x86/mm/pageattr: Add last levels of error path
[firefly-linux-kernel-4.4.55.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32         unsigned long   *vaddr;
33         pgd_t           *pgd;
34         pgprot_t        mask_set;
35         pgprot_t        mask_clr;
36         int             numpages;
37         int             flags;
38         unsigned long   pfn;
39         unsigned        force_split : 1;
40         int             curpage;
41         struct page     **pages;
42 };
43
44 /*
45  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47  * entries change the page attribute in parallel to some other cpu
48  * splitting a large page entry along with changing the attribute.
49  */
50 static DEFINE_SPINLOCK(cpa_lock);
51
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55
56 #ifdef CONFIG_PROC_FS
57 static unsigned long direct_pages_count[PG_LEVEL_NUM];
58
59 void update_page_count(int level, unsigned long pages)
60 {
61         /* Protect against CPA */
62         spin_lock(&pgd_lock);
63         direct_pages_count[level] += pages;
64         spin_unlock(&pgd_lock);
65 }
66
67 static void split_page_count(int level)
68 {
69         direct_pages_count[level]--;
70         direct_pages_count[level - 1] += PTRS_PER_PTE;
71 }
72
73 void arch_report_meminfo(struct seq_file *m)
74 {
75         seq_printf(m, "DirectMap4k:    %8lu kB\n",
76                         direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78         seq_printf(m, "DirectMap2M:    %8lu kB\n",
79                         direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81         seq_printf(m, "DirectMap4M:    %8lu kB\n",
82                         direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84 #ifdef CONFIG_X86_64
85         if (direct_gbpages)
86                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
87                         direct_pages_count[PG_LEVEL_1G] << 20);
88 #endif
89 }
90 #else
91 static inline void split_page_count(int level) { }
92 #endif
93
94 #ifdef CONFIG_X86_64
95
96 static inline unsigned long highmap_start_pfn(void)
97 {
98         return __pa_symbol(_text) >> PAGE_SHIFT;
99 }
100
101 static inline unsigned long highmap_end_pfn(void)
102 {
103         return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
104 }
105
106 #endif
107
108 #ifdef CONFIG_DEBUG_PAGEALLOC
109 # define debug_pagealloc 1
110 #else
111 # define debug_pagealloc 0
112 #endif
113
114 static inline int
115 within(unsigned long addr, unsigned long start, unsigned long end)
116 {
117         return addr >= start && addr < end;
118 }
119
120 /*
121  * Flushing functions
122  */
123
124 /**
125  * clflush_cache_range - flush a cache range with clflush
126  * @vaddr:      virtual start address
127  * @size:       number of bytes to flush
128  *
129  * clflush is an unordered instruction which needs fencing with mfence
130  * to avoid ordering issues.
131  */
132 void clflush_cache_range(void *vaddr, unsigned int size)
133 {
134         void *vend = vaddr + size - 1;
135
136         mb();
137
138         for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
139                 clflush(vaddr);
140         /*
141          * Flush any possible final partial cacheline:
142          */
143         clflush(vend);
144
145         mb();
146 }
147 EXPORT_SYMBOL_GPL(clflush_cache_range);
148
149 static void __cpa_flush_all(void *arg)
150 {
151         unsigned long cache = (unsigned long)arg;
152
153         /*
154          * Flush all to work around Errata in early athlons regarding
155          * large page flushing.
156          */
157         __flush_tlb_all();
158
159         if (cache && boot_cpu_data.x86 >= 4)
160                 wbinvd();
161 }
162
163 static void cpa_flush_all(unsigned long cache)
164 {
165         BUG_ON(irqs_disabled());
166
167         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
168 }
169
170 static void __cpa_flush_range(void *arg)
171 {
172         /*
173          * We could optimize that further and do individual per page
174          * tlb invalidates for a low number of pages. Caveat: we must
175          * flush the high aliases on 64bit as well.
176          */
177         __flush_tlb_all();
178 }
179
180 static void cpa_flush_range(unsigned long start, int numpages, int cache)
181 {
182         unsigned int i, level;
183         unsigned long addr;
184
185         BUG_ON(irqs_disabled());
186         WARN_ON(PAGE_ALIGN(start) != start);
187
188         on_each_cpu(__cpa_flush_range, NULL, 1);
189
190         if (!cache)
191                 return;
192
193         /*
194          * We only need to flush on one CPU,
195          * clflush is a MESI-coherent instruction that
196          * will cause all other CPUs to flush the same
197          * cachelines:
198          */
199         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
200                 pte_t *pte = lookup_address(addr, &level);
201
202                 /*
203                  * Only flush present addresses:
204                  */
205                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
206                         clflush_cache_range((void *) addr, PAGE_SIZE);
207         }
208 }
209
210 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
211                             int in_flags, struct page **pages)
212 {
213         unsigned int i, level;
214         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
215
216         BUG_ON(irqs_disabled());
217
218         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
219
220         if (!cache || do_wbinvd)
221                 return;
222
223         /*
224          * We only need to flush on one CPU,
225          * clflush is a MESI-coherent instruction that
226          * will cause all other CPUs to flush the same
227          * cachelines:
228          */
229         for (i = 0; i < numpages; i++) {
230                 unsigned long addr;
231                 pte_t *pte;
232
233                 if (in_flags & CPA_PAGES_ARRAY)
234                         addr = (unsigned long)page_address(pages[i]);
235                 else
236                         addr = start[i];
237
238                 pte = lookup_address(addr, &level);
239
240                 /*
241                  * Only flush present addresses:
242                  */
243                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
244                         clflush_cache_range((void *)addr, PAGE_SIZE);
245         }
246 }
247
248 /*
249  * Certain areas of memory on x86 require very specific protection flags,
250  * for example the BIOS area or kernel text. Callers don't always get this
251  * right (again, ioremap() on BIOS memory is not uncommon) so this function
252  * checks and fixes these known static required protection bits.
253  */
254 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
255                                    unsigned long pfn)
256 {
257         pgprot_t forbidden = __pgprot(0);
258
259         /*
260          * The BIOS area between 640k and 1Mb needs to be executable for
261          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
262          */
263 #ifdef CONFIG_PCI_BIOS
264         if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
265                 pgprot_val(forbidden) |= _PAGE_NX;
266 #endif
267
268         /*
269          * The kernel text needs to be executable for obvious reasons
270          * Does not cover __inittext since that is gone later on. On
271          * 64bit we do not enforce !NX on the low mapping
272          */
273         if (within(address, (unsigned long)_text, (unsigned long)_etext))
274                 pgprot_val(forbidden) |= _PAGE_NX;
275
276         /*
277          * The .rodata section needs to be read-only. Using the pfn
278          * catches all aliases.
