                         return cur_pages;
895
896                 cur_pages += tmp;
897         }
898         return cur_pages;
899 }
900
901 /*
902  * Restrictions for kernel page table do not necessarily apply when mapping in
903  * an alternate PGD.
904  */
905 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
906 {
907         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
908         bool allocd_pgd = false;
909         pgd_t *pgd_entry;
910         pud_t *pud = NULL;      /* shut up gcc */
911         int ret;
912
913         pgd_entry = cpa->pgd + pgd_index(addr);
914
915         /*
916          * Allocate a PUD page and hand it down for mapping.
917          */
918         if (pgd_none(*pgd_entry)) {
919                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
920                 if (!pud)
921                         return -1;
922
923                 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
924                 allocd_pgd = true;
925         }
926
927         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
928         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
929
930         ret = populate_pud(cpa, addr, pgd_entry, pgprot);
931         if (ret < 0) {
932                 unmap_pud_range(pgd_entry, addr,
933                                 addr + (cpa->numpages << PAGE_SHIFT));
934
935                 if (allocd_pgd) {
936                         /*
937                          * If I allocated this PUD page, I can just as well
938                          * free it in this error path.
939                          */
940                         pgd_clear(pgd_entry);
941                         free_page((unsigned long)pud);
942                 }
943                 return ret;
944         }
945         cpa->numpages = ret;
946         return 0;
947 }
948
949 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
950                                int primary)
951 {
952         /*
953          * Ignore all non primary paths.
954          */
955         if (!primary)
956                 return 0;
957
958         /*
959          * Ignore the NULL PTE for kernel identity mapping, as it is expected
960          * to have holes.
961          * Also set numpages to '1' indicating that we processed cpa req for
962          * one virtual address page and its pfn. TBD: numpages can be set based
963          * on the initial value and the level returned by lookup_address().
964          */
965         if (within(vaddr, PAGE_OFFSET,
966                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
967                 cpa->numpages = 1;
968                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
969                 return 0;
970         } else {
971                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
972                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
973                         *cpa->vaddr);
974
975                 return -EFAULT;
976         }
977 }
978
979 static int __change_page_attr(struct cpa_data *cpa, int primary)
980 {
981         unsigned long address;
982         int do_split, err;
983         unsigned int level;
984         pte_t *kpte, old_pte;
985
986         if (cpa->flags & CPA_PAGES_ARRAY) {
987                 struct page *page = cpa->pages[cpa->curpage];
988                 if (unlikely(PageHighMem(page)))
989                         return 0;
990                 address = (unsigned long)page_address(page);
991         } else if (cpa->flags & CPA_ARRAY)
992                 address = cpa->vaddr[cpa->curpage];
993         else
994                 address = *cpa->vaddr;
995 repeat:
996         kpte = lookup_address(address, &level);
997         if (!kpte)
998                 return __cpa_process_fault(cpa, address, primary);
999
1000         old_pte = *kpte;
1001         if (!pte_val(old_pte))
1002                 return __cpa_process_fault(cpa, address, primary);
1003
1004         if (level == PG_LEVEL_4K) {
1005                 pte_t new_pte;
1006                 pgprot_t new_prot = pte_pgprot(old_pte);
1007                 unsigned long pfn = pte_pfn(old_pte);
1008
1009                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1010                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1011
1012                 new_prot = static_protections(new_prot, address, pfn);
1013
1014                 /*
1015                  * Set the GLOBAL flags only if the PRESENT flag is
1016                  * set otherwise pte_present will return true even on
1017                  * a non present pte. The canon_pgprot will clear
1018                  * _PAGE_GLOBAL for the ancient hardware that doesn't
1019                  * support it.
1020                  */
1021                 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1022                         pgprot_val(new_prot) |= _PAGE_GLOBAL;
1023                 else
1024                         pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1025
1026                 /*
1027                  * We need to keep the pfn from the existing PTE,
1028                  * after all we're only going to change it's attributes
1029                  * not the memory it points to
1030                  */
1031                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1032                 cpa->pfn = pfn;
1033                 /*
1034                  * Do we really change anything ?