279          */
280         if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
281                    __pa_symbol(__end_rodata) >> PAGE_SHIFT))
282                 pgprot_val(forbidden) |= _PAGE_RW;
283
284 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
285         /*
286          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
287          * kernel text mappings for the large page aligned text, rodata sections
288          * will be always read-only. For the kernel identity mappings covering
289          * the holes caused by this alignment can be anything that user asks.
290          *
291          * This will preserve the large page mappings for kernel text/data
292          * at no extra cost.
293          */
294         if (kernel_set_to_readonly &&
295             within(address, (unsigned long)_text,
296                    (unsigned long)__end_rodata_hpage_align)) {
297                 unsigned int level;
298
299                 /*
300                  * Don't enforce the !RW mapping for the kernel text mapping,
301                  * if the current mapping is already using small page mapping.
302                  * No need to work hard to preserve large page mappings in this
303                  * case.
304                  *
305                  * This also fixes the Linux Xen paravirt guest boot failure
306                  * (because of unexpected read-only mappings for kernel identity
307                  * mappings). In this paravirt guest case, the kernel text
308                  * mapping and the kernel identity mapping share the same
309                  * page-table pages. Thus we can't really use different
310                  * protections for the kernel text and identity mappings. Also,
311                  * these shared mappings are made of small page mappings.
312                  * Thus this don't enforce !RW mapping for small page kernel
313                  * text mapping logic will help Linux Xen parvirt guest boot
314                  * as well.
315                  */
316                 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
317                         pgprot_val(forbidden) |= _PAGE_RW;
318         }
319 #endif
320
321         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
322
323         return prot;
324 }
325
326 static pte_t *__lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
327                                       unsigned int *level)
328 {
329         pud_t *pud;
330         pmd_t *pmd;
331
332         *level = PG_LEVEL_NONE;
333
334         if (pgd_none(*pgd))
335                 return NULL;
336
337         pud = pud_offset(pgd, address);
338         if (pud_none(*pud))
339                 return NULL;
340
341         *level = PG_LEVEL_1G;
342         if (pud_large(*pud) || !pud_present(*pud))
343                 return (pte_t *)pud;
344
345         pmd = pmd_offset(pud, address);
346         if (pmd_none(*pmd))
347                 return NULL;
348
349         *level = PG_LEVEL_2M;
350         if (pmd_large(*pmd) || !pmd_present(*pmd))
351                 return (pte_t *)pmd;
352
353         *level = PG_LEVEL_4K;
354
355         return pte_offset_kernel(pmd, address);
356 }
357
358 /*
359  * Lookup the page table entry for a virtual address. Return a pointer
360  * to the entry and the level of the mapping.
361  *
362  * Note: We return pud and pmd either when the entry is marked large
363  * or when the present bit is not set. Otherwise we would return a
364  * pointer to a nonexisting mapping.
365  */
366 pte_t *lookup_address(unsigned long address, unsigned int *level)
367 {
368         return __lookup_address_in_pgd(pgd_offset_k(address), address, level);
369 }
370 EXPORT_SYMBOL_GPL(lookup_address);
371
372 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
373                                   unsigned int *level)
374 {
375         if (cpa->pgd)
376                 return __lookup_address_in_pgd(cpa->pgd + pgd_index(address),
377                                                address, level);
378
379         return lookup_address(address, level);
380 }
381
382 /*
383  * This is necessary because __pa() does not work on some
384  * kinds of memory, like vmalloc() or the alloc_remap()
385  * areas on 32-bit NUMA systems.  The percpu areas can
386  * end up in this kind of memory, for instance.
387  *
388  * This could be optimized, but it is only intended to be
389  * used at inititalization time, and keeping it
390  * unoptimized should increase the testing coverage for
391  * the more obscure platforms.
392  */
393 phys_addr_t slow_virt_to_phys(void *__virt_addr)
394 {
395         unsigned long virt_addr = (unsigned long)__virt_addr;
396         phys_addr_t phys_addr;
397         unsigned long offset;
398         enum pg_level level;
399         unsigned long psize;
400         unsigned long pmask;
401         pte_t *pte;
402
403         pte = lookup_address(virt_addr, &level);
404         BUG_ON(!pte);
405         psize = page_level_size(level);
406         pmask = page_level_mask(level);
407         offset = virt_addr & ~pmask;
408         phys_addr = pte_pfn(*pte) << PAGE_SHIFT;
409         return (phys_addr | offset);
410 }
411 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
412
413 /*
414  * Set the new pmd in all the pgds we know about:
415  */
416 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
417 {
418         /* change init_mm */
419         set_pte_atomic(kpte, pte);
420 #ifdef CONFIG_X86_32
421         if (!SHARED_KERNEL_PMD) {
422                 struct page *page;
423
424                 list_for_each_entry(page, &pgd_list, lru) {
425                         pgd_t *pgd;
426                         pud_t *pud;
427                         pmd_t *pmd;
428
429                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
430                         pud = pud_offset(pgd, address);
431                         pmd = pmd_offset(pud, address);
432                         set_pte_atomic((pte_t *)pmd, pte);
433                 }
434         }
435 #endif
436 }
437
438 static int
439 try_preserve_large_page(pte_t *kpte, unsigned long address,
440                         struct cpa_data *cpa)
441 {
442         unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
443         pte_t new_pte, old_pte, *tmp;
444         pgprot_t old_prot, new_prot, req_prot;
445         int i, do_split = 1;
446         enum pg_level level;
447
448         if (cpa->force_split)
449                 return 1;
450
451         spin_lock(&pgd_lock);
452         /*
453          * Check for races, another CPU might have split this page
454          * up already:
455          */
456         tmp = lookup_address(address, &level);
457         if (tmp != kpte)
458                 goto out_unlock;
459
460         switch (level) {
461         case PG_LEVEL_2M:
462 #ifdef CONFIG_X86_64
463         case PG_LEVEL_1G:
464 #endif
465                 psize = page_level_size(level);
466                 pmask = page_level_mask(level);
467                 break;
468         default:
469                 do_split = -EINVAL;
470                 goto out_unlock;
471         }
472
473         /*
474          * Calculate the number of pages, which fit into this large
475          * page starting at address:
476          */
477         nextpage_addr = (address + psize) & pmask;
478         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
479         if (numpages < cpa->numpages)
480                 cpa->numpages = numpages;
481
482         /*
483          * We are safe now. Check whether the new pgprot is the same:
484          */
485         old_pte = *kpte;
486         old_prot = req_prot = pte_pgprot(old_pte);
487
488         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
489         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
490
491         /*
492          * Set the PSE and GLOBAL flags only if the PRESENT flag is
493          * set otherwise pmd_present/pmd_huge will return true even on
494          * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
495          * for the ancient hardware that doesn't support it.
496          */
497         if (pgprot_val(req_prot) & _PAGE_PRESENT)
498                 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
499         else
500                 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
501
502         req_prot = canon_pgprot(req_prot);
503
504         /*
505          * old_pte points to the large page base address. So we need
506          * to add the offset of the virtual address:
507          */
508         pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
509         cpa->pfn = pfn;
510
511         new_prot = static_protections(req_prot, address, pfn);
512
513         /*
514          * We need to check the full range, whether
515          * static_protection() requires a different pgprot for one of
516          * the pages in the range we try to preserve:
517          */
518         addr = address & pmask;
519         pfn = pte_pfn(old_pte);
520         for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
521                 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
522
523                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
524                         goto out_unlock;
525         }
526
527         /*
528          * If there are no changes, return. maxpages has been updated
529          * above:
530          */
531         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
532                 do_split = 0;
533                 goto out_unlock;
534         }
535
536         /*
537          * We need to change the attributes. Check, whether we can
538          * change the large page in one go. We request a split, when
539          * the address is not aligned and the number of pages is
540          * smaller than the number of pages in the large page. Note
541          * that we limited the number of possible pages already to
542          * the number of pages in the large page.
543          */
544         if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
545                 /*
546                  * The address is aligned and the number of pages
547                  * covers the full page.
548                  */
549                 new_pte = pfn_pte(pte_pfn(old_pte), new_prot);
550                 __set_pmd_pte(kpte, address, new_pte);
551                 cpa->flags |= CPA_FLUSHTLB;
552                 do_split = 0;
553         }
554
555 out_unlock:
556         spin_unlock(&pgd_lock);
557
558         return do_split;
559 }
560
561 static int
562 __split_large_page(pte_t *kpte, unsigned long address, struct page *base)
563 {
564         pte_t *pbase = (pte_t *)page_address(base);
565         unsigned long pfn, pfninc = 1;
566         unsigned int i, level;
567         pte_t *tmp;
568         pgprot_t ref_prot;
569
570         spin_lock(&pgd_lock);
571         /*
572          * Check for races, another CPU might have split this page
573          * up for us already:
574          */
575         tmp = lookup_address(address, &level);
576         if (tmp != kpte) {
577                 spin_unlock(&pgd_lock);
578                 return 1;
579         }
580
581         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
582         ref_prot = pte_pgprot(pte_clrhuge(*kpte));
583         /*
584          * If we ever want to utilize the PAT bit, we need to
585          * update this function to make sure it's converted from
586          * bit 12 to bit 7 when we cross from the 2MB level to
587          * the 4K level:
588          */
589         WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
590
591 #ifdef CONFIG_X86_64
592         if (level == PG_LEVEL_1G) {
593                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
594                 /*
595                  * Set the PSE flags only if the PRESENT flag is set
596                  * otherwise pmd_present/pmd_huge will return true
597                  * even on a non present pmd.
598                  */
599                 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
600                         pgprot_val(ref_prot) |= _PAGE_PSE;
601                 else
602                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
603         }
604 #endif
605
606         /*
607          * Set the GLOBAL flags only if the PRESENT flag is set
608          * otherwise pmd/pte_present will return true even on a non
609          * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
610          * for the ancient hardware that doesn't support it.
611          */
612         if (pgprot_val(ref_prot) & _PAGE_PRESENT)
613                 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
614         else
615                 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
616
617         /*
618          * Get the target pfn from the original entry:
619          */
620         pfn = pte_pfn(*kpte);
621         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
622                 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
623
624         if (pfn_range_is_mapped(PFN_DOWN(__pa(address)),
625                                 PFN_DOWN(__pa(address)) + 1))
626                 split_page_count(level);
627
628         /*
629          * Install the new, split up pagetable.
630          *
631          * We use the standard kernel pagetable protections for the new
632          * pagetable protections, the actual ptes set above control the
633          * primary protection behavior:
634          */
635         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
636
637         /*
638          * Intel Atom errata AAH41 workaround.
639          *
640          * The real fix should be in hw or in a microcode update, but
641          * we also probabilistically try to reduce the window of having
642          * a large TLB mixed with 4K TLBs while instruction fetches are
643          * going on.
644          */
645         __flush_tlb_all();
646         spin_unlock(&pgd_lock);
647
648         return 0;
649 }
650
651 static int split_large_page(pte_t *kpte, unsigned long address)
652 {
653         struct page *base;
654
655         if (!debug_pagealloc)
656                 spin_unlock(&cpa_lock);
657         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
658         if (!debug_pagealloc)
659                 spin_lock(&cpa_lock);
660         if (!base)
661                 return -ENOMEM;
662
663         if (__split_large_page(kpte, address, base))
664                 __free_page(base);
665
666         return 0;
667 }
668
669 static bool try_to_free_pte_page(pte_t *pte)
670 {
671         int i;
672
673         for (i = 0; i < PTRS_PER_PTE; i++)
674                 if (!pte_none(pte[i]))
675                         return false;
676
677         free_page((unsigned long)pte);
678         return true;
679 }
680
681 static bool try_to_free_pmd_page(pmd_t *pmd)
682 {
683         int i;
684
685         for (i = 0; i < PTRS_PER_PMD; i++)
686                 if (!pmd_none(pmd[i]))
687                         return false;
688
689         free_page((unsigned long)pmd);
690         return true;
691 }
692
693 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
694 {
695         pte_t *pte = pte_offset_kernel(pmd, start);
696
697         while (start < end) {
698                 set_pte(pte, __pte(0));
699
700                 start += PAGE_SIZE;
701                 pte++;
702         }
703
704         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
705                 pmd_clear(pmd);
706                 return true;
707         }
708         return false;
709 }
710
711 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
712                               unsigned long start, unsigned long end)
713 {
714         if (unmap_pte_range(pmd, start, end))
715                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
716                         pud_clear(pud);
717 }
718
719 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
720 {
721         pmd_t *pmd = pmd_offset(pud, start);
722
723         /*
724          * Not on a 2MB page boundary?