1035                  */
1036                 if (pte_val(old_pte) != pte_val(new_pte)) {
1037                         set_pte_atomic(kpte, new_pte);
1038                         cpa->flags |= CPA_FLUSHTLB;
1039                 }
1040                 cpa->numpages = 1;
1041                 return 0;
1042         }
1043
1044         /*
1045          * Check, whether we can keep the large page intact
1046          * and just change the pte:
1047          */
1048         do_split = try_preserve_large_page(kpte, address, cpa);
1049         /*
1050          * When the range fits into the existing large page,
1051          * return. cp->numpages and cpa->tlbflush have been updated in
1052          * try_large_page:
1053          */
1054         if (do_split <= 0)
1055                 return do_split;
1056
1057         /*
1058          * We have to split the large page:
1059          */
1060         err = split_large_page(kpte, address);
1061         if (!err) {
1062                 /*
1063                  * Do a global flush tlb after splitting the large page
1064                  * and before we do the actual change page attribute in the PTE.
1065                  *
1066                  * With out this, we violate the TLB application note, that says
1067                  * "The TLBs may contain both ordinary and large-page
1068                  *  translations for a 4-KByte range of linear addresses. This
1069                  *  may occur if software modifies the paging structures so that
1070                  *  the page size used for the address range changes. If the two
1071                  *  translations differ with respect to page frame or attributes
1072                  *  (e.g., permissions), processor behavior is undefined and may
1073                  *  be implementation-specific."
1074                  *
1075                  * We do this global tlb flush inside the cpa_lock, so that we
1076                  * don't allow any other cpu, with stale tlb entries change the
1077                  * page attribute in parallel, that also falls into the
1078                  * just split large page entry.
1079                  */
1080                 flush_tlb_all();
1081                 goto repeat;
1082         }
1083
1084         return err;
1085 }
1086
1087 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1088
1089 static int cpa_process_alias(struct cpa_data *cpa)
1090 {
1091         struct cpa_data alias_cpa;
1092         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1093         unsigned long vaddr;
1094         int ret;
1095
1096         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1097                 return 0;
1098
1099         /*
1100          * No need to redo, when the primary call touched the direct
1101          * mapping already:
1102          */
1103         if (cpa->flags & CPA_PAGES_ARRAY) {
1104                 struct page *page = cpa->pages[cpa->curpage];
1105                 if (unlikely(PageHighMem(page)))
1106                         return 0;
1107                 vaddr = (unsigned long)page_address(page);
1108         } else if (cpa->flags & CPA_ARRAY)
1109                 vaddr = cpa->vaddr[cpa->curpage];
1110         else
1111                 vaddr = *cpa->vaddr;
1112
1113         if (!(within(vaddr, PAGE_OFFSET,
1114                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1115
1116                 alias_cpa = *cpa;
1117                 alias_cpa.vaddr = &laddr;
1118                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1119
1120                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1121                 if (ret)
1122                         return ret;
1123         }
1124
1125 #ifdef CONFIG_X86_64
1126         /*
1127          * If the primary call didn't touch the high mapping already
1128          * and the physical address is inside the kernel map, we need
1129          * to touch the high mapped kernel as well:
1130          */
1131         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1132             within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1133                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1134                                                __START_KERNEL_map - phys_base;
1135                 alias_cpa = *cpa;
1136                 alias_cpa.vaddr = &temp_cpa_vaddr;
1137                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1138
1139                 /*
1140                  * The high mapping range is imprecise, so ignore the
1141                  * return value.
1142                  */
1143                 __change_page_attr_set_clr(&alias_cpa, 0);
1144         }
1145 #endif
1146
1147         return 0;
1148 }
1149
1150 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1151 {
1152         int ret, numpages = cpa->numpages;
1153
1154         while (numpages) {
1155                 /*
1156                  * Store the remaining nr of pages for the large page
1157                  * preservation check.
1158                  */
1159                 cpa->numpages = numpages;
1160                 /* for array changes, we can't use large page */
1161                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1162                         cpa->numpages = 1;
1163
1164                 if (!debug_pagealloc)
1165                         spin_lock(&cpa_lock);
1166                 ret = __change_page_attr(cpa, checkalias);
1167                 if (!debug_pagealloc)
1168                         spin_unlock(&cpa_lock);
1169                 if (ret)
1170                         return ret;
1171
1172                 if (checkalias) {
1173                         ret = cpa_process_alias(cpa);
1174                         if (ret)
1175                                 return ret;
1176                 }
1177
1178                 /*
1179                  * Adjust the number of pages with the result of the
1180                  * CPA operation. Either a large page has been
1181                  * preserved or a single page update happened.