725          */
726         if (start & (PMD_SIZE - 1)) {
727                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
728                 unsigned long pre_end = min_t(unsigned long, end, next_page);
729
730                 __unmap_pmd_range(pud, pmd, start, pre_end);
731
732                 start = pre_end;
733                 pmd++;
734         }
735
736         /*
737          * Try to unmap in 2M chunks.
738          */
739         while (end - start >= PMD_SIZE) {
740                 if (pmd_large(*pmd))
741                         pmd_clear(pmd);
742                 else
743                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
744
745                 start += PMD_SIZE;
746                 pmd++;
747         }
748
749         /*
750          * 4K leftovers?
751          */
752         if (start < end)
753                 return __unmap_pmd_range(pud, pmd, start, end);
754
755         /*
756          * Try again to free the PMD page if haven't succeeded above.
757          */
758         if (!pud_none(*pud))
759                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
760                         pud_clear(pud);
761 }
762
763 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
764 {
765         pud_t *pud = pud_offset(pgd, start);
766
767         /*
768          * Not on a GB page boundary?
769          */
770         if (start & (PUD_SIZE - 1)) {
771                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
772                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
773
774                 unmap_pmd_range(pud, start, pre_end);
775
776                 start = pre_end;
777                 pud++;
778         }
779
780         /*
781          * Try to unmap in 1G chunks?
782          */
783         while (end - start >= PUD_SIZE) {
784
785                 if (pud_large(*pud))
786                         pud_clear(pud);
787                 else
788                         unmap_pmd_range(pud, start, start + PUD_SIZE);
789
790                 start += PUD_SIZE;
791                 pud++;
792         }
793
794         /*
795          * 2M leftovers?
796          */
797         if (start < end)
798                 unmap_pmd_range(pud, start, end);
799
800         /*
801          * No need to try to free the PUD page because we'll free it in
802          * populate_pgd's error path
803          */
804 }
805
806 static int alloc_pte_page(pmd_t *pmd)
807 {
808         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
809         if (!pte)
810                 return -1;
811
812         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
813         return 0;
814 }
815
816 static int alloc_pmd_page(pud_t *pud)
817 {
818         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
819         if (!pmd)
820                 return -1;
821
822         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
823         return 0;
824 }
825
826 static void populate_pte(struct cpa_data *cpa,
827                          unsigned long start, unsigned long end,
828                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
829 {
830         pte_t *pte;
831
832         pte = pte_offset_kernel(pmd, start);
833
834         while (num_pages-- && start < end) {
835
836                 /* deal with the NX bit */
837                 if (!(pgprot_val(pgprot) & _PAGE_NX))
838                         cpa->pfn &= ~_PAGE_NX;
839
840                 set_pte(pte, pfn_pte(cpa->pfn >> PAGE_SHIFT, pgprot));
841
842                 start    += PAGE_SIZE;
843                 cpa->pfn += PAGE_SIZE;
844                 pte++;
845         }
846 }
847
848 static int populate_pmd(struct cpa_data *cpa,
849                         unsigned long start, unsigned long end,
850                         unsigned num_pages, pud_t *pud, pgprot_t pgprot)
851 {
852         unsigned int cur_pages = 0;
853         pmd_t *pmd;
854
855         /*
856          * Not on a 2M boundary?
857          */
858         if (start & (PMD_SIZE - 1)) {
859                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
860                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
861
862                 pre_end   = min_t(unsigned long, pre_end, next_page);
863                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
864                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
865
866                 /*
867                  * Need a PTE page?
868                  */
869                 pmd = pmd_offset(pud, start);
870                 if (pmd_none(*pmd))
871                         if (alloc_pte_page(pmd))
872                                 return -1;
873
874                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
875
876                 start = pre_end;
877         }
878
879         /*
880          * We mapped them all?
881          */
882         if (num_pages == cur_pages)
883                 return cur_pages;
884
885         while (end - start >= PMD_SIZE) {
886
887                 /*
888                  * We cannot use a 1G page so allocate a PMD page if needed.
889                  */
890                 if (pud_none(*pud))
891                         if (alloc_pmd_page(pud))
892                                 return -1;
893
894                 pmd = pmd_offset(pud, start);
895
896                 set_pmd(pmd, __pmd(cpa->pfn | _PAGE_PSE | massage_pgprot(pgprot)));
897
898                 start     += PMD_SIZE;
899                 cpa->pfn  += PMD_SIZE;
900                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
901         }
902
903         /*
904          * Map trailing 4K pages.
905          */
906         if (start < end) {
907                 pmd = pmd_offset(pud, start);
908                 if (pmd_none(*pmd))
909                         if (alloc_pte_page(pmd))
910                                 return -1;
911
912                 populate_pte(cpa, start, end, num_pages - cur_pages,
913                              pmd, pgprot);
914         }
915         return num_pages;
916 }
917
918 static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
919                         pgprot_t pgprot)
920 {
921         pud_t *pud;
922         unsigned long end;
923         int cur_pages = 0;
924
925         end = start + (cpa->numpages << PAGE_SHIFT);
926
927         /*
928          * Not on a Gb page boundary? => map everything up to it with
929          * smaller pages.
930          */
931         if (start & (PUD_SIZE - 1)) {
932                 unsigned long pre_end;
933                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
934
935                 pre_end   = min_t(unsigned long, end, next_page);
936                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
937                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
938
939                 pud = pud_offset(pgd, start);
940
941                 /*
942                  * Need a PMD page?
943                  */
944                 if (pud_none(*pud))
945                         if (alloc_pmd_page(pud))
946                                 return -1;
947
948                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
949                                          pud, pgprot);
950                 if (cur_pages < 0)
951                         return cur_pages;
952
953                 start = pre_end;
954         }
955
956         /* We mapped them all? */
957         if (cpa->numpages == cur_pages)
958                 return cur_pages;
959
960         pud = pud_offset(pgd, start);
961
962         /*
963          * Map everything starting from the Gb boundary, possibly with 1G pages
964          */
965         while (end - start >= PUD_SIZE) {
966                 set_pud(pud, __pud(cpa->pfn | _PAGE_PSE | massage_pgprot(pgprot)));
967
968                 start     += PUD_SIZE;
969                 cpa->pfn  += PUD_SIZE;
970                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
971                 pud++;
972         }
973
974         /* Map trailing leftover */
975         if (start < end) {
976                 int tmp;
977
978                 pud = pud_offset(pgd, start);
979                 if (pud_none(*pud))
980                         if (alloc_pmd_page(pud))
981                                 return -1;
982
983                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
984                                    pud, pgprot);
985                 if (tmp < 0)
986                         return cur_pages;
987
988                 cur_pages += tmp;
989         }
990         return cur_pages;
991 }
992
993 /*
994  * Restrictions for kernel page table do not necessarily apply when mapping in
995  * an alternate PGD.
996  */
997 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
998 {
999         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1000         bool allocd_pgd = false;
1001         pgd_t *pgd_entry;
1002         pud_t *pud = NULL;      /* shut up gcc */
1003         int ret;
1004
1005         pgd_entry = cpa->pgd + pgd_index(addr);
1006
1007         /*
1008          * Allocate a PUD page and hand it down for mapping.
1009          */
1010         if (pgd_none(*pgd_entry)) {
1011                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1012                 if (!pud)
1013                         return -1;
1014
1015                 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1016                 allocd_pgd = true;
1017         }
1018
1019         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1020         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1021
1022         ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1023         if (ret < 0) {
1024                 unmap_pud_range(pgd_entry, addr,
1025                                 addr + (cpa->numpages << PAGE_SHIFT));
1026
1027                 if (allocd_pgd) {
1028                         /*
1029                          * If I allocated this PUD page, I can just as well
1030                          * free it in this error path.
1031                          */
1032                         pgd_clear(pgd_entry);
1033                         free_page((unsigned long)pud);
1034                 }
1035                 return ret;
1036         }
1037         cpa->numpages = ret;
1038         return 0;
1039 }
1040
1041 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1042                                int primary)
1043 {
1044         /*
1045          * Ignore all non primary paths.
1046          */
1047         if (!primary)
1048                 return 0;
1049
1050         /*
1051          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1052          * to have holes.
1053          * Also set numpages to '1' indicating that we processed cpa req for
1054          * one virtual address page and its pfn. TBD: numpages can be set based
1055          * on the initial value and the level returned by lookup_address().
1056          */
1057         if (within(vaddr, PAGE_OFFSET,
1058                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1059                 cpa->numpages = 1;
1060                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1061                 return 0;
1062         } else {
1063                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1064                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1065                         *cpa->vaddr);
1066
1067                 return -EFAULT;
1068         }
1069 }
1070
1071 static int __change_page_attr(struct cpa_data *cpa, int primary)
1072 {
1073         unsigned long address;
1074         int do_split, err;
1075         unsigned int level;
1076         pte_t *kpte, old_pte;
1077
1078         if (cpa->flags & CPA_PAGES_ARRAY) {
1079                 struct page *page = cpa->pages[cpa->curpage];
1080                 if (unlikely(PageHighMem(page)))
1081                         return 0;
1082                 address = (unsigned long)page_address(page);
1083         } else if (cpa->flags & CPA_ARRAY)
1084                 address = cpa->vaddr[cpa->curpage];
1085         else
1086                 address = *cpa->vaddr;
1087 repeat:
1088         kpte = lookup_address(address, &level);
1089         if (!kpte)
1090                 return __cpa_process_fault(cpa, address, primary);
1091
1092         old_pte = *kpte;
1093         if (!pte_val(old_pte))
1094                 return __cpa_process_fault(cpa, address, primary);
1095
1096         if (level == PG_LEVEL_4K) {
1097                 pte_t new_pte;
1098                 pgprot_t new_prot = pte_pgprot(old_pte);
1099                 unsigned long pfn = pte_pfn(old_pte);
1100
1101                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1102                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1103
1104                 new_prot = static_protections(new_prot, address, pfn);
1105
1106                 /*
1107                  * Set the GLOBAL flags only if the PRESENT flag is
1108                  * set otherwise pte_present will return true even on
1109                  * a non present pte. The canon_pgprot will clear
1110                  * _PAGE_GLOBAL for the ancient hardware that doesn't
1111                  * support it.
1112                  */
1113                 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1114                         pgprot_val(new_prot) |= _PAGE_GLOBAL;
1115                 else
1116                         pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1117
1118                 /*
1119                  * We need to keep the pfn from the existing PTE,
1120                  * after all we're only going to change it's attributes
1121                  * not the memory it points to
1122                  */
1123                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1124                 cpa->pfn = pfn;
1125                 /*
1126                  * Do we really change anything ?
1127                  */
1128                 if (pte_val(old_pte) != pte_val(new_pte)) {
1129                         set_pte_atomic(kpte, new_pte);
1130                         cpa->flags |= CPA_FLUSHTLB;
1131                 }
1132                 cpa->numpages = 1;
1133                 return 0;
1134         }
1135
1136         /*
1137          * Check, whether we can keep the large page intact
1138          * and just change the pte:
1139          */
1140         do_split = try_preserve_large_page(kpte, address, cpa);
1141         /*
1142          * When the range fits into the existing large page,
1143          * return. cp->numpages and cpa->tlbflush have been updated in
1144          * try_large_page:
1145          */
1146         if (do_split <= 0)
1147                 return do_split;
1148
1149         /*
1150          * We have to split the large page:
1151          */
1152         err = split_large_page(kpte, address);
1153         if (!err) {
1154                 /*
1155                  * Do a global flush tlb after splitting the large page
1156                  * and before we do the actual change page attribute in the PTE.
1157                  *
1158                  * With out this, we violate the TLB application note, that says
1159                  * "The TLBs may contain both ordinary and large-page
1160                  *  translations for a 4-KByte range of linear addresses. This
1161                  *  may occur if software modifies the paging structures so that
1162                  *  the page size used for the address range changes. If the two
1163                  *  translations differ with respect to page frame or attributes
1164                  *  (e.g., permissions), processor behavior is undefined and may
1165                  *  be implementation-specific."
1166                  *
1167                  * We do this global tlb flush inside the cpa_lock, so that we
1168                  * don't allow any other cpu, with stale tlb entries change the
1169                  * page attribute in parallel, that also falls into the
1170                  * just split large page entry.