1182                  */
1183                 BUG_ON(cpa->numpages > numpages);
1184                 numpages -= cpa->numpages;
1185                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1186                         cpa->curpage++;
1187                 else
1188                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1189
1190         }
1191         return 0;
1192 }
1193
1194 static inline int cache_attr(pgprot_t attr)
1195 {
1196         return pgprot_val(attr) &
1197                 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
1198 }
1199
1200 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1201                                     pgprot_t mask_set, pgprot_t mask_clr,
1202                                     int force_split, int in_flag,
1203                                     struct page **pages)
1204 {
1205         struct cpa_data cpa;
1206         int ret, cache, checkalias;
1207         unsigned long baddr = 0;
1208
1209         /*
1210          * Check, if we are requested to change a not supported
1211          * feature:
1212          */
1213         mask_set = canon_pgprot(mask_set);
1214         mask_clr = canon_pgprot(mask_clr);
1215         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1216                 return 0;
1217
1218         /* Ensure we are PAGE_SIZE aligned */
1219         if (in_flag & CPA_ARRAY) {
1220                 int i;
1221                 for (i = 0; i < numpages; i++) {
1222                         if (addr[i] & ~PAGE_MASK) {
1223                                 addr[i] &= PAGE_MASK;
1224                                 WARN_ON_ONCE(1);
1225                         }
1226                 }
1227         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1228                 /*
1229                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1230                  * No need to cehck in that case
1231                  */
1232                 if (*addr & ~PAGE_MASK) {
1233                         *addr &= PAGE_MASK;
1234                         /*
1235                          * People should not be passing in unaligned addresses:
1236                          */
1237                         WARN_ON_ONCE(1);
1238                 }
1239                 /*
1240                  * Save address for cache flush. *addr is modified in the call
1241                  * to __change_page_attr_set_clr() below.
1242                  */
1243                 baddr = *addr;
1244         }
1245
1246         /* Must avoid aliasing mappings in the highmem code */
1247         kmap_flush_unused();
1248
1249         vm_unmap_aliases();
1250
1251         cpa.vaddr = addr;
1252         cpa.pages = pages;
1253         cpa.numpages = numpages;
1254         cpa.mask_set = mask_set;
1255         cpa.mask_clr = mask_clr;
1256         cpa.flags = 0;
1257         cpa.curpage = 0;
1258         cpa.force_split = force_split;
1259
1260         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1261                 cpa.flags |= in_flag;
1262
1263         /* No alias checking for _NX bit modifications */
1264         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1265
1266         ret = __change_page_attr_set_clr(&cpa, checkalias);
1267
1268         /*
1269          * Check whether we really changed something:
1270          */
1271         if (!(cpa.flags & CPA_FLUSHTLB))
1272                 goto out;
1273
1274         /*
1275          * No need to flush, when we did not set any of the caching
1276          * attributes:
1277          */
1278         cache = cache_attr(mask_set);
1279
1280         /*
1281          * On success we use clflush, when the CPU supports it to
1282          * avoid the wbindv. If the CPU does not support it and in the
1283          * error case we fall back to cpa_flush_all (which uses
1284          * wbindv):
1285          */
1286         if (!ret && cpu_has_clflush) {
1287                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1288                         cpa_flush_array(addr, numpages, cache,
1289                                         cpa.flags, pages);
1290                 } else
1291                         cpa_flush_range(baddr, numpages, cache);
1292         } else
1293                 cpa_flush_all(cache);
1294
1295 out:
1296         return ret;
1297 }
1298
1299 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1300                                        pgprot_t mask, int array)
1301 {
1302         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1303                 (array ? CPA_ARRAY : 0), NULL);
1304 }
1305
1306 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1307                                          pgprot_t mask, int array)
1308 {
1309         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1310                 (array ? CPA_ARRAY : 0), NULL);