1171                  */
1172                 flush_tlb_all();
1173                 goto repeat;
1174         }
1175
1176         return err;
1177 }
1178
1179 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1180
1181 static int cpa_process_alias(struct cpa_data *cpa)
1182 {
1183         struct cpa_data alias_cpa;
1184         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1185         unsigned long vaddr;
1186         int ret;
1187
1188         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1189                 return 0;
1190
1191         /*
1192          * No need to redo, when the primary call touched the direct
1193          * mapping already:
1194          */
1195         if (cpa->flags & CPA_PAGES_ARRAY) {
1196                 struct page *page = cpa->pages[cpa->curpage];
1197                 if (unlikely(PageHighMem(page)))
1198                         return 0;
1199                 vaddr = (unsigned long)page_address(page);
1200         } else if (cpa->flags & CPA_ARRAY)
1201                 vaddr = cpa->vaddr[cpa->curpage];
1202         else
1203                 vaddr = *cpa->vaddr;
1204
1205         if (!(within(vaddr, PAGE_OFFSET,
1206                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1207
1208                 alias_cpa = *cpa;
1209                 alias_cpa.vaddr = &laddr;
1210                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1211
1212                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1213                 if (ret)
1214                         return ret;
1215         }
1216
1217 #ifdef CONFIG_X86_64
1218         /*
1219          * If the primary call didn't touch the high mapping already
1220          * and the physical address is inside the kernel map, we need
1221          * to touch the high mapped kernel as well:
1222          */
1223         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1224             within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1225                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1226                                                __START_KERNEL_map - phys_base;
1227                 alias_cpa = *cpa;
1228                 alias_cpa.vaddr = &temp_cpa_vaddr;
1229                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1230
1231                 /*
1232                  * The high mapping range is imprecise, so ignore the
1233                  * return value.
1234                  */
1235                 __change_page_attr_set_clr(&alias_cpa, 0);
1236         }
1237 #endif
1238
1239         return 0;
1240 }
1241
1242 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1243 {
1244         int ret, numpages = cpa->numpages;
1245
1246         while (numpages) {
1247                 /*
1248                  * Store the remaining nr of pages for the large page
1249                  * preservation check.
1250                  */
1251                 cpa->numpages = numpages;
1252                 /* for array changes, we can't use large page */
1253                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1254                         cpa->numpages = 1;
1255
1256                 if (!debug_pagealloc)
1257                         spin_lock(&cpa_lock);
1258                 ret = __change_page_attr(cpa, checkalias);
1259                 if (!debug_pagealloc)
1260                         spin_unlock(&cpa_lock);
1261                 if (ret)
1262                         return ret;
1263
1264                 if (checkalias) {
1265                         ret = cpa_process_alias(cpa);
1266                         if (ret)
1267                                 return ret;
1268                 }
1269
1270                 /*
1271                  * Adjust the number of pages with the result of the
1272                  * CPA operation. Either a large page has been
1273                  * preserved or a single page update happened.
1274                  */
1275                 BUG_ON(cpa->numpages > numpages);
1276                 numpages -= cpa->numpages;
1277                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1278                         cpa->curpage++;
1279                 else
1280                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1281
1282         }
1283         return 0;
1284 }
1285
1286 static inline int cache_attr(pgprot_t attr)
1287 {
1288         return pgprot_val(attr) &
1289                 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
1290 }
1291
1292 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1293                                     pgprot_t mask_set, pgprot_t mask_clr,
1294                                     int force_split, int in_flag,
1295                                     struct page **pages)
1296 {
1297         struct cpa_data cpa;
1298         int ret, cache, checkalias;
1299         unsigned long baddr = 0;
1300
1301         /*
1302          * Check, if we are requested to change a not supported
1303          * feature:
1304          */
1305         mask_set = canon_pgprot(mask_set);
1306         mask_clr = canon_pgprot(mask_clr);
1307         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1308                 return 0;
1309
1310         /* Ensure we are PAGE_SIZE aligned */
1311         if (in_flag & CPA_ARRAY) {
1312                 int i;
1313                 for (i = 0; i < numpages; i++) {
1314                         if (addr[i] & ~PAGE_MASK) {
1315                                 addr[i] &= PAGE_MASK;
1316                                 WARN_ON_ONCE(1);
1317                         }
1318                 }
1319         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1320                 /*
1321                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1322                  * No need to cehck in that case
1323                  */
1324                 if (*addr & ~PAGE_MASK) {
1325                         *addr &= PAGE_MASK;
1326                         /*
1327                          * People should not be passing in unaligned addresses:
1328                          */
1329                         WARN_ON_ONCE(1);
1330                 }
1331                 /*
1332                  * Save address for cache flush. *addr is modified in the call
1333                  * to __change_page_attr_set_clr() below.
1334                  */
1335                 baddr = *addr;
1336         }
1337
1338         /* Must avoid aliasing mappings in the highmem code */
1339         kmap_flush_unused();
1340
1341         vm_unmap_aliases();
1342
1343         cpa.vaddr = addr;
1344         cpa.pages = pages;
1345         cpa.numpages = numpages;
1346         cpa.mask_set = mask_set;
1347         cpa.mask_clr = mask_clr;
1348         cpa.flags = 0;
1349         cpa.curpage = 0;
1350         cpa.force_split = force_split;
1351
1352         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1353                 cpa.flags |= in_flag;
1354
1355         /* No alias checking for _NX bit modifications */
1356         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1357
1358         ret = __change_page_attr_set_clr(&cpa, checkalias);
1359
1360         /*
1361          * Check whether we really changed something:
1362          */
1363         if (!(cpa.flags & CPA_FLUSHTLB))
1364                 goto out;
1365
1366         /*
1367          * No need to flush, when we did not set any of the caching
1368          * attributes:
1369          */
1370         cache = cache_attr(mask_set);
1371
1372         /*
1373          * On success we use clflush, when the CPU supports it to
1374          * avoid the wbindv. If the CPU does not support it and in the