1311 }
1312
1313 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1314                                        pgprot_t mask)
1315 {
1316         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1317                 CPA_PAGES_ARRAY, pages);
1318 }
1319
1320 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1321                                          pgprot_t mask)
1322 {
1323         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1324                 CPA_PAGES_ARRAY, pages);
1325 }
1326
1327 int _set_memory_uc(unsigned long addr, int numpages)
1328 {
1329         /*
1330          * for now UC MINUS. see comments in ioremap_nocache()
1331          */
1332         return change_page_attr_set(&addr, numpages,
1333                                     __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1334 }
1335
1336 int set_memory_uc(unsigned long addr, int numpages)
1337 {
1338         int ret;
1339
1340         /*
1341          * for now UC MINUS. see comments in ioremap_nocache()
1342          */
1343         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1344                             _PAGE_CACHE_UC_MINUS, NULL);
1345         if (ret)
1346                 goto out_err;
1347
1348         ret = _set_memory_uc(addr, numpages);
1349         if (ret)
1350                 goto out_free;
1351
1352         return 0;
1353
1354 out_free:
1355         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1356 out_err:
1357         return ret;
1358 }
1359 EXPORT_SYMBOL(set_memory_uc);
1360
1361 static int _set_memory_array(unsigned long *addr, int addrinarray,
1362                 unsigned long new_type)
1363 {
1364         int i, j;
1365         int ret;
1366
1367         /*
1368          * for now UC MINUS. see comments in ioremap_nocache()
1369          */
1370         for (i = 0; i < addrinarray; i++) {
1371                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1372                                         new_type, NULL);
1373                 if (ret)
1374                         goto out_free;
1375         }
1376
1377         ret = change_page_attr_set(addr, addrinarray,
1378                                     __pgprot(_PAGE_CACHE_UC_MINUS), 1);
1379
1380         if (!ret && new_type == _PAGE_CACHE_WC)
1381                 ret = change_page_attr_set_clr(addr, addrinarray,
1382                                                __pgprot(_PAGE_CACHE_WC),
1383                                                __pgprot(_PAGE_CACHE_MASK),
1384                                                0, CPA_ARRAY, NULL);
1385         if (ret)
1386                 goto out_free;
1387
1388         return 0;
1389
1390 out_free:
1391         for (j = 0; j < i; j++)
1392                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1393
1394         return ret;
1395 }
1396
1397 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1398 {
1399         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1400 }
1401 EXPORT_SYMBOL(set_memory_array_uc);
1402
1403 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1404 {
1405         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1406 }
1407 EXPORT_SYMBOL(set_memory_array_wc);
1408
1409 int _set_memory_wc(unsigned long addr, int numpages)
1410 {
1411         int ret;
1412         unsigned long addr_copy = addr;
1413
1414         ret = change_page_attr_set(&addr, numpages,
1415                                     __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1416         if (!ret) {
1417                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1418                                                __pgprot(_PAGE_CACHE_WC),
1419                                                __pgprot(_PAGE_CACHE_MASK),
1420                                                0, 0, NULL);
1421         }
1422         return ret;
1423 }
1424
1425 int set_memory_wc(unsigned long addr, int numpages)
1426 {
1427         int ret;
1428
1429         if (!pat_enabled)
1430                 return set_memory_uc(addr, numpages);
1431
1432         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1433                 _PAGE_CACHE_WC, NULL);
1434         if (ret)
1435                 goto out_err;
1436
1437         ret = _set_memory_wc(addr, numpages);
1438         if (ret)
1439                 goto out_free;
1440
1441         return 0;
1442
1443 out_free:
1444         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1445 out_err:
1446         return ret;
1447 }
1448 EXPORT_SYMBOL(set_memory_wc);
1449
1450 int _set_memory_wb(unsigned long addr, int numpages)
1451 {
1452         return change_page_attr_clear(&addr, numpages,
1453                                       __pgprot(_PAGE_CACHE_MASK), 0);
1454 }
1455