1375          * error case we fall back to cpa_flush_all (which uses
1376          * wbindv):
1377          */
1378         if (!ret && cpu_has_clflush) {
1379                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1380                         cpa_flush_array(addr, numpages, cache,
1381                                         cpa.flags, pages);
1382                 } else
1383                         cpa_flush_range(baddr, numpages, cache);
1384         } else
1385                 cpa_flush_all(cache);
1386
1387 out:
1388         return ret;
1389 }
1390
1391 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1392                                        pgprot_t mask, int array)
1393 {
1394         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1395                 (array ? CPA_ARRAY : 0), NULL);
1396 }
1397
1398 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1399                                          pgprot_t mask, int array)
1400 {
1401         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1402                 (array ? CPA_ARRAY : 0), NULL);
1403 }
1404
1405 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1406                                        pgprot_t mask)
1407 {
1408         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1409                 CPA_PAGES_ARRAY, pages);
1410 }
1411
1412 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1413                                          pgprot_t mask)
1414 {
1415         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1416                 CPA_PAGES_ARRAY, pages);
1417 }
1418
1419 int _set_memory_uc(unsigned long addr, int numpages)
1420 {
1421         /*
1422          * for now UC MINUS. see comments in ioremap_nocache()
1423          */
1424         return change_page_attr_set(&addr, numpages,
1425                                     __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1426 }
1427
1428 int set_memory_uc(unsigned long addr, int numpages)
1429 {
1430         int ret;
1431
1432         /*
1433          * for now UC MINUS. see comments in ioremap_nocache()
1434          */
1435         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1436                             _PAGE_CACHE_UC_MINUS, NULL);
1437         if (ret)
1438                 goto out_err;
1439
1440         ret = _set_memory_uc(addr, numpages);
1441         if (ret)
1442                 goto out_free;
1443
1444         return 0;
1445
1446 out_free:
1447         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1448 out_err:
1449         return ret;
1450 }
1451 EXPORT_SYMBOL(set_memory_uc);
1452
1453 static int _set_memory_array(unsigned long *addr, int addrinarray,
1454                 unsigned long new_type)
1455 {
1456         int i, j;
1457         int ret;
1458
1459         /*
1460          * for now UC MINUS. see comments in ioremap_nocache()
1461          */
1462         for (i = 0; i < addrinarray; i++) {
1463                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1464                                         new_type, NULL);
1465                 if (ret)
1466                         goto out_free;
1467         }
1468
1469         ret = change_page_attr_set(addr, addrinarray,
1470                                     __pgprot(_PAGE_CACHE_UC_MINUS), 1);
1471
1472         if (!ret && new_type == _PAGE_CACHE_WC)
1473                 ret = change_page_attr_set_clr(addr, addrinarray,
1474                                                __pgprot(_PAGE_CACHE_WC),
1475                                                __pgprot(_PAGE_CACHE_MASK),
1476                                                0, CPA_ARRAY, NULL);
1477         if (ret)
1478                 goto out_free;
1479
1480         return 0;
1481
1482 out_free:
1483         for (j = 0; j < i; j++)
1484                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1485
1486         return ret;
1487 }
1488
1489 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1490 {
1491         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1492 }
1493 EXPORT_SYMBOL(set_memory_array_uc);
1494
1495 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1496 {
1497         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1498 }
1499 EXPORT_SYMBOL(set_memory_array_wc);
1500
1501 int _set_memory_wc(unsigned long addr, int numpages)
1502 {
1503         int ret;
1504         unsigned long addr_copy = addr;
1505
1506         ret = change_page_attr_set(&addr, numpages,
1507                                     __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1508         if (!ret) {
1509                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1510                                                __pgprot(_PAGE_CACHE_WC),
1511                                                __pgprot(_PAGE_CACHE_MASK),
1512                                                0, 0, NULL);
1513         }
1514         return ret;
1515 }
1516
1517 int set_memory_wc(unsigned long addr, int numpages)
1518 {
1519         int ret;
1520
1521         if (!pat_enabled)
1522                 return set_memory_uc(addr, numpages);
1523
1524         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1525                 _PAGE_CACHE_WC, NULL);
1526         if (ret)
1527                 goto out_err;
1528
1529         ret = _set_memory_wc(addr, numpages);
1530         if (ret)
1531                 goto out_free;
1532
1533         return 0;
1534
1535 out_free:
1536         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1537 out_err:
1538         return ret;
1539 }
1540 EXPORT_SYMBOL(set_memory_wc);
1541
1542 int _set_memory_wb(unsigned long addr, int numpages)
1543 {
1544         return change_page_attr_clear(&addr, numpages,
1545                                       __pgprot(_PAGE_CACHE_MASK), 0);
1546 }
1547
1548 int set_memory_wb(unsigned long addr, int numpages)
1549 {
1550         int ret;
1551
1552         ret = _set_memory_wb(addr, numpages);
1553         if (ret)
1554                 return ret;
1555
1556         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1557         return 0;
1558 }
1559 EXPORT_SYMBOL(set_memory_wb);
1560
1561 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1562 {
1563         int i;
1564         int ret;
1565
1566         ret = change_page_attr_clear(addr, addrinarray,
1567                                       __pgprot(_PAGE_CACHE_MASK), 1);
1568         if (ret)
1569                 return ret;
1570
1571         for (i = 0; i < addrinarray; i++)
1572                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1573
1574         return 0;
1575 }
1576 EXPORT_SYMBOL(set_memory_array_wb);
1577
1578 int set_memory_x(unsigned long addr, int numpages)
1579 {
1580         if (!(__supported_pte_mask & _PAGE_NX))
1581                 return 0;
1582
1583         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1584 }
1585 EXPORT_SYMBOL(set_memory_x);
1586
1587 int set_memory_nx(unsigned long addr, int numpages)
1588 {
1589         if (!(__supported_pte_mask & _PAGE_NX))
1590                 return 0;
1591
1592         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1593 }
1594 EXPORT_SYMBOL(set_memory_nx);
1595
1596 int set_memory_ro(unsigned long addr, int numpages)
1597 {
1598         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1599 }
1600 EXPORT_SYMBOL_GPL(set_memory_ro);
1601
1602 int set_memory_rw(unsigned long addr, int numpages)
1603 {
1604         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1605 }
1606 EXPORT_SYMBOL_GPL(set_memory_rw);
1607
1608 int set_memory_np(unsigned long addr, int numpages)
1609 {
1610         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1611 }
1612