1456 int set_memory_wb(unsigned long addr, int numpages)
1457 {
1458         int ret;
1459
1460         ret = _set_memory_wb(addr, numpages);
1461         if (ret)
1462                 return ret;
1463
1464         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1465         return 0;
1466 }
1467 EXPORT_SYMBOL(set_memory_wb);
1468
1469 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1470 {
1471         int i;
1472         int ret;
1473
1474         ret = change_page_attr_clear(addr, addrinarray,
1475                                       __pgprot(_PAGE_CACHE_MASK), 1);
1476         if (ret)
1477                 return ret;
1478
1479         for (i = 0; i < addrinarray; i++)
1480                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1481
1482         return 0;
1483 }
1484 EXPORT_SYMBOL(set_memory_array_wb);
1485
1486 int set_memory_x(unsigned long addr, int numpages)
1487 {
1488         if (!(__supported_pte_mask & _PAGE_NX))
1489                 return 0;
1490
1491         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1492 }
1493 EXPORT_SYMBOL(set_memory_x);
1494
1495 int set_memory_nx(unsigned long addr, int numpages)
1496 {
1497         if (!(__supported_pte_mask & _PAGE_NX))
1498                 return 0;
1499
1500         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1501 }
1502 EXPORT_SYMBOL(set_memory_nx);
1503
1504 int set_memory_ro(unsigned long addr, int numpages)
1505 {
1506         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1507 }
1508 EXPORT_SYMBOL_GPL(set_memory_ro);
1509
1510 int set_memory_rw(unsigned long addr, int numpages)
1511 {
1512         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1513 }
1514 EXPORT_SYMBOL_GPL(set_memory_rw);
1515
1516 int set_memory_np(unsigned long addr, int numpages)
1517 {
1518         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1519 }
1520
1521 int set_memory_4k(unsigned long addr, int numpages)
1522 {
1523         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1524                                         __pgprot(0), 1, 0, NULL);
1525 }
1526
1527 int set_pages_uc(struct page *page, int numpages)
1528 {
1529         unsigned long addr = (unsigned long)page_address(page);
1530
1531         return set_memory_uc(addr, numpages);
1532 }
1533 EXPORT_SYMBOL(set_pages_uc);
1534
1535 static int _set_pages_array(struct page **pages, int addrinarray,
1536                 unsigned long new_type)
1537 {
1538         unsigned long start;
1539         unsigned long end;
1540         int i;
1541         int free_idx;
1542         int ret;
1543
1544         for (i = 0; i < addrinarray; i++) {
1545                 if (PageHighMem(pages[i]))
1546                         continue;
1547                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1548                 end = start + PAGE_SIZE;
1549                 if (reserve_memtype(start, end, new_type, NULL))
1550                         goto err_out;
1551         }
1552
1553         ret = cpa_set_pages_array(pages, addrinarray,
1554                         __pgprot(_PAGE_CACHE_UC_MINUS));
1555         if (!ret && new_type == _PAGE_CACHE_WC)
1556                 ret = change_page_attr_set_clr(NULL, addrinarray,
1557                                                __pgprot(_PAGE_CACHE_WC),
1558                                                __pgprot(_PAGE_CACHE_MASK),
1559                                                0, CPA_PAGES_ARRAY, pages);
1560         if (ret)
1561                 goto err_out;
1562         return 0; /* Success */
1563 err_out:
1564         free_idx = i;
1565         for (i = 0; i < free_idx; i++) {
1566                 if (PageHighMem(pages[i]))
1567                         continue;
1568                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1569                 end = start + PAGE_SIZE;
1570                 free_memtype(start, end);
1571         }
1572         return -EINVAL;
1573 }
1574
1575 int set_pages_array_uc(struct page **pages, int addrinarray)
1576 {
1577         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1578 }
1579 EXPORT_SYMBOL(set_pages_array_uc);
1580
1581 int set_pages_array_wc(struct page **pages, int addrinarray)
1582 {
1583         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1584 }
1585 EXPORT_SYMBOL(set_pages_array_wc);
1586
1587 int set_pages_wb(struct page *page, int numpages)
1588 {
1589         unsigned long addr = (unsigned long)page_address(page);
1590
1591         return set_memory_wb(addr, numpages);
1592 }
1593 EXPORT_SYMBOL(set_pages_wb);
1594
1595 int set_pages_array_wb(struct page **pages, int addrinarray)
1596 {
1597         int retval;
1598         unsigned long start;
1599         unsigned long end;
1600         int i;
1601
1602         retval = cpa_clear_pages_array(pages, addrinarray,
1603                         __pgprot(_PAGE_CACHE_MASK));
1604         if (retval)
1605                 return retval;
1606
1607         for (i = 0; i < addrinarray; i++) {
1608                 if (PageHighMem(pages[i]))
1609                         continue;
1610                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1611                 end = start + PAGE_SIZE;
1612                 free_memtype(start, end);
1613         }
1614
1615         return 0;
1616 }
1617 EXPORT_SYMBOL(set_pages_array_wb);
1618
1619 int set_pages_x(struct page *page, int numpages)
1620 {
1621         unsigned long addr = (unsigned long)page_address(page);
1622
1623         return set_memory_x(addr, numpages);
1624 }
1625 EXPORT_SYMBOL(set_pages_x);
1626
1627 int set_pages_nx(struct page *page, int numpages)
1628 {
1629         unsigned long addr = (unsigned long)page_address(page);
1630
1631         return set_memory_nx(addr, numpages);
1632 }
1633 EXPORT_SYMBOL(set_pages_nx);
1634
1635 int set_pages_ro(struct page *page, int numpages)
1636 {
1637         unsigned long addr = (unsigned long)page_address(page);
1638
1639         return set_memory_ro(addr, numpages);
1640 }
1641
1642 int set_pages_rw(struct page *page, int numpages)
1643 {
1644         unsigned long addr = (unsigned long)page_address(page);
1645
1646         return set_memory_rw(addr, numpages);
1647 }
1648
1649 #ifdef CONFIG_DEBUG_PAGEALLOC
1650
1651 static int __set_pages_p(struct page *page, int numpages)
1652 {
1653         unsigned long tempaddr = (unsigned long) page_address(page);
1654         struct cpa_data cpa = { .vaddr = &tempaddr,
1655                                 .numpages = numpages,
1656                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1657                                 .mask_clr = __pgprot(0),
1658                                 .flags = 0};
1659
1660         /*
1661          * No alias checking needed for setting present flag. otherwise,
1662          * we may need to break large pages for 64-bit kernel text
1663          * mappings (this adds to complexity if we want to do this from
1664          * atomic context especially). Let's keep it simple!
1665          */
1666         return __change_page_attr_set_clr(&cpa, 0);
1667 }
1668
1669 static int __set_pages_np(struct page *page, int numpages)
1670 {
1671         unsigned long tempaddr = (unsigned long) page_address(page);
1672         struct cpa_data cpa = { .vaddr = &tempaddr,
1673                                 .numpages = numpages,
1674                                 .mask_set = __pgprot(0),
1675                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1676                                 .flags = 0};
1677
1678         /*
1679          * No alias checking needed for setting not present flag. otherwise,
1680          * we may need to break large pages for 64-bit kernel text
1681          * mappings (this adds to complexity if we want to do this from
1682          * atomic context especially). Let's keep it simple!
1683          */
1684         return __change_page_attr_set_clr(&cpa, 0);
1685 }
1686
1687 void kernel_map_pages(struct page *page, int numpages, int enable)
1688 {
1689         if (PageHighMem(page))
1690                 return;
1691         if (!enable) {
1692                 debug_check_no_locks_freed(page_address(page),
1693                                            numpages * PAGE_SIZE);
1694         }
1695
1696         /*
1697          * The return value is ignored as the calls cannot fail.
1698          * Large pages for identity mappings are not used at boot time
1699          * and hence no memory allocations during large page split.
1700          */
1701         if (enable)
1702                 __set_pages_p(page, numpages);
1703         else
1704                 __set_pages_np(page, numpages);
1705
1706         /*
1707          * We should perform an IPI and flush all tlbs,
1708          * but that can deadlock->flush only current cpu:
1709          */
1710         __flush_tlb_all();
1711
1712         arch_flush_lazy_mmu_mode();
1713 }
1714
1715 #ifdef CONFIG_HIBERNATION
1716
1717 bool kernel_page_present(struct page *page)
1718 {
1719         unsigned int level;
1720         pte_t *pte;
1721
1722         if (PageHighMem(page))
1723                 return false;
1724
1725         pte = lookup_address((unsigned long)page_address(page), &level);
1726         return (pte_val(*pte) & _PAGE_PRESENT);
1727 }
1728
1729 #endif /* CONFIG_HIBERNATION */
1730
1731 #endif /* CONFIG_DEBUG_PAGEALLOC */
1732
1733 /*
1734  * The testcases use internal knowledge of the implementation that shouldn't
1735  * be exposed to the rest of the kernel. Include these directly here.
1736  */
1737 #ifdef CONFIG_CPA_DEBUG
1738 #include "pageattr-test.c"
1739 #endif