1613 int set_memory_4k(unsigned long addr, int numpages)
1614 {
1615         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1616                                         __pgprot(0), 1, 0, NULL);
1617 }
1618
1619 int set_pages_uc(struct page *page, int numpages)
1620 {
1621         unsigned long addr = (unsigned long)page_address(page);
1622
1623         return set_memory_uc(addr, numpages);
1624 }
1625 EXPORT_SYMBOL(set_pages_uc);
1626
1627 static int _set_pages_array(struct page **pages, int addrinarray,
1628                 unsigned long new_type)
1629 {
1630         unsigned long start;
1631         unsigned long end;
1632         int i;
1633         int free_idx;
1634         int ret;
1635
1636         for (i = 0; i < addrinarray; i++) {
1637                 if (PageHighMem(pages[i]))
1638                         continue;
1639                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1640                 end = start + PAGE_SIZE;
1641                 if (reserve_memtype(start, end, new_type, NULL))
1642                         goto err_out;
1643         }
1644
1645         ret = cpa_set_pages_array(pages, addrinarray,
1646                         __pgprot(_PAGE_CACHE_UC_MINUS));
1647         if (!ret && new_type == _PAGE_CACHE_WC)
1648                 ret = change_page_attr_set_clr(NULL, addrinarray,
1649                                                __pgprot(_PAGE_CACHE_WC),
1650                                                __pgprot(_PAGE_CACHE_MASK),
1651                                                0, CPA_PAGES_ARRAY, pages);
1652         if (ret)
1653                 goto err_out;
1654         return 0; /* Success */
1655 err_out:
1656         free_idx = i;
1657         for (i = 0; i < free_idx; i++) {
1658                 if (PageHighMem(pages[i]))
1659                         continue;
1660                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1661                 end = start + PAGE_SIZE;
1662                 free_memtype(start, end);
1663         }
1664         return -EINVAL;
1665 }
1666
1667 int set_pages_array_uc(struct page **pages, int addrinarray)
1668 {
1669         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1670 }
1671 EXPORT_SYMBOL(set_pages_array_uc);
1672
1673 int set_pages_array_wc(struct page **pages, int addrinarray)
1674 {
1675         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1676 }
1677 EXPORT_SYMBOL(set_pages_array_wc);
1678
1679 int set_pages_wb(struct page *page, int numpages)
1680 {
1681         unsigned long addr = (unsigned long)page_address(page);
1682
1683         return set_memory_wb(addr, numpages);
1684 }
1685 EXPORT_SYMBOL(set_pages_wb);
1686
1687 int set_pages_array_wb(struct page **pages, int addrinarray)
1688 {
1689         int retval;
1690         unsigned long start;
1691         unsigned long end;
1692         int i;
1693
1694         retval = cpa_clear_pages_array(pages, addrinarray,
1695                         __pgprot(_PAGE_CACHE_MASK));
1696         if (retval)
1697                 return retval;
1698
1699         for (i = 0; i < addrinarray; i++) {
1700                 if (PageHighMem(pages[i]))
1701                         continue;
1702                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1703                 end = start + PAGE_SIZE;
1704                 free_memtype(start, end);
1705         }
1706
1707         return 0;
1708 }
1709 EXPORT_SYMBOL(set_pages_array_wb);
1710
1711 int set_pages_x(struct page *page, int numpages)
1712 {
1713         unsigned long addr = (unsigned long)page_address(page);
1714
1715         return set_memory_x(addr, numpages);
1716 }
1717 EXPORT_SYMBOL(set_pages_x);
1718
1719 int set_pages_nx(struct page *page, int numpages)
1720 {
1721         unsigned long addr = (unsigned long)page_address(page);
1722
1723         return set_memory_nx(addr, numpages);
1724 }
1725 EXPORT_SYMBOL(set_pages_nx);
1726
1727 int set_pages_ro(struct page *page, int numpages)
1728 {
1729         unsigned long addr = (unsigned long)page_address(page);
1730
1731         return set_memory_ro(addr, numpages);
1732 }
1733
1734 int set_pages_rw(struct page *page, int numpages)
1735 {
1736         unsigned long addr = (unsigned long)page_address(page);
1737
1738         return set_memory_rw(addr, numpages);
1739 }
1740
1741 #ifdef CONFIG_DEBUG_PAGEALLOC
1742
1743 static int __set_pages_p(struct page *page, int numpages)
1744 {
1745         unsigned long tempaddr = (unsigned long) page_address(page);
1746         struct cpa_data cpa = { .vaddr = &tempaddr,
1747                                 .numpages = numpages,
1748                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1749                                 .mask_clr = __pgprot(0),
1750                                 .flags = 0};
1751
1752         /*
1753          * No alias checking needed for setting present flag. otherwise,
1754          * we may need to break large pages for 64-bit kernel text
1755          * mappings (this adds to complexity if we want to do this from
1756          * atomic context especially). Let's keep it simple!
1757          */
1758         return __change_page_attr_set_clr(&cpa, 0);
1759 }
1760
1761 static int __set_pages_np(struct page *page, int numpages)
1762 {
1763         unsigned long tempaddr = (unsigned long) page_address(page);
1764         struct cpa_data cpa = { .vaddr = &tempaddr,
1765                                 .numpages = numpages,
1766                                 .mask_set = __pgprot(0),
1767                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1768                                 .flags = 0};
1769
1770         /*
1771          * No alias checking needed for setting not present flag. otherwise,
1772          * we may need to break large pages for 64-bit kernel text
1773          * mappings (this adds to complexity if we want to do this from
1774          * atomic context especially). Let's keep it simple!
1775          */
1776         return __change_page_attr_set_clr(&cpa, 0);
1777 }
1778
1779 void kernel_map_pages(struct page *page, int numpages, int enable)
1780 {
1781         if (PageHighMem(page))
1782                 return;
1783         if (!enable) {
1784                 debug_check_no_locks_freed(page_address(page),
1785                                            numpages * PAGE_SIZE);
1786         }
1787
1788         /*
1789          * The return value is ignored as the calls cannot fail.
1790          * Large pages for identity mappings are not used at boot time
1791          * and hence no memory allocations during large page split.
1792          */
1793         if (enable)
1794                 __set_pages_p(page, numpages);
1795         else
1796                 __set_pages_np(page, numpages);
1797
1798         /*
1799          * We should perform an IPI and flush all tlbs,
1800          * but that can deadlock->flush only current cpu:
1801          */
1802         __flush_tlb_all();
1803
1804         arch_flush_lazy_mmu_mode();
1805 }
1806
1807 #ifdef CONFIG_HIBERNATION
1808
1809 bool kernel_page_present(struct page *page)
1810 {
1811         unsigned int level;
1812         pte_t *pte;
1813
1814         if (PageHighMem(page))
1815                 return false;
1816
1817         pte = lookup_address((unsigned long)page_address(page), &level);
1818         return (pte_val(*pte) & _PAGE_PRESENT);
1819 }
1820
1821 #endif /* CONFIG_HIBERNATION */
1822
1823 #endif /* CONFIG_DEBUG_PAGEALLOC */
1824
1825 /*
1826  * The testcases use internal knowledge of the implementation that shouldn't
1827  * be exposed to the rest of the kernel. Include these directly here.
1828  */
1829 #ifdef CONFIG_CPA_DEBUG
1830 #include "pageattr-test.c"
1831 #endif